xref: /linux/arch/powerpc/mm/numa.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #define pr_fmt(fmt) "numa: " fmt
12 
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43 
44 static int numa_enabled = 1;
45 
46 static char *cmdline __initdata;
47 
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50 
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54 
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58 
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62 
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67 
68 /*
69  * Allocate node_to_cpumask_map based on number of available nodes
70  * Requires node_possible_map to be valid.
71  *
72  * Note: cpumask_of_node() is not valid until after this is done.
73  */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 	unsigned int node;
77 
78 	/* setup nr_node_ids if not done yet */
79 	if (nr_node_ids == MAX_NUMNODES)
80 		setup_nr_node_ids();
81 
82 	/* allocate the map */
83 	for_each_node(node)
84 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85 
86 	/* cpumask_of_node() will now work */
87 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89 
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 						unsigned int *nid)
92 {
93 	unsigned long long mem;
94 	char *p = cmdline;
95 	static unsigned int fake_nid;
96 	static unsigned long long curr_boundary;
97 
98 	/*
99 	 * Modify node id, iff we started creating NUMA nodes
100 	 * We want to continue from where we left of the last time
101 	 */
102 	if (fake_nid)
103 		*nid = fake_nid;
104 	/*
105 	 * In case there are no more arguments to parse, the
106 	 * node_id should be the same as the last fake node id
107 	 * (we've handled this above).
108 	 */
109 	if (!p)
110 		return 0;
111 
112 	mem = memparse(p, &p);
113 	if (!mem)
114 		return 0;
115 
116 	if (mem < curr_boundary)
117 		return 0;
118 
119 	curr_boundary = mem;
120 
121 	if ((end_pfn << PAGE_SHIFT) > mem) {
122 		/*
123 		 * Skip commas and spaces
124 		 */
125 		while (*p == ',' || *p == ' ' || *p == '\t')
126 			p++;
127 
128 		cmdline = p;
129 		fake_nid++;
130 		*nid = fake_nid;
131 		dbg("created new fake_node with id %d\n", fake_nid);
132 		return 1;
133 	}
134 	return 0;
135 }
136 
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 	unsigned int cpu;
140 
141 	for_each_possible_cpu(cpu)
142 		numa_cpu_lookup_table[cpu] = -1;
143 }
144 
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 	numa_cpu_lookup_table[cpu] = node;
148 }
149 
150 static void map_cpu_to_node(int cpu, int node)
151 {
152 	update_numa_cpu_lookup_table(cpu, node);
153 
154 	dbg("adding cpu %d to node %d\n", cpu, node);
155 
156 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159 
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 	int node = numa_cpu_lookup_table[cpu];
164 
165 	dbg("removing cpu %lu from node %d\n", cpu, node);
166 
167 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 	} else {
170 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 		       cpu, node);
172 	}
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175 
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 	return of_get_property(dev, "ibm,associativity", NULL);
180 }
181 
182 /*
183  * Returns the property linux,drconf-usable-memory if
184  * it exists (the property exists only in kexec/kdump kernels,
185  * added by kexec-tools)
186  */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 	const __be32 *prop;
190 	u32 len;
191 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 	if (!prop || len < sizeof(unsigned int))
193 		return NULL;
194 	return prop;
195 }
196 
197 int __node_distance(int a, int b)
198 {
199 	int i;
200 	int distance = LOCAL_DISTANCE;
201 
202 	if (!form1_affinity)
203 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204 
205 	for (i = 0; i < distance_ref_points_depth; i++) {
206 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 			break;
208 
209 		/* Double the distance for each NUMA level */
210 		distance *= 2;
211 	}
212 
213 	return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216 
217 static void initialize_distance_lookup_table(int nid,
218 		const __be32 *associativity)
219 {
220 	int i;
221 
222 	if (!form1_affinity)
223 		return;
224 
225 	for (i = 0; i < distance_ref_points_depth; i++) {
226 		const __be32 *entry;
227 
228 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 	}
231 }
232 
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234  * info is found.
235  */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 	int nid = -1;
239 
240 	if (min_common_depth == -1)
241 		goto out;
242 
243 	if (of_read_number(associativity, 1) >= min_common_depth)
244 		nid = of_read_number(&associativity[min_common_depth], 1);
245 
246 	/* POWER4 LPAR uses 0xffff as invalid node */
247 	if (nid == 0xffff || nid >= MAX_NUMNODES)
248 		nid = -1;
249 
250 	if (nid > 0 &&
251 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 		/*
253 		 * Skip the length field and send start of associativity array
254 		 */
255 		initialize_distance_lookup_table(nid, associativity + 1);
256 	}
257 
258 out:
259 	return nid;
260 }
261 
262 /* Returns the nid associated with the given device tree node,
263  * or -1 if not found.
264  */
265 static int of_node_to_nid_single(struct device_node *device)
266 {
267 	int nid = -1;
268 	const __be32 *tmp;
269 
270 	tmp = of_get_associativity(device);
271 	if (tmp)
272 		nid = associativity_to_nid(tmp);
273 	return nid;
274 }
275 
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node *device)
278 {
279 	int nid = -1;
280 
281 	of_node_get(device);
282 	while (device) {
283 		nid = of_node_to_nid_single(device);
284 		if (nid != -1)
285 			break;
286 
287 		device = of_get_next_parent(device);
288 	}
289 	of_node_put(device);
290 
291 	return nid;
292 }
293 EXPORT_SYMBOL_GPL(of_node_to_nid);
294 
295 static int __init find_min_common_depth(void)
296 {
297 	int depth;
298 	struct device_node *root;
299 
300 	if (firmware_has_feature(FW_FEATURE_OPAL))
301 		root = of_find_node_by_path("/ibm,opal");
302 	else
303 		root = of_find_node_by_path("/rtas");
304 	if (!root)
305 		root = of_find_node_by_path("/");
306 
307 	/*
308 	 * This property is a set of 32-bit integers, each representing
309 	 * an index into the ibm,associativity nodes.
