xref: /linux/arch/powerpc/mm/numa.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <asm/sparsemem.h>
24 #include <asm/prom.h>
25 #include <asm/system.h>
26 #include <asm/smp.h>
27 
28 static int numa_enabled = 1;
29 
30 static char *cmdline __initdata;
31 
32 static int numa_debug;
33 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
34 
35 int numa_cpu_lookup_table[NR_CPUS];
36 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
37 struct pglist_data *node_data[MAX_NUMNODES];
38 
39 EXPORT_SYMBOL(numa_cpu_lookup_table);
40 EXPORT_SYMBOL(numa_cpumask_lookup_table);
41 EXPORT_SYMBOL(node_data);
42 
43 static int min_common_depth;
44 static int n_mem_addr_cells, n_mem_size_cells;
45 
46 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
47 						unsigned int *nid)
48 {
49 	unsigned long long mem;
50 	char *p = cmdline;
51 	static unsigned int fake_nid;
52 	static unsigned long long curr_boundary;
53 
54 	/*
55 	 * Modify node id, iff we started creating NUMA nodes
56 	 * We want to continue from where we left of the last time
57 	 */
58 	if (fake_nid)
59 		*nid = fake_nid;
60 	/*
61 	 * In case there are no more arguments to parse, the
62 	 * node_id should be the same as the last fake node id
63 	 * (we've handled this above).
64 	 */
65 	if (!p)
66 		return 0;
67 
68 	mem = memparse(p, &p);
69 	if (!mem)
70 		return 0;
71 
72 	if (mem < curr_boundary)
73 		return 0;
74 
75 	curr_boundary = mem;
76 
77 	if ((end_pfn << PAGE_SHIFT) > mem) {
78 		/*
79 		 * Skip commas and spaces
80 		 */
81 		while (*p == ',' || *p == ' ' || *p == '\t')
82 			p++;
83 
84 		cmdline = p;
85 		fake_nid++;
86 		*nid = fake_nid;
87 		dbg("created new fake_node with id %d\n", fake_nid);
88 		return 1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * get_active_region_work_fn - A helper function for get_node_active_region
95  *	Returns datax set to the start_pfn and end_pfn if they contain
96  *	the initial value of datax->start_pfn between them
97  * @start_pfn: start page(inclusive) of region to check
98  * @end_pfn: end page(exclusive) of region to check
99  * @datax: comes in with ->start_pfn set to value to search for and
100  *	goes out with active range if it contains it
101  * Returns 1 if search value is in range else 0
102  */
103 static int __init get_active_region_work_fn(unsigned long start_pfn,
104 					unsigned long end_pfn, void *datax)
105 {
106 	struct node_active_region *data;
107 	data = (struct node_active_region *)datax;
108 
109 	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
110 		data->start_pfn = start_pfn;
111 		data->end_pfn = end_pfn;
112 		return 1;
113 	}
114 	return 0;
115 
116 }
117 
118 /*
119  * get_node_active_region - Return active region containing start_pfn
120  * Active range returned is empty if none found.
121  * @start_pfn: The page to return the region for.
