1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 #include <linux/cpu.h> 38 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/page.h> 42 #include <asm/processor.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/kdump.h> 46 #include <asm/smp.h> 47 #include <asm/mmu.h> 48 #include <asm/paca.h> 49 #include <asm/pgtable.h> 50 #include <asm/powernv.h> 51 #include <asm/iommu.h> 52 #include <asm/btext.h> 53 #include <asm/sections.h> 54 #include <asm/machdep.h> 55 #include <asm/pci-bridge.h> 56 #include <asm/kexec.h> 57 #include <asm/opal.h> 58 #include <asm/fadump.h> 59 #include <asm/epapr_hcalls.h> 60 #include <asm/firmware.h> 61 #include <asm/dt_cpu_ftrs.h> 62 63 #include <mm/mmu_decl.h> 64 65 #ifdef DEBUG 66 #define DBG(fmt...) printk(KERN_ERR fmt) 67 #else 68 #define DBG(fmt...) 69 #endif 70 71 #ifdef CONFIG_PPC64 72 int __initdata iommu_is_off; 73 int __initdata iommu_force_on; 74 unsigned long tce_alloc_start, tce_alloc_end; 75 u64 ppc64_rma_size; 76 #endif 77 static phys_addr_t first_memblock_size; 78 static int __initdata boot_cpu_count; 79 80 static int __init early_parse_mem(char *p) 81 { 82 if (!p) 83 return 1; 84 85 memory_limit = PAGE_ALIGN(memparse(p, &p)); 86 DBG("memory limit = 0x%llx\n", memory_limit); 87 88 return 0; 89 } 90 early_param("mem", early_parse_mem); 91 92 /* 93 * overlaps_initrd - check for overlap with page aligned extension of 94 * initrd. 95 */ 96 static inline int overlaps_initrd(unsigned long start, unsigned long size) 97 { 98 #ifdef CONFIG_BLK_DEV_INITRD 99 if (!initrd_start) 100 return 0; 101 102 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 103 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 104 #else 105 return 0; 106 #endif 107 } 108 109 /** 110 * move_device_tree - move tree to an unused area, if needed. 111 * 112 * The device tree may be allocated beyond our memory limit, or inside the 113 * crash kernel region for kdump, or within the page aligned range of initrd. 114 * If so, move it out of the way. 115 */ 116 static void __init move_device_tree(void) 117 { 118 unsigned long start, size; 119 void *p; 120 121 DBG("-> move_device_tree\n"); 122 123 start = __pa(initial_boot_params); 124 size = fdt_totalsize(initial_boot_params); 125 126 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 127 overlaps_crashkernel(start, size) || 128 overlaps_initrd(start, size)) { 129 p = __va(memblock_alloc(size, PAGE_SIZE)); 130 memcpy(p, initial_boot_params, size); 131 initial_boot_params = p; 132 DBG("Moved device tree to 0x%p\n", p); 133 } 134 135 DBG("<- move_device_tree\n"); 136 } 137 138 /* 139 * ibm,pa-features is a per-cpu property that contains a string of 140 * attribute descriptors, each of which has a 2 byte header plus up 141 * to 254 bytes worth of processor attribute bits. First header 142 * byte specifies the number of bytes following the header. 143 * Second header byte is an "attribute-specifier" type, of which 144 * zero is the only currently-defined value. 145 * Implementation: Pass in the byte and bit offset for the feature 146 * that we are interested in. The function will return -1 if the 147 * pa-features property is missing, or a 1/0 to indicate if the feature 148 * is supported/not supported. Note that the bit numbers are 149 * big-endian to match the definition in PAPR. 150 */ 151 static struct ibm_pa_feature { 152 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 153 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 154 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 155 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 156 unsigned char pabyte; /* byte number in ibm,pa-features */ 157 unsigned char pabit; /* bit number (big-endian) */ 158 unsigned char invert; /* if 1, pa bit set => clear feature */ 159 } ibm_pa_features[] __initdata = { 160 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 161 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 162 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 163 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 164 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 165 #ifdef CONFIG_PPC_RADIX_MMU 166 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 167 #endif 168 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 169 