1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <asm/sparsemem.h> 26 #include <asm/prom.h> 27 #include <asm/smp.h> 28 #include <asm/firmware.h> 29 #include <asm/paca.h> 30 #include <asm/hvcall.h> 31 #include <asm/setup.h> 32 33 static int numa_enabled = 1; 34 35 static char *cmdline __initdata; 36 37 static int numa_debug; 38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 39 40 int numa_cpu_lookup_table[NR_CPUS]; 41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 42 struct pglist_data *node_data[MAX_NUMNODES]; 43 44 EXPORT_SYMBOL(numa_cpu_lookup_table); 45 EXPORT_SYMBOL(node_to_cpumask_map); 46 EXPORT_SYMBOL(node_data); 47 48 static int min_common_depth; 49 static int n_mem_addr_cells, n_mem_size_cells; 50 static int form1_affinity; 51 52 #define MAX_DISTANCE_REF_POINTS 4 53 static int distance_ref_points_depth; 54 static const unsigned int *distance_ref_points; 55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 56 57 /* 58 * Allocate node_to_cpumask_map based on number of available nodes 59 * Requires node_possible_map to be valid. 60 * 61 * Note: cpumask_of_node() is not valid until after this is done. 62 */ 63 static void __init setup_node_to_cpumask_map(void) 64 { 65 unsigned int node, num = 0; 66 67 /* setup nr_node_ids if not done yet */ 68 if (nr_node_ids == MAX_NUMNODES) { 69 for_each_node_mask(node, node_possible_map) 70 num = node; 71 nr_node_ids = num + 1; 72 } 73 74 /* allocate the map */ 75 for (node = 0; node < nr_node_ids; node++) 76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 77 78 /* cpumask_of_node() will now work */ 79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 80 } 81 82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, 83 unsigned int *nid) 84 { 85 unsigned long long mem; 86 char *p = cmdline; 87 static unsigned int fake_nid; 88 static unsigned long long curr_boundary; 89 90 /* 91 * Modify node id, iff we started creating NUMA nodes 92 * We want to continue from where we left of the last time 93 */ 94 if (fake_nid) 95 *nid = fake_nid; 96 /* 97 * In case there are no more arguments to parse, the 98 * node_id should be the same as the last fake node id 99 * (we've handled this above). 100 */ 101 if (!p) 102 return 0; 103 104 mem = memparse(p, &p); 105 if (!mem) 106 return 0; 107 108 if (mem < curr_boundary) 109 return 0; 110 111 curr_boundary = mem; 112 113 if ((end_pfn << PAGE_SHIFT) > mem) { 114 /* 115 * Skip commas and spaces 116 */ 117 while (*p == ',' || *p == ' ' || *p == '\t') 118 p++; 119 120 cmdline = p; 121 fake_nid++; 122 *nid = fake_nid; 123 dbg("created new fake_node with id %d\n", fake_nid); 124 return 1; 125 } 126 return 0; 127 } 128 129 /* 130 * get_node_active_region - Return active region containing pfn 131 * Active range returned is empty if none found. 132 * @pfn: The page to return the region for 133 * @node_ar: Returned set to the active region containing @pfn 134 */ 135 static void __init get_node_active_region(unsigned long pfn, 136 struct node_active_region *node_ar) 137 { 138 unsigned long start_pfn, end_pfn; 139 int i, nid; 140 141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 142 if (pfn >= start_pfn && pfn < end_pfn) { 143 node_ar->nid = nid; 144 node_ar->start_pfn = start_pfn; 145 node_ar->end_pfn = end_pfn; 146 break; 147 } 148 } 149 } 150 151 static void map_cpu_to_node(int cpu, int node) 152 { 153 numa_cpu_lookup_table[cpu] = node; 154 155 dbg("adding cpu %d to node %d\n", cpu, node); 156 157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 159 } 160 161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 162 static void unmap_cpu_from_node(unsigned long cpu) 163 { 164 int node = numa_cpu_lookup_table[cpu]; 165 166 dbg("removing cpu %lu from node %d\n", cpu, node); 167 168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 170 } else { 171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 172 cpu, node); 173 } 174 } 175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 176 177 /* must hold reference to node during call */ 178 static const int *of_get_associativity(struct device_node *dev) 179 { 180 return of_get_property(dev, "ibm,associativity", NULL); 181 } 182 183 /* 184 * Returns the property linux,drconf-usable-memory if 185 * it exists (the property exists only in kexec/kdump kernels, 186 * added by kexec-tools) 187 */ 188 static const u32 *of_get_usable_memory(struct device_node *memory) 189 { 190 const u32 *prop; 191 u32 len; 192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 193 if (!prop || len < sizeof(unsigned int)) 194 return 0; 195 return prop; 196 } 197 198 int __node_distance(int a, int b) 199 { 200 int i; 201 int distance = LOCAL_DISTANCE; 202 203 if (!form1_affinity) 204 return distance; 205 206 for (i = 0; i < distance_ref_points_depth; i++) { 207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 208 break; 209 210 /* Double the distance for each NUMA level */ 211 distance *= 2; 212 } 213 214 return distance; 215 } 216 217 static void initialize_distance_lookup_table(int nid, 218 const unsigned int *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 distance_lookup_table[nid][i] = 227 associativity[distance_ref_points[i]]; 228 } 229 } 230 231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 232 * info is found. 