122  * @node_ar: Returned set to the active region containing start_pfn
123  */
124 static void __init get_node_active_region(unsigned long start_pfn,
125 		       struct node_active_region *node_ar)
126 {
127 	int nid = early_pfn_to_nid(start_pfn);
128 
129 	node_ar->nid = nid;
130 	node_ar->start_pfn = start_pfn;
131 	node_ar->end_pfn = start_pfn;
132 	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
133 }
134 
135 static void __cpuinit map_cpu_to_node(int cpu, int node)
136 {
137 	numa_cpu_lookup_table[cpu] = node;
138 
139 	dbg("adding cpu %d to node %d\n", cpu, node);
140 
141 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
142 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
143 }
144 
145 #ifdef CONFIG_HOTPLUG_CPU
146 static void unmap_cpu_from_node(unsigned long cpu)
147 {
148 	int node = numa_cpu_lookup_table[cpu];
149 
150 	dbg("removing cpu %lu from node %d\n", cpu, node);
151 
152 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
153 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
154 	} else {
155 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
156 		       cpu, node);
157 	}
158 }
159 #endif /* CONFIG_HOTPLUG_CPU */
160 
161 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
162 {
163 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
164 	struct device_node *cpu_node = NULL;
165 	const unsigned int *interrupt_server, *reg;
166 	int len;
167 
168 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
169 		/* Try interrupt server first */
170 		interrupt_server = of_get_property(cpu_node,
171 					"ibm,ppc-interrupt-server#s", &len);
172 
173 		len = len / sizeof(u32);
174 
175 		if (interrupt_server && (len > 0)) {
176 			while (len--) {
177 				if (interrupt_server[len] == hw_cpuid)
178 					return cpu_node;
179 			}
180 		} else {
181 			reg = of_get_property(cpu_node, "reg", &len);
182 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
183 				return cpu_node;
184 		}
185 	}
186 
187 	return NULL;
188 }
189 
190 /* must hold reference to node during call */
191 static const int *of_get_associativity(struct device_node *dev)
192 {
193 	return of_get_property(dev, "ibm,associativity", NULL);
194 }
195 
196 /*
197  * Returns the property linux,drconf-usable-memory if
198  * it exists (the property exists only in kexec/kdump kernels,
199  * added by kexec-tools)
200  */
201 static const u32 *of_get_usable_memory(struct device_node *memory)
202 {
203 	const u32 *prop;
204 	u32 len;
205 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
206 	if (!prop || len < sizeof(unsigned int))
207 		return 0;
208 	return prop;
209 }
210 
211 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
212  * info is found.
213  */
214 static int of_node_to_nid_single(struct device_node *device)
215 {
216 	int nid = -1;
217 	const unsigned int *tmp;
218 
219 	if (min_common_depth == -1)
220 		goto out;
221 
222 	tmp = of_get_associativity(device);
223 	if (!tmp)
224 		goto out;
225 
226 	if (tmp[0] >= min_common_depth)
227 		nid = tmp[min_common_depth];
228 
229 	/* POWER4 LPAR uses 0xffff as invalid node */
230 	if (nid == 0xffff || nid >= MAX_NUMNODES)
231 		nid = -1;
232 out:
233 	return nid;
234 }
235 
236 /* Walk the device tree upwards, looking for an associativity id */
237 int of_node_to_nid(struct device_node *device)
238 {
239 	struct device_node *tmp;
240 	int nid = -1;
241 
242 	of_node_get(device);
243 	while (device) {
244 		nid = of_node_to_nid_single(device);
245 		if (nid != -1)
246 			break;
247 
248 	        tmp = device;
249 		device = of_get_parent(tmp);
250 		of_node_put(tmp);
251 	}
252 	of_node_put(device);
253 
254 	return nid;
255 }
256 EXPORT_SYMBOL_GPL(of_node_to_nid);
257 
258 /*
259  * In theory, the "ibm,associativity" property may contain multiple
260  * associativity lists because a resource may be multiply connected
261  * into the machine.  This resource then has different associativity
262  * characteristics relative to its multiple connections.  We ignore
263  * this for now.  We also assume that all cpu and memory sets have
264  * their distances represented at a common level.  This won't be
265  * true for hierarchical NUMA.
266  *
267  * In any case the ibm,associativity-reference-points should give
268  * the correct depth for a normal NUMA system.
269  *
270  * - Dave Hansen <haveblue@us.ibm.com>
271  */
272 static int __init find_min_common_depth(void)
273 {
274 	int depth;
275 	const unsigned int *ref_points;
276 	struct device_node *rtas_root;
277 	unsigned int len;
278 
279 	rtas_root = of_find_node_by_path("/rtas");
280 
281 	if (!rtas_root)
282 		return -1;
283 
284 	/*
285 	 * this property is 2 32-bit integers, each representing a level of
286 	 * depth in the associativity nodes.  The first is for an SMP
287 	 * configuration (should be all 0's) and the second is for a normal
288 	 * NUMA configuration.
