1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #define pr_fmt(fmt) "numa: " fmt 12 13 #include <linux/threads.h> 14 #include <linux/bootmem.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/mmzone.h> 18 #include <linux/export.h> 19 #include <linux/nodemask.h> 20 #include <linux/cpu.h> 21 #include <linux/notifier.h> 22 #include <linux/memblock.h> 23 #include <linux/of.h> 24 #include <linux/pfn.h> 25 #include <linux/cpuset.h> 26 #include <linux/node.h> 27 #include <linux/stop_machine.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/uaccess.h> 31 #include <linux/slab.h> 32 #include <asm/cputhreads.h> 33 #include <asm/sparsemem.h> 34 #include <asm/prom.h> 35 #include <asm/smp.h> 36 #include <asm/cputhreads.h> 37 #include <asm/topology.h> 38 #include <asm/firmware.h> 39 #include <asm/paca.h> 40 #include <asm/hvcall.h> 41 #include <asm/setup.h> 42 #include <asm/vdso.h> 43 44 static int numa_enabled = 1; 45 46 static char *cmdline __initdata; 47 48 static int numa_debug; 49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 50 51 int numa_cpu_lookup_table[NR_CPUS]; 52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 53 struct pglist_data *node_data[MAX_NUMNODES]; 54 55 EXPORT_SYMBOL(numa_cpu_lookup_table); 56 EXPORT_SYMBOL(node_to_cpumask_map); 57 EXPORT_SYMBOL(node_data); 58 59 static int min_common_depth; 60 static int n_mem_addr_cells, n_mem_size_cells; 61 static int form1_affinity; 62 63 #define MAX_DISTANCE_REF_POINTS 4 64 static int distance_ref_points_depth; 65 static const __be32 *distance_ref_points; 66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 67 68 /* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74 static void __init setup_node_to_cpumask_map(void) 75 { 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for_each_node(node) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 88 } 89 90 static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92 { 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 dbg("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135 } 136 137 static void reset_numa_cpu_lookup_table(void) 138 { 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143 } 144 145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node) 146 { 147 numa_cpu_lookup_table[cpu] = node; 148 } 149 150 static void map_cpu_to_node(int cpu, int node) 151 { 152 update_numa_cpu_lookup_table(cpu, node); 153 154 dbg("adding cpu %d to node %d\n", cpu, node); 155 156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 158 } 159 160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 161 static void unmap_cpu_from_node(unsigned long cpu) 162 { 163 int node = numa_cpu_lookup_table[cpu]; 164 165 dbg("removing cpu %lu from node %d\n", cpu, node); 166 167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 169 } else { 170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 171 cpu, node); 172 } 173 } 174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 175 176 /* must hold reference to node during call */ 177 static const __be32 *of_get_associativity(struct device_node *dev) 178 { 179 return of_get_property(dev, "ibm,associativity", NULL); 180 } 181 182 /* 183 * Returns the property linux,drconf-usable-memory if 184 * it exists (the property exists only in kexec/kdump kernels, 185 * added by kexec-tools) 186 */ 187 static const __be32 *of_get_usable_memory(struct device_node *memory) 188 { 189 const __be32 *prop; 190 u32 len; 191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 192 if (!prop || len < sizeof(unsigned int)) 193 return NULL; 194 return prop; 195 } 196 197 int __node_distance(int a, int b) 198 { 199 int i; 200 int distance = LOCAL_DISTANCE; 201 202 if (!form1_affinity) 203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 204 205 for (i = 0; i < distance_ref_points_depth; i++) { 206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 207 break; 208 209 /* Double the distance for each NUMA level */ 210 distance *= 2; 211 } 212 213 return distance; 214 } 215 EXPORT_SYMBOL(__node_distance); 216 217 static void initialize_distance_lookup_table(int nid, 218 const __be32 *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 const __be32 *entry; 227 228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 229 distance_lookup_table[nid][i] = of_read_number(entry, 1); 230 } 231 } 232 233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 234 * info is found. 235 */ 236 static int associativity_to_nid(const __be32 *associativity) 237 { 238 int nid = -1; 239 240 if (min_common_depth == -1) 241 goto out; 242 243 if (of_read_number(associativity, 1) >= min_common_depth) 244 nid = of_read_number(&associativity[min_common_depth], 1); 245 246 /* POWER4 LPAR uses 0xffff as invalid node */ 247 if (nid == 0xffff || nid >= MAX_NUMNODES) 248 nid = -1; 249 250 if (nid > 0 && 251 of_read_number(associativity, 1) >= distance_ref_points_depth) { 252 /* 253 * Skip the length field and send start of associativity array 254 */ 255 initialize_distance_lookup_table(nid, associativity + 1); 256 } 257 258 out: 259 return nid; 260 } 261 262 /* Returns the nid associated with the given device tree node, 263 * or -1 if not found. 