233 */ 234 static int associativity_to_nid(const unsigned int *associativity) 235 { 236 int nid = -1; 237 238 if (min_common_depth == -1) 239 goto out; 240 241 if (associativity[0] >= min_common_depth) 242 nid = associativity[min_common_depth]; 243 244 /* POWER4 LPAR uses 0xffff as invalid node */ 245 if (nid == 0xffff || nid >= MAX_NUMNODES) 246 nid = -1; 247 248 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 249 initialize_distance_lookup_table(nid, associativity); 250 251 out: 252 return nid; 253 } 254 255 /* Returns the nid associated with the given device tree node, 256 * or -1 if not found. 257 */ 258 static int of_node_to_nid_single(struct device_node *device) 259 { 260 int nid = -1; 261 const unsigned int *tmp; 262 263 tmp = of_get_associativity(device); 264 if (tmp) 265 nid = associativity_to_nid(tmp); 266 return nid; 267 } 268 269 /* Walk the device tree upwards, looking for an associativity id */ 270 int of_node_to_nid(struct device_node *device) 271 { 272 struct device_node *tmp; 273 int nid = -1; 274 275 of_node_get(device); 276 while (device) { 277 nid = of_node_to_nid_single(device); 278 if (nid != -1) 279 break; 280 281 tmp = device; 282 device = of_get_parent(tmp); 283 of_node_put(tmp); 284 } 285 of_node_put(device); 286 287 return nid; 288 } 289 EXPORT_SYMBOL_GPL(of_node_to_nid); 290 291 static int __init find_min_common_depth(void) 292 { 293 int depth; 294 struct device_node *chosen; 295 struct device_node *root; 296 const char *vec5; 297 298 if (firmware_has_feature(FW_FEATURE_OPAL)) 299 root = of_find_node_by_path("/ibm,opal"); 300 else 301 root = of_find_node_by_path("/rtas"); 302 if (!root) 303 root = of_find_node_by_path("/"); 304 305 /* 306 * This property is a set of 32-bit integers, each representing 307 * an index into the ibm,associativity nodes. 308 * 309 * With form 0 affinity the first integer is for an SMP configuration 310 * (should be all 0's) and the second is for a normal NUMA 311 * configuration. We have only one level of NUMA. 312 * 313 * With form 1 affinity the first integer is the most significant 314 * NUMA boundary and the following are progressively less significant 315 * boundaries. There can be more than one level of NUMA. 316 */ 317 distance_ref_points = of_get_property(root, 318 "ibm,associativity-reference-points", 319 &distance_ref_points_depth); 320 321 if (!distance_ref_points) { 322 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 323 goto err; 324 } 325 326 distance_ref_points_depth /= sizeof(int); 327 328 #define VEC5_AFFINITY_BYTE 5 329 #define VEC5_AFFINITY 0x80 330 331 if (firmware_has_feature(FW_FEATURE_OPAL)) 332 form1_affinity = 1; 333 else { 334 chosen = of_find_node_by_path("/chosen"); 335 if (chosen) { 336 vec5 = of_get_property(chosen, 337 "ibm,architecture-vec-5", NULL); 338 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & 339 VEC5_AFFINITY)) { 340 dbg("Using form 1 affinity\n"); 341 form1_affinity = 1; 342 } 343 344 of_node_put(chosen); 345 } 346 } 347 348 if (form1_affinity) { 349 depth = distance_ref_points[0]; 350 } else { 351 if (distance_ref_points_depth < 2) { 352 printk(KERN_WARNING "NUMA: " 353 "short ibm,associativity-reference-points\n"); 354 goto err; 355 } 356 357 depth = distance_ref_points[1]; 358 } 359 360 /* 361 * Warn and cap if the hardware supports more than 362 * MAX_DISTANCE_REF_POINTS domains. 363 */ 364 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 365 printk(KERN_WARNING "NUMA: distance array capped at " 366 "%d entries\n", MAX_DISTANCE_REF_POINTS); 367 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 368 } 369 370 of_node_put(root); 371 return depth; 372 373 err: 374 of_node_put(root); 375 return -1; 376 } 377 378 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 379 { 380 struct device_node *memory = NULL; 381 382 memory = of_find_node_by_type(memory, "memory"); 383 if (!memory) 384 panic("numa.c: No memory nodes found!"); 385 386 *n_addr_cells = of_n_addr_cells(memory); 387 *n_size_cells = of_n_size_cells(memory); 388 of_node_put(memory); 389 } 390 391 static unsigned long read_n_cells(int n, const unsigned int **buf) 392 { 393 unsigned long result = 0; 394 395 while (n--) { 396 result = (result << 32) | **buf; 397 (*buf)++; 398 } 399 return result; 400 } 401 402 /* 403 * Read the next memblock list entry from the ibm,dynamic-memory property 404 * and return the information in the provided of_drconf_cell structure. 