289 	 */
290 	ref_points = of_get_property(rtas_root,
291 			"ibm,associativity-reference-points", &len);
292 
293 	if ((len >= 1) && ref_points) {
294 		depth = ref_points[1];
295 	} else {
296 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
297 		depth = -1;
298 	}
299 	of_node_put(rtas_root);
300 
301 	return depth;
302 }
303 
304 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
305 {
306 	struct device_node *memory = NULL;
307 
308 	memory = of_find_node_by_type(memory, "memory");
309 	if (!memory)
310 		panic("numa.c: No memory nodes found!");
311 
312 	*n_addr_cells = of_n_addr_cells(memory);
313 	*n_size_cells = of_n_size_cells(memory);
314 	of_node_put(memory);
315 }
316 
317 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
318 {
319 	unsigned long result = 0;
320 
321 	while (n--) {
322 		result = (result << 32) | **buf;
323 		(*buf)++;
324 	}
325 	return result;
326 }
327 
328 struct of_drconf_cell {
329 	u64	base_addr;
330 	u32	drc_index;
331 	u32	reserved;
332 	u32	aa_index;
333 	u32	flags;
334 };
335 
336 #define DRCONF_MEM_ASSIGNED	0x00000008
337 #define DRCONF_MEM_AI_INVALID	0x00000040
338 #define DRCONF_MEM_RESERVED	0x00000080
339 
340 /*
341  * Read the next lmb list entry from the ibm,dynamic-memory property
342  * and return the information in the provided of_drconf_cell structure.
343  */
344 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
345 {
346 	const u32 *cp;
347 
348 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
349 
350 	cp = *cellp;
351 	drmem->drc_index = cp[0];
352 	drmem->reserved = cp[1];
353 	drmem->aa_index = cp[2];
354 	drmem->flags = cp[3];
355 
356 	*cellp = cp + 4;
357 }
358 
359 /*
360  * Retreive and validate the ibm,dynamic-memory property of the device tree.
361  *
362  * The layout of the ibm,dynamic-memory property is a number N of lmb
363  * list entries followed by N lmb list entries.  Each lmb list entry
364  * contains information as layed out in the of_drconf_cell struct above.
365  */
366 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
367 {
368 	const u32 *prop;
369 	u32 len, entries;
370 
371 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
372 	if (!prop || len < sizeof(unsigned int))
373 		return 0;
374 
375 	entries = *prop++;
376 
377 	/* Now that we know the number of entries, revalidate the size
378 	 * of the property read in to ensure we have everything
379 	 */
380 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
381 		return 0;
382 
383 	*dm = prop;
384 	return entries;
385 }
386 
387 /*
388  * Retreive and validate the ibm,lmb-size property for drconf memory
389  * from the device tree.
390  */
391 static u64 of_get_lmb_size(struct device_node *memory)
392 {
393 	const u32 *prop;
394 	u32 len;
395 
396 	prop = of_get_property(memory, "ibm,lmb-size", &len);
397 	if (!prop || len < sizeof(unsigned int))
398 		return 0;
399 
400 	return read_n_cells(n_mem_size_cells, &prop);
401 }
402 
403 struct assoc_arrays {
404 	u32	n_arrays;
405 	u32	array_sz;
406 	const u32 *arrays;
407 };
408 
409 /*
410  * Retreive and validate the list of associativity arrays for drconf
411  * memory from the ibm,associativity-lookup-arrays property of the
412  * device tree..
413  *
414  * The layout of the ibm,associativity-lookup-arrays property is a number N
415  * indicating the number of associativity arrays, followed by a number M
416  * indicating the size of each associativity array, followed by a list
417  * of N associativity arrays.
418  */
419 static int of_get_assoc_arrays(struct device_node *memory,
420 			       struct assoc_arrays *aa)
421 {
422 	const u32 *prop;
423 	u32 len;
424 
425 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
426 	if (!prop || len < 2 * sizeof(unsigned int))
427 		return -1;
428 
429 	aa->n_arrays = *prop++;
430 	aa->array_sz = *prop++;
431 
432 	/* Now that we know the number of arrrays and size of each array,
433 	 * revalidate the size of the property read in.
434 	 */
435 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
436 		return -1;
437 
438 	aa->arrays = prop;
439 	return 0;
440 }
441 
442 /*
443  * This is like of_node_to_nid_single() for memory represented in the
444  * ibm,dynamic-reconfiguration-memory node.