264 */ 265 static int of_node_to_nid_single(struct device_node *device) 266 { 267 int nid = -1; 268 const __be32 *tmp; 269 270 tmp = of_get_associativity(device); 271 if (tmp) 272 nid = associativity_to_nid(tmp); 273 return nid; 274 } 275 276 /* Walk the device tree upwards, looking for an associativity id */ 277 int of_node_to_nid(struct device_node *device) 278 { 279 int nid = -1; 280 281 of_node_get(device); 282 while (device) { 283 nid = of_node_to_nid_single(device); 284 if (nid != -1) 285 break; 286 287 device = of_get_next_parent(device); 288 } 289 of_node_put(device); 290 291 return nid; 292 } 293 EXPORT_SYMBOL_GPL(of_node_to_nid); 294 295 static int __init find_min_common_depth(void) 296 { 297 int depth; 298 struct device_node *root; 299 300 if (firmware_has_feature(FW_FEATURE_OPAL)) 301 root = of_find_node_by_path("/ibm,opal"); 302 else 303 root = of_find_node_by_path("/rtas"); 304 if (!root) 305 root = of_find_node_by_path("/"); 306 307 /* 308 * This property is a set of 32-bit integers, each representing 309 * an index into the ibm,associativity nodes. 310 * 311 * With form 0 affinity the first integer is for an SMP configuration 312 * (should be all 0's) and the second is for a normal NUMA 313 * configuration. We have only one level of NUMA. 314 * 315 * With form 1 affinity the first integer is the most significant 316 * NUMA boundary and the following are progressively less significant 317 * boundaries. There can be more than one level of NUMA. 318 */ 319 distance_ref_points = of_get_property(root, 320 "ibm,associativity-reference-points", 321 &distance_ref_points_depth); 322 323 if (!distance_ref_points) { 324 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 325 goto err; 326 } 327 328 distance_ref_points_depth /= sizeof(int); 329 330 if (firmware_has_feature(FW_FEATURE_OPAL) || 331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 332 dbg("Using form 1 affinity\n"); 333 form1_affinity = 1; 334 } 335 336 if (form1_affinity) { 337 depth = of_read_number(distance_ref_points, 1); 338 } else { 339 if (distance_ref_points_depth < 2) { 340 printk(KERN_WARNING "NUMA: " 341 "short ibm,associativity-reference-points\n"); 342 goto err; 343 } 344 345 depth = of_read_number(&distance_ref_points[1], 1); 346 } 347 348 /* 349 * Warn and cap if the hardware supports more than 350 * MAX_DISTANCE_REF_POINTS domains. 351 */ 352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 353 printk(KERN_WARNING "NUMA: distance array capped at " 354 "%d entries\n", MAX_DISTANCE_REF_POINTS); 355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 356 } 357 358 of_node_put(root); 359 return depth; 360 361 err: 362 of_node_put(root); 363 return -1; 364 } 365 366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 367 { 368 struct device_node *memory = NULL; 369 370 memory = of_find_node_by_type(memory, "memory"); 371 if (!memory) 372 panic("numa.c: No memory nodes found!"); 373 374 *n_addr_cells = of_n_addr_cells(memory); 375 *n_size_cells = of_n_size_cells(memory); 376 of_node_put(memory); 377 } 378 379 static unsigned long read_n_cells(int n, const __be32 **buf) 380 { 381 unsigned long result = 0; 382 383 while (n--) { 384 result = (result << 32) | of_read_number(*buf, 1); 385 (*buf)++; 386 } 387 return result; 388 } 389 390 /* 391 * Read the next memblock list entry from the ibm,dynamic-memory property 392 * and return the information in the provided of_drconf_cell structure. 393 */ 394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) 395 { 396 const __be32 *cp; 397 398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 399 400 cp = *cellp; 401 drmem->drc_index = of_read_number(cp, 1); 402 drmem->reserved = of_read_number(&cp[1], 1); 403 drmem->aa_index = of_read_number(&cp[2], 1); 404 drmem->flags = of_read_number(&cp[3], 1); 405 406 *cellp = cp + 4; 407 } 408 409 /* 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 411 * 412 * The layout of the ibm,dynamic-memory property is a number N of memblock 413 * list entries followed by N memblock list entries. Each memblock list entry 414 * contains information as laid out in the of_drconf_cell struct above. 415 */ 416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) 417 { 418 const __be32 *prop; 419 u32 len, entries; 420 421 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 422 if (!prop || len < sizeof(unsigned int)) 423 return 0; 424 425 entries = of_read_number(prop++, 1); 426 427 /* Now that we know the number of entries, revalidate the size 428 * of the property read in to ensure we have everything 429 */ 430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 431 return 0; 432 433 *dm = prop; 434 return entries; 435 } 436 437 /* 438 * Retrieve and validate the ibm,lmb-size property for drconf memory 439 * from the device tree. 440 */ 441 static u64 of_get_lmb_size(struct device_node *memory) 442 { 443 const __be32 *prop; 444 u32 len; 445 446 prop = of_get_property(memory, "ibm,lmb-size", &len); 447 if (!prop || len < sizeof(unsigned int)) 448 return 0; 449 450 return read_n_cells(n_mem_size_cells, &prop); 451 } 452 453 struct assoc_arrays { 454 u32 n_arrays; 455 u32 array_sz; 456 const __be32 *arrays; 457 }; 458 459 /* 460 * Retrieve and validate the list of associativity arrays for drconf 461 * memory from the ibm,associativity-lookup-arrays property of the 462 * device tree.. 463 * 464 * The layout of the ibm,associativity-lookup-arrays property is a number N 465 * indicating the number of associativity arrays, followed by a number M 466 * indicating the size of each associativity array, followed by a list 467 * of N associativity arrays. 