405 */ 406 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 407 { 408 const u32 *cp; 409 410 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 411 412 cp = *cellp; 413 drmem->drc_index = cp[0]; 414 drmem->reserved = cp[1]; 415 drmem->aa_index = cp[2]; 416 drmem->flags = cp[3]; 417 418 *cellp = cp + 4; 419 } 420 421 /* 422 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 423 * 424 * The layout of the ibm,dynamic-memory property is a number N of memblock 425 * list entries followed by N memblock list entries. Each memblock list entry 426 * contains information as laid out in the of_drconf_cell struct above. 427 */ 428 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 429 { 430 const u32 *prop; 431 u32 len, entries; 432 433 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 434 if (!prop || len < sizeof(unsigned int)) 435 return 0; 436 437 entries = *prop++; 438 439 /* Now that we know the number of entries, revalidate the size 440 * of the property read in to ensure we have everything 441 */ 442 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 443 return 0; 444 445 *dm = prop; 446 return entries; 447 } 448 449 /* 450 * Retrieve and validate the ibm,lmb-size property for drconf memory 451 * from the device tree. 452 */ 453 static u64 of_get_lmb_size(struct device_node *memory) 454 { 455 const u32 *prop; 456 u32 len; 457 458 prop = of_get_property(memory, "ibm,lmb-size", &len); 459 if (!prop || len < sizeof(unsigned int)) 460 return 0; 461 462 return read_n_cells(n_mem_size_cells, &prop); 463 } 464 465 struct assoc_arrays { 466 u32 n_arrays; 467 u32 array_sz; 468 const u32 *arrays; 469 }; 470 471 /* 472 * Retrieve and validate the list of associativity arrays for drconf 473 * memory from the ibm,associativity-lookup-arrays property of the 474 * device tree.. 475 * 476 * The layout of the ibm,associativity-lookup-arrays property is a number N 477 * indicating the number of associativity arrays, followed by a number M 478 * indicating the size of each associativity array, followed by a list 479 * of N associativity arrays. 480 */ 481 static int of_get_assoc_arrays(struct device_node *memory, 482 struct assoc_arrays *aa) 483 { 484 const u32 *prop; 485 u32 len; 486 487 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 488 if (!prop || len < 2 * sizeof(unsigned int)) 489 return -1; 490 491 aa->n_arrays = *prop++; 492 aa->array_sz = *prop++; 493 494 /* Now that we know the number of arrays and size of each array, 495 * revalidate the size of the property read in. 496 */ 497 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 498 return -1; 499 500 aa->arrays = prop; 501 return 0; 502 } 503 504 /* 505 * This is like of_node_to_nid_single() for memory represented in the 506 * ibm,dynamic-reconfiguration-memory node. 507 */ 508 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 509 struct assoc_arrays *aa) 510 { 511 int default_nid = 0; 512 int nid = default_nid; 513 int index; 514 515 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 516 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 517 drmem->aa_index < aa->n_arrays) { 518 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 519 nid = aa->arrays[index]; 520 521 if (nid == 0xffff || nid >= MAX_NUMNODES) 522 nid = default_nid; 523 } 524 525 return nid; 526 } 527 528 /* 529 * Figure out to which domain a cpu belongs and stick it there. 530 * Return the id of the domain used. 531 */ 532 static int __cpuinit numa_setup_cpu(unsigned long lcpu) 533 { 534 int nid = 0; 535 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 536 537 if (!cpu) { 538 WARN_ON(1); 539 goto out; 540 } 541 542 nid = of_node_to_nid_single(cpu); 543 544 if (nid < 0 || !node_online(nid)) 545 nid = first_online_node; 546 out: 547 map_cpu_to_node(lcpu, nid); 548 549 of_node_put(cpu); 550 551 return nid; 552 } 553 554 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, 555 unsigned long action, 556 void *hcpu) 557 { 558 unsigned long lcpu = (unsigned long)hcpu; 559 int ret = NOTIFY_DONE; 560 561 switch (action) { 562 case CPU_UP_PREPARE: 563 case CPU_UP_PREPARE_FROZEN: 564 numa_setup_cpu(lcpu); 565 ret = NOTIFY_OK; 566 break; 567 #ifdef CONFIG_HOTPLUG_CPU 568 case CPU_DEAD: 569 case CPU_DEAD_FROZEN: 570 case CPU_UP_CANCELED: 571 case CPU_UP_CANCELED_FROZEN: 572 unmap_cpu_from_node(lcpu); 573 break; 574 ret = NOTIFY_OK; 575 #endif 576 } 577 return ret; 578 } 579 580 /* 581 * Check and possibly modify a memory region to enforce the memory limit. 582 * 583 * Returns the size the region should have to enforce the memory limit. 584 * This will either be the original value of size, a truncated value, 585 * or zero. If the returned value of size is 0 the region should be 586 * discarded as it lies wholly above the memory limit. 587 */ 588 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 589 unsigned long size) 590 { 591 /* 592 * We use memblock_end_of_DRAM() in here instead of memory_limit because 593 * we've already adjusted it for the limit and it takes care of 594 * having memory holes below the limit. Also, in the case of 595 * iommu_is_off, memory_limit is not set but is implicitly enforced. 