445  */
446 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
447 				   struct assoc_arrays *aa)
448 {
449 	int default_nid = 0;
450 	int nid = default_nid;
451 	int index;
452 
453 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
454 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
455 	    drmem->aa_index < aa->n_arrays) {
456 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
457 		nid = aa->arrays[index];
458 
459 		if (nid == 0xffff || nid >= MAX_NUMNODES)
460 			nid = default_nid;
461 	}
462 
463 	return nid;
464 }
465 
466 /*
467  * Figure out to which domain a cpu belongs and stick it there.
468  * Return the id of the domain used.
469  */
470 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
471 {
472 	int nid = 0;
473 	struct device_node *cpu = find_cpu_node(lcpu);
474 
475 	if (!cpu) {
476 		WARN_ON(1);
477 		goto out;
478 	}
479 
480 	nid = of_node_to_nid_single(cpu);
481 
482 	if (nid < 0 || !node_online(nid))
483 		nid = any_online_node(NODE_MASK_ALL);
484 out:
485 	map_cpu_to_node(lcpu, nid);
486 
487 	of_node_put(cpu);
488 
489 	return nid;
490 }
491 
492 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
493 			     unsigned long action,
494 			     void *hcpu)
495 {
496 	unsigned long lcpu = (unsigned long)hcpu;
497 	int ret = NOTIFY_DONE;
498 
499 	switch (action) {
500 	case CPU_UP_PREPARE:
501 	case CPU_UP_PREPARE_FROZEN:
502 		numa_setup_cpu(lcpu);
503 		ret = NOTIFY_OK;
504 		break;
505 #ifdef CONFIG_HOTPLUG_CPU
506 	case CPU_DEAD:
507 	case CPU_DEAD_FROZEN:
508 	case CPU_UP_CANCELED:
509 	case CPU_UP_CANCELED_FROZEN:
510 		unmap_cpu_from_node(lcpu);
511 		break;
512 		ret = NOTIFY_OK;
513 #endif
514 	}
515 	return ret;
516 }
517 
518 /*
519  * Check and possibly modify a memory region to enforce the memory limit.
520  *
521  * Returns the size the region should have to enforce the memory limit.
522  * This will either be the original value of size, a truncated value,
523  * or zero. If the returned value of size is 0 the region should be
524  * discarded as it lies wholy above the memory limit.
525  */
526 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
527 						      unsigned long size)
528 {
529 	/*
530 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
531 	 * we've already adjusted it for the limit and it takes care of
532 	 * having memory holes below the limit.  Also, in the case of
533 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
534 	 */
535 
536 	if (start + size <= lmb_end_of_DRAM())
537 		return size;
538 
539 	if (start >= lmb_end_of_DRAM())
540 		return 0;
541 
542 	return lmb_end_of_DRAM() - start;
543 }
544 
545 /*
546  * Reads the counter for a given entry in
547  * linux,drconf-usable-memory property
548  */
549 static inline int __init read_usm_ranges(const u32 **usm)
550 {
551 	/*
552 	 * For each lmb in ibm,dynamic-memory a corresponding
553 	 * entry in linux,drconf-usable-memory property contains
554 	 * a counter followed by that many (base, size) duple.
555 	 * read the counter from linux,drconf-usable-memory
556 	 */
557 	return read_n_cells(n_mem_size_cells, usm);
558 }
559 
560 /*
561  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
562  * node.  This assumes n_mem_{addr,size}_cells have been set.