468 */ 469 static int of_get_assoc_arrays(struct device_node *memory, 470 struct assoc_arrays *aa) 471 { 472 const __be32 *prop; 473 u32 len; 474 475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 476 if (!prop || len < 2 * sizeof(unsigned int)) 477 return -1; 478 479 aa->n_arrays = of_read_number(prop++, 1); 480 aa->array_sz = of_read_number(prop++, 1); 481 482 /* Now that we know the number of arrays and size of each array, 483 * revalidate the size of the property read in. 484 */ 485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 486 return -1; 487 488 aa->arrays = prop; 489 return 0; 490 } 491 492 /* 493 * This is like of_node_to_nid_single() for memory represented in the 494 * ibm,dynamic-reconfiguration-memory node. 495 */ 496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 497 struct assoc_arrays *aa) 498 { 499 int default_nid = 0; 500 int nid = default_nid; 501 int index; 502 503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 504 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 505 drmem->aa_index < aa->n_arrays) { 506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 507 nid = of_read_number(&aa->arrays[index], 1); 508 509 if (nid == 0xffff || nid >= MAX_NUMNODES) 510 nid = default_nid; 511 512 if (nid > 0) { 513 index = drmem->aa_index * aa->array_sz; 514 initialize_distance_lookup_table(nid, 515 &aa->arrays[index]); 516 } 517 } 518 519 return nid; 520 } 521 522 /* 523 * Figure out to which domain a cpu belongs and stick it there. 524 * Return the id of the domain used. 525 */ 526 static int numa_setup_cpu(unsigned long lcpu) 527 { 528 int nid = -1; 529 struct device_node *cpu; 530 531 /* 532 * If a valid cpu-to-node mapping is already available, use it 533 * directly instead of querying the firmware, since it represents 534 * the most recent mapping notified to us by the platform (eg: VPHN). 535 */ 536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 537 map_cpu_to_node(lcpu, nid); 538 return nid; 539 } 540 541 cpu = of_get_cpu_node(lcpu, NULL); 542 543 if (!cpu) { 544 WARN_ON(1); 545 if (cpu_present(lcpu)) 546 goto out_present; 547 else 548 goto out; 549 } 550 551 nid = of_node_to_nid_single(cpu); 552 553 out_present: 554 if (nid < 0 || !node_online(nid)) 555 nid = first_online_node; 556 557 map_cpu_to_node(lcpu, nid); 558 of_node_put(cpu); 559 out: 560 return nid; 561 } 562 563 static void verify_cpu_node_mapping(int cpu, int node) 564 { 565 int base, sibling, i; 566 567 /* Verify that all the threads in the core belong to the same node */ 568 base = cpu_first_thread_sibling(cpu); 569 570 for (i = 0; i < threads_per_core; i++) { 571 sibling = base + i; 572 573 if (sibling == cpu || cpu_is_offline(sibling)) 574 continue; 575 576 if (cpu_to_node(sibling) != node) { 577 WARN(1, "CPU thread siblings %d and %d don't belong" 578 " to the same node!\n", cpu, sibling); 579 break; 580 } 581 } 582 } 583 584 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 585 void *hcpu) 586 { 587 unsigned long lcpu = (unsigned long)hcpu; 588 int ret = NOTIFY_DONE, nid; 589 590 switch (action) { 591 case CPU_UP_PREPARE: 592 case CPU_UP_PREPARE_FROZEN: 593 nid = numa_setup_cpu(lcpu); 594 verify_cpu_node_mapping((int)lcpu, nid); 595 ret = NOTIFY_OK; 596 break; 597 #ifdef CONFIG_HOTPLUG_CPU 598 case CPU_DEAD: 599 case CPU_DEAD_FROZEN: 600 case CPU_UP_CANCELED: 601 case CPU_UP_CANCELED_FROZEN: 602 unmap_cpu_from_node(lcpu); 603 ret = NOTIFY_OK; 604 break; 605 #endif 606 } 607 return ret; 608 } 609 610 /* 611 * Check and possibly modify a memory region to enforce the memory limit. 612 * 613 * Returns the size the region should have to enforce the memory limit. 614 * This will either be the original value of size, a truncated value, 615 * or zero. If the returned value of size is 0 the region should be 616 * discarded as it lies wholly above the memory limit. 617 */ 618 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 619 unsigned long size) 620 { 621 /* 622 * We use memblock_end_of_DRAM() in here instead of memory_limit because 623 * we've already adjusted it for the limit and it takes care of 624 * having memory holes below the limit. Also, in the case of 625 * iommu_is_off, memory_limit is not set but is implicitly enforced. 626 */ 627 628 if (start + size <= memblock_end_of_DRAM()) 629 return size; 630 631 if (start >= memblock_end_of_DRAM()) 632 return 0; 633 634 return memblock_end_of_DRAM() - start; 635 } 636 637 /* 638 * Reads the counter for a given entry in 639 * linux,drconf-usable-memory property 640 */ 641 static inline int __init read_usm_ranges(const __be32 **usm) 642 { 643 /* 644 * For each lmb in ibm,dynamic-memory a corresponding 645 * entry in linux,drconf-usable-memory property contains 646 * a counter followed by that many (base, size) duple. 