xref: /linux/arch/powerpc/mm/numa.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <linux/stop_machine.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/uaccess.h>
29 #include <linux/slab.h>
30 #include <asm/sparsemem.h>
31 #include <asm/prom.h>
32 #include <asm/smp.h>
33 #include <asm/firmware.h>
34 #include <asm/paca.h>
35 #include <asm/hvcall.h>
36 #include <asm/setup.h>
37 #include <asm/vdso.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const unsigned int *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 
63 /*
64  * Allocate node_to_cpumask_map based on number of available nodes
65  * Requires node_possible_map to be valid.
66  *
67  * Note: cpumask_of_node() is not valid until after this is done.
68  */
69 static void __init setup_node_to_cpumask_map(void)
70 {
71 	unsigned int node;
72 
73 	/* setup nr_node_ids if not done yet */
74 	if (nr_node_ids == MAX_NUMNODES)
75 		setup_nr_node_ids();
76 
77 	/* allocate the map */
78 	for (node = 0; node < nr_node_ids; node++)
79 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80 
81 	/* cpumask_of_node() will now work */
82 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
83 }
84 
85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 						unsigned int *nid)
87 {
88 	unsigned long long mem;
89 	char *p = cmdline;
90 	static unsigned int fake_nid;
91 	static unsigned long long curr_boundary;
92 
93 	/*
94 	 * Modify node id, iff we started creating NUMA nodes
95 	 * We want to continue from where we left of the last time
96 	 */
97 	if (fake_nid)
98 		*nid = fake_nid;
99 	/*
100 	 * In case there are no more arguments to parse, the
101 	 * node_id should be the same as the last fake node id
102 	 * (we've handled this above).
103 	 */
104 	if (!p)
105 		return 0;
106 
107 	mem = memparse(p, &p);
108 	if (!mem)
109 		return 0;
110 
111 	if (mem < curr_boundary)
112 		return 0;
113 
114 	curr_boundary = mem;
115 
116 	if ((end_pfn << PAGE_SHIFT) > mem) {
117 		/*
118 		 * Skip commas and spaces
119 		 */
120 		while (*p == ',' || *p == ' ' || *p == '\t')
121 			p++;
122 
123 		cmdline = p;
124 		fake_nid++;
125 		*nid = fake_nid;
126 		dbg("created new fake_node with id %d\n", fake_nid);
127 		return 1;
128 	}
129 	return 0;
130 }
131 
132 /*
133  * get_node_active_region - Return active region containing pfn
134  * Active range returned is empty if none found.
135  * @pfn: The page to return the region for
136  * @node_ar: Returned set to the active region containing @pfn
137  */
138 static void __init get_node_active_region(unsigned long pfn,
139 					  struct node_active_region *node_ar)
140 {
141 	unsigned long start_pfn, end_pfn;
142 	int i, nid;
143 
144 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
145 		if (pfn >= start_pfn && pfn < end_pfn) {
146 			node_ar->nid = nid;
147 			node_ar->start_pfn = start_pfn;
148 			node_ar->end_pfn = end_pfn;
149 			break;
150 		}
151 	}
152 }
153 
154 static void map_cpu_to_node(int cpu, int node)
155 {
156 	numa_cpu_lookup_table[cpu] = node;
157 
158 	dbg("adding cpu %d to node %d\n", cpu, node);
159 
160 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
161 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
162 }
163 
164 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
165 static void unmap_cpu_from_node(unsigned long cpu)
166 {
167 	int node = numa_cpu_lookup_table[cpu];
168 
169 	dbg("removing cpu %lu from node %d\n", cpu, node);
170 
171 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
172 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
173 	} else {
174 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
175 		       cpu, node);
176 	}
177 }
178 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
179 
180 /* must hold reference to node during call */
181 static const int *of_get_associativity(struct device_node *dev)
182 {
183 	return of_get_property(dev, "ibm,associativity", NULL);
184 }
185 
186 /*
187  * Returns the property linux,drconf-usable-memory if
188  * it exists (the property exists only in kexec/kdump kernels,
189  * added by kexec-tools)
190  */
191 static const u32 *of_get_usable_memory(struct device_node *memory)
192 {
193 	const u32 *prop;
194 	u32 len;
195 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
196 	if (!prop || len < sizeof(unsigned int))
197 		return 0;
198 	return prop;
199 }
200 
201 int __node_distance(int a, int b)
202 {
203 	int i;
204 	int distance = LOCAL_DISTANCE;
205 
206 	if (!form1_affinity)
207 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
208 
209 	for (i = 0; i < distance_ref_points_depth; i++) {
210 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
211 			break;
212 
213 		/* Double the distance for each NUMA level */
214 		distance *= 2;
215 	}
216 
217 	return distance;
218 }
219 
220 static void initialize_distance_lookup_table(int nid,
221 		const unsigned int *associativity)
222 {
223 	int i;
224 
225 	if (!form1_affinity)
226 		return;
227 
228 	for (i = 0; i < distance_ref_points_depth; i++) {
229 		distance_lookup_table[nid][i] =
230 			associativity[distance_ref_points[i]];
231 	}
232 }
233 
234 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
235  * info is found.
236  */
237 static int associativity_to_nid(const unsigned int *associativity)
238 {
239 	int nid = -1;
240 
241 	if (min_common_depth == -1)
242 		goto out;
243 
244 	if (associativity[0] >= min_common_depth)
245 		nid = associativity[min_common_depth];
246 
247 	/* POWER4 LPAR uses 0xffff as invalid node */
248 	if (nid == 0xffff || nid >= MAX_NUMNODES)
249 		nid = -1;
250 
251 	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
252 		initialize_distance_lookup_table(nid, associativity);
253 
254 out:
255 	return nid;
256 }
257 
258 /* Returns the nid associated with the given device tree node,
259  * or -1 if not found.
