1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries NUMA support 4 * 5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 6 */ 7 #define pr_fmt(fmt) "numa: " fmt 8 9 #include <linux/threads.h> 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/mm.h> 13 #include <linux/mmzone.h> 14 #include <linux/export.h> 15 #include <linux/nodemask.h> 16 #include <linux/cpu.h> 17 #include <linux/notifier.h> 18 #include <linux/of.h> 19 #include <linux/pfn.h> 20 #include <linux/cpuset.h> 21 #include <linux/node.h> 22 #include <linux/stop_machine.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <asm/cputhreads.h> 28 #include <asm/sparsemem.h> 29 #include <asm/prom.h> 30 #include <asm/smp.h> 31 #include <asm/topology.h> 32 #include <asm/firmware.h> 33 #include <asm/paca.h> 34 #include <asm/hvcall.h> 35 #include <asm/setup.h> 36 #include <asm/vdso.h> 37 #include <asm/drmem.h> 38 39 static int numa_enabled = 1; 40 41 static char *cmdline __initdata; 42 43 static int numa_debug; 44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 45 46 int numa_cpu_lookup_table[NR_CPUS]; 47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 48 struct pglist_data *node_data[MAX_NUMNODES]; 49 50 EXPORT_SYMBOL(numa_cpu_lookup_table); 51 EXPORT_SYMBOL(node_to_cpumask_map); 52 EXPORT_SYMBOL(node_data); 53 54 static int min_common_depth; 55 static int n_mem_addr_cells, n_mem_size_cells; 56 static int form1_affinity; 57 58 #define MAX_DISTANCE_REF_POINTS 4 59 static int distance_ref_points_depth; 60 static const __be32 *distance_ref_points; 61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 62 63 /* 64 * Allocate node_to_cpumask_map based on number of available nodes 65 * Requires node_possible_map to be valid. 66 * 67 * Note: cpumask_of_node() is not valid until after this is done. 68 */ 69 static void __init setup_node_to_cpumask_map(void) 70 { 71 unsigned int node; 72 73 /* setup nr_node_ids if not done yet */ 74 if (nr_node_ids == MAX_NUMNODES) 75 setup_nr_node_ids(); 76 77 /* allocate the map */ 78 for_each_node(node) 79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 80 81 /* cpumask_of_node() will now work */ 82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids); 83 } 84 85 static int __init fake_numa_create_new_node(unsigned long end_pfn, 86 unsigned int *nid) 87 { 88 unsigned long long mem; 89 char *p = cmdline; 90 static unsigned int fake_nid; 91 static unsigned long long curr_boundary; 92 93 /* 94 * Modify node id, iff we started creating NUMA nodes 95 * We want to continue from where we left of the last time 96 */ 97 if (fake_nid) 98 *nid = fake_nid; 99 /* 100 * In case there are no more arguments to parse, the 101 * node_id should be the same as the last fake node id 102 * (we've handled this above). 103 */ 104 if (!p) 105 return 0; 106 107 mem = memparse(p, &p); 108 if (!mem) 109 return 0; 110 111 if (mem < curr_boundary) 112 return 0; 113 114 curr_boundary = mem; 115 116 if ((end_pfn << PAGE_SHIFT) > mem) { 117 /* 118 * Skip commas and spaces 119 */ 120 while (*p == ',' || *p == ' ' || *p == '\t') 121 p++; 122 123 cmdline = p; 124 fake_nid++; 125 *nid = fake_nid; 126 dbg("created new fake_node with id %d\n", fake_nid); 127 return 1; 128 } 129 return 0; 130 } 131 132 static void reset_numa_cpu_lookup_table(void) 133 { 134 unsigned int cpu; 135 136 for_each_possible_cpu(cpu) 137 numa_cpu_lookup_table[cpu] = -1; 138 } 139 140 static void map_cpu_to_node(int cpu, int node) 141 { 142 update_numa_cpu_lookup_table(cpu, node); 143 144 dbg("adding cpu %d to node %d\n", cpu, node); 145 146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 148 } 149 150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 151 static void unmap_cpu_from_node(unsigned long cpu) 152 { 153 int node = numa_cpu_lookup_table[cpu]; 154 155 dbg("removing cpu %lu from node %d\n", cpu, node); 156 157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 159 } else { 160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 161 cpu, node); 162 } 163 } 164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 165 166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) 167 { 168 int dist = 0; 169 170 int i, index; 171 172 for (i = 0; i < distance_ref_points_depth; i++) { 173 index = be32_to_cpu(distance_ref_points[i]); 174 if (cpu1_assoc[index] == cpu2_assoc[index]) 175 break; 176 dist++; 177 } 178 179 return dist; 180 } 181 182 /* must hold reference to node during call */ 183 static const __be32 *of_get_associativity(struct device_node *dev) 184 { 185 return of_get_property(dev, "ibm,associativity", NULL); 186 } 187 188 int __node_distance(int a, int b) 189 { 190 int i; 191 int distance = LOCAL_DISTANCE; 192 193 if (!form1_affinity) 194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 195 196 for (i = 0; i < distance_ref_points_depth; i++) { 197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 198 break; 199 200 /* Double the distance for each NUMA level */ 201 distance *= 2; 202 } 203 204 return distance; 205 } 206 EXPORT_SYMBOL(__node_distance); 207 208 static void initialize_distance_lookup_table(int nid, 209 const __be32 *associativity) 210 { 211 int i; 212 213 if (!form1_affinity) 214 return; 215 216 for (i = 0; i < distance_ref_points_depth; i++) { 217 const __be32 *entry; 218 219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 220 distance_lookup_table[nid][i] = of_read_number(entry, 1); 221 } 222 } 223 224 /* 225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA 226 * info is found. 227 */ 228 static int associativity_to_nid(const __be32 *associativity) 229 { 230 int nid = NUMA_NO_NODE; 231 232 if (!numa_enabled) 233 goto out; 234 235 if (of_read_number(associativity, 1) >= min_common_depth) 236 nid = of_read_number(&associativity[min_common_depth], 1); 237 238 /* POWER4 LPAR uses 0xffff as invalid node */ 239 if (nid == 0xffff || nid >= nr_node_ids) 240 nid = NUMA_NO_NODE; 241 242 if (nid > 0 && 243 of_read_number(associativity, 1) >= distance_ref_points_depth) { 244 /* 245 * Skip the length field and send start of associativity array 246 */ 247 initialize_distance_lookup_table(nid, associativity + 1); 248 } 249 250 out: 251 return nid; 252 } 253 254 /* Returns the nid associated with the given device tree node, 255 * or -1 if not found. 256 */ 257 static int of_node_to_nid_single(struct device_node *device) 258 { 259 int nid = NUMA_NO_NODE; 260 const __be32 *tmp; 261 262 tmp = of_get_associativity(device); 263 if (tmp) 264 nid = associativity_to_nid(tmp); 265 return nid; 266 } 267 268 /* Walk the device tree upwards, looking for an associativity id */ 269 int of_node_to_nid(struct device_node *device) 270 { 271 int nid = NUMA_NO_NODE; 272 273 of_node_get(device); 274 while (device) { 275 nid = of_node_to_nid_single(device); 276 if (nid != -1) 277 break; 278 279 device = of_get_next_parent(device); 280 } 281 of_node_put(device); 282 283 return nid; 284 } 285 EXPORT_SYMBOL(of_node_to_nid); 286 287 static int __init find_min_common_depth(void) 288 { 289 int depth; 290 struct device_node *root; 291 292 if (firmware_has_feature(FW_FEATURE_OPAL)) 293 root = of_find_node_by_path("/ibm,opal"); 294 else 295 root = of_find_node_by_path("/rtas"); 296 if (!root) 297 root = of_find_node_by_path("/"); 298 299 /* 300 * This property is a set of 32-bit integers, each representing 301 * an index into the ibm,associativity nodes. 302 * 303 * With form 0 affinity the first integer is for an SMP configuration 304 * (should be all 0's) and the second is for a normal NUMA 305 * configuration. We have only one level of NUMA. 306 * 307 * With form 1 affinity the first integer is the most significant 308 * NUMA boundary and the following are progressively less significant 309 * boundaries. There can be more than one level of NUMA. 310 */ 311 distance_ref_points = of_get_property(root, 312 "ibm,associativity-reference-points", 313 &distance_ref_points_depth); 314 315 if (!distance_ref_points) { 316 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 