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 170 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 171 /* 172 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 173 * we don't want to turn on TM here, so we use the *_COMP versions 174 * which are 0 if the kernel doesn't support TM. 175 */ 176 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 177 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 178 }; 179 180 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 181 unsigned long tablelen, 182 struct ibm_pa_feature *fp, 183 unsigned long ft_size) 184 { 185 unsigned long i, len, bit; 186 187 /* find descriptor with type == 0 */ 188 for (;;) { 189 if (tablelen < 3) 190 return; 191 len = 2 + ftrs[0]; 192 if (tablelen < len) 193 return; /* descriptor 0 not found */ 194 if (ftrs[1] == 0) 195 break; 196 tablelen -= len; 197 ftrs += len; 198 } 199 200 /* loop over bits we know about */ 201 for (i = 0; i < ft_size; ++i, ++fp) { 202 if (fp->pabyte >= ftrs[0]) 203 continue; 204 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 205 if (bit ^ fp->invert) { 206 cur_cpu_spec->cpu_features |= fp->cpu_features; 207 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 208 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 209 cur_cpu_spec->mmu_features |= fp->mmu_features; 210 } else { 211 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 212 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 213 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 214 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 215 } 216 } 217 } 218 219 static void __init check_cpu_pa_features(unsigned long node) 220 { 221 const unsigned char *pa_ftrs; 222 int tablelen; 223 224 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 225 if (pa_ftrs == NULL) 226 return; 227 228 scan_features(node, pa_ftrs, tablelen, 229 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 230 } 231 232 #ifdef CONFIG_PPC_BOOK3S_64 233 static void __init init_mmu_slb_size(unsigned long node) 234 { 235 const __be32 *slb_size_ptr; 236 237 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 238 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 239 240 if (slb_size_ptr) 241 mmu_slb_size = be32_to_cpup(slb_size_ptr); 242 } 243 #else 244 #define init_mmu_slb_size(node) do { } while(0) 245 #endif 246 247 static struct feature_property { 248 const char *name; 249 u32 min_value; 250 unsigned long cpu_feature; 251 unsigned long cpu_user_ftr; 252 } feature_properties[] __initdata = { 253 #ifdef CONFIG_ALTIVEC 254 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 255 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 256 #endif /* CONFIG_ALTIVEC */ 257 #ifdef CONFIG_VSX 258 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 259 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 260 #endif /* CONFIG_VSX */ 261 #ifdef CONFIG_PPC64 262 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 263 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 264 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 265 #endif /* CONFIG_PPC64 */ 266 }; 267 268 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 269 static inline void identical_pvr_fixup(unsigned long node) 270 { 271 unsigned int pvr; 272 const char *model = of_get_flat_dt_prop(node, "model", NULL); 273 274 /* 275 * Since 440GR(x)/440EP(x) processors have the same pvr, 276 * we check the node path and set bit 28 in the cur_cpu_spec 277 * pvr for EP(x) processor version. This bit is always 0 in 278 * the "real" pvr. Then we call identify_cpu again with 279 * the new logical pvr to enable FPU support. 280 */ 281 if (model && strstr(model, "440EP")) { 282 pvr = cur_cpu_spec->pvr_value | 0x8; 283 identify_cpu(0, pvr); 284 DBG("Using logical pvr %x for %s\n", pvr, model); 285 } 286 } 287 #else 288 #define identical_pvr_fixup(node) do { } while(0) 289 #endif 290 291 static void __init check_cpu_feature_properties(unsigned long node) 292 { 293 unsigned long i; 294 struct feature_property *fp = feature_properties; 295 const __be32 *prop; 296 297 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { 298 prop = of_get_flat_dt_prop(node, fp->name, NULL); 299 if (prop && be32_to_cpup(prop) >= fp->min_value) { 300 cur_cpu_spec->cpu_features |= fp->cpu_feature; 301 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 