260  */
261 static int of_node_to_nid_single(struct device_node *device)
262 {
263 	int nid = -1;
264 	const unsigned int *tmp;
265 
266 	tmp = of_get_associativity(device);
267 	if (tmp)
268 		nid = associativity_to_nid(tmp);
269 	return nid;
270 }
271 
272 /* Walk the device tree upwards, looking for an associativity id */
273 int of_node_to_nid(struct device_node *device)
274 {
275 	struct device_node *tmp;
276 	int nid = -1;
277 
278 	of_node_get(device);
279 	while (device) {
280 		nid = of_node_to_nid_single(device);
281 		if (nid != -1)
282 			break;
283 
284 	        tmp = device;
285 		device = of_get_parent(tmp);
286 		of_node_put(tmp);
287 	}
288 	of_node_put(device);
289 
290 	return nid;
291 }
292 EXPORT_SYMBOL_GPL(of_node_to_nid);
293 
294 static int __init find_min_common_depth(void)
295 {
296 	int depth;
297 	struct device_node *root;
298 
299 	if (firmware_has_feature(FW_FEATURE_OPAL))
300 		root = of_find_node_by_path("/ibm,opal");
301 	else
302 		root = of_find_node_by_path("/rtas");
303 	if (!root)
304 		root = of_find_node_by_path("/");
305 
306 	/*
307 	 * This property is a set of 32-bit integers, each representing
308 	 * an index into the ibm,associativity nodes.
309 	 *
310 	 * With form 0 affinity the first integer is for an SMP configuration
311 	 * (should be all 0's) and the second is for a normal NUMA
312 	 * configuration. We have only one level of NUMA.
313 	 *
314 	 * With form 1 affinity the first integer is the most significant
315 	 * NUMA boundary and the following are progressively less significant
316 	 * boundaries. There can be more than one level of NUMA.
317 	 */
318 	distance_ref_points = of_get_property(root,
319 					"ibm,associativity-reference-points",
320 					&distance_ref_points_depth);
321 
322 	if (!distance_ref_points) {
323 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
324 		goto err;
325 	}
326 
327 	distance_ref_points_depth /= sizeof(int);
328 
329 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
330 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
331 		dbg("Using form 1 affinity\n");
332 		form1_affinity = 1;
333 	}
334 
335 	if (form1_affinity) {
336 		depth = distance_ref_points[0];
337 	} else {
338 		if (distance_ref_points_depth < 2) {
339 			printk(KERN_WARNING "NUMA: "
340 				"short ibm,associativity-reference-points\n");
341 			goto err;
342 		}
343 
344 		depth = distance_ref_points[1];
345 	}
346 
347 	/*
348 	 * Warn and cap if the hardware supports more than
349 	 * MAX_DISTANCE_REF_POINTS domains.
350 	 */
351 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
352 		printk(KERN_WARNING "NUMA: distance array capped at "
353 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
354 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
355 	}
356 
357 	of_node_put(root);
358 	return depth;
359 
360 err:
361 	of_node_put(root);
362 	return -1;
363 }
364 
365 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
366 {
367 	struct device_node *memory = NULL;
368 
369 	memory = of_find_node_by_type(memory, "memory");
370 	if (!memory)
371 		panic("numa.c: No memory nodes found!");
372 
373 	*n_addr_cells = of_n_addr_cells(memory);
374 	*n_size_cells = of_n_size_cells(memory);
375 	of_node_put(memory);
376 }
377 
378 static unsigned long read_n_cells(int n, const unsigned int **buf)
379 {
380 	unsigned long result = 0;
381 
382 	while (n--) {
383 		result = (result << 32) | **buf;
384 		(*buf)++;
385 	}
386 	return result;
387 }
388 
389 /*
390  * Read the next memblock list entry from the ibm,dynamic-memory property
391  * and return the information in the provided of_drconf_cell structure.
392  */
393 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
394 {
395 	const u32 *cp;
396 
397 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
398 
399 	cp = *cellp;
400 	drmem->drc_index = cp[0];
401 	drmem->reserved = cp[1];
402 	drmem->aa_index = cp[2];
403 	drmem->flags = cp[3];
404 
405 	*cellp = cp + 4;
406 }
407 
408 /*
409  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
410  *
411  * The layout of the ibm,dynamic-memory property is a number N of memblock
412  * list entries followed by N memblock list entries.  Each memblock list entry
413  * contains information as laid out in the of_drconf_cell struct above.
414  */
415 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
416 {
417 	const u32 *prop;
418 	u32 len, entries;
419 
420 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
421 	if (!prop || len < sizeof(unsigned int))
422 		return 0;
423 
424 	entries = *prop++;
425 
426 	/* Now that we know the number of entries, revalidate the size
427 	 * of the property read in to ensure we have everything
428 	 */
429 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
430 		return 0;
431 
432 	*dm = prop;
433 	return entries;
434 }
435 
436 /*
437  * Retrieve and validate the ibm,lmb-size property for drconf memory
438  * from the device tree.
439  */
440 static u64 of_get_lmb_size(struct device_node *memory)
441 {
442 	const u32 *prop;
443 	u32 len;
444 
445 	prop = of_get_property(memory, "ibm,lmb-size", &len);
446 	if (!prop || len < sizeof(unsigned int))
447 		return 0;
448 
449 	return read_n_cells(n_mem_size_cells, &prop);
450 }
451 
452 struct assoc_arrays {
453 	u32	n_arrays;
454 	u32	array_sz;
455 	const u32 *arrays;
456 };
457 
458 /*
459  * Retrieve and validate the list of associativity arrays for drconf
460  * memory from the ibm,associativity-lookup-arrays property of the
461  * device tree..
462  *
463  * The layout of the ibm,associativity-lookup-arrays property is a number N
464  * indicating the number of associativity arrays, followed by a number M
465  * indicating the size of each associativity array, followed by a list
466  * of N associativity arrays.