596 */ 597 598 if (start + size <= memblock_end_of_DRAM()) 599 return size; 600 601 if (start >= memblock_end_of_DRAM()) 602 return 0; 603 604 return memblock_end_of_DRAM() - start; 605 } 606 607 /* 608 * Reads the counter for a given entry in 609 * linux,drconf-usable-memory property 610 */ 611 static inline int __init read_usm_ranges(const u32 **usm) 612 { 613 /* 614 * For each lmb in ibm,dynamic-memory a corresponding 615 * entry in linux,drconf-usable-memory property contains 616 * a counter followed by that many (base, size) duple. 617 * read the counter from linux,drconf-usable-memory 618 */ 619 return read_n_cells(n_mem_size_cells, usm); 620 } 621 622 /* 623 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 624 * node. This assumes n_mem_{addr,size}_cells have been set. 625 */ 626 static void __init parse_drconf_memory(struct device_node *memory) 627 { 628 const u32 *uninitialized_var(dm), *usm; 629 unsigned int n, rc, ranges, is_kexec_kdump = 0; 630 unsigned long lmb_size, base, size, sz; 631 int nid; 632 struct assoc_arrays aa = { .arrays = NULL }; 633 634 n = of_get_drconf_memory(memory, &dm); 635 if (!n) 636 return; 637 638 lmb_size = of_get_lmb_size(memory); 639 if (!lmb_size) 640 return; 641 642 rc = of_get_assoc_arrays(memory, &aa); 643 if (rc) 644 return; 645 646 /* check if this is a kexec/kdump kernel */ 647 usm = of_get_usable_memory(memory); 648 if (usm != NULL) 649 is_kexec_kdump = 1; 650 651 for (; n != 0; --n) { 652 struct of_drconf_cell drmem; 653 654 read_drconf_cell(&drmem, &dm); 655 656 /* skip this block if the reserved bit is set in flags (0x80) 657 or if the block is not assigned to this partition (0x8) */ 658 if ((drmem.flags & DRCONF_MEM_RESERVED) 659 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 660 continue; 661 662 base = drmem.base_addr; 663 size = lmb_size; 664 ranges = 1; 665 666 if (is_kexec_kdump) { 667 ranges = read_usm_ranges(&usm); 668 if (!ranges) /* there are no (base, size) duple */ 669 continue; 670 } 671 do { 672 if (is_kexec_kdump) { 673 base = read_n_cells(n_mem_addr_cells, &usm); 674 size = read_n_cells(n_mem_size_cells, &usm); 675 } 676 nid = of_drconf_to_nid_single(&drmem, &aa); 677 fake_numa_create_new_node( 678 ((base + size) >> PAGE_SHIFT), 679 &nid); 680 node_set_online(nid); 681 sz = numa_enforce_memory_limit(base, size); 682 if (sz) 683 memblock_set_node(base, sz, nid); 684 } while (--ranges); 685 } 686 } 687 688 static int __init parse_numa_properties(void) 689 { 690 struct device_node *memory; 691 int default_nid = 0; 692 unsigned long i; 693 694 if (numa_enabled == 0) { 695 printk(KERN_WARNING "NUMA disabled by user\n"); 696 return -1; 697 } 698 699 min_common_depth = find_min_common_depth(); 700 701 if (min_common_depth < 0) 702 return min_common_depth; 703 704 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 705 706 /* 707 * Even though we connect cpus to numa domains later in SMP 708 * init, we need to know the node ids now. This is because 709 * each node to be onlined must have NODE_DATA etc backing it. 710 */ 711 for_each_present_cpu(i) { 712 struct device_node *cpu; 713 int nid; 714 715 cpu = of_get_cpu_node(i, NULL); 716 BUG_ON(!cpu); 717 nid = of_node_to_nid_single(cpu); 718 of_node_put(cpu); 719 720 /* 721 * Don't fall back to default_nid yet -- we will plug 722 * cpus into nodes once the memory scan has discovered 723 * the topology. 724 */ 725 if (nid < 0) 726 continue; 727 node_set_online(nid); 728 } 729 730 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 731 732 for_each_node_by_type(memory, "memory") { 733 unsigned long start; 734 unsigned long size; 735 int nid; 736 int ranges; 737 const unsigned int *memcell_buf; 738 unsigned int len; 739 740 memcell_buf = of_get_property(memory, 741 "linux,usable-memory", &len); 742 if (!memcell_buf || len <= 0) 743 memcell_buf = of_get_property(memory, "reg", &len); 744 if (!memcell_buf || len <= 0) 745 continue; 746 747 /* ranges in cell */ 748 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 749 new_range: 750 /* these are order-sensitive, and modify the buffer pointer */ 751 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 752 size = read_n_cells(n_mem_size_cells, &memcell_buf); 753 754 /* 755 * Assumption: either all memory nodes or none will 756 * have associativity properties. If none, then 757 * everything goes to default_nid. 758 */ 759 nid = of_node_to_nid_single(memory); 760 if (nid < 0) 761 nid = default_nid; 762 763 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 764 node_set_online(nid); 765 766 if (!