647 * read the counter from linux,drconf-usable-memory 648 */ 649 return read_n_cells(n_mem_size_cells, usm); 650 } 651 652 /* 653 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 654 * node. This assumes n_mem_{addr,size}_cells have been set. 655 */ 656 static void __init parse_drconf_memory(struct device_node *memory) 657 { 658 const __be32 *uninitialized_var(dm), *usm; 659 unsigned int n, rc, ranges, is_kexec_kdump = 0; 660 unsigned long lmb_size, base, size, sz; 661 int nid; 662 struct assoc_arrays aa = { .arrays = NULL }; 663 664 n = of_get_drconf_memory(memory, &dm); 665 if (!n) 666 return; 667 668 lmb_size = of_get_lmb_size(memory); 669 if (!lmb_size) 670 return; 671 672 rc = of_get_assoc_arrays(memory, &aa); 673 if (rc) 674 return; 675 676 /* check if this is a kexec/kdump kernel */ 677 usm = of_get_usable_memory(memory); 678 if (usm != NULL) 679 is_kexec_kdump = 1; 680 681 for (; n != 0; --n) { 682 struct of_drconf_cell drmem; 683 684 read_drconf_cell(&drmem, &dm); 685 686 /* skip this block if the reserved bit is set in flags (0x80) 687 or if the block is not assigned to this partition (0x8) */ 688 if ((drmem.flags & DRCONF_MEM_RESERVED) 689 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 690 continue; 691 692 base = drmem.base_addr; 693 size = lmb_size; 694 ranges = 1; 695 696 if (is_kexec_kdump) { 697 ranges = read_usm_ranges(&usm); 698 if (!ranges) /* there are no (base, size) duple */ 699 continue; 700 } 701 do { 702 if (is_kexec_kdump) { 703 base = read_n_cells(n_mem_addr_cells, &usm); 704 size = read_n_cells(n_mem_size_cells, &usm); 705 } 706 nid = of_drconf_to_nid_single(&drmem, &aa); 707 fake_numa_create_new_node( 708 ((base + size) >> PAGE_SHIFT), 709 &nid); 710 node_set_online(nid); 711 sz = numa_enforce_memory_limit(base, size); 712 if (sz) 713 memblock_set_node(base, sz, 714 &memblock.memory, nid); 715 } while (--ranges); 716 } 717 } 718 719 static int __init parse_numa_properties(void) 720 { 721 struct device_node *memory; 722 int default_nid = 0; 723 unsigned long i; 724 725 if (numa_enabled == 0) { 726 printk(KERN_WARNING "NUMA disabled by user\n"); 727 return -1; 728 } 729 730 min_common_depth = find_min_common_depth(); 731 732 if (min_common_depth < 0) 733 return min_common_depth; 734 735 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 736 737 /* 738 * Even though we connect cpus to numa domains later in SMP 739 * init, we need to know the node ids now. This is because 740 * each node to be onlined must have NODE_DATA etc backing it. 741 */ 742 for_each_present_cpu(i) { 743 struct device_node *cpu; 744 int nid; 745 746 cpu = of_get_cpu_node(i, NULL); 747 BUG_ON(!cpu); 748 nid = of_node_to_nid_single(cpu); 749 of_node_put(cpu); 750 751 /* 752 * Don't fall back to default_nid yet -- we will plug 753 * cpus into nodes once the memory scan has discovered 754 * the topology. 755 */ 756 if (nid < 0) 757 continue; 758 node_set_online(nid); 759 } 760 761 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 762 763 for_each_node_by_type(memory, "memory") { 764 unsigned long start; 765 unsigned long size; 766 int nid; 767 int ranges; 768 const __be32 *memcell_buf; 769 unsigned int len; 770 771 memcell_buf = of_get_property(memory, 772 "linux,usable-memory", &len); 773 if (!memcell_buf || len <= 0) 774 memcell_buf = of_get_property(memory, "reg", &len); 775 if (!memcell_buf || len <= 0) 776 continue; 777 778 /* ranges in cell */ 779 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 780 new_range: 781 /* these are order-sensitive, and modify the buffer pointer */ 782 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 783 size = read_n_cells(n_mem_size_cells, &memcell_buf); 784 785 /* 786 * Assumption: either all memory nodes or none will 787 * have associativity properties. If none, then 788 * everything goes to default_nid. 789 */ 790 nid = of_node_to_nid_single(memory); 791 if (nid < 0) 792 nid = default_nid; 793 794 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 795 node_set_online(nid); 796 797 if (!(size = numa_enforce_memory_limit(start, size))) { 798 if (--ranges) 799 goto new_range; 800 else 801 continue; 802 } 803 804 memblock_set_node(start, size, &memblock.memory, nid); 805 806 if (--ranges) 807 goto new_range; 808 } 809 810 /* 811 * Now do the same thing for each MEMBLOCK listed in the 812 * ibm,dynamic-memory property in the 813 * ibm,dynamic-reconfiguration-memory node. 814 */ 815 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 816 if (memory) 817 parse_drconf_memory(memory); 818 819 return 0; 820 } 821 822 static void __init setup_nonnuma(void) 823 { 824 unsigned long top_of_ram = memblock_end_of_DRAM(); 825 unsigned long total_ram = memblock_phys_mem_size(); 826 unsigned long start_pfn, end_pfn; 827 unsigned int nid = 0; 828 struct memblock_region *reg; 829 830 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 831 top_of_ram, total_ram); 832 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 833 (top_of_ram - total_ram) >> 20); 834 835 for_each_memblock(memory, reg) { 836 start_pfn = memblock_region_memory_base_pfn(reg); 837 end_pfn = memblock_region_memory_end_pfn(reg); 838 839 fake_numa_create_new_node(end_pfn, &nid); 840 memblock_set_node(PFN_PHYS(start_pfn), 841 PFN_PHYS(end_pfn - start_pfn), 842 &memblock.memory, nid); 843 node_set_online(nid); 844 } 845 } 846 847 void __init dump_numa_cpu_topology(void) 848 { 849 unsigned int node; 850 unsigned int cpu, count; 851 852 if (min_common_depth == -1 || !numa_enabled) 853 return; 854 855 for_each_online_node(node) { 856 printk(KERN_DEBUG "Node %d CPUs:", node); 857 858 count = 0; 859 /* 860 * If we used a CPU iterator here we would miss printing 861 * the holes in the cpumap. 