563  */
564 static void __init parse_drconf_memory(struct device_node *memory)
565 {
566 	const u32 *dm, *usm;
567 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
568 	unsigned long lmb_size, base, size, sz;
569 	int nid;
570 	struct assoc_arrays aa;
571 
572 	n = of_get_drconf_memory(memory, &dm);
573 	if (!n)
574 		return;
575 
576 	lmb_size = of_get_lmb_size(memory);
577 	if (!lmb_size)
578 		return;
579 
580 	rc = of_get_assoc_arrays(memory, &aa);
581 	if (rc)
582 		return;
583 
584 	/* check if this is a kexec/kdump kernel */
585 	usm = of_get_usable_memory(memory);
586 	if (usm != NULL)
587 		is_kexec_kdump = 1;
588 
589 	for (; n != 0; --n) {
590 		struct of_drconf_cell drmem;
591 
592 		read_drconf_cell(&drmem, &dm);
593 
594 		/* skip this block if the reserved bit is set in flags (0x80)
595 		   or if the block is not assigned to this partition (0x8) */
596 		if ((drmem.flags & DRCONF_MEM_RESERVED)
597 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
598 			continue;
599 
600 		base = drmem.base_addr;
601 		size = lmb_size;
602 		ranges = 1;
603 
604 		if (is_kexec_kdump) {
605 			ranges = read_usm_ranges(&usm);
606 			if (!ranges) /* there are no (base, size) duple */
607 				continue;
608 		}
609 		do {
610 			if (is_kexec_kdump) {
611 				base = read_n_cells(n_mem_addr_cells, &usm);
612 				size = read_n_cells(n_mem_size_cells, &usm);
613 			}
614 			nid = of_drconf_to_nid_single(&drmem, &aa);
615 			fake_numa_create_new_node(
616 				((base + size) >> PAGE_SHIFT),
617 					   &nid);
618 			node_set_online(nid);
619 			sz = numa_enforce_memory_limit(base, size);
620 			if (sz)
621 				add_active_range(nid, base >> PAGE_SHIFT,
622 						 (base >> PAGE_SHIFT)
623 						 + (sz >> PAGE_SHIFT));
624 		} while (--ranges);
625 	}
626 }
627 
628 static int __init parse_numa_properties(void)
629 {
630 	struct device_node *cpu = NULL;
631 	struct device_node *memory = NULL;
632 	int default_nid = 0;
633 	unsigned long i;
634 
635 	if (numa_enabled == 0) {
636 		printk(KERN_WARNING "NUMA disabled by user\n");
637 		return -1;
638 	}
639 
640 	min_common_depth = find_min_common_depth();
641 
642 	if (min_common_depth < 0)
643 		return min_common_depth;
644 
645 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
646 
647 	/*
648 	 * Even though we connect cpus to numa domains later in SMP
649 	 * init, we need to know the node ids now. This is because
650 	 * each node to be onlined must have NODE_DATA etc backing it.
651 	 */
652 	for_each_present_cpu(i) {
653 		int nid;
654 
655 		cpu = find_cpu_node(i);
656 		BUG_ON(!cpu);
657 		nid = of_node_to_nid_single(cpu);
658 		of_node_put(cpu);
659 
660 		/*
661 		 * Don't fall back to default_nid yet -- we will plug
662 		 * cpus into nodes once the memory scan has discovered
663 		 * the topology.
664 		 */
665 		if (nid < 0)
666 			continue;
667 		node_set_online(nid);
668 	}
669 
670 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
671 	memory = NULL;
672 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
673 		unsigned long start;
674 		unsigned long size;
675 		int nid;
676 		int ranges;
677 		const unsigned int *memcell_buf;
678 		unsigned int len;
679 
680 		memcell_buf = of_get_property(memory,
681 			"linux,usable-memory", &len);
682 		if (!memcell_buf || len <= 0)
683 			memcell_buf = of_get_property(memory, "reg", &len);
684 		if (!memcell_buf || len <= 0)
685 			continue;
686 
687 		/* ranges in cell */
688 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
689 new_range:
690 		/* these are order-sensitive, and modify the buffer pointer */
691 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
692 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
693 
694 		/*
695 		 * Assumption: either all memory nodes or none will
696 		 * have associativity properties.  If none, then
697 		 * everything goes to default_nid.
698 		 */
699 		nid = of_node_to_nid_single(memory);
700 		if (nid < 0)
701 			nid = default_nid;
702 
703 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
704 		node_set_online(nid);
705 
706 		if (!(size = numa_enforce_memory_limit(start, size))) {
707 			if (--ranges)
708 				goto new_range;
709 			else
710 				continue;
711 		}
712 
713 		add_active_range(nid, start >> PAGE_SHIFT,
714 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
715 
716 		if (--ranges)
717 			goto new_range;
718 	}
719 
720 	/*
721 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
722 	 * property in the ibm,dynamic-reconfiguration-memory node.