467  */
468 static int of_get_assoc_arrays(struct device_node *memory,
469 			       struct assoc_arrays *aa)
470 {
471 	const u32 *prop;
472 	u32 len;
473 
474 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
475 	if (!prop || len < 2 * sizeof(unsigned int))
476 		return -1;
477 
478 	aa->n_arrays = *prop++;
479 	aa->array_sz = *prop++;
480 
481 	/* Now that we know the number of arrays and size of each array,
482 	 * revalidate the size of the property read in.
483 	 */
484 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
485 		return -1;
486 
487 	aa->arrays = prop;
488 	return 0;
489 }
490 
491 /*
492  * This is like of_node_to_nid_single() for memory represented in the
493  * ibm,dynamic-reconfiguration-memory node.
494  */
495 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
496 				   struct assoc_arrays *aa)
497 {
498 	int default_nid = 0;
499 	int nid = default_nid;
500 	int index;
501 
502 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
503 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
504 	    drmem->aa_index < aa->n_arrays) {
505 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
506 		nid = aa->arrays[index];
507 
508 		if (nid == 0xffff || nid >= MAX_NUMNODES)
509 			nid = default_nid;
510 	}
511 
512 	return nid;
513 }
514 
515 /*
516  * Figure out to which domain a cpu belongs and stick it there.
517  * Return the id of the domain used.
518  */
519 static int numa_setup_cpu(unsigned long lcpu)
520 {
521 	int nid = 0;
522 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
523 
524 	if (!cpu) {
525 		WARN_ON(1);
526 		goto out;
527 	}
528 
529 	nid = of_node_to_nid_single(cpu);
530 
531 	if (nid < 0 || !node_online(nid))
532 		nid = first_online_node;
533 out:
534 	map_cpu_to_node(lcpu, nid);
535 
536 	of_node_put(cpu);
537 
538 	return nid;
539 }
540 
541 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
542 			     void *hcpu)
543 {
544 	unsigned long lcpu = (unsigned long)hcpu;
545 	int ret = NOTIFY_DONE;
546 
547 	switch (action) {
548 	case CPU_UP_PREPARE:
549 	case CPU_UP_PREPARE_FROZEN:
550 		numa_setup_cpu(lcpu);
551 		ret = NOTIFY_OK;
552 		break;
553 #ifdef CONFIG_HOTPLUG_CPU
554 	case CPU_DEAD:
555 	case CPU_DEAD_FROZEN:
556 	case CPU_UP_CANCELED:
557 	case CPU_UP_CANCELED_FROZEN:
558 		unmap_cpu_from_node(lcpu);
559 		break;
560 		ret = NOTIFY_OK;
561 #endif
562 	}
563 	return ret;
564 }
565 
566 /*
567  * Check and possibly modify a memory region to enforce the memory limit.
568  *
569  * Returns the size the region should have to enforce the memory limit.
570  * This will either be the original value of size, a truncated value,
571  * or zero. If the returned value of size is 0 the region should be
572  * discarded as it lies wholly above the memory limit.
573  */
574 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
575 						      unsigned long size)
576 {
577 	/*
578 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
579 	 * we've already adjusted it for the limit and it takes care of
580 	 * having memory holes below the limit.  Also, in the case of
581 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
582 	 */
583 
584 	if (start + size <= memblock_end_of_DRAM())
585 		return size;
586 
587 	if (start >= memblock_end_of_DRAM())
588 		return 0;
589 
590 	return memblock_end_of_DRAM() - start;
591 }
592 
593 /*
594  * Reads the counter for a given entry in
595  * linux,drconf-usable-memory property
596  */
597 static inline int __init read_usm_ranges(const u32 **usm)
598 {
599 	/*
600 	 * For each lmb in ibm,dynamic-memory a corresponding
601 	 * entry in linux,drconf-usable-memory property contains
602 	 * a counter followed by that many (base, size) duple.
603 	 * read the counter from linux,drconf-usable-memory
604 	 */
605 	return read_n_cells(n_mem_size_cells, usm);
606 }
607 
608 /*
609  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
610  * node.  This assumes n_mem_{addr,size}_cells have been set.
611  */
612 static void __init parse_drconf_memory(struct device_node *memory)
613 {
614 	const u32 *uninitialized_var(dm), *usm;
615 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
616 	unsigned long lmb_size, base, size, sz;
617 	int nid;
618 	struct assoc_arrays aa = { .arrays = NULL };
619 
620 	n = of_get_drconf_memory(memory, &dm);
621 	if (!n)
622 		return;
623 
624 	lmb_size = of_get_lmb_size(memory);
625 	if (!lmb_size)
626 		return;
627 
628 	rc = of_get_assoc_arrays(memory, &aa);
629 	if (rc)
630 		return;
631 
632 	/* check if this is a kexec/kdump kernel */
633 	usm = of_get_usable_memory(memory);
634 	if (usm != NULL)
635 		is_kexec_kdump = 1;
636 
637 	for (; n != 0; --n) {
638 		struct of_drconf_cell drmem;
639 
640 		read_drconf_cell(&drmem, &dm);
641 
642 		/* skip this block if the reserved bit is set in flags (0x80)
643 		   or if the block is not assigned to this partition (0x8) */
644 		if ((drmem.flags & DRCONF_MEM_RESERVED)
645 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
646 			continue;
647 
648 		base = drmem.base_addr;
649 		size = lmb_size;
650 		ranges = 1;
651 
652 		if (is_kexec_kdump) {
653 			ranges = read_usm_ranges(&usm);
654 			if (!ranges) /* there are no (base, size) duple */
655 				continue;
656 		}
657 		do {
658 			if (is_kexec_kdump) {
659 				base = read_n_cells(n_mem_addr_cells, &usm);
660 				size = read_n_cells(n_mem_size_cells, &usm);
661 			}
662 			nid = of_drconf_to_nid_single(&drmem, &aa);
663 			fake_numa_create_new_node(
664 				((base + size) >> PAGE_SHIFT),
665 					   &nid);
666 			node_set_online(nid);
667 			sz = numa_enforce_memory_limit(base, size);
668 			if (sz)
669 				memblock_set_node(base, sz, nid);
670 		} while (--ranges);
671 	}
672 }
673 
674 static int __init parse_numa_properties(void)
675 {
676 	struct device_node *memory;
677 	int default_nid = 0;
678 	unsigned long i;
679 
680 	if (numa_enabled == 0) {
681 		printk(KERN_WARNING "NUMA disabled by user\n");
682 		return -1;
683 	}
684 
685 	min_common_depth = find_min_common_depth();
686 
687 	if (min_common_depth < 0)
688 		return min_common_depth;
689 
690 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
691 
692 	/*
693 	 * Even though we connect cpus to numa domains later in SMP
694 	 * init, we need to know the node ids now. This is because
695 	 * each node to be onlined must have NODE_DATA etc backing it.