317 goto err; 318 } 319 320 distance_ref_points_depth /= sizeof(int); 321 322 if (firmware_has_feature(FW_FEATURE_OPAL) || 323 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 324 dbg("Using form 1 affinity\n"); 325 form1_affinity = 1; 326 } 327 328 if (form1_affinity) { 329 depth = of_read_number(distance_ref_points, 1); 330 } else { 331 if (distance_ref_points_depth < 2) { 332 printk(KERN_WARNING "NUMA: " 333 "short ibm,associativity-reference-points\n"); 334 goto err; 335 } 336 337 depth = of_read_number(&distance_ref_points[1], 1); 338 } 339 340 /* 341 * Warn and cap if the hardware supports more than 342 * MAX_DISTANCE_REF_POINTS domains. 343 */ 344 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 345 printk(KERN_WARNING "NUMA: distance array capped at " 346 "%d entries\n", MAX_DISTANCE_REF_POINTS); 347 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 348 } 349 350 of_node_put(root); 351 return depth; 352 353 err: 354 of_node_put(root); 355 return -1; 356 } 357 358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 359 { 360 struct device_node *memory = NULL; 361 362 memory = of_find_node_by_type(memory, "memory"); 363 if (!memory) 364 panic("numa.c: No memory nodes found!"); 365 366 *n_addr_cells = of_n_addr_cells(memory); 367 *n_size_cells = of_n_size_cells(memory); 368 of_node_put(memory); 369 } 370 371 static unsigned long read_n_cells(int n, const __be32 **buf) 372 { 373 unsigned long result = 0; 374 375 while (n--) { 376 result = (result << 32) | of_read_number(*buf, 1); 377 (*buf)++; 378 } 379 return result; 380 } 381 382 struct assoc_arrays { 383 u32 n_arrays; 384 u32 array_sz; 385 const __be32 *arrays; 386 }; 387 388 /* 389 * Retrieve and validate the list of associativity arrays for drconf 390 * memory from the ibm,associativity-lookup-arrays property of the 391 * device tree.. 392 * 393 * The layout of the ibm,associativity-lookup-arrays property is a number N 394 * indicating the number of associativity arrays, followed by a number M 395 * indicating the size of each associativity array, followed by a list 396 * of N associativity arrays. 397 */ 398 static int of_get_assoc_arrays(struct assoc_arrays *aa) 399 { 400 struct device_node *memory; 401 const __be32 *prop; 402 u32 len; 403 404 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 405 if (!memory) 406 return -1; 407 408 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 409 if (!prop || len < 2 * sizeof(unsigned int)) { 410 of_node_put(memory); 411 return -1; 412 } 413 414 aa->n_arrays = of_read_number(prop++, 1); 415 aa->array_sz = of_read_number(prop++, 1); 416 417 of_node_put(memory); 418 419 /* Now that we know the number of arrays and size of each array, 420 * revalidate the size of the property read in. 421 */ 422 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 423 return -1; 424 425 aa->arrays = prop; 426 return 0; 427 } 428 429 /* 430 * This is like of_node_to_nid_single() for memory represented in the 431 * ibm,dynamic-reconfiguration-memory node. 432 */ 433 static int of_drconf_to_nid_single(struct drmem_lmb *lmb) 434 { 435 struct assoc_arrays aa = { .arrays = NULL }; 436 int default_nid = NUMA_NO_NODE; 437 int nid = default_nid; 438 int rc, index; 439 440 if ((min_common_depth < 0) || !numa_enabled) 441 return default_nid; 442 443 rc = of_get_assoc_arrays(&aa); 444 if (rc) 445 return default_nid; 446 447 if (min_common_depth <= aa.array_sz && 448 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { 449 index = lmb->aa_index * aa.array_sz + min_common_depth - 1; 450 nid = of_read_number(&aa.arrays[index], 1); 451 452 if (nid == 0xffff || nid >= nr_node_ids) 453 nid = default_nid; 454 455 if (nid > 0) { 456 index = lmb->aa_index * aa.array_sz; 457 initialize_distance_lookup_table(nid, 458 &aa.arrays[index]); 459 } 460 } 461 462 return nid; 463 } 464 465 #ifdef CONFIG_PPC_SPLPAR 466 static int vphn_get_nid(long lcpu) 467 { 468 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 469 long rc, hwid; 470 471 /* 472 * On a shared lpar, device tree will not have node associativity. 