862 */ 863 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 864 if (cpumask_test_cpu(cpu, 865 node_to_cpumask_map[node])) { 866 if (count == 0) 867 printk(" %u", cpu); 868 ++count; 869 } else { 870 if (count > 1) 871 printk("-%u", cpu - 1); 872 count = 0; 873 } 874 } 875 876 if (count > 1) 877 printk("-%u", nr_cpu_ids - 1); 878 printk("\n"); 879 } 880 } 881 882 static void __init dump_numa_memory_topology(void) 883 { 884 unsigned int node; 885 unsigned int count; 886 887 if (min_common_depth == -1 || !numa_enabled) 888 return; 889 890 for_each_online_node(node) { 891 unsigned long i; 892 893 printk(KERN_DEBUG "Node %d Memory:", node); 894 895 count = 0; 896 897 for (i = 0; i < memblock_end_of_DRAM(); 898 i += (1 << SECTION_SIZE_BITS)) { 899 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 900 if (count == 0) 901 printk(" 0x%lx", i); 902 ++count; 903 } else { 904 if (count > 0) 905 printk("-0x%lx", i); 906 count = 0; 907 } 908 } 909 910 if (count > 0) 911 printk("-0x%lx", i); 912 printk("\n"); 913 } 914 } 915 916 static struct notifier_block ppc64_numa_nb = { 917 .notifier_call = cpu_numa_callback, 918 .priority = 1 /* Must run before sched domains notifier. */ 919 }; 920 921 /* Initialize NODE_DATA for a node on the local memory */ 922 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 923 { 924 u64 spanned_pages = end_pfn - start_pfn; 925 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 926 u64 nd_pa; 927 void *nd; 928 int tnid; 929 930 if (spanned_pages) 931 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", 932 nid, start_pfn << PAGE_SHIFT, 933 (end_pfn << PAGE_SHIFT) - 1); 934 else 935 pr_info("Initmem setup node %d\n", nid); 936 937 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 938 nd = __va(nd_pa); 939 940 /* report and initialize */ 941 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 942 nd_pa, nd_pa + nd_size - 1); 943 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 944 if (tnid != nid) 945 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 946 947 node_data[nid] = nd; 948 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 949 NODE_DATA(nid)->node_id = nid; 950 NODE_DATA(nid)->node_start_pfn = start_pfn; 951 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 952 } 953 954 void __init initmem_init(void) 955 { 956 int nid, cpu; 957 958 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 959 max_pfn = max_low_pfn; 960 961 if (parse_numa_properties()) 962 setup_nonnuma(); 963 else 964 dump_numa_memory_topology(); 965 966 memblock_dump_all(); 967 968 /* 969 * Reduce the possible NUMA nodes to the online NUMA nodes, 970 * since we do not support node hotplug. This ensures that we 971 * lower the maximum NUMA node ID to what is actually present. 972 */ 973 nodes_and(node_possible_map, node_possible_map, node_online_map); 974 975 for_each_online_node(nid) { 976 unsigned long start_pfn, end_pfn; 977 978 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 979 setup_node_data(nid, start_pfn, end_pfn); 980 sparse_memory_present_with_active_regions(nid); 981 } 982 983 sparse_init(); 984 985 setup_node_to_cpumask_map(); 986 987 reset_numa_cpu_lookup_table(); 988 register_cpu_notifier(&ppc64_numa_nb); 989 /* 990 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 991 * even before we online them, so that we can use cpu_to_{node,mem} 992 * early in boot, cf. smp_prepare_cpus(). 993 */ 994 for_each_present_cpu(cpu) { 995 numa_setup_cpu((unsigned long)cpu); 996 } 997 } 998 999 static int __init early_numa(char *p) 1000 { 1001 if (!p) 1002 return 0; 1003 1004 if (strstr(p, "off")) 1005 numa_enabled = 0; 1006 1007 if (strstr(p, "debug")) 1008 numa_debug = 1; 1009 1010 p = strstr(p, "fake="); 1011 if (p) 1012 cmdline = p + strlen("fake="); 1013 1014 return 0; 1015 } 1016 early_param("numa", early_numa); 1017 1018 static bool topology_updates_enabled = true; 1019 1020 static int __init early_topology_updates(char *p) 1021 { 1022 if (!p) 1023 return 0; 1024 1025 if (!strcmp(p, "off")) { 1026 pr_info("Disabling topology updates\n"); 1027 topology_updates_enabled = false; 1028 } 1029 1030 return 0; 1031 } 1032 early_param("topology_updates", early_topology_updates); 1033 1034 #ifdef CONFIG_MEMORY_HOTPLUG 1035 /* 1036 * Find the node associated with a hot added memory section for 1037 * memory represented in the device tree by the property 1038 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1039 */ 1040 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1041 unsigned long scn_addr) 1042 { 1043 const __be32 *dm; 1044 unsigned int drconf_cell_cnt, rc; 1045 unsigned long lmb_size; 1046 struct assoc_arrays aa; 1047 int nid = -1; 1048 1049 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1050 if (!drconf_cell_cnt) 1051 return -1; 1052 1053 lmb_size = of_get_lmb_size(memory); 1054 if (!lmb_size) 1055 return -1; 1056 1057 rc = of_get_assoc_arrays(memory, &aa); 1058 if (rc) 1059 return -1; 1060 1061 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1062 struct of_drconf_cell drmem; 1063 1064 read_drconf_cell(&drmem, &dm); 1065 1066 /* skip this block if it is reserved or not assigned to 1067 * this partition */ 1068 if ((drmem.flags & DRCONF_MEM_RESERVED) 1069 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1070 continue; 1071 1072 if ((scn_addr < drmem.base_addr) 1073 || (scn_addr >= (drmem.base_addr + lmb_size))) 1074 continue; 1075 1076 nid = of_drconf_to_nid_single(&drmem, &aa); 1077 break; 1078 } 1079 1080 return nid; 1081 } 1082 1083 /* 1084 * Find the node associated with a hot added memory section for memory 1085 * represented in the device tree as a node (i.e. memory@XXXX) for 1086 * each memblock. 