696 	 */
697 	for_each_present_cpu(i) {
698 		struct device_node *cpu;
699 		int nid;
700 
701 		cpu = of_get_cpu_node(i, NULL);
702 		BUG_ON(!cpu);
703 		nid = of_node_to_nid_single(cpu);
704 		of_node_put(cpu);
705 
706 		/*
707 		 * Don't fall back to default_nid yet -- we will plug
708 		 * cpus into nodes once the memory scan has discovered
709 		 * the topology.
710 		 */
711 		if (nid < 0)
712 			continue;
713 		node_set_online(nid);
714 	}
715 
716 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
717 
718 	for_each_node_by_type(memory, "memory") {
719 		unsigned long start;
720 		unsigned long size;
721 		int nid;
722 		int ranges;
723 		const unsigned int *memcell_buf;
724 		unsigned int len;
725 
726 		memcell_buf = of_get_property(memory,
727 			"linux,usable-memory", &len);
728 		if (!memcell_buf || len <= 0)
729 			memcell_buf = of_get_property(memory, "reg", &len);
730 		if (!memcell_buf || len <= 0)
731 			continue;
732 
733 		/* ranges in cell */
734 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
735 new_range:
736 		/* these are order-sensitive, and modify the buffer pointer */
737 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
738 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
739 
740 		/*
741 		 * Assumption: either all memory nodes or none will
742 		 * have associativity properties.  If none, then
743 		 * everything goes to default_nid.
744 		 */
745 		nid = of_node_to_nid_single(memory);
746 		if (nid < 0)
747 			nid = default_nid;
748 
749 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
750 		node_set_online(nid);
751 
752 		if (!(size = numa_enforce_memory_limit(start, size))) {
753 			if (--ranges)
754 				goto new_range;
755 			else
756 				continue;
757 		}
758 
759 		memblock_set_node(start, size, nid);
760 
761 		if (--ranges)
762 			goto new_range;
763 	}
764 
765 	/*
766 	 * Now do the same thing for each MEMBLOCK listed in the
767 	 * ibm,dynamic-memory property in the
768 	 * ibm,dynamic-reconfiguration-memory node.
769 	 */
770 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
771 	if (memory)
772 		parse_drconf_memory(memory);
773 
774 	return 0;
775 }
776 
777 static void __init setup_nonnuma(void)
778 {
779 	unsigned long top_of_ram = memblock_end_of_DRAM();
780 	unsigned long total_ram = memblock_phys_mem_size();
781 	unsigned long start_pfn, end_pfn;
782 	unsigned int nid = 0;
783 	struct memblock_region *reg;
784 
785 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
786 	       top_of_ram, total_ram);
787 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
788 	       (top_of_ram - total_ram) >> 20);
789 
790 	for_each_memblock(memory, reg) {
791 		start_pfn = memblock_region_memory_base_pfn(reg);
792 		end_pfn = memblock_region_memory_end_pfn(reg);
793 
794 		fake_numa_create_new_node(end_pfn, &nid);
795 		memblock_set_node(PFN_PHYS(start_pfn),
796 				  PFN_PHYS(end_pfn - start_pfn), nid);
797 		node_set_online(nid);
798 	}
799 }
800 
801 void __init dump_numa_cpu_topology(void)
802 {
803 	unsigned int node;
804 	unsigned int cpu, count;
805 
806 	if (min_common_depth == -1 || !numa_enabled)
807 		return;
808 
809 	for_each_online_node(node) {
810 		printk(KERN_DEBUG "Node %d CPUs:", node);
811 
812 		count = 0;
813 		/*
814 		 * If we used a CPU iterator here we would miss printing
815 		 * the holes in the cpumap.
816 		 */
817 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
818 			if (cpumask_test_cpu(cpu,
819 					node_to_cpumask_map[node])) {
820 				if (count == 0)
821 					printk(" %u", cpu);
822 				++count;
823 			} else {
824 				if (count > 1)
825 					printk("-%u", cpu - 1);
826 				count = 0;
827 			}
828 		}
829 
830 		if (count > 1)
831 			printk("-%u", nr_cpu_ids - 1);
832 		printk("\n");
833 	}
834 }
835 
836 static void __init dump_numa_memory_topology(void)
837 {
838 	unsigned int node;
839 	unsigned int count;
840 
841 	if (min_common_depth == -1 || !numa_enabled)
842 		return;
843 
844 	for_each_online_node(node) {
845 		unsigned long i;
846 
847 		printk(KERN_DEBUG "Node %d Memory:", node);
848 
849 		count = 0;
850 
851 		for (i = 0; i < memblock_end_of_DRAM();
852 		     i += (1 << SECTION_SIZE_BITS)) {
853 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
854 				if (count == 0)
855 					printk(" 0x%lx", i);
856 				++count;
857 			} else {
858 				if (count > 0)
859 					printk("-0x%lx", i);
860 				count = 0;
861 			}
862 		}
863 
864 		if (count > 0)
865 			printk("-0x%lx", i);
866 		printk("\n");
867 	}
868 }
869 
870 /*
871  * Allocate some memory, satisfying the memblock or bootmem allocator where
872  * required. nid is the preferred node and end is the physical address of
873  * the highest address in the node.
874  *
875  * Returns the virtual address of the memory.