(size = numa_enforce_memory_limit(start, size))) { 767 if (--ranges) 768 goto new_range; 769 else 770 continue; 771 } 772 773 memblock_set_node(start, size, nid); 774 775 if (--ranges) 776 goto new_range; 777 } 778 779 /* 780 * Now do the same thing for each MEMBLOCK listed in the 781 * ibm,dynamic-memory property in the 782 * ibm,dynamic-reconfiguration-memory node. 783 */ 784 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 785 if (memory) 786 parse_drconf_memory(memory); 787 788 return 0; 789 } 790 791 static void __init setup_nonnuma(void) 792 { 793 unsigned long top_of_ram = memblock_end_of_DRAM(); 794 unsigned long total_ram = memblock_phys_mem_size(); 795 unsigned long start_pfn, end_pfn; 796 unsigned int nid = 0; 797 struct memblock_region *reg; 798 799 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 800 top_of_ram, total_ram); 801 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 802 (top_of_ram - total_ram) >> 20); 803 804 for_each_memblock(memory, reg) { 805 start_pfn = memblock_region_memory_base_pfn(reg); 806 end_pfn = memblock_region_memory_end_pfn(reg); 807 808 fake_numa_create_new_node(end_pfn, &nid); 809 memblock_set_node(PFN_PHYS(start_pfn), 810 PFN_PHYS(end_pfn - start_pfn), nid); 811 node_set_online(nid); 812 } 813 } 814 815 void __init dump_numa_cpu_topology(void) 816 { 817 unsigned int node; 818 unsigned int cpu, count; 819 820 if (min_common_depth == -1 || !numa_enabled) 821 return; 822 823 for_each_online_node(node) { 824 printk(KERN_DEBUG "Node %d CPUs:", node); 825 826 count = 0; 827 /* 828 * If we used a CPU iterator here we would miss printing 829 * the holes in the cpumap. 830 */ 831 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 832 if (cpumask_test_cpu(cpu, 833 node_to_cpumask_map[node])) { 834 if (count == 0) 835 printk(" %u", cpu); 836 ++count; 837 } else { 838 if (count > 1) 839 printk("-%u", cpu - 1); 840 count = 0; 841 } 842 } 843 844 if (count > 1) 845 printk("-%u", nr_cpu_ids - 1); 846 printk("\n"); 847 } 848 } 849 850 static void __init dump_numa_memory_topology(void) 851 { 852 unsigned int node; 853 unsigned int count; 854 855 if (min_common_depth == -1 || !numa_enabled) 856 return; 857 858 for_each_online_node(node) { 859 unsigned long i; 860 861 printk(KERN_DEBUG "Node %d Memory:", node); 862 863 count = 0; 864 865 for (i = 0; i < memblock_end_of_DRAM(); 866 i += (1 << SECTION_SIZE_BITS)) { 867 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 868 if (count == 0) 869 printk(" 0x%lx", i); 870 ++count; 871 } else { 872 if (count > 0) 873 printk("-0x%lx", i); 874 count = 0; 875 } 876 } 877 878 if (count > 0) 879 printk("-0x%lx", i); 880 printk("\n"); 881 } 882 } 883 884 /* 885 * Allocate some memory, satisfying the memblock or bootmem allocator where 886 * required. nid is the preferred node and end is the physical address of 887 * the highest address in the node. 888 * 889 * Returns the virtual address of the memory. 890 */ 891 static void __init *careful_zallocation(int nid, unsigned long size, 892 unsigned long align, 893 unsigned long end_pfn) 894 { 895 void *ret; 896 int new_nid; 897 unsigned long ret_paddr; 898 899 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 900 901 /* retry over all memory */ 902 if (!ret_paddr) 903 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 904 905 if (!ret_paddr) 906 panic("numa.c: cannot allocate %lu bytes for node %d", 907 size, nid); 908 909 ret = __va(ret_paddr); 910 911 /* 912 * We initialize the nodes in numeric order: 0, 1, 2... 913 * and hand over control from the MEMBLOCK allocator to the 914 * bootmem allocator. If this function is called for 915 * node 5, then we know that all nodes <5 are using the 916 * bootmem allocator instead of the MEMBLOCK allocator. 917 * 918 * So, check the nid from which this allocation came 919 * and double check to see if we need to use bootmem 920 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 921 * since it would be useless. 922 */ 923 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 924 if (new_nid < nid) { 925 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 926 size, align, 0); 927 928 dbg("alloc_bootmem %p %lx\n", ret, size); 929 } 930 931 memset(ret, 0, size); 932 return ret; 933 } 934 935 static struct notifier_block __cpuinitdata ppc64_numa_nb = { 936 .notifier_call = cpu_numa_callback, 937 .priority = 1 /* Must run before sched domains notifier. */ 938 }; 939 940 static void __init mark_reserved_regions_for_nid(int nid) 941 { 942 struct pglist_data *node = NODE_DATA(nid); 943 struct memblock_region *reg; 944 945 for_each_memblock(reserved, reg) { 946 unsigned long physbase = reg->base; 947 unsigned long size = reg->size; 948 unsigned long start_pfn = physbase >> PAGE_SHIFT; 949 unsigned long end_pfn = PFN_UP(physbase + size); 950 struct node_active_region node_ar; 951 unsigned long node_end_pfn = node->node_start_pfn + 952 node->node_spanned_pages; 953 954 /* 955 * Check to make sure that this memblock.reserved area is 956 * within the bounds of the node that we care about. 957 * Checking the nid of the start and end points is not 958 * sufficient because the reserved area could span the 959 * entire node. 960 */ 961 if (end_pfn <= node->node_start_pfn || 962 start_pfn >= node_end_pfn) 963 continue; 964 965 get_node_active_region(start_pfn, &node_ar); 966 while (start_pfn < end_pfn && 967 node_ar.start_pfn < node_ar.end_pfn) { 968 unsigned long reserve_size = size; 969 /* 970 * if reserved region extends past active region 971 * then trim size to active region 972 */ 973 if (end_pfn > node_ar.end_pfn) 974 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 975 - physbase; 976 /* 977 * Only worry about *this* node, others may not 978 * yet have valid NODE_DATA(). 