473 * At this time lppaca, or its __old_status field may not be 474 * updated. Hence kernel cannot detect if its on a shared lpar. So 475 * request an explicit associativity irrespective of whether the 476 * lpar is shared or dedicated. Use the device tree property as a 477 * fallback. cpu_to_phys_id is only valid between 478 * smp_setup_cpu_maps() and smp_setup_pacas(). 479 */ 480 if (firmware_has_feature(FW_FEATURE_VPHN)) { 481 if (cpu_to_phys_id) 482 hwid = cpu_to_phys_id[lcpu]; 483 else 484 hwid = get_hard_smp_processor_id(lcpu); 485 486 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); 487 if (rc == H_SUCCESS) 488 return associativity_to_nid(associativity); 489 } 490 491 return NUMA_NO_NODE; 492 } 493 #else 494 static int vphn_get_nid(long unused) 495 { 496 return NUMA_NO_NODE; 497 } 498 #endif /* CONFIG_PPC_SPLPAR */ 499 500 /* 501 * Figure out to which domain a cpu belongs and stick it there. 502 * Return the id of the domain used. 503 */ 504 static int numa_setup_cpu(unsigned long lcpu) 505 { 506 struct device_node *cpu; 507 int fcpu = cpu_first_thread_sibling(lcpu); 508 int nid = NUMA_NO_NODE; 509 510 /* 511 * If a valid cpu-to-node mapping is already available, use it 512 * directly instead of querying the firmware, since it represents 513 * the most recent mapping notified to us by the platform (eg: VPHN). 514 * Since cpu_to_node binding remains the same for all threads in the 515 * core. If a valid cpu-to-node mapping is already available, for 516 * the first thread in the core, use it. 517 */ 518 nid = numa_cpu_lookup_table[fcpu]; 519 if (nid >= 0) { 520 map_cpu_to_node(lcpu, nid); 521 return nid; 522 } 523 524 nid = vphn_get_nid(lcpu); 525 if (nid != NUMA_NO_NODE) 526 goto out_present; 527 528 cpu = of_get_cpu_node(lcpu, NULL); 529 530 if (!cpu) { 531 WARN_ON(1); 532 if (cpu_present(lcpu)) 533 goto out_present; 534 else 535 goto out; 536 } 537 538 nid = of_node_to_nid_single(cpu); 539 of_node_put(cpu); 540 541 out_present: 542 if (nid < 0 || !node_possible(nid)) 543 nid = first_online_node; 544 545 /* 546 * Update for the first thread of the core. All threads of a core 547 * have to be part of the same node. This not only avoids querying 548 * for every other thread in the core, but always avoids a case 549 * where virtual node associativity change causes subsequent threads 550 * of a core to be associated with different nid. However if first 551 * thread is already online, expect it to have a valid mapping. 552 */ 553 if (fcpu != lcpu) { 554 WARN_ON(cpu_online(fcpu)); 555 map_cpu_to_node(fcpu, nid); 556 } 557 558 map_cpu_to_node(lcpu, nid); 559 out: 560 return nid; 561 } 562 563 static void verify_cpu_node_mapping(int cpu, int node) 564 { 565 int base, sibling, i; 566 567 /* Verify that all the threads in the core belong to the same node */ 568 base = cpu_first_thread_sibling(cpu); 569 570 for (i = 0; i < threads_per_core; i++) { 571 sibling = base + i; 572 573 if (sibling == cpu || cpu_is_offline(sibling)) 574 continue; 575 576 if (cpu_to_node(sibling) != node) { 577 WARN(1, "CPU thread siblings %d and %d don't belong" 578 " to the same node!\n", cpu, sibling); 579 break; 580 } 581 } 582 } 583 584 /* Must run before sched domains notifier. */ 585 static int ppc_numa_cpu_prepare(unsigned int cpu) 586 { 587 int nid; 588 589 nid = numa_setup_cpu(cpu); 590 verify_cpu_node_mapping(cpu, nid); 591 return 0; 592 } 593 594 static int ppc_numa_cpu_dead(unsigned int cpu) 595 { 596 #ifdef CONFIG_HOTPLUG_CPU 597 unmap_cpu_from_node(cpu); 598 #endif 599 return 0; 600 } 601 602 /* 603 * Check and possibly modify a memory region to enforce the memory limit. 604 * 605 * Returns the size the region should have to enforce the memory limit. 606 * This will either be the original value of size, a truncated value, 607 * or zero. If the returned value of size is 0 the region should be 608 * discarded as it lies wholly above the memory limit. 