876  */
877 static void __init *careful_zallocation(int nid, unsigned long size,
878 				       unsigned long align,
879 				       unsigned long end_pfn)
880 {
881 	void *ret;
882 	int new_nid;
883 	unsigned long ret_paddr;
884 
885 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
886 
887 	/* retry over all memory */
888 	if (!ret_paddr)
889 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
890 
891 	if (!ret_paddr)
892 		panic("numa.c: cannot allocate %lu bytes for node %d",
893 		      size, nid);
894 
895 	ret = __va(ret_paddr);
896 
897 	/*
898 	 * We initialize the nodes in numeric order: 0, 1, 2...
899 	 * and hand over control from the MEMBLOCK allocator to the
900 	 * bootmem allocator.  If this function is called for
901 	 * node 5, then we know that all nodes <5 are using the
902 	 * bootmem allocator instead of the MEMBLOCK allocator.
903 	 *
904 	 * So, check the nid from which this allocation came
905 	 * and double check to see if we need to use bootmem
906 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
907 	 * since it would be useless.
908 	 */
909 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
910 	if (new_nid < nid) {
911 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
912 				size, align, 0);
913 
914 		dbg("alloc_bootmem %p %lx\n", ret, size);
915 	}
916 
917 	memset(ret, 0, size);
918 	return ret;
919 }
920 
921 static struct notifier_block ppc64_numa_nb = {
922 	.notifier_call = cpu_numa_callback,
923 	.priority = 1 /* Must run before sched domains notifier. */
924 };
925 
926 static void __init mark_reserved_regions_for_nid(int nid)
927 {
928 	struct pglist_data *node = NODE_DATA(nid);
929 	struct memblock_region *reg;
930 
931 	for_each_memblock(reserved, reg) {
932 		unsigned long physbase = reg->base;
933 		unsigned long size = reg->size;
934 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
935 		unsigned long end_pfn = PFN_UP(physbase + size);
936 		struct node_active_region node_ar;
937 		unsigned long node_end_pfn = node->node_start_pfn +
938 					     node->node_spanned_pages;
939 
940 		/*
941 		 * Check to make sure that this memblock.reserved area is
942 		 * within the bounds of the node that we care about.
943 		 * Checking the nid of the start and end points is not
944 		 * sufficient because the reserved area could span the
945 		 * entire node.
946 		 */
947 		if (end_pfn <= node->node_start_pfn ||
948 		    start_pfn >= node_end_pfn)
949 			continue;
950 
951 		get_node_active_region(start_pfn, &node_ar);
952 		while (start_pfn < end_pfn &&
953 			node_ar.start_pfn < node_ar.end_pfn) {
954 			unsigned long reserve_size = size;
955 			/*
956 			 * if reserved region extends past active region
957 			 * then trim size to active region
958 			 */
959 			if (end_pfn > node_ar.end_pfn)
960 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
961 					- physbase;
962 			/*
963 			 * Only worry about *this* node, others may not
964 			 * yet have valid NODE_DATA().
965 			 */
966 			if (node_ar.nid == nid) {
967 				dbg("reserve_bootmem %lx %lx nid=%d\n",
968 					physbase, reserve_size, node_ar.nid);
969 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
970 						physbase, reserve_size,
971 						BOOTMEM_DEFAULT);
972 			}
973 			/*
974 			 * if reserved region is contained in the active region
975 			 * then done.
976 			 */
977 			if (end_pfn <= node_ar.end_pfn)
978 				break;
979 
980 			/*
981 			 * reserved region extends past the active region
982 			 *   get next active region that contains this
983 			 *   reserved region
984 			 */
985 			start_pfn = node_ar.end_pfn;
986 			physbase = start_pfn << PAGE_SHIFT;
987 			size = size - reserve_size;
988 			get_node_active_region(start_pfn, &node_ar);
989 		}
990 	}
991 }
992 
993 
994 void __init do_init_bootmem(void)
995 {
996 	int nid;
997 
998 	min_low_pfn = 0;
999 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1000 	max_pfn = max_low_pfn;
1001 
1002 	if (parse_numa_properties())
1003 		setup_nonnuma();
1004 	else
1005 		dump_numa_memory_topology();
1006 
1007 	for_each_online_node(nid) {
1008 		unsigned long start_pfn, end_pfn;
1009 		void *bootmem_vaddr;
1010 		unsigned long bootmap_pages;
1011 
1012 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1013 
1014 		/*
1015 		 * Allocate the node structure node local if possible
1016 		 *
1017 		 * Be careful moving this around, as it relies on all
1018 		 * previous nodes' bootmem to be initialized and have
1019 		 * all reserved areas marked.
1020 		 */
1021 		NODE_DATA(nid) = careful_zallocation(nid,
1022 					sizeof(struct pglist_data),
1023 					SMP_CACHE_BYTES, end_pfn);
1024 
1025   		dbg("node %d\n", nid);
1026 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1027 
1028 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1029 		NODE_DATA(nid)->node_start_pfn = start_pfn;
1030 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1031 
1032 		if (NODE_DATA(nid)->node_spanned_pages == 0)
1033   			continue;
1034 
1035   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1036   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1037 
1038 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1039 		bootmem_vaddr = careful_zallocation(nid,
1040 					bootmap_pages << PAGE_SHIFT,
1041 					PAGE_SIZE, end_pfn);
1042 
1043 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1044 
1045 		init_bootmem_node(NODE_DATA(nid),
1046 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1047 				  start_pfn, end_pfn);
1048 
1049 		free_bootmem_with_active_regions(nid, end_pfn);
1050 		/*
1051 		 * Be very careful about moving this around.  Future
1052 		 * calls to careful_zallocation() depend on this getting
1053 		 * done correctly.
1054 		 */
1055 		mark_reserved_regions_for_nid(nid);
1056 		sparse_memory_present_with_active_regions(nid);
1057 	}
1058 
1059 	init_bootmem_done = 1;
1060 
1061 	/*
1062 	 * Now bootmem is initialised we can create the node to cpumask
1063 	 * lookup tables and setup the cpu callback to populate them.