302 } 303 } 304 } 305 306 static int __init early_init_dt_scan_cpus(unsigned long node, 307 const char *uname, int depth, 308 void *data) 309 { 310 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 311 const __be32 *prop; 312 const __be32 *intserv; 313 int i, nthreads; 314 int len; 315 int found = -1; 316 int found_thread = 0; 317 318 /* We are scanning "cpu" nodes only */ 319 if (type == NULL || strcmp(type, "cpu") != 0) 320 return 0; 321 322 /* Get physical cpuid */ 323 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 324 if (!intserv) 325 intserv = of_get_flat_dt_prop(node, "reg", &len); 326 327 nthreads = len / sizeof(int); 328 329 /* 330 * Now see if any of these threads match our boot cpu. 331 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 332 */ 333 for (i = 0; i < nthreads; i++) { 334 /* 335 * version 2 of the kexec param format adds the phys cpuid of 336 * booted proc. 337 */ 338 if (fdt_version(initial_boot_params) >= 2) { 339 if (be32_to_cpu(intserv[i]) == 340 fdt_boot_cpuid_phys(initial_boot_params)) { 341 found = boot_cpu_count; 342 found_thread = i; 343 } 344 } else { 345 /* 346 * Check if it's the boot-cpu, set it's hw index now, 347 * unfortunately this format did not support booting 348 * off secondary threads. 349 */ 350 if (of_get_flat_dt_prop(node, 351 "linux,boot-cpu", NULL) != NULL) 352 found = boot_cpu_count; 353 } 354 #ifdef CONFIG_SMP 355 /* logical cpu id is always 0 on UP kernels */ 356 boot_cpu_count++; 357 #endif 358 } 359 360 /* Not the boot CPU */ 361 if (found < 0) 362 return 0; 363 364 DBG("boot cpu: logical %d physical %d\n", found, 365 be32_to_cpu(intserv[found_thread])); 366 boot_cpuid = found; 367 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 368 369 /* 370 * PAPR defines "logical" PVR values for cpus that 371 * meet various levels of the architecture: 372 * 0x0f000001 Architecture version 2.04 373 * 0x0f000002 Architecture version 2.05 374 * If the cpu-version property in the cpu node contains 375 * such a value, we call identify_cpu again with the 376 * logical PVR value in order to use the cpu feature 377 * bits appropriate for the architecture level. 378 * 379 * A POWER6 partition in "POWER6 architected" mode 380 * uses the 0x0f000002 PVR value; in POWER5+ mode 381 * it uses 0x0f000001. 382 * 383 * If we're using device tree CPU feature discovery then we don't 384 * support the cpu-version property, and it's the responsibility of the 385 * firmware/hypervisor to provide the correct feature set for the 386 * architecture level via the ibm,powerpc-cpu-features binding. 387 */ 388 if (!dt_cpu_ftrs_in_use()) { 389 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 390 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 391 identify_cpu(0, be32_to_cpup(prop)); 392 393 check_cpu_feature_properties(node); 394 check_cpu_pa_features(node); 395 } 396 397 identical_pvr_fixup(node); 398 init_mmu_slb_size(node); 399 400 #ifdef CONFIG_PPC64 401 if (nthreads == 1) 402 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 403 else if (!dt_cpu_ftrs_in_use()) 404 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 405 #endif 406 407 return 0; 408 } 409 410 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 411 const char *uname, 412 int depth, void *data) 413 { 414 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 415 416 /* Use common scan routine to determine if this is the chosen node */ 417 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 418 return 0; 419 420 #ifdef CONFIG_PPC64 421 /* check if iommu is forced on or off */ 422 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 423 iommu_is_off = 1; 424 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 425 iommu_force_on = 1; 426 #endif 427 428 /* mem=x on the command line is the preferred mechanism */ 429 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 430 if (lprop) 431 memory_limit = *lprop; 432 433 #ifdef CONFIG_PPC64 434 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 435 if (lprop) 436 tce_alloc_start = *lprop; 437 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 438 if (lprop) 439 tce_alloc_end = *lprop; 440 #endif 441 442 #ifdef CONFIG_KEXEC_CORE 443 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 444 if (lprop) 445 crashk_res.start = *lprop; 446 447 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 448 if (lprop) 449 crashk_res.end = crashk_res.start + *lprop - 1; 450 #endif 451 452 /* break now */ 453 return 1; 454 } 455 456 #ifdef CONFIG_PPC_PSERIES 457 /* 458 * Interpret the ibm,dynamic-memory property in the 459 * /ibm,dynamic-reconfiguration-memory node. 460 * This contains a list of memory blocks along with NUMA affinity 461 * information. 