310 	 *
311 	 * With form 0 affinity the first integer is for an SMP configuration
312 	 * (should be all 0's) and the second is for a normal NUMA
313 	 * configuration. We have only one level of NUMA.
314 	 *
315 	 * With form 1 affinity the first integer is the most significant
316 	 * NUMA boundary and the following are progressively less significant
317 	 * boundaries. There can be more than one level of NUMA.
318 	 */
319 	distance_ref_points = of_get_property(root,
320 					"ibm,associativity-reference-points",
321 					&distance_ref_points_depth);
322 
323 	if (!distance_ref_points) {
324 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 		goto err;
326 	}
327 
328 	distance_ref_points_depth /= sizeof(int);
329 
330 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 		dbg("Using form 1 affinity\n");
333 		form1_affinity = 1;
334 	}
335 
336 	if (form1_affinity) {
337 		depth = of_read_number(distance_ref_points, 1);
338 	} else {
339 		if (distance_ref_points_depth < 2) {
340 			printk(KERN_WARNING "NUMA: "
341 				"short ibm,associativity-reference-points\n");
342 			goto err;
343 		}
344 
345 		depth = of_read_number(&distance_ref_points[1], 1);
346 	}
347 
348 	/*
349 	 * Warn and cap if the hardware supports more than
350 	 * MAX_DISTANCE_REF_POINTS domains.
351 	 */
352 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 		printk(KERN_WARNING "NUMA: distance array capped at "
354 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
355 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 	}
357 
358 	of_node_put(root);
359 	return depth;
360 
361 err:
362 	of_node_put(root);
363 	return -1;
364 }
365 
366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367 {
368 	struct device_node *memory = NULL;
369 
370 	memory = of_find_node_by_type(memory, "memory");
371 	if (!memory)
372 		panic("numa.c: No memory nodes found!");
373 
374 	*n_addr_cells = of_n_addr_cells(memory);
375 	*n_size_cells = of_n_size_cells(memory);
376 	of_node_put(memory);
377 }
378 
379 static unsigned long read_n_cells(int n, const __be32 **buf)
380 {
381 	unsigned long result = 0;
382 
383 	while (n--) {
384 		result = (result << 32) | of_read_number(*buf, 1);
385 		(*buf)++;
386 	}
387 	return result;
388 }
389 
390 /*
391  * Read the next memblock list entry from the ibm,dynamic-memory property
392  * and return the information in the provided of_drconf_cell structure.
393  */
394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395 {
396 	const __be32 *cp;
397 
398 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399 
400 	cp = *cellp;
401 	drmem->drc_index = of_read_number(cp, 1);
402 	drmem->reserved = of_read_number(&cp[1], 1);
403 	drmem->aa_index = of_read_number(&cp[2], 1);
404 	drmem->flags = of_read_number(&cp[3], 1);
405 
406 	*cellp = cp + 4;
407 }
408 
409 /*
410  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411  *
412  * The layout of the ibm,dynamic-memory property is a number N of memblock
413  * list entries followed by N memblock list entries.  Each memblock list entry
414  * contains information as laid out in the of_drconf_cell struct above.
415  */
416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417 {
418 	const __be32 *prop;
419 	u32 len, entries;
420 
421 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 	if (!prop || len < sizeof(unsigned int))
423 		return 0;
424 
425 	entries = of_read_number(prop++, 1);
426 
427 	/* Now that we know the number of entries, revalidate the size
428 	 * of the property read in to ensure we have everything
429 	 */
430 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 		return 0;
432 
433 	*dm = prop;
434 	return entries;
435 }
436 
437 /*
438  * Retrieve and validate the ibm,lmb-size property for drconf memory
439  * from the device tree.
440  */
441 static u64 of_get_lmb_size(struct device_node *memory)
442 {
443 	const __be32 *prop;
444 	u32 len;
445 
446 	prop = of_get_property(memory, "ibm,lmb-size", &len);
447 	if (!prop || len < sizeof(unsigned int))
448 		return 0;
449 
450 	return read_n_cells(n_mem_size_cells, &prop);
451 }
452 
453 struct assoc_arrays {
454 	u32	n_arrays;
455 	u32	array_sz;
456 	const __be32 *arrays;
457 };
458 
459 /*
460  * Retrieve and validate the list of associativity arrays for drconf
461  * memory from the ibm,associativity-lookup-arrays property of the
462  * device tree..
463  *
464  * The layout of the ibm,associativity-lookup-arrays property is a number N
465  * indicating the number of associativity arrays, followed by a number M
466  * indicating the size of each associativity array, followed by a list
467  * of N associativity arrays.
468  */
469 static int of_get_assoc_arrays(struct device_node *memory,
470 			       struct assoc_arrays *aa)
471 {
472 	const __be32 *prop;
473 	u32 len;
474 
475 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 	if (!prop || len < 2 * sizeof(unsigned int))
477 		return -1;
478 
479 	aa->n_arrays = of_read_number(prop++, 1);
480 	aa->array_sz = of_read_number(prop++, 1);
481 
482 	/* Now that we know the number of arrays and size of each array,
483 	 * revalidate the size of the property read in.
484 	 */
485 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 		return -1;
487 
488 	aa->arrays = prop;
489 	return 0;
490 }
491 
492 /*
493  * This is like of_node_to_nid_single() for memory represented in the
494  * ibm,dynamic-reconfiguration-memory node.
495  */
496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 				   struct assoc_arrays *aa)
498 {
499 	int default_nid = 0;
500 	int nid = default_nid;
501 	int index;
502 
503 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 	    drmem->aa_index < aa->n_arrays) {
506 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 		nid = of_read_number(&aa->arrays[index], 1);
508 
509 		if (nid == 0xffff || nid >= MAX_NUMNODES)
510 			nid = default_nid;
511 
512 		if (nid > 0) {
513 			index = drmem->aa_index * aa->array_sz;
514 			initialize_distance_lookup_table(nid,
515 							&aa->arrays[index]);
516 		}
517 	}
518 
519 	return nid;
520 }
521 
522 /*
523  * Figure out to which domain a cpu belongs and stick it there.