723 	 */
724 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
725 	if (memory)
726 		parse_drconf_memory(memory);
727 
728 	return 0;
729 }
730 
731 static void __init setup_nonnuma(void)
732 {
733 	unsigned long top_of_ram = lmb_end_of_DRAM();
734 	unsigned long total_ram = lmb_phys_mem_size();
735 	unsigned long start_pfn, end_pfn;
736 	unsigned int i, nid = 0;
737 
738 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
739 	       top_of_ram, total_ram);
740 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
741 	       (top_of_ram - total_ram) >> 20);
742 
743 	for (i = 0; i < lmb.memory.cnt; ++i) {
744 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
745 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
746 
747 		fake_numa_create_new_node(end_pfn, &nid);
748 		add_active_range(nid, start_pfn, end_pfn);
749 		node_set_online(nid);
750 	}
751 }
752 
753 void __init dump_numa_cpu_topology(void)
754 {
755 	unsigned int node;
756 	unsigned int cpu, count;
757 
758 	if (min_common_depth == -1 || !numa_enabled)
759 		return;
760 
761 	for_each_online_node(node) {
762 		printk(KERN_DEBUG "Node %d CPUs:", node);
763 
764 		count = 0;
765 		/*
766 		 * If we used a CPU iterator here we would miss printing
767 		 * the holes in the cpumap.
768 		 */
769 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
770 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
771 				if (count == 0)
772 					printk(" %u", cpu);
773 				++count;
774 			} else {
775 				if (count > 1)
776 					printk("-%u", cpu - 1);
777 				count = 0;
778 			}
779 		}
780 
781 		if (count > 1)
782 			printk("-%u", NR_CPUS - 1);
783 		printk("\n");
784 	}
785 }
786 
787 static void __init dump_numa_memory_topology(void)
788 {
789 	unsigned int node;
790 	unsigned int count;
791 
792 	if (min_common_depth == -1 || !numa_enabled)
793 		return;
794 
795 	for_each_online_node(node) {
796 		unsigned long i;
797 
798 		printk(KERN_DEBUG "Node %d Memory:", node);
799 
800 		count = 0;
801 
802 		for (i = 0; i < lmb_end_of_DRAM();
803 		     i += (1 << SECTION_SIZE_BITS)) {
804 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
805 				if (count == 0)
806 					printk(" 0x%lx", i);
807 				++count;
808 			} else {
809 				if (count > 0)
810 					printk("-0x%lx", i);
811 				count = 0;
812 			}
813 		}
814 
815 		if (count > 0)
816 			printk("-0x%lx", i);
817 		printk("\n");
818 	}
819 }
820 
821 /*
822  * Allocate some memory, satisfying the lmb or bootmem allocator where
823  * required. nid is the preferred node and end is the physical address of
824  * the highest address in the node.
825  *
826  * Returns the virtual address of the memory.
827  */
828 static void __init *careful_zallocation(int nid, unsigned long size,
829 				       unsigned long align,
830 				       unsigned long end_pfn)
831 {
832 	void *ret;
833 	int new_nid;
834 	unsigned long ret_paddr;
835 
836 	ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
837 
838 	/* retry over all memory */
839 	if (!ret_paddr)
840 		ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
841 
842 	if (!ret_paddr)
843 		panic("numa.c: cannot allocate %lu bytes for node %d",
844 		      size, nid);
845 
846 	ret = __va(ret_paddr);
847 
848 	/*
849 	 * We initialize the nodes in numeric order: 0, 1, 2...
850 	 * and hand over control from the LMB allocator to the
851 	 * bootmem allocator.  If this function is called for
852 	 * node 5, then we know that all nodes <5 are using the
853 	 * bootmem allocator instead of the LMB allocator.
854 	 *
855 	 * So, check the nid from which this allocation came
856 	 * and double check to see if we need to use bootmem
857 	 * instead of the LMB.  We don't free the LMB memory
858 	 * since it would be useless.
859 	 */
860 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
861 	if (new_nid < nid) {
862 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
863 				size, align, 0);
864 
865 		dbg("alloc_bootmem %p %lx\n", ret, size);
866 	}
867 
868 	memset(ret, 0, size);
869 	return ret;
870 }
871 
872 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
873 	.notifier_call = cpu_numa_callback,
874 	.priority = 1 /* Must run before sched domains notifier. */
875 };
876 
877 static void mark_reserved_regions_for_nid(int nid)
878 {
879 	struct pglist_data *node = NODE_DATA(nid);
880 	int i;
881 
882 	for (i = 0; i < lmb.reserved.cnt; i++) {
883 		unsigned long physbase = lmb.reserved.region[i].base;
884 		unsigned long size = lmb.reserved.region[i].size;
885 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
886 		unsigned long end_pfn = PFN_UP(physbase + size);
887 		struct node_active_region node_ar;
888 		unsigned long node_end_pfn = node->node_start_pfn +
889 					     node->node_spanned_pages;
890 
891 		/*
892 		 * Check to make sure that this lmb.reserved area is
893 		 * within the bounds of the node that we care about.