609 */ 610 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 611 unsigned long size) 612 { 613 /* 614 * We use memblock_end_of_DRAM() in here instead of memory_limit because 615 * we've already adjusted it for the limit and it takes care of 616 * having memory holes below the limit. Also, in the case of 617 * iommu_is_off, memory_limit is not set but is implicitly enforced. 618 */ 619 620 if (start + size <= memblock_end_of_DRAM()) 621 return size; 622 623 if (start >= memblock_end_of_DRAM()) 624 return 0; 625 626 return memblock_end_of_DRAM() - start; 627 } 628 629 /* 630 * Reads the counter for a given entry in 631 * linux,drconf-usable-memory property 632 */ 633 static inline int __init read_usm_ranges(const __be32 **usm) 634 { 635 /* 636 * For each lmb in ibm,dynamic-memory a corresponding 637 * entry in linux,drconf-usable-memory property contains 638 * a counter followed by that many (base, size) duple. 639 * read the counter from linux,drconf-usable-memory 640 */ 641 return read_n_cells(n_mem_size_cells, usm); 642 } 643 644 /* 645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 646 * node. This assumes n_mem_{addr,size}_cells have been set. 647 */ 648 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, 649 const __be32 **usm, 650 void *data) 651 { 652 unsigned int ranges, is_kexec_kdump = 0; 653 unsigned long base, size, sz; 654 int nid; 655 656 /* 657 * Skip this block if the reserved bit is set in flags (0x80) 658 * or if the block is not assigned to this partition (0x8) 659 */ 660 if ((lmb->flags & DRCONF_MEM_RESERVED) 661 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 662 return 0; 663 664 if (*usm) 665 is_kexec_kdump = 1; 666 667 base = lmb->base_addr; 668 size = drmem_lmb_size(); 669 ranges = 1; 670 671 if (is_kexec_kdump) { 672 ranges = read_usm_ranges(usm); 673 if (!ranges) /* there are no (base, size) duple */ 674 return 0; 675 } 676 677 do { 678 if (is_kexec_kdump) { 679 base = read_n_cells(n_mem_addr_cells, usm); 680 size = read_n_cells(n_mem_size_cells, usm); 681 } 682 683 nid = of_drconf_to_nid_single(lmb); 684 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), 685 &nid); 686 node_set_online(nid); 687 sz = numa_enforce_memory_limit(base, size); 688 if (sz) 689 memblock_set_node(base, sz, &memblock.memory, nid); 690 } while (--ranges); 691 692 return 0; 693 } 694 695 static int __init parse_numa_properties(void) 696 { 697 struct device_node *memory; 698 int default_nid = 0; 699 unsigned long i; 700 701 if (numa_enabled == 0) { 702 printk(KERN_WARNING "NUMA disabled by user\n"); 703 return -1; 704 } 705 706 min_common_depth = find_min_common_depth(); 707 708 if (min_common_depth < 0) { 709 /* 710 * if we fail to parse min_common_depth from device tree 711 * mark the numa disabled, boot with numa disabled. 712 */ 713 numa_enabled = false; 714 return min_common_depth; 715 } 716 717 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 718 719 /* 720 * Even though we connect cpus to numa domains later in SMP 721 * init, we need to know the node ids now. This is because 722 * each node to be onlined must have NODE_DATA etc backing it. 723 */ 724 for_each_present_cpu(i) { 725 struct device_node *cpu; 726 int nid; 727 728 cpu = of_get_cpu_node(i, NULL); 729 BUG_ON(!cpu); 730 nid = of_node_to_nid_single(cpu); 731 of_node_put(cpu); 732 733 /* 734 * Don't fall back to default_nid yet -- we will plug 735 * cpus into nodes once the memory scan has discovered 736 * the topology. 