524  * Return the id of the domain used.
525  */
526 static int numa_setup_cpu(unsigned long lcpu)
527 {
528 	int nid = -1;
529 	struct device_node *cpu;
530 
531 	/*
532 	 * If a valid cpu-to-node mapping is already available, use it
533 	 * directly instead of querying the firmware, since it represents
534 	 * the most recent mapping notified to us by the platform (eg: VPHN).
535 	 */
536 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 		map_cpu_to_node(lcpu, nid);
538 		return nid;
539 	}
540 
541 	cpu = of_get_cpu_node(lcpu, NULL);
542 
543 	if (!cpu) {
544 		WARN_ON(1);
545 		if (cpu_present(lcpu))
546 			goto out_present;
547 		else
548 			goto out;
549 	}
550 
551 	nid = of_node_to_nid_single(cpu);
552 
553 out_present:
554 	if (nid < 0 || !node_online(nid))
555 		nid = first_online_node;
556 
557 	map_cpu_to_node(lcpu, nid);
558 	of_node_put(cpu);
559 out:
560 	return nid;
561 }
562 
563 static void verify_cpu_node_mapping(int cpu, int node)
564 {
565 	int base, sibling, i;
566 
567 	/* Verify that all the threads in the core belong to the same node */
568 	base = cpu_first_thread_sibling(cpu);
569 
570 	for (i = 0; i < threads_per_core; i++) {
571 		sibling = base + i;
572 
573 		if (sibling == cpu || cpu_is_offline(sibling))
574 			continue;
575 
576 		if (cpu_to_node(sibling) != node) {
577 			WARN(1, "CPU thread siblings %d and %d don't belong"
578 				" to the same node!\n", cpu, sibling);
579 			break;
580 		}
581 	}
582 }
583 
584 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
585 			     void *hcpu)
586 {
587 	unsigned long lcpu = (unsigned long)hcpu;
588 	int ret = NOTIFY_DONE, nid;
589 
590 	switch (action) {
591 	case CPU_UP_PREPARE:
592 	case CPU_UP_PREPARE_FROZEN:
593 		nid = numa_setup_cpu(lcpu);
594 		verify_cpu_node_mapping((int)lcpu, nid);
595 		ret = NOTIFY_OK;
596 		break;
597 #ifdef CONFIG_HOTPLUG_CPU
598 	case CPU_DEAD:
599 	case CPU_DEAD_FROZEN:
600 	case CPU_UP_CANCELED:
601 	case CPU_UP_CANCELED_FROZEN:
602 		unmap_cpu_from_node(lcpu);
603 		ret = NOTIFY_OK;
604 		break;
605 #endif
606 	}
607 	return ret;
608 }
609 
610 /*
611  * Check and possibly modify a memory region to enforce the memory limit.
612  *
613  * Returns the size the region should have to enforce the memory limit.
614  * This will either be the original value of size, a truncated value,
615  * or zero. If the returned value of size is 0 the region should be
616  * discarded as it lies wholly above the memory limit.
617  */
618 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
619 						      unsigned long size)
620 {
621 	/*
622 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
623 	 * we've already adjusted it for the limit and it takes care of
624 	 * having memory holes below the limit.  Also, in the case of
625 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
626 	 */
627 
628 	if (start + size <= memblock_end_of_DRAM())
629 		return size;
630 
631 	if (start >= memblock_end_of_DRAM())
632 		return 0;
633 
634 	return memblock_end_of_DRAM() - start;
635 }
636 
637 /*
638  * Reads the counter for a given entry in
639  * linux,drconf-usable-memory property
640  */
641 static inline int __init read_usm_ranges(const __be32 **usm)
642 {
643 	/*
644 	 * For each lmb in ibm,dynamic-memory a corresponding
645 	 * entry in linux,drconf-usable-memory property contains
646 	 * a counter followed by that many (base, size) duple.
647 	 * read the counter from linux,drconf-usable-memory
648 	 */
649 	return read_n_cells(n_mem_size_cells, usm);
650 }
651 
652 /*
653  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
654  * node.  This assumes n_mem_{addr,size}_cells have been set.
655  */
656 static void __init parse_drconf_memory(struct device_node *memory)
657 {
658 	const __be32 *uninitialized_var(dm), *usm;
659 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
660 	unsigned long lmb_size, base, size, sz;
661 	int nid;
662 	struct assoc_arrays aa = { .arrays = NULL };
663 
664 	n = of_get_drconf_memory(memory, &dm);
665 	if (!n)
666 		return;
667 
668 	lmb_size = of_get_lmb_size(memory);
669 	if (!lmb_size)
670 		return;
671 
672 	rc = of_get_assoc_arrays(memory, &aa);
673 	if (rc)
674 		return;
675 
676 	/* check if this is a kexec/kdump kernel */
677 	usm = of_get_usable_memory(memory);
678 	if (usm != NULL)
679 		is_kexec_kdump = 1;
680 
681 	for (; n != 0; --n) {
682 		struct of_drconf_cell drmem;
683 
684 		read_drconf_cell(&drmem, &dm);
685 
686 		/* skip this block if the reserved bit is set in flags (0x80)
687 		   or if the block is not assigned to this partition (0x8) */
688 		if ((drmem.flags & DRCONF_MEM_RESERVED)
689 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
690 			continue;
691 
692 		base = drmem.base_addr;
693 		size = lmb_size;
694 		ranges = 1;
695 
696 		if (is_kexec_kdump) {
697 			ranges = read_usm_ranges(&usm);
698 			if (!ranges) /* there are no (base, size) duple */
699 				continue;
700 		}
701 		do {
702 			if (is_kexec_kdump) {
703 				base = read_n_cells(n_mem_addr_cells, &usm);
704 				size = read_n_cells(n_mem_size_cells, &usm);
705 			}
706 			nid = of_drconf_to_nid_single(&drmem, &aa);
707 			fake_numa_create_new_node(
708 				((base + size) >> PAGE_SHIFT),
709 					   &nid);
710 			node_set_online(nid);
711 			sz = numa_enforce_memory_limit(base, size);
712 			if (sz)
713 				memblock_set_node(base, sz,
714 						  &memblock.memory, nid);
715 		} while (--ranges);
716 	}
717 }
718 
719 static int __init parse_numa_properties(void)
720 {
721 	struct device_node *memory;
722 	int default_nid = 0;
723 	unsigned long i;
724 
725 	if (numa_enabled == 0) {
726 		printk(KERN_WARNING "NUMA disabled by user\n");
727 		return -1;
728 	}
729 
730 	min_common_depth = find_min_common_depth();
731 
732 	if (min_common_depth < 0)
733 		return min_common_depth;
734 
735 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
736 
737 	/*
738 	 * Even though we connect cpus to numa domains later in SMP
739 	 * init, we need to know the node ids now. This is because
740 	 * each node to be onlined must have NODE_DATA etc backing it.