894 		 * Checking the nid of the start and end points is not
895 		 * sufficient because the reserved area could span the
896 		 * entire node.
897 		 */
898 		if (end_pfn <= node->node_start_pfn ||
899 		    start_pfn >= node_end_pfn)
900 			continue;
901 
902 		get_node_active_region(start_pfn, &node_ar);
903 		while (start_pfn < end_pfn &&
904 			node_ar.start_pfn < node_ar.end_pfn) {
905 			unsigned long reserve_size = size;
906 			/*
907 			 * if reserved region extends past active region
908 			 * then trim size to active region
909 			 */
910 			if (end_pfn > node_ar.end_pfn)
911 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
912 					- physbase;
913 			/*
914 			 * Only worry about *this* node, others may not
915 			 * yet have valid NODE_DATA().
916 			 */
917 			if (node_ar.nid == nid) {
918 				dbg("reserve_bootmem %lx %lx nid=%d\n",
919 					physbase, reserve_size, node_ar.nid);
920 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
921 						physbase, reserve_size,
922 						BOOTMEM_DEFAULT);
923 			}
924 			/*
925 			 * if reserved region is contained in the active region
926 			 * then done.
927 			 */
928 			if (end_pfn <= node_ar.end_pfn)
929 				break;
930 
931 			/*
932 			 * reserved region extends past the active region
933 			 *   get next active region that contains this
934 			 *   reserved region
935 			 */
936 			start_pfn = node_ar.end_pfn;
937 			physbase = start_pfn << PAGE_SHIFT;
938 			size = size - reserve_size;
939 			get_node_active_region(start_pfn, &node_ar);
940 		}
941 	}
942 }
943 
944 
945 void __init do_init_bootmem(void)
946 {
947 	int nid;
948 
949 	min_low_pfn = 0;
950 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
951 	max_pfn = max_low_pfn;
952 
953 	if (parse_numa_properties())
954 		setup_nonnuma();
955 	else
956 		dump_numa_memory_topology();
957 
958 	register_cpu_notifier(&ppc64_numa_nb);
959 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
960 			  (void *)(unsigned long)boot_cpuid);
961 
962 	for_each_online_node(nid) {
963 		unsigned long start_pfn, end_pfn;
964 		void *bootmem_vaddr;
965 		unsigned long bootmap_pages;
966 
967 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
968 
969 		/*
970 		 * Allocate the node structure node local if possible
971 		 *
972 		 * Be careful moving this around, as it relies on all
973 		 * previous nodes' bootmem to be initialized and have
974 		 * all reserved areas marked.
975 		 */
976 		NODE_DATA(nid) = careful_zallocation(nid,
977 					sizeof(struct pglist_data),
978 					SMP_CACHE_BYTES, end_pfn);
979 
980   		dbg("node %d\n", nid);
981 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
982 
983 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
984 		NODE_DATA(nid)->node_start_pfn = start_pfn;
985 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
986 
987 		if (NODE_DATA(nid)->node_spanned_pages == 0)
988   			continue;
989 
990   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
991   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
992 
993 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
994 		bootmem_vaddr = careful_zallocation(nid,
995 					bootmap_pages << PAGE_SHIFT,
996 					PAGE_SIZE, end_pfn);
997 
998 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
999 
1000 		init_bootmem_node(NODE_DATA(nid),
1001 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1002 				  start_pfn, end_pfn);
1003 
1004 		free_bootmem_with_active_regions(nid, end_pfn);
1005 		/*
1006 		 * Be very careful about moving this around.  Future
1007 		 * calls to careful_zallocation() depend on this getting
1008 		 * done correctly.