1087 */ 1088 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1089 { 1090 struct device_node *memory; 1091 int nid = -1; 1092 1093 for_each_node_by_type(memory, "memory") { 1094 unsigned long start, size; 1095 int ranges; 1096 const __be32 *memcell_buf; 1097 unsigned int len; 1098 1099 memcell_buf = of_get_property(memory, "reg", &len); 1100 if (!memcell_buf || len <= 0) 1101 continue; 1102 1103 /* ranges in cell */ 1104 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1105 1106 while (ranges--) { 1107 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1108 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1109 1110 if ((scn_addr < start) || (scn_addr >= (start + size))) 1111 continue; 1112 1113 nid = of_node_to_nid_single(memory); 1114 break; 1115 } 1116 1117 if (nid >= 0) 1118 break; 1119 } 1120 1121 of_node_put(memory); 1122 1123 return nid; 1124 } 1125 1126 /* 1127 * Find the node associated with a hot added memory section. Section 1128 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1129 * sections are fully contained within a single MEMBLOCK. 1130 */ 1131 int hot_add_scn_to_nid(unsigned long scn_addr) 1132 { 1133 struct device_node *memory = NULL; 1134 int nid, found = 0; 1135 1136 if (!numa_enabled || (min_common_depth < 0)) 1137 return first_online_node; 1138 1139 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1140 if (memory) { 1141 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1142 of_node_put(memory); 1143 } else { 1144 nid = hot_add_node_scn_to_nid(scn_addr); 1145 } 1146 1147 if (nid < 0 || !node_online(nid)) 1148 nid = first_online_node; 1149 1150 if (NODE_DATA(nid)->node_spanned_pages) 1151 return nid; 1152 1153 for_each_online_node(nid) { 1154 if (NODE_DATA(nid)->node_spanned_pages) { 1155 found = 1; 1156 break; 1157 } 1158 } 1159 1160 BUG_ON(!found); 1161 return nid; 1162 } 1163 1164 static u64 hot_add_drconf_memory_max(void) 1165 { 1166 struct device_node *memory = NULL; 1167 struct device_node *dn = NULL; 1168 unsigned int drconf_cell_cnt = 0; 1169 u64 lmb_size = 0; 1170 const __be32 *dm = NULL; 1171 const __be64 *lrdr = NULL; 1172 struct of_drconf_cell drmem; 1173 1174 dn = of_find_node_by_path("/rtas"); 1175 if (dn) { 1176 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1177 of_node_put(dn); 1178 if (lrdr) 1179 return be64_to_cpup(lrdr); 1180 } 1181 1182 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1183 if (memory) { 1184 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1185 lmb_size = of_get_lmb_size(memory); 1186 1187 /* Advance to the last cell, each cell has 6 32 bit integers */ 1188 dm += (drconf_cell_cnt - 1) * 6; 1189 read_drconf_cell(&drmem, &dm); 1190 of_node_put(memory); 1191 return drmem.base_addr + lmb_size; 1192 } 1193 return 0; 1194 } 1195 1196 /* 1197 * memory_hotplug_max - return max address of memory that may be added 1198 * 1199 * This is currently only used on systems that support drconfig memory 1200 * hotplug. 1201 */ 1202 u64 memory_hotplug_max(void) 1203 { 1204 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1205 } 1206 #endif /* CONFIG_MEMORY_HOTPLUG */ 1207 1208 /* Virtual Processor Home Node (VPHN) support */ 1209 #ifdef CONFIG_PPC_SPLPAR 1210 1211 #include "vphn.h" 1212 1213 struct topology_update_data { 1214 struct topology_update_data *next; 1215 unsigned int cpu; 1216 int old_nid; 1217 int new_nid; 1218 }; 1219 1220 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1221 static cpumask_t cpu_associativity_changes_mask; 1222 static int vphn_enabled; 1223 static int prrn_enabled; 1224 static void reset_topology_timer(void); 1225 1226 /* 1227 * Store the current values of the associativity change counters in the 1228 * hypervisor. 1229 */ 1230 static void setup_cpu_associativity_change_counters(void) 1231 { 1232 int cpu; 1233 1234 /* The VPHN feature supports a maximum of 8 reference points */ 1235 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1236 1237 for_each_possible_cpu(cpu) { 1238 int i; 1239 u8 *counts = vphn_cpu_change_counts[cpu]; 1240 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1241 1242 for (i = 0; i < distance_ref_points_depth; i++) 1243 counts[i] = hypervisor_counts[i]; 1244 } 1245 } 1246 1247 /* 1248 * The hypervisor maintains a set of 8 associativity change counters in 1249 * the VPA of each cpu that correspond to the associativity levels in the 1250 * ibm,associativity-reference-points property. When an associativity 1251 * level changes, the corresponding counter is incremented. 1252 * 1253 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1254 * node associativity levels have changed. 1255 * 1256 * Returns the number of cpus with unhandled associativity changes. 