979 */ 980 if (node_ar.nid == nid) { 981 dbg("reserve_bootmem %lx %lx nid=%d\n", 982 physbase, reserve_size, node_ar.nid); 983 reserve_bootmem_node(NODE_DATA(node_ar.nid), 984 physbase, reserve_size, 985 BOOTMEM_DEFAULT); 986 } 987 /* 988 * if reserved region is contained in the active region 989 * then done. 990 */ 991 if (end_pfn <= node_ar.end_pfn) 992 break; 993 994 /* 995 * reserved region extends past the active region 996 * get next active region that contains this 997 * reserved region 998 */ 999 start_pfn = node_ar.end_pfn; 1000 physbase = start_pfn << PAGE_SHIFT; 1001 size = size - reserve_size; 1002 get_node_active_region(start_pfn, &node_ar); 1003 } 1004 } 1005 } 1006 1007 1008 void __init do_init_bootmem(void) 1009 { 1010 int nid; 1011 1012 min_low_pfn = 0; 1013 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1014 max_pfn = max_low_pfn; 1015 1016 if (parse_numa_properties()) 1017 setup_nonnuma(); 1018 else 1019 dump_numa_memory_topology(); 1020 1021 for_each_online_node(nid) { 1022 unsigned long start_pfn, end_pfn; 1023 void *bootmem_vaddr; 1024 unsigned long bootmap_pages; 1025 1026 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1027 1028 /* 1029 * Allocate the node structure node local if possible 1030 * 1031 * Be careful moving this around, as it relies on all 1032 * previous nodes' bootmem to be initialized and have 1033 * all reserved areas marked. 1034 */ 1035 NODE_DATA(nid) = careful_zallocation(nid, 1036 sizeof(struct pglist_data), 1037 SMP_CACHE_BYTES, end_pfn); 1038 1039 dbg("node %d\n", nid); 1040 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1041 1042 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1043 NODE_DATA(nid)->node_start_pfn = start_pfn; 1044 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1045 1046 if (NODE_DATA(nid)->node_spanned_pages == 0) 1047 continue; 1048 1049 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1050 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1051 1052 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1053 bootmem_vaddr = careful_zallocation(nid, 1054 bootmap_pages << PAGE_SHIFT, 1055 PAGE_SIZE, end_pfn); 1056 1057 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1058 1059 init_bootmem_node(NODE_DATA(nid), 1060 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1061 start_pfn, end_pfn); 1062 1063 free_bootmem_with_active_regions(nid, end_pfn); 1064 /* 1065 * Be very careful about moving this around. Future 1066 * calls to careful_zallocation() depend on this getting 1067 * done correctly. 1068 */ 1069 mark_reserved_regions_for_nid(nid); 1070 sparse_memory_present_with_active_regions(nid); 1071 } 1072 1073 init_bootmem_done = 1; 1074 1075 /* 1076 * Now bootmem is initialised we can create the node to cpumask 1077 * lookup tables and setup the cpu callback to populate them. 1078 */ 1079 setup_node_to_cpumask_map(); 1080 1081 register_cpu_notifier(&ppc64_numa_nb); 1082 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1083 (void *)(unsigned long)boot_cpuid); 1084 } 1085 1086 void __init paging_init(void) 1087 { 1088 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1089 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1090 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1091 free_area_init_nodes(max_zone_pfns); 1092 } 1093 1094 static int __init early_numa(char *p) 1095 { 1096 if (!p) 1097 return 0; 1098 1099 if (strstr(p, "off")) 1100 numa_enabled = 0; 1101 1102 if (strstr(p, "debug")) 1103 numa_debug = 1; 1104 1105 p = strstr(p, "fake="); 1106 if (p) 1107 cmdline = p + strlen("fake="); 1108 1109 return 0; 1110 } 1111 early_param("numa", early_numa); 1112 1113 #ifdef CONFIG_MEMORY_HOTPLUG 1114 /* 1115 * Find the node associated with a hot added memory section for 1116 * memory represented in the device tree by the property 1117 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1118 */ 1119 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1120 unsigned long scn_addr) 1121 { 1122 const u32 *dm; 1123 unsigned int drconf_cell_cnt, rc; 1124 unsigned long lmb_size; 1125 struct assoc_arrays aa; 1126 int nid = -1; 1127 1128 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1129 if (!drconf_cell_cnt) 1130 return -1; 1131 1132 lmb_size = of_get_lmb_size(memory); 1133 if (!lmb_size) 1134 return -1; 1135 1136 rc = of_get_assoc_arrays(memory, &aa); 1137 if (rc) 1138 return -1; 1139 1140 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1141 struct of_drconf_cell drmem; 1142 1143 read_drconf_cell(&drmem, &dm); 1144 1145 /* skip this block if it is reserved or not assigned to 1146 * this partition */ 1147 if ((drmem.flags & DRCONF_MEM_RESERVED) 1148 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1149 continue; 1150 1151 if ((scn_addr < drmem.base_addr) 1152 || (scn_addr >= (drmem.base_addr + lmb_size))) 1153 continue; 1154 1155 nid = of_drconf_to_nid_single(&drmem, &aa); 1156 break; 1157 } 1158 1159 return nid; 1160 } 1161 1162 /* 1163 * Find the node associated with a hot added memory section for memory 1164 * represented in the device tree as a node (i.e. memory@XXXX) for 1165 * each memblock. 