741 	 */
742 	for_each_present_cpu(i) {
743 		struct device_node *cpu;
744 		int nid;
745 
746 		cpu = of_get_cpu_node(i, NULL);
747 		BUG_ON(!cpu);
748 		nid = of_node_to_nid_single(cpu);
749 		of_node_put(cpu);
750 
751 		/*
752 		 * Don't fall back to default_nid yet -- we will plug
753 		 * cpus into nodes once the memory scan has discovered
754 		 * the topology.
755 		 */
756 		if (nid < 0)
757 			continue;
758 		node_set_online(nid);
759 	}
760 
761 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
762 
763 	for_each_node_by_type(memory, "memory") {
764 		unsigned long start;
765 		unsigned long size;
766 		int nid;
767 		int ranges;
768 		const __be32 *memcell_buf;
769 		unsigned int len;
770 
771 		memcell_buf = of_get_property(memory,
772 			"linux,usable-memory", &len);
773 		if (!memcell_buf || len <= 0)
774 			memcell_buf = of_get_property(memory, "reg", &len);
775 		if (!memcell_buf || len <= 0)
776 			continue;
777 
778 		/* ranges in cell */
779 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
780 new_range:
781 		/* these are order-sensitive, and modify the buffer pointer */
782 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
783 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
784 
785 		/*
786 		 * Assumption: either all memory nodes or none will
787 		 * have associativity properties.  If none, then
788 		 * everything goes to default_nid.
789 		 */
790 		nid = of_node_to_nid_single(memory);
791 		if (nid < 0)
792 			nid = default_nid;
793 
794 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
795 		node_set_online(nid);
796 
797 		if (!(size = numa_enforce_memory_limit(start, size))) {
798 			if (--ranges)
799 				goto new_range;
800 			else
801 				continue;
802 		}
803 
804 		memblock_set_node(start, size, &memblock.memory, nid);
805 
806 		if (--ranges)
807 			goto new_range;
808 	}
809 
810 	/*
811 	 * Now do the same thing for each MEMBLOCK listed in the
812 	 * ibm,dynamic-memory property in the
813 	 * ibm,dynamic-reconfiguration-memory node.
814 	 */
815 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
816 	if (memory)
817 		parse_drconf_memory(memory);
818 
819 	return 0;
820 }
821 
822 static void __init setup_nonnuma(void)
823 {
824 	unsigned long top_of_ram = memblock_end_of_DRAM();
825 	unsigned long total_ram = memblock_phys_mem_size();
826 	unsigned long start_pfn, end_pfn;
827 	unsigned int nid = 0;
828 	struct memblock_region *reg;
829 
830 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
831 	       top_of_ram, total_ram);
832 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
833 	       (top_of_ram - total_ram) >> 20);
834 
835 	for_each_memblock(memory, reg) {
836 		start_pfn = memblock_region_memory_base_pfn(reg);
837 		end_pfn = memblock_region_memory_end_pfn(reg);
838 
839 		fake_numa_create_new_node(end_pfn, &nid);
840 		memblock_set_node(PFN_PHYS(start_pfn),
841 				  PFN_PHYS(end_pfn - start_pfn),
842 				  &memblock.memory, nid);
843 		node_set_online(nid);
844 	}
845 }
846 
847 void __init dump_numa_cpu_topology(void)
848 {
849 	unsigned int node;
850 	unsigned int cpu, count;
851 
852 	if (min_common_depth == -1 || !numa_enabled)
853 		return;
854 
855 	for_each_online_node(node) {
856 		printk(KERN_DEBUG "Node %d CPUs:", node);
857 
858 		count = 0;
859 		/*
860 		 * If we used a CPU iterator here we would miss printing
861 		 * the holes in the cpumap.