1257 */ 1258 static int update_cpu_associativity_changes_mask(void) 1259 { 1260 int cpu; 1261 cpumask_t *changes = &cpu_associativity_changes_mask; 1262 1263 for_each_possible_cpu(cpu) { 1264 int i, changed = 0; 1265 u8 *counts = vphn_cpu_change_counts[cpu]; 1266 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1267 1268 for (i = 0; i < distance_ref_points_depth; i++) { 1269 if (hypervisor_counts[i] != counts[i]) { 1270 counts[i] = hypervisor_counts[i]; 1271 changed = 1; 1272 } 1273 } 1274 if (changed) { 1275 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1276 cpu = cpu_last_thread_sibling(cpu); 1277 } 1278 } 1279 1280 return cpumask_weight(changes); 1281 } 1282 1283 /* 1284 * Retrieve the new associativity information for a virtual processor's 1285 * home node. 1286 */ 1287 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1288 { 1289 long rc; 1290 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1291 u64 flags = 1; 1292 int hwcpu = get_hard_smp_processor_id(cpu); 1293 1294 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1295 vphn_unpack_associativity(retbuf, associativity); 1296 1297 return rc; 1298 } 1299 1300 static long vphn_get_associativity(unsigned long cpu, 1301 __be32 *associativity) 1302 { 1303 long rc; 1304 1305 rc = hcall_vphn(cpu, associativity); 1306 1307 switch (rc) { 1308 case H_FUNCTION: 1309 printk(KERN_INFO 1310 "VPHN is not supported. Disabling polling...\n"); 1311 stop_topology_update(); 1312 break; 1313 case H_HARDWARE: 1314 printk(KERN_ERR 1315 "hcall_vphn() experienced a hardware fault " 1316 "preventing VPHN. Disabling polling...\n"); 1317 stop_topology_update(); 1318 } 1319 1320 return rc; 1321 } 1322 1323 /* 1324 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1325 * characteristics change. This function doesn't perform any locking and is 1326 * only safe to call from stop_machine(). 1327 */ 1328 static int update_cpu_topology(void *data) 1329 { 1330 struct topology_update_data *update; 1331 unsigned long cpu; 1332 1333 if (!data) 1334 return -EINVAL; 1335 1336 cpu = smp_processor_id(); 1337 1338 for (update = data; update; update = update->next) { 1339 int new_nid = update->new_nid; 1340 if (cpu != update->cpu) 1341 continue; 1342 1343 unmap_cpu_from_node(cpu); 1344 map_cpu_to_node(cpu, new_nid); 1345 set_cpu_numa_node(cpu, new_nid); 1346 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1347 vdso_getcpu_init(); 1348 } 1349 1350 return 0; 1351 } 1352 1353 static int update_lookup_table(void *data) 1354 { 1355 struct topology_update_data *update; 1356 1357 if (!data) 1358 return -EINVAL; 1359 1360 /* 1361 * Upon topology update, the numa-cpu lookup table needs to be updated 1362 * for all threads in the core, including offline CPUs, to ensure that 1363 * future hotplug operations respect the cpu-to-node associativity 1364 * properly. 1365 */ 1366 for (update = data; update; update = update->next) { 1367 int nid, base, j; 1368 1369 nid = update->new_nid; 1370 base = cpu_first_thread_sibling(update->cpu); 1371 1372 for (j = 0; j < threads_per_core; j++) { 1373 update_numa_cpu_lookup_table(base + j, nid); 1374 } 1375 } 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * Update the node maps and sysfs entries for each cpu whose home node 1382 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1383 */ 1384 int arch_update_cpu_topology(void) 1385 { 1386 unsigned int cpu, sibling, changed = 0; 1387 struct topology_update_data *updates, *ud; 1388 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1389 cpumask_t updated_cpus; 1390 struct device *dev; 1391 int weight, new_nid, i = 0; 1392 1393 if (!prrn_enabled && !vphn_enabled) 1394 return 0; 1395 1396 weight = cpumask_weight(&cpu_associativity_changes_mask); 1397 if (!weight) 1398 return 0; 1399 1400 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1401 if (!updates) 1402 return 0; 1403 1404 cpumask_clear(&updated_cpus); 1405 1406 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1407 /* 1408 * If siblings aren't flagged for changes, updates list 1409 * will be too short. Skip on this update and set for next 1410 * update. 1411 */ 1412 if (!cpumask_subset(cpu_sibling_mask(cpu), 1413 &cpu_associativity_changes_mask)) { 1414 pr_info("Sibling bits not set for associativity " 1415 "change, cpu%d\n", cpu); 1416 cpumask_or(&cpu_associativity_changes_mask, 1417 &cpu_associativity_changes_mask, 1418 cpu_sibling_mask(cpu)); 1419 cpu = cpu_last_thread_sibling(cpu); 1420 continue; 1421 } 1422 1423 /* Use associativity from first thread for all siblings */ 1424 vphn_get_associativity(cpu, associativity); 1425 new_nid = associativity_to_nid(associativity); 1426 if (new_nid < 0 || !node_online(new_nid)) 1427 new_nid = first_online_node; 1428 1429 if (new_nid == numa_cpu_lookup_table[cpu]) { 1430 cpumask_andnot(&cpu_associativity_changes_mask, 1431 &cpu_associativity_changes_mask, 1432 cpu_sibling_mask(cpu)); 1433 cpu = cpu_last_thread_sibling(cpu); 1434 continue; 1435 } 1436 1437 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1438 ud = &updates[i++]; 1439 ud->cpu = sibling; 1440 ud->new_nid = new_nid; 1441 ud->old_nid = numa_cpu_lookup_table[sibling]; 1442 cpumask_set_cpu(sibling, &updated_cpus); 1443 if (i < weight) 1444 ud->next = &updates[i]; 1445 } 1446 cpu = cpu_last_thread_sibling(cpu); 1447 } 1448 1449 pr_debug("Topology update for the following CPUs:\n"); 1450 if (cpumask_weight(&updated_cpus)) { 1451 for (ud = &updates[0]; ud; ud = ud->next) { 1452 pr_debug("cpu %d moving from node %d " 1453 "to %d\n", ud->cpu, 1454 ud->old_nid, ud->new_nid); 1455 } 1456 } 1457 1458 /* 1459 * In cases where we have nothing to update (because the updates list 1460 * is too short or because the new topology is same as the old one), 1461 * skip invoking update_cpu_topology() via stop-machine(). This is 1462 * necessary (and not just a fast-path optimization) since stop-machine 1463 * can end up electing a random CPU to run update_cpu_topology(), and 1464 * thus trick us into setting up incorrect cpu-node mappings (since 1465 * 'updates' is kzalloc()'ed). 