462 */ 463 static int __init early_init_dt_scan_drconf_memory(unsigned long node) 464 { 465 const __be32 *dm, *ls, *usm; 466 int l; 467 unsigned long n, flags; 468 u64 base, size, memblock_size; 469 unsigned int is_kexec_kdump = 0, rngs; 470 471 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); 472 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) 473 return 0; 474 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); 475 476 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); 477 if (dm == NULL || l < sizeof(__be32)) 478 return 0; 479 480 n = of_read_number(dm++, 1); /* number of entries */ 481 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) 482 return 0; 483 484 /* check if this is a kexec/kdump kernel. */ 485 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", 486 &l); 487 if (usm != NULL) 488 is_kexec_kdump = 1; 489 490 for (; n != 0; --n) { 491 base = dt_mem_next_cell(dt_root_addr_cells, &dm); 492 flags = of_read_number(&dm[3], 1); 493 /* skip DRC index, pad, assoc. list index, flags */ 494 dm += 4; 495 /* skip this block if the reserved bit is set in flags 496 or if the block is not assigned to this partition */ 497 if ((flags & DRCONF_MEM_RESERVED) || 498 !(flags & DRCONF_MEM_ASSIGNED)) 499 continue; 500 size = memblock_size; 501 rngs = 1; 502 if (is_kexec_kdump) { 503 /* 504 * For each memblock in ibm,dynamic-memory, a corresponding 505 * entry in linux,drconf-usable-memory property contains 506 * a counter 'p' followed by 'p' (base, size) duple. 507 * Now read the counter from 508 * linux,drconf-usable-memory property 509 */ 510 rngs = dt_mem_next_cell(dt_root_size_cells, &usm); 511 if (!rngs) /* there are no (base, size) duple */ 512 continue; 513 } 514 do { 515 if (is_kexec_kdump) { 516 base = dt_mem_next_cell(dt_root_addr_cells, 517 &usm); 518 size = dt_mem_next_cell(dt_root_size_cells, 519 &usm); 520 } 521 if (iommu_is_off) { 522 if (base >= 0x80000000ul) 523 continue; 524 if ((base + size) > 0x80000000ul) 525 size = 0x80000000ul - base; 526 } 527 memblock_add(base, size); 528 } while (--rngs); 529 } 530 memblock_dump_all(); 531 return 0; 532 } 533 #else 534 #define early_init_dt_scan_drconf_memory(node) 0 535 #endif /* CONFIG_PPC_PSERIES */ 536 537 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 538 const char *uname, 539 int depth, void *data) 540 { 541 if (depth == 1 && 542 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) 543 return early_init_dt_scan_drconf_memory(node); 544 545 return early_init_dt_scan_memory(node, uname, depth, data); 546 } 547 548 /* 549 * For a relocatable kernel, we need to get the memstart_addr first, 550 * then use it to calculate the virtual kernel start address. This has 551 * to happen at a very early stage (before machine_init). In this case, 552 * we just want to get the memstart_address and would not like to mess the 553 * memblock at this stage. So introduce a variable to skip the memblock_add() 554 * for this reason. 555 */ 556 #ifdef CONFIG_RELOCATABLE 557 static int add_mem_to_memblock = 1; 558 #else 559 #define add_mem_to_memblock 1 560 #endif 561 562 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 563 { 564 #ifdef CONFIG_PPC64 565 if (iommu_is_off) { 566 if (base >= 0x80000000ul) 567 return; 568 if ((base + size) > 0x80000000ul) 569 size = 0x80000000ul - base; 570 } 571 #endif 572 /* Keep track of the beginning of memory -and- the size of 573 * the very first block in the device-tree as it represents 574 * the RMA on ppc64 server 575 */ 576 if (base < memstart_addr) { 577 memstart_addr = base; 578 first_memblock_size = size; 579 } 580 581 /* Add the chunk to the MEMBLOCK list */ 582 if (add_mem_to_memblock) 583 memblock_add(base, size); 584 } 585 586 static void __init early_reserve_mem_dt(void) 587 { 588 unsigned long i, dt_root; 589 int len; 590 const __be32 *prop; 591 592 early_init_fdt_reserve_self(); 593 early_init_fdt_scan_reserved_mem(); 594 595 dt_root = of_get_flat_dt_root(); 596 597 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 598 599 if (!prop) 600 return; 601 602 DBG("Found new-style reserved-ranges\n"); 603 604 /* Each reserved range is an (address,size) pair, 2 cells each, 605 * totalling 4 cells per range. */ 606 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 607 u64 base, size; 608 609 base = of_read_number(prop + (i * 4) + 0, 2); 610 size = of_read_number(prop + (i * 4) + 2, 2); 611 612 if (size) { 613 DBG("reserving: %llx -> %llx\n", base, size); 614 memblock_reserve(base, size); 615 } 616 } 617 } 618 619 static void __init early_reserve_mem(void) 620 { 621 __be64 *reserve_map; 622 623 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 624 fdt_off_mem_rsvmap(initial_boot_params)); 625 626 /* Look for the new "reserved-regions" property in the DT */ 627 early_reserve_mem_dt(); 628 629 #ifdef CONFIG_BLK_DEV_INITRD 630 /* Then reserve the initrd, if any */ 631 if (initrd_start && (initrd_end > initrd_start)) { 632 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 633 _ALIGN_UP(initrd_end, PAGE_SIZE) - 634 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 635 } 636 #endif /* CONFIG_BLK_DEV_INITRD */ 637 638 #ifdef CONFIG_PPC32 639 /* 640 * Handle the case where we might be booting from an old kexec 641 * image that setup the mem_rsvmap as pairs of 32-bit values 642 */ 643 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 644 u32 base_32, size_32; 645 __be32 *reserve_map_32 = (__be32 *)reserve_map; 646 647 DBG("Found old 32-bit reserve map\n"); 648 649 while (1) { 650 base_32 = be32_to_cpup(reserve_map_32++); 651 size_32 = be32_to_cpup(reserve_map_32++); 652 if (size_32 == 0) 653 break; 654 DBG("reserving: %x -> %x\n", base_32, size_32); 655 memblock_reserve(base_32, size_32); 656 } 657 return; 658 } 659 #endif 660 } 661 662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 663 static bool tm_disabled __initdata; 664 665 static int __init parse_ppc_tm(char *str) 666 { 667 bool res; 668 669 if (kstrtobool(str, &res)) 670 return -EINVAL; 671 672 tm_disabled = !res; 673 674 return 0; 675 } 676 early_param("ppc_tm", parse_ppc_tm); 677 678 static void __init tm_init(void) 679 { 680 if (tm_disabled) { 681 pr_info("Disabling hardware transactional memory (HTM)\n"); 682 cur_cpu_spec->cpu_user_features2 &= 683 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 684 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 685 return; 686 } 687 688 pnv_tm_init(); 689 } 690 #else 691 static void tm_init(void) { } 692 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 693 694 void __init early_init_devtree(void *params) 695 { 696 phys_addr_t limit; 697 698 DBG(" -> early_init_devtree(%p)\n", params); 699 700 /* Too early to BUG_ON(), do it by hand */ 701 if (!early_init_dt_verify(params)) 702 panic("BUG: Failed verifying flat device tree, bad version?"); 703 704 #ifdef CONFIG_PPC_RTAS 705 /* Some machines might need RTAS info for debugging, grab it now. */ 706 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 707 #endif 708 709 #ifdef CONFIG_PPC_POWERNV 710 /* Some machines might need OPAL info for debugging, grab it now. */ 711 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 712 #endif 713 714 #ifdef CONFIG_FA_DUMP 715 /* scan tree to see if dump is active during last boot */ 716 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 717 #endif 718 719 /* Retrieve various informations from the /chosen node of the 720 * device-tree, including the platform type, initrd location and 721 * size, TCE reserve, and more ... 722 */ 723 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 724 725 /* Scan memory nodes and rebuild MEMBLOCKs */ 726 of_scan_flat_dt(early_init_dt_scan_root, NULL); 727 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 728 729 parse_early_param(); 730 731 /* make sure we've parsed cmdline for mem= before this */ 732 if (memory_limit) 733 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 734 setup_initial_memory_limit(memstart_addr, first_memblock_size); 735 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 736 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 737 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 738 if (PHYSICAL_START > MEMORY_START) 739 memblock_reserve(MEMORY_START, 0x8000); 740 reserve_kdump_trampoline(); 741 #ifdef CONFIG_FA_DUMP 742 /* 743 * If we fail to reserve memory for firmware-assisted dump then 744 * fallback to kexec based kdump. 