1009 		 */
1010 		mark_reserved_regions_for_nid(nid);
1011 		sparse_memory_present_with_active_regions(nid);
1012 	}
1013 }
1014 
1015 void __init paging_init(void)
1016 {
1017 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1018 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1019 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
1020 	free_area_init_nodes(max_zone_pfns);
1021 }
1022 
1023 static int __init early_numa(char *p)
1024 {
1025 	if (!p)
1026 		return 0;
1027 
1028 	if (strstr(p, "off"))
1029 		numa_enabled = 0;
1030 
1031 	if (strstr(p, "debug"))
1032 		numa_debug = 1;
1033 
1034 	p = strstr(p, "fake=");
1035 	if (p)
1036 		cmdline = p + strlen("fake=");
1037 
1038 	return 0;
1039 }
1040 early_param("numa", early_numa);
1041 
1042 #ifdef CONFIG_MEMORY_HOTPLUG
1043 /*
1044  * Validate the node associated with the memory section we are
1045  * trying to add.
1046  */
1047 int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
1048 		      unsigned long scn_addr)
1049 {
1050 	nodemask_t nodes;
1051 
1052 	if (*nid < 0 || !node_online(*nid))
1053 		*nid = any_online_node(NODE_MASK_ALL);
1054 
1055 	if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
1056 		nodes_setall(nodes);
1057 		while (NODE_DATA(*nid)->node_spanned_pages == 0) {
1058 			node_clear(*nid, nodes);
1059 			*nid = any_online_node(nodes);
1060 		}
1061 
1062 		return 1;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 /*
1069  * Find the node associated with a hot added memory section represented
1070  * by the ibm,dynamic-reconfiguration-memory node.
1071  */
1072 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1073 				     unsigned long scn_addr)
1074 {
1075 	const u32 *dm;
1076 	unsigned int n, rc;
1077 	unsigned long lmb_size;
1078 	int default_nid = any_online_node(NODE_MASK_ALL);
1079 	int nid;
1080 	struct assoc_arrays aa;
1081 
1082 	n = of_get_drconf_memory(memory, &dm);
1083 	if (!n)
1084 		return default_nid;;
1085 
1086 	lmb_size = of_get_lmb_size(memory);
1087 	if (!lmb_size)
1088 		return default_nid;
1089 
1090 	rc = of_get_assoc_arrays(memory, &aa);
1091 	if (rc)
1092 		return default_nid;
1093 
1094 	for (; n != 0; --n) {
1095 		struct of_drconf_cell drmem;
1096 
1097 		read_drconf_cell(&drmem, &dm);
1098 
1099 		/* skip this block if it is reserved or not assigned to
1100 		 * this partition */
1101 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1102 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1103 			continue;
1104 
1105 		nid = of_drconf_to_nid_single(&drmem, &aa);
1106 
1107 		if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
1108 				      scn_addr))
1109 			return nid;
1110 	}
1111 
1112 	BUG();	/* section address should be found above */
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Find the node associated with a hot added memory section.  Section
1118  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
1119  * sections are fully contained within a single LMB.
1120  */
1121 int hot_add_scn_to_nid(unsigned long scn_addr)
1122 {
1123 	struct device_node *memory = NULL;
1124 	int nid;
1125 
1126 	if (!numa_enabled || (min_common_depth < 0))
1127 		return any_online_node(NODE_MASK_ALL);
1128 
1129 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1130 	if (memory) {
1131 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1132 		of_node_put(memory);
1133 		return nid;
1134 	}
1135 
1136 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1137 		unsigned long start, size;
1138 		int ranges;
1139 		const unsigned int *memcell_buf;
1140 		unsigned int len;
1141 
1142 		memcell_buf = of_get_property(memory, "reg", &len);
1143 		if (!memcell_buf || len <= 0)
1144 			continue;
1145 
1146 		/* ranges in cell */
1147 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1148 ha_new_range:
1149 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1150 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
1151 		nid = of_node_to_nid_single(memory);
1152 
1153 		if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
1154 			of_node_put(memory);
1155 			return nid;
1156 		}
1157 
1158 		if (--ranges)		/* process all ranges in cell */
1159 			goto ha_new_range;
1160 	}
1161 	BUG();	/* section address should be found above */
1162 	return 0;
1163 }
1164 #endif /* CONFIG_MEMORY_HOTPLUG */
1165