1166 */ 1167 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1168 { 1169 struct device_node *memory; 1170 int nid = -1; 1171 1172 for_each_node_by_type(memory, "memory") { 1173 unsigned long start, size; 1174 int ranges; 1175 const unsigned int *memcell_buf; 1176 unsigned int len; 1177 1178 memcell_buf = of_get_property(memory, "reg", &len); 1179 if (!memcell_buf || len <= 0) 1180 continue; 1181 1182 /* ranges in cell */ 1183 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1184 1185 while (ranges--) { 1186 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1187 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1188 1189 if ((scn_addr < start) || (scn_addr >= (start + size))) 1190 continue; 1191 1192 nid = of_node_to_nid_single(memory); 1193 break; 1194 } 1195 1196 if (nid >= 0) 1197 break; 1198 } 1199 1200 of_node_put(memory); 1201 1202 return nid; 1203 } 1204 1205 /* 1206 * Find the node associated with a hot added memory section. Section 1207 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1208 * sections are fully contained within a single MEMBLOCK. 1209 */ 1210 int hot_add_scn_to_nid(unsigned long scn_addr) 1211 { 1212 struct device_node *memory = NULL; 1213 int nid, found = 0; 1214 1215 if (!numa_enabled || (min_common_depth < 0)) 1216 return first_online_node; 1217 1218 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1219 if (memory) { 1220 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1221 of_node_put(memory); 1222 } else { 1223 nid = hot_add_node_scn_to_nid(scn_addr); 1224 } 1225 1226 if (nid < 0 || !node_online(nid)) 1227 nid = first_online_node; 1228 1229 if (NODE_DATA(nid)->node_spanned_pages) 1230 return nid; 1231 1232 for_each_online_node(nid) { 1233 if (NODE_DATA(nid)->node_spanned_pages) { 1234 found = 1; 1235 break; 1236 } 1237 } 1238 1239 BUG_ON(!found); 1240 return nid; 1241 } 1242 1243 static u64 hot_add_drconf_memory_max(void) 1244 { 1245 struct device_node *memory = NULL; 1246 unsigned int drconf_cell_cnt = 0; 1247 u64 lmb_size = 0; 1248 const u32 *dm = 0; 1249 1250 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1251 if (memory) { 1252 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1253 lmb_size = of_get_lmb_size(memory); 1254 of_node_put(memory); 1255 } 1256 return lmb_size * drconf_cell_cnt; 1257 } 1258 1259 /* 1260 * memory_hotplug_max - return max address of memory that may be added 1261 * 1262 * This is currently only used on systems that support drconfig memory 1263 * hotplug. 1264 */ 1265 u64 memory_hotplug_max(void) 1266 { 1267 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1268 } 1269 #endif /* CONFIG_MEMORY_HOTPLUG */ 1270 1271 /* Virtual Processor Home Node (VPHN) support */ 1272 #ifdef CONFIG_PPC_SPLPAR 1273 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1274 static cpumask_t cpu_associativity_changes_mask; 1275 static int vphn_enabled; 1276 static void set_topology_timer(void); 1277 1278 /* 1279 * Store the current values of the associativity change counters in the 1280 * hypervisor. 1281 */ 1282 static void setup_cpu_associativity_change_counters(void) 1283 { 1284 int cpu; 1285 1286 /* The VPHN feature supports a maximum of 8 reference points */ 1287 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1288 1289 for_each_possible_cpu(cpu) { 1290 int i; 1291 u8 *counts = vphn_cpu_change_counts[cpu]; 1292 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1293 1294 for (i = 0; i < distance_ref_points_depth; i++) 1295 counts[i] = hypervisor_counts[i]; 1296 } 1297 } 1298 1299 /* 1300 * The hypervisor maintains a set of 8 associativity change counters in 1301 * the VPA of each cpu that correspond to the associativity levels in the 1302 * ibm,associativity-reference-points property. When an associativity 1303 * level changes, the corresponding counter is incremented. 1304 * 1305 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1306 * node associativity levels have changed. 1307 * 1308 * Returns the number of cpus with unhandled associativity changes. 1309 */ 1310 static int update_cpu_associativity_changes_mask(void) 1311 { 1312 int cpu, nr_cpus = 0; 1313 cpumask_t *changes = &cpu_associativity_changes_mask; 1314 1315 cpumask_clear(changes); 1316 1317 for_each_possible_cpu(cpu) { 1318 int i, changed = 0; 1319 u8 *counts = vphn_cpu_change_counts[cpu]; 1320 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1321 1322 for (i = 0; i < distance_ref_points_depth; i++) { 1323 if (hypervisor_counts[i] != counts[i]) { 1324 counts[i] = hypervisor_counts[i]; 1325 changed = 1; 1326 } 1327 } 1328 if (changed) { 1329 cpumask_set_cpu(cpu, changes); 1330 nr_cpus++; 1331 } 1332 } 1333 1334 return nr_cpus; 1335 } 1336 1337 /* 1338 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1339 * the complete property we have to add the length in the first cell. 1340 */ 1341 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1342 1343 /* 1344 * Convert the associativity domain numbers returned from the hypervisor 1345 * to the sequence they would appear in the ibm,associativity property. 