737 */ 738 if (nid < 0) 739 continue; 740 node_set_online(nid); 741 } 742 743 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 744 745 for_each_node_by_type(memory, "memory") { 746 unsigned long start; 747 unsigned long size; 748 int nid; 749 int ranges; 750 const __be32 *memcell_buf; 751 unsigned int len; 752 753 memcell_buf = of_get_property(memory, 754 "linux,usable-memory", &len); 755 if (!memcell_buf || len <= 0) 756 memcell_buf = of_get_property(memory, "reg", &len); 757 if (!memcell_buf || len <= 0) 758 continue; 759 760 /* ranges in cell */ 761 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 762 new_range: 763 /* these are order-sensitive, and modify the buffer pointer */ 764 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 765 size = read_n_cells(n_mem_size_cells, &memcell_buf); 766 767 /* 768 * Assumption: either all memory nodes or none will 769 * have associativity properties. If none, then 770 * everything goes to default_nid. 771 */ 772 nid = of_node_to_nid_single(memory); 773 if (nid < 0) 774 nid = default_nid; 775 776 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 777 node_set_online(nid); 778 779 size = numa_enforce_memory_limit(start, size); 780 if (size) 781 memblock_set_node(start, size, &memblock.memory, nid); 782 783 if (--ranges) 784 goto new_range; 785 } 786 787 /* 788 * Now do the same thing for each MEMBLOCK listed in the 789 * ibm,dynamic-memory property in the 790 * ibm,dynamic-reconfiguration-memory node. 791 */ 792 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 793 if (memory) { 794 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); 795 of_node_put(memory); 796 } 797 798 return 0; 799 } 800 801 static void __init setup_nonnuma(void) 802 { 803 unsigned long top_of_ram = memblock_end_of_DRAM(); 804 unsigned long total_ram = memblock_phys_mem_size(); 805 unsigned long start_pfn, end_pfn; 806 unsigned int nid = 0; 807 struct memblock_region *reg; 808 809 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 810 top_of_ram, total_ram); 811 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 812 (top_of_ram - total_ram) >> 20); 813 814 for_each_memblock(memory, reg) { 815 start_pfn = memblock_region_memory_base_pfn(reg); 816 end_pfn = memblock_region_memory_end_pfn(reg); 817 818 fake_numa_create_new_node(end_pfn, &nid); 819 memblock_set_node(PFN_PHYS(start_pfn), 820 PFN_PHYS(end_pfn - start_pfn), 821 &memblock.memory, nid); 822 node_set_online(nid); 823 } 824 } 825 826 void __init dump_numa_cpu_topology(void) 827 { 828 unsigned int node; 829 unsigned int cpu, count; 830 831 if (!numa_enabled) 832 return; 833 834 for_each_online_node(node) { 835 pr_info("Node %d CPUs:", node); 836 837 count = 0; 838 /* 839 * If we used a CPU iterator here we would miss printing 840 * the holes in the cpumap. 841 */ 842 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 843 if (cpumask_test_cpu(cpu, 844 node_to_cpumask_map[node])) { 845 if (count == 0) 846 pr_cont(" %u", cpu); 847 ++count; 848 } else { 849 if (count > 1) 850 pr_cont("-%u", cpu - 1); 851 count = 0; 852 } 853 } 854 855 if (count > 1) 856 pr_cont("-%u", nr_cpu_ids - 1); 857 pr_cont("\n"); 858 } 859 } 860 861 /* Initialize NODE_DATA for a node on the local memory */ 862 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 863 { 864 u64 spanned_pages = end_pfn - start_pfn; 865 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 866 u64 nd_pa; 867 void *nd; 868 int tnid; 869 870 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 871 if (!nd_pa) 872 panic("Cannot allocate %zu bytes for node %d data\n", 873 nd_size, nid); 874 875 nd = __va(nd_pa); 876 877 /* report and initialize */ 878 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 879 nd_pa, nd_pa + nd_size - 1); 880 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 881 if (tnid != nid) 882 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 883 884 node_data[nid] = nd; 885 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 886 NODE_DATA(nid)->node_id = nid; 887 NODE_DATA(nid)->node_start_pfn = start_pfn; 888 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 889 } 890 891 static void __init find_possible_nodes(void) 892 { 893 struct device_node *rtas; 894 u32 numnodes, i; 895 896 if (!numa_enabled) 897 return; 898 899 rtas = of_find_node_by_path("/rtas"); 900 if (!rtas) 901 return; 902 903 if (of_property_read_u32_index(rtas, 904 "ibm,max-associativity-domains", 905 min_common_depth, &numnodes)) 906 goto out; 907 908 for (i = 0; i < numnodes; i++) { 909 if (!node_possible(i)) 910 node_set(i, node_possible_map); 911 } 912 913 out: 914 of_node_put(rtas); 915 } 916 917 void __init mem_topology_setup(void) 918 { 919 int cpu; 920 921 if (parse_numa_properties()) 922 setup_nonnuma(); 923 924 /* 925 * Modify the set of possible NUMA nodes to reflect information 926 * available about the set of online nodes, and the set of nodes 927 * that we expect to make use of for this platform's affinity 928 * calculations. 