1064 	 */
1065 	setup_node_to_cpumask_map();
1066 
1067 	register_cpu_notifier(&ppc64_numa_nb);
1068 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1069 			  (void *)(unsigned long)boot_cpuid);
1070 }
1071 
1072 void __init paging_init(void)
1073 {
1074 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1075 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1076 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1077 	free_area_init_nodes(max_zone_pfns);
1078 }
1079 
1080 static int __init early_numa(char *p)
1081 {
1082 	if (!p)
1083 		return 0;
1084 
1085 	if (strstr(p, "off"))
1086 		numa_enabled = 0;
1087 
1088 	if (strstr(p, "debug"))
1089 		numa_debug = 1;
1090 
1091 	p = strstr(p, "fake=");
1092 	if (p)
1093 		cmdline = p + strlen("fake=");
1094 
1095 	return 0;
1096 }
1097 early_param("numa", early_numa);
1098 
1099 #ifdef CONFIG_MEMORY_HOTPLUG
1100 /*
1101  * Find the node associated with a hot added memory section for
1102  * memory represented in the device tree by the property
1103  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1104  */
1105 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1106 				     unsigned long scn_addr)
1107 {
1108 	const u32 *dm;
1109 	unsigned int drconf_cell_cnt, rc;
1110 	unsigned long lmb_size;
1111 	struct assoc_arrays aa;
1112 	int nid = -1;
1113 
1114 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1115 	if (!drconf_cell_cnt)
1116 		return -1;
1117 
1118 	lmb_size = of_get_lmb_size(memory);
1119 	if (!lmb_size)
1120 		return -1;
1121 
1122 	rc = of_get_assoc_arrays(memory, &aa);
1123 	if (rc)
1124 		return -1;
1125 
1126 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1127 		struct of_drconf_cell drmem;
1128 
1129 		read_drconf_cell(&drmem, &dm);
1130 
1131 		/* skip this block if it is reserved or not assigned to
1132 		 * this partition */
1133 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1134 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1135 			continue;
1136 
1137 		if ((scn_addr < drmem.base_addr)
1138 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1139 			continue;
1140 
1141 		nid = of_drconf_to_nid_single(&drmem, &aa);
1142 		break;
1143 	}
1144 
1145 	return nid;
1146 }
1147 
1148 /*
1149  * Find the node associated with a hot added memory section for memory
1150  * represented in the device tree as a node (i.e. memory@XXXX) for
1151  * each memblock.
1152  */
1153 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1154 {
1155 	struct device_node *memory;
1156 	int nid = -1;
1157 
1158 	for_each_node_by_type(memory, "memory") {
1159 		unsigned long start, size;
1160 		int ranges;
1161 		const unsigned int *memcell_buf;
1162 		unsigned int len;
1163 
1164 		memcell_buf = of_get_property(memory, "reg", &len);
1165 		if (!memcell_buf || len <= 0)
1166 			continue;
1167 
1168 		/* ranges in cell */
1169 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1170 
1171 		while (ranges--) {
1172 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1173 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1174 
1175 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1176 				continue;
1177 
1178 			nid = of_node_to_nid_single(memory);
1179 			break;
1180 		}
1181 
1182 		if (nid >= 0)
1183 			break;
1184 	}
1185 
1186 	of_node_put(memory);
1187 
1188 	return nid;
1189 }
1190 
1191 /*
1192  * Find the node associated with a hot added memory section.  Section
1193  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1194  * sections are fully contained within a single MEMBLOCK.
1195  */
1196 int hot_add_scn_to_nid(unsigned long scn_addr)
1197 {
1198 	struct device_node *memory = NULL;
1199 	int nid, found = 0;
1200 
1201 	if (!numa_enabled || (min_common_depth < 0))
1202 		return first_online_node;
1203 
1204 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1205 	if (memory) {
1206 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1207 		of_node_put(memory);
1208 	} else {
1209 		nid = hot_add_node_scn_to_nid(scn_addr);
1210 	}
1211 
1212 	if (nid < 0 || !node_online(nid))
1213 		nid = first_online_node;
1214 
1215 	if (NODE_DATA(nid)->node_spanned_pages)
1216 		return nid;
1217 
1218 	for_each_online_node(nid) {
1219 		if (NODE_DATA(nid)->node_spanned_pages) {
1220 			found = 1;
1221 			break;
1222 		}
1223 	}
1224 
1225 	BUG_ON(!found);
1226 	return nid;
1227 }
1228 
1229 static u64 hot_add_drconf_memory_max(void)
1230 {
1231         struct device_node *memory = NULL;
1232         unsigned int drconf_cell_cnt = 0;
1233         u64 lmb_size = 0;
1234         const u32 *dm = 0;
1235 
1236         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1237         if (memory) {
1238                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1239                 lmb_size = of_get_lmb_size(memory);
1240                 of_node_put(memory);
1241         }
1242         return lmb_size * drconf_cell_cnt;
1243 }
1244 
1245 /*
1246  * memory_hotplug_max - return max address of memory that may be added
1247  *
1248  * This is currently only used on systems that support drconfig memory
1249  * hotplug.
1250  */
1251 u64 memory_hotplug_max(void)
1252 {
1253         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1254 }
1255 #endif /* CONFIG_MEMORY_HOTPLUG */
1256 
1257 /* Virtual Processor Home Node (VPHN) support */
1258 #ifdef CONFIG_PPC_SPLPAR
1259 struct topology_update_data {
1260 	struct topology_update_data *next;
1261 	unsigned int cpu;
1262 	int old_nid;
1263 	int new_nid;
1264 };
1265 
1266 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1267 static cpumask_t cpu_associativity_changes_mask;
1268 static int vphn_enabled;
1269 static int prrn_enabled;
1270 static void reset_topology_timer(void);
1271 
1272 /*
1273  * Store the current values of the associativity change counters in the
1274  * hypervisor.