862 		 */
863 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
864 			if (cpumask_test_cpu(cpu,
865 					node_to_cpumask_map[node])) {
866 				if (count == 0)
867 					printk(" %u", cpu);
868 				++count;
869 			} else {
870 				if (count > 1)
871 					printk("-%u", cpu - 1);
872 				count = 0;
873 			}
874 		}
875 
876 		if (count > 1)
877 			printk("-%u", nr_cpu_ids - 1);
878 		printk("\n");
879 	}
880 }
881 
882 static void __init dump_numa_memory_topology(void)
883 {
884 	unsigned int node;
885 	unsigned int count;
886 
887 	if (min_common_depth == -1 || !numa_enabled)
888 		return;
889 
890 	for_each_online_node(node) {
891 		unsigned long i;
892 
893 		printk(KERN_DEBUG "Node %d Memory:", node);
894 
895 		count = 0;
896 
897 		for (i = 0; i < memblock_end_of_DRAM();
898 		     i += (1 << SECTION_SIZE_BITS)) {
899 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
900 				if (count == 0)
901 					printk(" 0x%lx", i);
902 				++count;
903 			} else {
904 				if (count > 0)
905 					printk("-0x%lx", i);
906 				count = 0;
907 			}
908 		}
909 
910 		if (count > 0)
911 			printk("-0x%lx", i);
912 		printk("\n");
913 	}
914 }
915 
916 static struct notifier_block ppc64_numa_nb = {
917 	.notifier_call = cpu_numa_callback,
918 	.priority = 1 /* Must run before sched domains notifier. */
919 };
920 
921 /* Initialize NODE_DATA for a node on the local memory */
922 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
923 {
924 	u64 spanned_pages = end_pfn - start_pfn;
925 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
926 	u64 nd_pa;
927 	void *nd;
928 	int tnid;
929 
930 	if (spanned_pages)
931 		pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
932 			nid, start_pfn << PAGE_SHIFT,
933 			(end_pfn << PAGE_SHIFT) - 1);
934 	else
935 		pr_info("Initmem setup node %d\n", nid);
936 
937 	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
938 	nd = __va(nd_pa);
939 
940 	/* report and initialize */
941 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
942 		nd_pa, nd_pa + nd_size - 1);
943 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
944 	if (tnid != nid)
945 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
946 
947 	node_data[nid] = nd;
948 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
949 	NODE_DATA(nid)->node_id = nid;
950 	NODE_DATA(nid)->node_start_pfn = start_pfn;
951 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
952 }
953 
954 void __init initmem_init(void)
955 {
956 	int nid, cpu;
957 
958 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
959 	max_pfn = max_low_pfn;
960 
961 	if (parse_numa_properties())
962 		setup_nonnuma();
963 	else
964 		dump_numa_memory_topology();
965 
966 	memblock_dump_all();
967 
968 	/*
969 	 * Reduce the possible NUMA nodes to the online NUMA nodes,
970 	 * since we do not support node hotplug. This ensures that  we
971 	 * lower the maximum NUMA node ID to what is actually present.
972 	 */
973 	nodes_and(node_possible_map, node_possible_map, node_online_map);
974 
975 	for_each_online_node(nid) {
976 		unsigned long start_pfn, end_pfn;
977 
978 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
979 		setup_node_data(nid, start_pfn, end_pfn);
980 		sparse_memory_present_with_active_regions(nid);
981 	}
982 
983 	sparse_init();
984 
985 	setup_node_to_cpumask_map();
986 
987 	reset_numa_cpu_lookup_table();
988 	register_cpu_notifier(&ppc64_numa_nb);
989 	/*
990 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
991 	 * even before we online them, so that we can use cpu_to_{node,mem}
992 	 * early in boot, cf. smp_prepare_cpus().
993 	 */
994 	for_each_present_cpu(cpu) {
995 		numa_setup_cpu((unsigned long)cpu);
996 	}
997 }
998 
999 static int __init early_numa(char *p)
1000 {
1001 	if (!p)
1002 		return 0;
1003 
1004 	if (strstr(p, "off"))
1005 		numa_enabled = 0;
1006 
1007 	if (strstr(p, "debug"))
1008 		numa_debug = 1;
1009 
1010 	p = strstr(p, "fake=");
1011 	if (p)
1012 		cmdline = p + strlen("fake=");
1013 
1014 	return 0;
1015 }
1016 early_param("numa", early_numa);
1017 
1018 static bool topology_updates_enabled = true;
1019 
1020 static int __init early_topology_updates(char *p)
1021 {
1022 	if (!p)
1023 		return 0;
1024 
1025 	if (!strcmp(p, "off")) {
1026 		pr_info("Disabling topology updates\n");
1027 		topology_updates_enabled = false;
1028 	}
1029 
1030 	return 0;
1031 }
1032 early_param("topology_updates", early_topology_updates);
1033 
1034 #ifdef CONFIG_MEMORY_HOTPLUG
1035 /*
1036  * Find the node associated with a hot added memory section for
1037  * memory represented in the device tree by the property
1038  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1039  */
1040 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1041 				     unsigned long scn_addr)
1042 {
1043 	const __be32 *dm;
1044 	unsigned int drconf_cell_cnt, rc;
1045 	unsigned long lmb_size;
1046 	struct assoc_arrays aa;
1047 	int nid = -1;
1048 
1049 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1050 	if (!drconf_cell_cnt)
1051 		return -1;
1052 
1053 	lmb_size = of_get_lmb_size(memory);
1054 	if (!lmb_size)
1055 		return -1;
1056 
1057 	rc = of_get_assoc_arrays(memory, &aa);
1058 	if (rc)
1059 		return -1;
1060 
1061 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1062 		struct of_drconf_cell drmem;
1063 
1064 		read_drconf_cell(&drmem, &dm);
1065 
1066 		/* skip this block if it is reserved or not assigned to
1067 		 * this partition */
1068 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1069 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1070 			continue;
1071 
1072 		if ((scn_addr < drmem.base_addr)
1073 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1074 			continue;
1075 
1076 		nid = of_drconf_to_nid_single(&drmem, &aa);
1077 		break;
1078 	}
1079 
1080 	return nid;
1081 }
1082 
1083 /*
1084  * Find the node associated with a hot added memory section for memory
1085  * represented in the device tree as a node (i.e. memory@XXXX) for
1086  * each memblock.