745 */ 746 if (fadump_reserve_mem() == 0) 747 #endif 748 reserve_crashkernel(); 749 early_reserve_mem(); 750 751 /* Ensure that total memory size is page-aligned. */ 752 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 753 memblock_enforce_memory_limit(limit); 754 755 memblock_allow_resize(); 756 memblock_dump_all(); 757 758 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 759 760 /* We may need to relocate the flat tree, do it now. 761 * FIXME .. and the initrd too? */ 762 move_device_tree(); 763 764 allocate_pacas(); 765 766 DBG("Scanning CPUs ...\n"); 767 768 dt_cpu_ftrs_scan(); 769 770 /* Retrieve CPU related informations from the flat tree 771 * (altivec support, boot CPU ID, ...) 772 */ 773 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 774 if (boot_cpuid < 0) { 775 printk("Failed to identify boot CPU !\n"); 776 BUG(); 777 } 778 779 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 780 /* We'll later wait for secondaries to check in; there are 781 * NCPUS-1 non-boot CPUs :-) 782 */ 783 spinning_secondaries = boot_cpu_count - 1; 784 #endif 785 786 mmu_early_init_devtree(); 787 788 #ifdef CONFIG_PPC_POWERNV 789 /* Scan and build the list of machine check recoverable ranges */ 790 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 791 #endif 792 epapr_paravirt_early_init(); 793 794 /* Now try to figure out if we are running on LPAR and so on */ 795 pseries_probe_fw_features(); 796 797 #ifdef CONFIG_PPC_PS3 798 /* Identify PS3 firmware */ 799 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 800 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 801 #endif 802 803 tm_init(); 804 805 DBG(" <- early_init_devtree()\n"); 806 } 807 808 #ifdef CONFIG_RELOCATABLE 809 /* 810 * This function run before early_init_devtree, so we have to init 811 * initial_boot_params. 812 */ 813 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 814 { 815 /* Setup flat device-tree pointer */ 816 initial_boot_params = params; 817 818 /* 819 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 820 * mess the memblock. 821 */ 822 add_mem_to_memblock = 0; 823 of_scan_flat_dt(early_init_dt_scan_root, NULL); 824 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 825 add_mem_to_memblock = 1; 826 827 if (size) 828 *size = first_memblock_size; 829 } 830 #endif 831 832 /******* 833 * 834 * New implementation of the OF "find" APIs, return a refcounted 835 * object, call of_node_put() when done. The device tree and list 836 * are protected by a rw_lock. 837 * 838 * Note that property management will need some locking as well, 839 * this isn't dealt with yet. 840 * 841 *******/ 842 843 /** 844 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 845 * @np: device node of the device 846 * 847 * This looks for a property "ibm,chip-id" in the node or any 848 * of its parents and returns its content, or -1 if it cannot 849 * be found. 850 */ 851 int of_get_ibm_chip_id(struct device_node *np) 852 { 853 of_node_get(np); 854 while (np) { 855 u32 chip_id; 856 857 /* 858 * Skiboot may produce memory nodes that contain more than one 859 * cell in chip-id, we only read the first one here. 860 */ 861 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 862 of_node_put(np); 863 return chip_id; 864 } 865 866 np = of_get_next_parent(np); 867 } 868 return -1; 869 } 870 EXPORT_SYMBOL(of_get_ibm_chip_id); 871 872 /** 873 * cpu_to_chip_id - Return the cpus chip-id 874 * @cpu: The logical cpu number. 875 * 876 * Return the value of the ibm,chip-id property corresponding to the given 877 * logical cpu number. If the chip-id can not be found, returns -1. 878 */ 879 int cpu_to_chip_id(int cpu) 880 { 881 struct device_node *np; 882 883 np = of_get_cpu_node(cpu, NULL); 884 if (!np) 885 return -1; 886 887 of_node_put(np); 888 return of_get_ibm_chip_id(np); 889 } 890 EXPORT_SYMBOL(cpu_to_chip_id); 891 892 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 893 { 894 return (int)phys_id == get_hard_smp_processor_id(cpu); 895 } 896