929 */ 930 nodes_and(node_possible_map, node_possible_map, node_online_map); 931 932 find_possible_nodes(); 933 934 setup_node_to_cpumask_map(); 935 936 reset_numa_cpu_lookup_table(); 937 938 for_each_present_cpu(cpu) 939 numa_setup_cpu(cpu); 940 } 941 942 void __init initmem_init(void) 943 { 944 int nid; 945 946 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 947 max_pfn = max_low_pfn; 948 949 memblock_dump_all(); 950 951 for_each_online_node(nid) { 952 unsigned long start_pfn, end_pfn; 953 954 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 955 setup_node_data(nid, start_pfn, end_pfn); 956 sparse_memory_present_with_active_regions(nid); 957 } 958 959 sparse_init(); 960 961 /* 962 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 963 * even before we online them, so that we can use cpu_to_{node,mem} 964 * early in boot, cf. smp_prepare_cpus(). 965 * _nocalls() + manual invocation is used because cpuhp is not yet 966 * initialized for the boot CPU. 967 */ 968 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", 969 ppc_numa_cpu_prepare, ppc_numa_cpu_dead); 970 } 971 972 static int __init early_numa(char *p) 973 { 974 if (!p) 975 return 0; 976 977 if (strstr(p, "off")) 978 numa_enabled = 0; 979 980 if (strstr(p, "debug")) 981 numa_debug = 1; 982 983 p = strstr(p, "fake="); 984 if (p) 985 cmdline = p + strlen("fake="); 986 987 return 0; 988 } 989 early_param("numa", early_numa); 990 991 #ifdef CONFIG_MEMORY_HOTPLUG 992 /* 993 * Find the node associated with a hot added memory section for 994 * memory represented in the device tree by the property 995 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 996 */ 997 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) 998 { 999 struct drmem_lmb *lmb; 1000 unsigned long lmb_size; 1001 int nid = NUMA_NO_NODE; 1002 1003 lmb_size = drmem_lmb_size(); 1004 1005 for_each_drmem_lmb(lmb) { 1006 /* skip this block if it is reserved or not assigned to 1007 * this partition */ 1008 if ((lmb->flags & DRCONF_MEM_RESERVED) 1009 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 1010 continue; 1011 1012 if ((scn_addr < lmb->base_addr) 1013 || (scn_addr >= (lmb->base_addr + lmb_size))) 1014 continue; 1015 1016 nid = of_drconf_to_nid_single(lmb); 1017 break; 1018 } 1019 1020 return nid; 1021 } 1022 1023 /* 1024 * Find the node associated with a hot added memory section for memory 1025 * represented in the device tree as a node (i.e. memory@XXXX) for 1026 * each memblock. 1027 */ 1028 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1029 { 1030 struct device_node *memory; 1031 int nid = NUMA_NO_NODE; 1032 1033 for_each_node_by_type(memory, "memory") { 1034 unsigned long start, size; 1035 int ranges; 1036 const __be32 *memcell_buf; 1037 unsigned int len; 1038 1039 memcell_buf = of_get_property(memory, "reg", &len); 1040 if (!memcell_buf || len <= 0) 1041 continue; 1042 1043 /* ranges in cell */ 1044 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1045 1046 while (ranges--) { 1047 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1048 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1049 1050 if ((scn_addr < start) || (scn_addr >= (start + size))) 1051 continue; 1052 1053 nid = of_node_to_nid_single(memory); 1054 break; 1055 } 1056 1057 if (nid >= 0) 1058 break; 1059 } 1060 1061 of_node_put(memory); 1062 1063 return nid; 1064 } 1065 1066 /* 1067 * Find the node associated with a hot added memory section. Section 1068 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1069 * sections are fully contained within a single MEMBLOCK. 