1275  */
1276 static void setup_cpu_associativity_change_counters(void)
1277 {
1278 	int cpu;
1279 
1280 	/* The VPHN feature supports a maximum of 8 reference points */
1281 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1282 
1283 	for_each_possible_cpu(cpu) {
1284 		int i;
1285 		u8 *counts = vphn_cpu_change_counts[cpu];
1286 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1287 
1288 		for (i = 0; i < distance_ref_points_depth; i++)
1289 			counts[i] = hypervisor_counts[i];
1290 	}
1291 }
1292 
1293 /*
1294  * The hypervisor maintains a set of 8 associativity change counters in
1295  * the VPA of each cpu that correspond to the associativity levels in the
1296  * ibm,associativity-reference-points property. When an associativity
1297  * level changes, the corresponding counter is incremented.
1298  *
1299  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1300  * node associativity levels have changed.
1301  *
1302  * Returns the number of cpus with unhandled associativity changes.
1303  */
1304 static int update_cpu_associativity_changes_mask(void)
1305 {
1306 	int cpu;
1307 	cpumask_t *changes = &cpu_associativity_changes_mask;
1308 
1309 	for_each_possible_cpu(cpu) {
1310 		int i, changed = 0;
1311 		u8 *counts = vphn_cpu_change_counts[cpu];
1312 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1313 
1314 		for (i = 0; i < distance_ref_points_depth; i++) {
1315 			if (hypervisor_counts[i] != counts[i]) {
1316 				counts[i] = hypervisor_counts[i];
1317 				changed = 1;
1318 			}
1319 		}
1320 		if (changed) {
1321 			cpumask_set_cpu(cpu, changes);
1322 		}
1323 	}
1324 
1325 	return cpumask_weight(changes);
1326 }
1327 
1328 /*
1329  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1330  * the complete property we have to add the length in the first cell.
1331  */
1332 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1333 
1334 /*
1335  * Convert the associativity domain numbers returned from the hypervisor
1336  * to the sequence they would appear in the ibm,associativity property.
1337  */
1338 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1339 {
1340 	int i, nr_assoc_doms = 0;
1341 	const u16 *field = (const u16*) packed;
1342 
1343 #define VPHN_FIELD_UNUSED	(0xffff)
1344 #define VPHN_FIELD_MSB		(0x8000)
1345 #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1346 
1347 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1348 		if (*field == VPHN_FIELD_UNUSED) {
1349 			/* All significant fields processed, and remaining
1350 			 * fields contain the reserved value of all 1's.
1351 			 * Just store them.
1352 			 */
1353 			unpacked[i] = *((u32*)field);
1354 			field += 2;
1355 		} else if (*field & VPHN_FIELD_MSB) {
1356 			/* Data is in the lower 15 bits of this field */
1357 			unpacked[i] = *field & VPHN_FIELD_MASK;
1358 			field++;
1359 			nr_assoc_doms++;
1360 		} else {
1361 			/* Data is in the lower 15 bits of this field
1362 			 * concatenated with the next 16 bit field
1363 			 */
1364 			unpacked[i] = *((u32*)field);
1365 			field += 2;
1366 			nr_assoc_doms++;
1367 		}
1368 	}
1369 
1370 	/* The first cell contains the length of the property */
1371 	unpacked[0] = nr_assoc_doms;
1372 
1373 	return nr_assoc_doms;
1374 }
1375 
1376 /*
1377  * Retrieve the new associativity information for a virtual processor's
1378  * home node.
1379  */
1380 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1381 {
1382 	long rc;
1383 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1384 	u64 flags = 1;
1385 	int hwcpu = get_hard_smp_processor_id(cpu);
1386 
1387 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1388 	vphn_unpack_associativity(retbuf, associativity);
1389 
1390 	return rc;
1391 }
1392 
1393 static long vphn_get_associativity(unsigned long cpu,
1394 					unsigned int *associativity)
1395 {
1396 	long rc;
1397 
1398 	rc = hcall_vphn(cpu, associativity);
1399 
1400 	switch (rc) {
1401 	case H_FUNCTION:
1402 		printk(KERN_INFO
1403 			"VPHN is not supported. Disabling polling...\n");
1404 		stop_topology_update();
1405 		break;
1406 	case H_HARDWARE:
1407 		printk(KERN_ERR
1408 			"hcall_vphn() experienced a hardware fault "
1409 			"preventing VPHN. Disabling polling...\n");
1410 		stop_topology_update();
1411 	}
1412 
1413 	return rc;
1414 }
1415 
1416 /*
1417  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1418  * characteristics change. This function doesn't perform any locking and is
1419  * only safe to call from stop_machine().