1087  */
1088 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1089 {
1090 	struct device_node *memory;
1091 	int nid = -1;
1092 
1093 	for_each_node_by_type(memory, "memory") {
1094 		unsigned long start, size;
1095 		int ranges;
1096 		const __be32 *memcell_buf;
1097 		unsigned int len;
1098 
1099 		memcell_buf = of_get_property(memory, "reg", &len);
1100 		if (!memcell_buf || len <= 0)
1101 			continue;
1102 
1103 		/* ranges in cell */
1104 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1105 
1106 		while (ranges--) {
1107 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1108 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1109 
1110 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1111 				continue;
1112 
1113 			nid = of_node_to_nid_single(memory);
1114 			break;
1115 		}
1116 
1117 		if (nid >= 0)
1118 			break;
1119 	}
1120 
1121 	of_node_put(memory);
1122 
1123 	return nid;
1124 }
1125 
1126 /*
1127  * Find the node associated with a hot added memory section.  Section
1128  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1129  * sections are fully contained within a single MEMBLOCK.
1130  */
1131 int hot_add_scn_to_nid(unsigned long scn_addr)
1132 {
1133 	struct device_node *memory = NULL;
1134 	int nid, found = 0;
1135 
1136 	if (!numa_enabled || (min_common_depth < 0))
1137 		return first_online_node;
1138 
1139 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1140 	if (memory) {
1141 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1142 		of_node_put(memory);
1143 	} else {
1144 		nid = hot_add_node_scn_to_nid(scn_addr);
1145 	}
1146 
1147 	if (nid < 0 || !node_online(nid))
1148 		nid = first_online_node;
1149 
1150 	if (NODE_DATA(nid)->node_spanned_pages)
1151 		return nid;
1152 
1153 	for_each_online_node(nid) {
1154 		if (NODE_DATA(nid)->node_spanned_pages) {
1155 			found = 1;
1156 			break;
1157 		}
1158 	}
1159 
1160 	BUG_ON(!found);
1161 	return nid;
1162 }
1163 
1164 static u64 hot_add_drconf_memory_max(void)
1165 {
1166 	struct device_node *memory = NULL;
1167 	struct device_node *dn = NULL;
1168 	unsigned int drconf_cell_cnt = 0;
1169 	u64 lmb_size = 0;
1170 	const __be32 *dm = NULL;
1171 	const __be64 *lrdr = NULL;
1172 	struct of_drconf_cell drmem;
1173 
1174 	dn = of_find_node_by_path("/rtas");
1175 	if (dn) {
1176 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1177 		of_node_put(dn);
1178 		if (lrdr)
1179 			return be64_to_cpup(lrdr);
1180 	}
1181 
1182 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1183 	if (memory) {
1184 		drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1185 		lmb_size = of_get_lmb_size(memory);
1186 
1187 		/* Advance to the last cell, each cell has 6 32 bit integers */
1188 		dm += (drconf_cell_cnt - 1) * 6;
1189 		read_drconf_cell(&drmem, &dm);
1190 		of_node_put(memory);
1191 		return drmem.base_addr + lmb_size;
1192 	}
1193 	return 0;
1194 }
1195 
1196 /*
1197  * memory_hotplug_max - return max address of memory that may be added
1198  *
1199  * This is currently only used on systems that support drconfig memory
1200  * hotplug.
1201  */
1202 u64 memory_hotplug_max(void)
1203 {
1204         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1205 }
1206 #endif /* CONFIG_MEMORY_HOTPLUG */
1207 
1208 /* Virtual Processor Home Node (VPHN) support */
1209 #ifdef CONFIG_PPC_SPLPAR
1210 
1211 #include "vphn.h"
1212 
1213 struct topology_update_data {
1214 	struct topology_update_data *next;
1215 	unsigned int cpu;
1216 	int old_nid;
1217 	int new_nid;
1218 };
1219 
1220 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1221 static cpumask_t cpu_associativity_changes_mask;
1222 static int vphn_enabled;
1223 static int prrn_enabled;
1224 static void reset_topology_timer(void);
1225 
1226 /*
1227  * Store the current values of the associativity change counters in the
1228  * hypervisor.
1229  */
1230 static void setup_cpu_associativity_change_counters(void)
1231 {
1232 	int cpu;
1233 
1234 	/* The VPHN feature supports a maximum of 8 reference points */
1235 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1236 
1237 	for_each_possible_cpu(cpu) {
1238 		int i;
1239 		u8 *counts = vphn_cpu_change_counts[cpu];
1240 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1241 
1242 		for (i = 0; i < distance_ref_points_depth; i++)
1243 			counts[i] = hypervisor_counts[i];
1244 	}
1245 }
1246 
1247 /*
1248  * The hypervisor maintains a set of 8 associativity change counters in
1249  * the VPA of each cpu that correspond to the associativity levels in the
1250  * ibm,associativity-reference-points property. When an associativity
1251  * level changes, the corresponding counter is incremented.
1252  *
1253  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1254  * node associativity levels have changed.
1255  *
1256  * Returns the number of cpus with unhandled associativity changes.
1257  */
1258 static int update_cpu_associativity_changes_mask(void)
1259 {
1260 	int cpu;
1261 	cpumask_t *changes = &cpu_associativity_changes_mask;
1262 
1263 	for_each_possible_cpu(cpu) {
1264 		int i, changed = 0;
1265 		u8 *counts = vphn_cpu_change_counts[cpu];
1266 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1267 
1268 		for (i = 0; i < distance_ref_points_depth; i++) {
1269 			if (hypervisor_counts[i] != counts[i]) {
1270 				counts[i] = hypervisor_counts[i];
1271 				changed = 1;
1272 			}
1273 		}
1274 		if (changed) {
1275 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1276 			cpu = cpu_last_thread_sibling(cpu);
1277 		}
1278 	}
1279 
1280 	return cpumask_weight(changes);
1281 }
1282 
1283 /*
1284  * Retrieve the new associativity information for a virtual processor's
1285  * home node.