1346 */ 1347 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1348 { 1349 int i, nr_assoc_doms = 0; 1350 const u16 *field = (const u16*) packed; 1351 1352 #define VPHN_FIELD_UNUSED (0xffff) 1353 #define VPHN_FIELD_MSB (0x8000) 1354 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1355 1356 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1357 if (*field == VPHN_FIELD_UNUSED) { 1358 /* All significant fields processed, and remaining 1359 * fields contain the reserved value of all 1's. 1360 * Just store them. 1361 */ 1362 unpacked[i] = *((u32*)field); 1363 field += 2; 1364 } else if (*field & VPHN_FIELD_MSB) { 1365 /* Data is in the lower 15 bits of this field */ 1366 unpacked[i] = *field & VPHN_FIELD_MASK; 1367 field++; 1368 nr_assoc_doms++; 1369 } else { 1370 /* Data is in the lower 15 bits of this field 1371 * concatenated with the next 16 bit field 1372 */ 1373 unpacked[i] = *((u32*)field); 1374 field += 2; 1375 nr_assoc_doms++; 1376 } 1377 } 1378 1379 /* The first cell contains the length of the property */ 1380 unpacked[0] = nr_assoc_doms; 1381 1382 return nr_assoc_doms; 1383 } 1384 1385 /* 1386 * Retrieve the new associativity information for a virtual processor's 1387 * home node. 1388 */ 1389 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1390 { 1391 long rc; 1392 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1393 u64 flags = 1; 1394 int hwcpu = get_hard_smp_processor_id(cpu); 1395 1396 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1397 vphn_unpack_associativity(retbuf, associativity); 1398 1399 return rc; 1400 } 1401 1402 static long vphn_get_associativity(unsigned long cpu, 1403 unsigned int *associativity) 1404 { 1405 long rc; 1406 1407 rc = hcall_vphn(cpu, associativity); 1408 1409 switch (rc) { 1410 case H_FUNCTION: 1411 printk(KERN_INFO 1412 "VPHN is not supported. Disabling polling...\n"); 1413 stop_topology_update(); 1414 break; 1415 case H_HARDWARE: 1416 printk(KERN_ERR 1417 "hcall_vphn() experienced a hardware fault " 1418 "preventing VPHN. Disabling polling...\n"); 1419 stop_topology_update(); 1420 } 1421 1422 return rc; 1423 } 1424 1425 /* 1426 * Update the node maps and sysfs entries for each cpu whose home node 1427 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1428 */ 1429 int arch_update_cpu_topology(void) 1430 { 1431 int cpu, nid, old_nid, changed = 0; 1432 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1433 struct device *dev; 1434 1435 for_each_cpu(cpu,&cpu_associativity_changes_mask) { 1436 vphn_get_associativity(cpu, associativity); 1437 nid = associativity_to_nid(associativity); 1438 1439 if (nid < 0 || !node_online(nid)) 1440 nid = first_online_node; 1441 1442 old_nid = numa_cpu_lookup_table[cpu]; 1443 1444 /* Disable hotplug while we update the cpu 1445 * masks and sysfs. 1446 */ 1447 get_online_cpus(); 1448 unregister_cpu_under_node(cpu, old_nid); 1449 unmap_cpu_from_node(cpu); 1450 map_cpu_to_node(cpu, nid); 1451 register_cpu_under_node(cpu, nid); 1452 put_online_cpus(); 1453 1454 dev = get_cpu_device(cpu); 1455 if (dev) 1456 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1457 changed = 1; 1458 } 1459 1460 return changed; 1461 } 1462 1463 static void topology_work_fn(struct work_struct *work) 1464 { 1465 rebuild_sched_domains(); 1466 } 1467 static DECLARE_WORK(topology_work, topology_work_fn); 1468 1469 void topology_schedule_update(void) 1470 { 1471 schedule_work(&topology_work); 1472 } 1473 1474 static void topology_timer_fn(unsigned long ignored) 1475 { 1476 if (!vphn_enabled) 1477 return; 1478 if (update_cpu_associativity_changes_mask() > 0) 1479 topology_schedule_update(); 1480 set_topology_timer(); 1481 } 1482 static struct timer_list topology_timer = 1483 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1484 1485 static void set_topology_timer(void) 1486 { 1487 topology_timer.data = 0; 1488 topology_timer.expires = jiffies + 60 * HZ; 1489 add_timer(&topology_timer); 1490 } 1491 1492 /* 1493 * Start polling for VPHN associativity changes. 1494 */ 1495 int start_topology_update(void) 1496 { 1497 int rc = 0; 1498 1499 /* Disabled until races with load balancing are fixed */ 1500 if (0 && firmware_has_feature(FW_FEATURE_VPHN) && 1501 get_lppaca()->shared_proc) { 1502 vphn_enabled = 1; 1503 setup_cpu_associativity_change_counters(); 1504 init_timer_deferrable(&topology_timer); 1505 set_topology_timer(); 1506 rc = 1; 1507 } 1508 1509 return rc; 1510 } 1511 __initcall(start_topology_update); 1512 1513 /* 1514 * Disable polling for VPHN associativity changes. 1515 */ 1516 int stop_topology_update(void) 1517 { 1518 vphn_enabled = 0; 1519 return del_timer_sync(&topology_timer); 1520 } 1521 #endif /* CONFIG_PPC_SPLPAR */ 1522