1420  */
1421 static int update_cpu_topology(void *data)
1422 {
1423 	struct topology_update_data *update;
1424 	unsigned long cpu;
1425 
1426 	if (!data)
1427 		return -EINVAL;
1428 
1429 	cpu = get_cpu();
1430 
1431 	for (update = data; update; update = update->next) {
1432 		if (cpu != update->cpu)
1433 			continue;
1434 
1435 		unmap_cpu_from_node(update->cpu);
1436 		map_cpu_to_node(update->cpu, update->new_nid);
1437 		vdso_getcpu_init();
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Update the node maps and sysfs entries for each cpu whose home node
1445  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1446  */
1447 int arch_update_cpu_topology(void)
1448 {
1449 	unsigned int cpu, changed = 0;
1450 	struct topology_update_data *updates, *ud;
1451 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1452 	cpumask_t updated_cpus;
1453 	struct device *dev;
1454 	int weight, i = 0;
1455 
1456 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1457 	if (!weight)
1458 		return 0;
1459 
1460 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1461 	if (!updates)
1462 		return 0;
1463 
1464 	cpumask_clear(&updated_cpus);
1465 
1466 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1467 		ud = &updates[i++];
1468 		ud->cpu = cpu;
1469 		vphn_get_associativity(cpu, associativity);
1470 		ud->new_nid = associativity_to_nid(associativity);
1471 
1472 		if (ud->new_nid < 0 || !node_online(ud->new_nid))
1473 			ud->new_nid = first_online_node;
1474 
1475 		ud->old_nid = numa_cpu_lookup_table[cpu];
1476 		cpumask_set_cpu(cpu, &updated_cpus);
1477 
1478 		if (i < weight)
1479 			ud->next = &updates[i];
1480 	}
1481 
1482 	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1483 
1484 	for (ud = &updates[0]; ud; ud = ud->next) {
1485 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1486 		register_cpu_under_node(ud->cpu, ud->new_nid);
1487 
1488 		dev = get_cpu_device(ud->cpu);
1489 		if (dev)
1490 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1491 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1492 		changed = 1;
1493 	}
1494 
1495 	kfree(updates);
1496 	return changed;
1497 }
1498 
1499 static void topology_work_fn(struct work_struct *work)
1500 {
1501 	rebuild_sched_domains();
1502 }
1503 static DECLARE_WORK(topology_work, topology_work_fn);
1504 
1505 void topology_schedule_update(void)
1506 {
1507 	schedule_work(&topology_work);
1508 }
1509 
1510 static void topology_timer_fn(unsigned long ignored)
1511 {
1512 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1513 		topology_schedule_update();
1514 	else if (vphn_enabled) {
1515 		if (update_cpu_associativity_changes_mask() > 0)
1516 			topology_schedule_update();
1517 		reset_topology_timer();
1518 	}
1519 }
1520 static struct timer_list topology_timer =
1521 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1522 
1523 static void reset_topology_timer(void)
1524 {
1525 	topology_timer.data = 0;
1526 	topology_timer.expires = jiffies + 60 * HZ;
1527 	mod_timer(&topology_timer, topology_timer.expires);
1528 }
1529 
1530 #ifdef CONFIG_SMP
1531 
1532 static void stage_topology_update(int core_id)
1533 {
1534 	cpumask_or(&cpu_associativity_changes_mask,
1535 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1536 	reset_topology_timer();
1537 }
1538 
1539 static int dt_update_callback(struct notifier_block *nb,
1540 				unsigned long action, void *data)
1541 {
1542 	struct of_prop_reconfig *update;
1543 	int rc = NOTIFY_DONE;
1544 
1545 	switch (action) {
1546 	case OF_RECONFIG_UPDATE_PROPERTY:
1547 		update = (struct of_prop_reconfig *)data;
1548 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1549 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1550 			u32 core_id;
1551 			of_property_read_u32(update->dn, "reg", &core_id);
1552 			stage_topology_update(core_id);
1553 			rc = NOTIFY_OK;
1554 		}
1555 		break;
1556 	}
1557 
1558 	return rc;
1559 }
1560 
1561 static struct notifier_block dt_update_nb = {
1562 	.notifier_call = dt_update_callback,
1563 };
1564 
1565 #endif
1566 
1567 /*
1568  * Start polling for associativity changes.
1569  */
1570 int start_topology_update(void)
1571 {
1572 	int rc = 0;
1573 
1574 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1575 		if (!prrn_enabled) {
1576 			prrn_enabled = 1;
1577 			vphn_enabled = 0;
1578 #ifdef CONFIG_SMP
1579 			rc = of_reconfig_notifier_register(&dt_update_nb);
1580 #endif
1581 		}
1582 	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1583 		   get_lppaca()->shared_proc) {
1584 		if (!vphn_enabled) {
1585 			prrn_enabled = 0;
1586 			vphn_enabled = 1;
1587 			setup_cpu_associativity_change_counters();
1588 			init_timer_deferrable(&topology_timer);
1589 			reset_topology_timer();
1590 		}
1591 	}
1592 
1593 	return rc;
1594 }
1595 
1596 /*
1597  * Disable polling for VPHN associativity changes.
1598  */
1599 int stop_topology_update(void)
1600 {
1601 	int rc = 0;
1602 
1603 	if (prrn_enabled) {
1604 		prrn_enabled = 0;
1605 #ifdef CONFIG_SMP
1606 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1607 #endif
1608 	} else if (vphn_enabled) {
1609 		vphn_enabled = 0;
1610 		rc = del_timer_sync(&topology_timer);
1611 	}
1612 
1613 	return rc;
1614 }
1615 
1616 int prrn_is_enabled(void)
1617 {
1618 	return prrn_enabled;
1619 }
1620 
1621 static int topology_read(struct seq_file *file, void *v)
1622 {
1623 	if (vphn_enabled || prrn_enabled)
1624 		seq_puts(file, "on\n");
1625 	else
1626 		seq_puts(file, "off\n");
1627 
1628 	return 0;
1629 }
1630 
1631 static int topology_open(struct inode *inode, struct file *file)
1632 {
1633 	return single_open(file, topology_read, NULL);
1634 }
1635 
1636 static ssize_t topology_write(struct file *file, const char __user *buf,
1637 			      size_t count, loff_t *off)
1638 {
1639 	char kbuf[4]; /* "on" or "off" plus null. */
1640 	int read_len;
1641 
1642 	read_len = count < 3 ? count : 3;
1643 	if (copy_from_user(kbuf, buf, read_len))
1644 		return -EINVAL;
1645 
1646 	kbuf[read_len] = '\0';
1647 
1648 	if (!strncmp(kbuf, "on", 2))
1649 		start_topology_update();
1650 	else if (!strncmp(kbuf, "off", 3))
1651 		stop_topology_update();
1652 	else
1653 		return -EINVAL;
1654 
1655 	return count;
1656 }
1657 
1658 static const struct file_operations topology_ops = {
1659 	.read = seq_read,
1660 	.write = topology_write,
1661 	.open = topology_open,
1662 	.release = single_release
1663 };
1664 
1665 static int topology_update_init(void)
1666 {
1667 	start_topology_update();
1668 	proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1669 
1670 	return 0;
1671 }
1672 device_initcall(topology_update_init);
1673 #endif /* CONFIG_PPC_SPLPAR */
1674