1286  */
1287 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1288 {
1289 	long rc;
1290 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1291 	u64 flags = 1;
1292 	int hwcpu = get_hard_smp_processor_id(cpu);
1293 
1294 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1295 	vphn_unpack_associativity(retbuf, associativity);
1296 
1297 	return rc;
1298 }
1299 
1300 static long vphn_get_associativity(unsigned long cpu,
1301 					__be32 *associativity)
1302 {
1303 	long rc;
1304 
1305 	rc = hcall_vphn(cpu, associativity);
1306 
1307 	switch (rc) {
1308 	case H_FUNCTION:
1309 		printk(KERN_INFO
1310 			"VPHN is not supported. Disabling polling...\n");
1311 		stop_topology_update();
1312 		break;
1313 	case H_HARDWARE:
1314 		printk(KERN_ERR
1315 			"hcall_vphn() experienced a hardware fault "
1316 			"preventing VPHN. Disabling polling...\n");
1317 		stop_topology_update();
1318 	}
1319 
1320 	return rc;
1321 }
1322 
1323 /*
1324  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1325  * characteristics change. This function doesn't perform any locking and is
1326  * only safe to call from stop_machine().
1327  */
1328 static int update_cpu_topology(void *data)
1329 {
1330 	struct topology_update_data *update;
1331 	unsigned long cpu;
1332 
1333 	if (!data)
1334 		return -EINVAL;
1335 
1336 	cpu = smp_processor_id();
1337 
1338 	for (update = data; update; update = update->next) {
1339 		int new_nid = update->new_nid;
1340 		if (cpu != update->cpu)
1341 			continue;
1342 
1343 		unmap_cpu_from_node(cpu);
1344 		map_cpu_to_node(cpu, new_nid);
1345 		set_cpu_numa_node(cpu, new_nid);
1346 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1347 		vdso_getcpu_init();
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int update_lookup_table(void *data)
1354 {
1355 	struct topology_update_data *update;
1356 
1357 	if (!data)
1358 		return -EINVAL;
1359 
1360 	/*
1361 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1362 	 * for all threads in the core, including offline CPUs, to ensure that
1363 	 * future hotplug operations respect the cpu-to-node associativity
1364 	 * properly.
1365 	 */
1366 	for (update = data; update; update = update->next) {
1367 		int nid, base, j;
1368 
1369 		nid = update->new_nid;
1370 		base = cpu_first_thread_sibling(update->cpu);
1371 
1372 		for (j = 0; j < threads_per_core; j++) {
1373 			update_numa_cpu_lookup_table(base + j, nid);
1374 		}
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Update the node maps and sysfs entries for each cpu whose home node
1382  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1383  */
1384 int arch_update_cpu_topology(void)
1385 {
1386 	unsigned int cpu, sibling, changed = 0;
1387 	struct topology_update_data *updates, *ud;
1388 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1389 	cpumask_t updated_cpus;
1390 	struct device *dev;
1391 	int weight, new_nid, i = 0;
1392 
1393 	if (!prrn_enabled && !vphn_enabled)
1394 		return 0;
1395 
1396 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1397 	if (!weight)
1398 		return 0;
1399 
1400 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1401 	if (!updates)
1402 		return 0;
1403 
1404 	cpumask_clear(&updated_cpus);
1405 
1406 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1407 		/*
1408 		 * If siblings aren't flagged for changes, updates list
1409 		 * will be too short. Skip on this update and set for next
1410 		 * update.
1411 		 */
1412 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1413 					&cpu_associativity_changes_mask)) {
1414 			pr_info("Sibling bits not set for associativity "
1415 					"change, cpu%d\n", cpu);
1416 			cpumask_or(&cpu_associativity_changes_mask,
1417 					&cpu_associativity_changes_mask,
1418 					cpu_sibling_mask(cpu));
1419 			cpu = cpu_last_thread_sibling(cpu);
1420 			continue;
1421 		}
1422 
1423 		/* Use associativity from first thread for all siblings */
1424 		vphn_get_associativity(cpu, associativity);
1425 		new_nid = associativity_to_nid(associativity);
1426 		if (new_nid < 0 || !node_online(new_nid))
1427 			new_nid = first_online_node;
1428 
1429 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1430 			cpumask_andnot(&cpu_associativity_changes_mask,
1431 					&cpu_associativity_changes_mask,
1432 					cpu_sibling_mask(cpu));
1433 			cpu = cpu_last_thread_sibling(cpu);
1434 			continue;
1435 		}
1436 
1437 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1438 			ud = &updates[i++];
1439 			ud->cpu = sibling;
1440 			ud->new_nid = new_nid;
1441 			ud->old_nid = numa_cpu_lookup_table[sibling];
1442 			cpumask_set_cpu(sibling, &updated_cpus);
1443 			if (i < weight)
1444 				ud->next = &updates[i];
1445 		}
1446 		cpu = cpu_last_thread_sibling(cpu);
1447 	}
1448 
1449 	pr_debug("Topology update for the following CPUs:\n");
1450 	if (cpumask_weight(&updated_cpus)) {
1451 		for (ud = &updates[0]; ud; ud = ud->next) {
1452 			pr_debug("cpu %d moving from node %d "
1453 					  "to %d\n", ud->cpu,
1454 					  ud->old_nid, ud->new_nid);
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * In cases where we have nothing to update (because the updates list
1460 	 * is too short or because the new topology is same as the old one),
1461 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1462 	 * necessary (and not just a fast-path optimization) since stop-machine
1463 	 * can end up electing a random CPU to run update_cpu_topology(), and
1464 	 * thus trick us into setting up incorrect cpu-node mappings (since
1465 	 * 'updates' is kzalloc()'ed).
1466 	 *
1467 	 * And for the similar reason, we will skip all the following updating.
1468 	 */
1469 	if (!cpumask_weight(&updated_cpus))
1470 		goto out;
1471 
1472 	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1473 
1474 	/*
1475 	 * Update the numa-cpu lookup table with the new mappings, even for
1476 	 * offline CPUs. It is best to perform this update from the stop-
1477 	 * machine context.