1070 */ 1071 int hot_add_scn_to_nid(unsigned long scn_addr) 1072 { 1073 struct device_node *memory = NULL; 1074 int nid; 1075 1076 if (!numa_enabled) 1077 return first_online_node; 1078 1079 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1080 if (memory) { 1081 nid = hot_add_drconf_scn_to_nid(scn_addr); 1082 of_node_put(memory); 1083 } else { 1084 nid = hot_add_node_scn_to_nid(scn_addr); 1085 } 1086 1087 if (nid < 0 || !node_possible(nid)) 1088 nid = first_online_node; 1089 1090 return nid; 1091 } 1092 1093 static u64 hot_add_drconf_memory_max(void) 1094 { 1095 struct device_node *memory = NULL; 1096 struct device_node *dn = NULL; 1097 const __be64 *lrdr = NULL; 1098 1099 dn = of_find_node_by_path("/rtas"); 1100 if (dn) { 1101 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1102 of_node_put(dn); 1103 if (lrdr) 1104 return be64_to_cpup(lrdr); 1105 } 1106 1107 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1108 if (memory) { 1109 of_node_put(memory); 1110 return drmem_lmb_memory_max(); 1111 } 1112 return 0; 1113 } 1114 1115 /* 1116 * memory_hotplug_max - return max address of memory that may be added 1117 * 1118 * This is currently only used on systems that support drconfig memory 1119 * hotplug. 1120 */ 1121 u64 memory_hotplug_max(void) 1122 { 1123 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1124 } 1125 #endif /* CONFIG_MEMORY_HOTPLUG */ 1126 1127 /* Virtual Processor Home Node (VPHN) support */ 1128 #ifdef CONFIG_PPC_SPLPAR 1129 static int topology_inited; 1130 1131 /* 1132 * Retrieve the new associativity information for a virtual processor's 1133 * home node. 1134 */ 1135 static long vphn_get_associativity(unsigned long cpu, 1136 __be32 *associativity) 1137 { 1138 long rc; 1139 1140 rc = hcall_vphn(get_hard_smp_processor_id(cpu), 1141 VPHN_FLAG_VCPU, associativity); 1142 1143 switch (rc) { 1144 case H_SUCCESS: 1145 dbg("VPHN hcall succeeded. Reset polling...\n"); 1146 goto out; 1147 1148 case H_FUNCTION: 1149 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); 1150 break; 1151 case H_HARDWARE: 1152 pr_err_ratelimited("hcall_vphn() experienced a hardware fault " 1153 "preventing VPHN. Disabling polling...\n"); 1154 break; 1155 case H_PARAMETER: 1156 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " 1157 "Disabling polling...\n"); 1158 break; 1159 default: 1160 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" 1161 , rc); 1162 break; 1163 } 1164 out: 1165 return rc; 1166 } 1167 1168 int find_and_online_cpu_nid(int cpu) 1169 { 1170 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1171 int new_nid; 1172 1173 /* Use associativity from first thread for all siblings */ 1174 if (vphn_get_associativity(cpu, associativity)) 1175 return cpu_to_node(cpu); 1176 1177 new_nid = associativity_to_nid(associativity); 1178 if (new_nid < 0 || !node_possible(new_nid)) 1179 new_nid = first_online_node; 1180 1181 if (NODE_DATA(new_nid) == NULL) { 1182 #ifdef CONFIG_MEMORY_HOTPLUG 1183 /* 1184 * Need to ensure that NODE_DATA is initialized for a node from 1185 * available memory (see memblock_alloc_try_nid). If unable to 1186 * init the node, then default to nearest node that has memory 1187 * installed. Skip onlining a node if the subsystems are not 1188 * yet initialized. 1189 */ 1190 if (!topology_inited || try_online_node(new_nid)) 1191 new_nid = first_online_node; 1192 #else 1193 /* 1194 * Default to using the nearest node that has memory installed. 1195 * Otherwise, it would be necessary to patch the kernel MM code 1196 * to deal with more memoryless-node error conditions. 1197 */ 1198 new_nid = first_online_node; 1199 #endif 1200 } 1201 1202 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, 1203 cpu, new_nid); 1204 return new_nid; 1205 } 1206 1207 static int topology_update_init(void) 1208 { 1209 topology_inited = 1; 1210 return 0; 1211 } 1212 device_initcall(topology_update_init); 1213 #endif /* CONFIG_PPC_SPLPAR */ 1214