1466 * 1467 * And for the similar reason, we will skip all the following updating. 1468 */ 1469 if (!cpumask_weight(&updated_cpus)) 1470 goto out; 1471 1472 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1473 1474 /* 1475 * Update the numa-cpu lookup table with the new mappings, even for 1476 * offline CPUs. It is best to perform this update from the stop- 1477 * machine context. 1478 */ 1479 stop_machine(update_lookup_table, &updates[0], 1480 cpumask_of(raw_smp_processor_id())); 1481 1482 for (ud = &updates[0]; ud; ud = ud->next) { 1483 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1484 register_cpu_under_node(ud->cpu, ud->new_nid); 1485 1486 dev = get_cpu_device(ud->cpu); 1487 if (dev) 1488 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1489 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1490 changed = 1; 1491 } 1492 1493 out: 1494 kfree(updates); 1495 return changed; 1496 } 1497 1498 static void topology_work_fn(struct work_struct *work) 1499 { 1500 rebuild_sched_domains(); 1501 } 1502 static DECLARE_WORK(topology_work, topology_work_fn); 1503 1504 static void topology_schedule_update(void) 1505 { 1506 schedule_work(&topology_work); 1507 } 1508 1509 static void topology_timer_fn(unsigned long ignored) 1510 { 1511 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1512 topology_schedule_update(); 1513 else if (vphn_enabled) { 1514 if (update_cpu_associativity_changes_mask() > 0) 1515 topology_schedule_update(); 1516 reset_topology_timer(); 1517 } 1518 } 1519 static struct timer_list topology_timer = 1520 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1521 1522 static void reset_topology_timer(void) 1523 { 1524 topology_timer.data = 0; 1525 topology_timer.expires = jiffies + 60 * HZ; 1526 mod_timer(&topology_timer, topology_timer.expires); 1527 } 1528 1529 #ifdef CONFIG_SMP 1530 1531 static void stage_topology_update(int core_id) 1532 { 1533 cpumask_or(&cpu_associativity_changes_mask, 1534 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1535 reset_topology_timer(); 1536 } 1537 1538 static int dt_update_callback(struct notifier_block *nb, 1539 unsigned long action, void *data) 1540 { 1541 struct of_reconfig_data *update = data; 1542 int rc = NOTIFY_DONE; 1543 1544 switch (action) { 1545 case OF_RECONFIG_UPDATE_PROPERTY: 1546 if (!of_prop_cmp(update->dn->type, "cpu") && 1547 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1548 u32 core_id; 1549 of_property_read_u32(update->dn, "reg", &core_id); 1550 stage_topology_update(core_id); 1551 rc = NOTIFY_OK; 1552 } 1553 break; 1554 } 1555 1556 return rc; 1557 } 1558 1559 static struct notifier_block dt_update_nb = { 1560 .notifier_call = dt_update_callback, 1561 }; 1562 1563 #endif 1564 1565 /* 1566 * Start polling for associativity changes. 1567 */ 1568 int start_topology_update(void) 1569 { 1570 int rc = 0; 1571 1572 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1573 if (!prrn_enabled) { 1574 prrn_enabled = 1; 1575 vphn_enabled = 0; 1576 #ifdef CONFIG_SMP 1577 rc = of_reconfig_notifier_register(&dt_update_nb); 1578 #endif 1579 } 1580 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1581 lppaca_shared_proc(get_lppaca())) { 1582 if (!vphn_enabled) { 1583 prrn_enabled = 0; 1584 vphn_enabled = 1; 1585 setup_cpu_associativity_change_counters(); 1586 init_timer_deferrable(&topology_timer); 1587 reset_topology_timer(); 1588 } 1589 } 1590 1591 return rc; 1592 } 1593 1594 /* 1595 * Disable polling for VPHN associativity changes. 1596 */ 1597 int stop_topology_update(void) 1598 { 1599 int rc = 0; 1600 1601 if (prrn_enabled) { 1602 prrn_enabled = 0; 1603 #ifdef CONFIG_SMP 1604 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1605 #endif 1606 } else if (vphn_enabled) { 1607 vphn_enabled = 0; 1608 rc = del_timer_sync(&topology_timer); 1609 } 1610 1611 return rc; 1612 } 1613 1614 int prrn_is_enabled(void) 1615 { 1616 return prrn_enabled; 1617 } 1618 1619 static int topology_read(struct seq_file *file, void *v) 1620 { 1621 if (vphn_enabled || prrn_enabled) 1622 seq_puts(file, "on\n"); 1623 else 1624 seq_puts(file, "off\n"); 1625 1626 return 0; 1627 } 1628 1629 static int topology_open(struct inode *inode, struct file *file) 1630 { 1631 return single_open(file, topology_read, NULL); 1632 } 1633 1634 static ssize_t topology_write(struct file *file, const char __user *buf, 1635 size_t count, loff_t *off) 1636 { 1637 char kbuf[4]; /* "on" or "off" plus null. */ 1638 int read_len; 1639 1640 read_len = count < 3 ? count : 3; 1641 if (copy_from_user(kbuf, buf, read_len)) 1642 return -EINVAL; 1643 1644 kbuf[read_len] = '\0'; 1645 1646 if (!strncmp(kbuf, "on", 2)) 1647 start_topology_update(); 1648 else if (!strncmp(kbuf, "off", 3)) 1649 stop_topology_update(); 1650 else 1651 return -EINVAL; 1652 1653 return count; 1654 } 1655 1656 static const struct file_operations topology_ops = { 1657 .read = seq_read, 1658 .write = topology_write, 1659 .open = topology_open, 1660 .release = single_release 1661 }; 1662 1663 static int topology_update_init(void) 1664 { 1665 /* Do not poll for changes if disabled at boot */ 1666 if (topology_updates_enabled) 1667 start_topology_update(); 1668 1669 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1670 return -ENOMEM; 1671 1672 return 0; 1673 } 1674 device_initcall(topology_update_init); 1675 #endif /* CONFIG_PPC_SPLPAR */ 1676