1478 	 */
1479 	stop_machine(update_lookup_table, &updates[0],
1480 					cpumask_of(raw_smp_processor_id()));
1481 
1482 	for (ud = &updates[0]; ud; ud = ud->next) {
1483 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1484 		register_cpu_under_node(ud->cpu, ud->new_nid);
1485 
1486 		dev = get_cpu_device(ud->cpu);
1487 		if (dev)
1488 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1489 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1490 		changed = 1;
1491 	}
1492 
1493 out:
1494 	kfree(updates);
1495 	return changed;
1496 }
1497 
1498 static void topology_work_fn(struct work_struct *work)
1499 {
1500 	rebuild_sched_domains();
1501 }
1502 static DECLARE_WORK(topology_work, topology_work_fn);
1503 
1504 static void topology_schedule_update(void)
1505 {
1506 	schedule_work(&topology_work);
1507 }
1508 
1509 static void topology_timer_fn(unsigned long ignored)
1510 {
1511 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1512 		topology_schedule_update();
1513 	else if (vphn_enabled) {
1514 		if (update_cpu_associativity_changes_mask() > 0)
1515 			topology_schedule_update();
1516 		reset_topology_timer();
1517 	}
1518 }
1519 static struct timer_list topology_timer =
1520 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1521 
1522 static void reset_topology_timer(void)
1523 {
1524 	topology_timer.data = 0;
1525 	topology_timer.expires = jiffies + 60 * HZ;
1526 	mod_timer(&topology_timer, topology_timer.expires);
1527 }
1528 
1529 #ifdef CONFIG_SMP
1530 
1531 static void stage_topology_update(int core_id)
1532 {
1533 	cpumask_or(&cpu_associativity_changes_mask,
1534 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1535 	reset_topology_timer();
1536 }
1537 
1538 static int dt_update_callback(struct notifier_block *nb,
1539 				unsigned long action, void *data)
1540 {
1541 	struct of_reconfig_data *update = data;
1542 	int rc = NOTIFY_DONE;
1543 
1544 	switch (action) {
1545 	case OF_RECONFIG_UPDATE_PROPERTY:
1546 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1547 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1548 			u32 core_id;
1549 			of_property_read_u32(update->dn, "reg", &core_id);
1550 			stage_topology_update(core_id);
1551 			rc = NOTIFY_OK;
1552 		}
1553 		break;
1554 	}
1555 
1556 	return rc;
1557 }
1558 
1559 static struct notifier_block dt_update_nb = {
1560 	.notifier_call = dt_update_callback,
1561 };
1562 
1563 #endif
1564 
1565 /*
1566  * Start polling for associativity changes.
1567  */
1568 int start_topology_update(void)
1569 {
1570 	int rc = 0;
1571 
1572 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1573 		if (!prrn_enabled) {
1574 			prrn_enabled = 1;
1575 			vphn_enabled = 0;
1576 #ifdef CONFIG_SMP
1577 			rc = of_reconfig_notifier_register(&dt_update_nb);
1578 #endif
1579 		}
1580 	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1581 		   lppaca_shared_proc(get_lppaca())) {
1582 		if (!vphn_enabled) {
1583 			prrn_enabled = 0;
1584 			vphn_enabled = 1;
1585 			setup_cpu_associativity_change_counters();
1586 			init_timer_deferrable(&topology_timer);
1587 			reset_topology_timer();
1588 		}
1589 	}
1590 
1591 	return rc;
1592 }
1593 
1594 /*
1595  * Disable polling for VPHN associativity changes.
1596  */
1597 int stop_topology_update(void)
1598 {
1599 	int rc = 0;
1600 
1601 	if (prrn_enabled) {
1602 		prrn_enabled = 0;
1603 #ifdef CONFIG_SMP
1604 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1605 #endif
1606 	} else if (vphn_enabled) {
1607 		vphn_enabled = 0;
1608 		rc = del_timer_sync(&topology_timer);
1609 	}
1610 
1611 	return rc;
1612 }
1613 
1614 int prrn_is_enabled(void)
1615 {
1616 	return prrn_enabled;
1617 }
1618 
1619 static int topology_read(struct seq_file *file, void *v)
1620 {
1621 	if (vphn_enabled || prrn_enabled)
1622 		seq_puts(file, "on\n");
1623 	else
1624 		seq_puts(file, "off\n");
1625 
1626 	return 0;
1627 }
1628 
1629 static int topology_open(struct inode *inode, struct file *file)
1630 {
1631 	return single_open(file, topology_read, NULL);
1632 }
1633 
1634 static ssize_t topology_write(struct file *file, const char __user *buf,
1635 			      size_t count, loff_t *off)
1636 {
1637 	char kbuf[4]; /* "on" or "off" plus null. */
1638 	int read_len;
1639 
1640 	read_len = count < 3 ? count : 3;
1641 	if (copy_from_user(kbuf, buf, read_len))
1642 		return -EINVAL;
1643 
1644 	kbuf[read_len] = '\0';
1645 
1646 	if (!strncmp(kbuf, "on", 2))
1647 		start_topology_update();
1648 	else if (!strncmp(kbuf, "off", 3))
1649 		stop_topology_update();
1650 	else
1651 		return -EINVAL;
1652 
1653 	return count;
1654 }
1655 
1656 static const struct file_operations topology_ops = {
1657 	.read = seq_read,
1658 	.write = topology_write,
1659 	.open = topology_open,
1660 	.release = single_release
1661 };
1662 
1663 static int topology_update_init(void)
1664 {
1665 	/* Do not poll for changes if disabled at boot */
1666 	if (topology_updates_enabled)
1667 		start_topology_update();
1668 
1669 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1670 		return -ENOMEM;
1671 
1672 	return 0;
1673 }
1674 device_initcall(topology_update_init);
1675 #endif /* CONFIG_PPC_SPLPAR */
1676