xref: /linux/arch/powerpc/kernel/prom.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/init.h>
17 #include <linux/threads.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/bitops.h>
24 #include <linux/export.h>
25 #include <linux/kexec.h>
26 #include <linux/irq.h>
27 #include <linux/memblock.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/cpu.h>
32 #include <linux/pgtable.h>
33 #include <linux/seq_buf.h>
34 
35 #include <asm/rtas.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/smp.h>
42 #include <asm/mmu.h>
43 #include <asm/paca.h>
44 #include <asm/powernv.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/pci-bridge.h>
50 #include <asm/kexec.h>
51 #include <asm/opal.h>
52 #include <asm/fadump.h>
53 #include <asm/epapr_hcalls.h>
54 #include <asm/firmware.h>
55 #include <asm/dt_cpu_ftrs.h>
56 #include <asm/drmem.h>
57 #include <asm/ultravisor.h>
58 #include <asm/prom.h>
59 #include <asm/plpks.h>
60 
61 #include <mm/mmu_decl.h>
62 
63 #ifdef DEBUG
64 #define DBG(fmt...) printk(KERN_ERR fmt)
65 #else
66 #define DBG(fmt...)
67 #endif
68 
69 int *chip_id_lookup_table;
70 
71 #ifdef CONFIG_PPC64
72 int __initdata iommu_is_off;
73 int __initdata iommu_force_on;
74 unsigned long tce_alloc_start, tce_alloc_end;
75 u64 ppc64_rma_size;
76 unsigned int boot_cpu_node_count __ro_after_init;
77 #endif
78 static phys_addr_t first_memblock_size;
79 static int __initdata boot_cpu_count;
80 
early_parse_mem(char * p)81 static int __init early_parse_mem(char *p)
82 {
83 	if (!p)
84 		return 1;
85 
86 	memory_limit = PAGE_ALIGN(memparse(p, &p));
87 	DBG("memory limit = 0x%llx\n", memory_limit);
88 
89 	return 0;
90 }
91 early_param("mem", early_parse_mem);
92 
93 /*
94  * overlaps_initrd - check for overlap with page aligned extension of
95  * initrd.
96  */
overlaps_initrd(unsigned long start,unsigned long size)97 static inline int overlaps_initrd(unsigned long start, unsigned long size)
98 {
99 #ifdef CONFIG_BLK_DEV_INITRD
100 	if (!initrd_start)
101 		return 0;
102 
103 	return	(start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
104 			start <= ALIGN(initrd_end, PAGE_SIZE);
105 #else
106 	return 0;
107 #endif
108 }
109 
110 /**
111  * move_device_tree - move tree to an unused area, if needed.
112  *
113  * The device tree may be allocated beyond our memory limit, or inside the
114  * crash kernel region for kdump, or within the page aligned range of initrd.
115  * If so, move it out of the way.
116  */
move_device_tree(void)117 static void __init move_device_tree(void)
118 {
119 	unsigned long start, size;
120 	void *p;
121 
122 	DBG("-> move_device_tree\n");
123 
124 	start = __pa(initial_boot_params);
125 	size = fdt_totalsize(initial_boot_params);
126 
127 	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
128 	    !memblock_is_memory(start + size - 1) ||
129 	    overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
130 		p = memblock_alloc_raw(size, PAGE_SIZE);
131 		if (!p)
132 			panic("Failed to allocate %lu bytes to move device tree\n",
133 			      size);
134 		memcpy(p, initial_boot_params, size);
135 		initial_boot_params = p;
136 		DBG("Moved device tree to 0x%px\n", p);
137 	}
138 
139 	DBG("<- move_device_tree\n");
140 }
141 
142 /*
143  * ibm,pa/pi-features is a per-cpu property that contains a string of
144  * attribute descriptors, each of which has a 2 byte header plus up
145  * to 254 bytes worth of processor attribute bits.  First header
146  * byte specifies the number of bytes following the header.
147  * Second header byte is an "attribute-specifier" type, of which
148  * zero is the only currently-defined value.
149  * Implementation:  Pass in the byte and bit offset for the feature
150  * that we are interested in.  The function will return -1 if the
151  * pa-features property is missing, or a 1/0 to indicate if the feature
152  * is supported/not supported.  Note that the bit numbers are
153  * big-endian to match the definition in PAPR.
154  * Note: the 'clear' flag clears the feature if the bit is set in the
155  * ibm,pa/pi-features property, it does not set the feature if the
156  * bit is clear.
157  */
158 struct ibm_feature {
159 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
160 	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
161 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
162 	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
163 	unsigned char	pabyte;		/* byte number in ibm,pa/pi-features */
164 	unsigned char	pabit;		/* bit number (big-endian) */
165 	unsigned char	clear;		/* if 1, pa bit set => clear feature */
166 };
167 
168 static struct ibm_feature ibm_pa_features[] __initdata = {
169 	{ .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
170 	{ .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
171 	{ .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
172 	{ .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
173 	{ .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
174 #ifdef CONFIG_PPC_RADIX_MMU
175 	{ .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
176 #endif
177 	{ .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
178 				    .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
179 	/*
180 	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
181 	 * we don't want to turn on TM here, so we use the *_COMP versions
182 	 * which are 0 if the kernel doesn't support TM.
183 	 */
184 	{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
185 	  .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
186 
187 	{ .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
188 	{ .pabyte = 68, .pabit = 5, .cpu_features = CPU_FTR_DEXCR_NPHIE },
189 };
190 
191 /*
192  * ibm,pi-features property provides the support of processor specific
193  * options not described in ibm,pa-features. Right now use byte 0, bit 3
194  * which indicates the occurrence of DSI interrupt when the paste operation
195  * on the suspended NX window.
196  */
197 static struct ibm_feature ibm_pi_features[] __initdata = {
198 	{ .pabyte = 0, .pabit = 3, .mmu_features  = MMU_FTR_NX_DSI },
199 	{ .pabyte = 0, .pabit = 4, .cpu_features  = CPU_FTR_DBELL, .clear = 1 },
200 };
201 
scan_features(unsigned long node,const unsigned char * ftrs,unsigned long tablelen,struct ibm_feature * fp,unsigned long ft_size)202 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
203 				 unsigned long tablelen,
204 				 struct ibm_feature *fp,
205 				 unsigned long ft_size)
206 {
207 	unsigned long i, len, bit;
208 
209 	/* find descriptor with type == 0 */
210 	for (;;) {
211 		if (tablelen < 3)
212 			return;
213 		len = 2 + ftrs[0];
214 		if (tablelen < len)
215 			return;		/* descriptor 0 not found */
216 		if (ftrs[1] == 0)
217 			break;
218 		tablelen -= len;
219 		ftrs += len;
220 	}
221 
222 	/* loop over bits we know about */
223 	for (i = 0; i < ft_size; ++i, ++fp) {
224 		if (fp->pabyte >= ftrs[0])
225 			continue;
226 		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
227 		if (bit && !fp->clear) {
228 			cur_cpu_spec->cpu_features |= fp->cpu_features;
229 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
230 			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
231 			cur_cpu_spec->mmu_features |= fp->mmu_features;
232 		} else if (bit == fp->clear) {
233 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
234 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
235 			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
236 			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
237 		}
238 	}
239 }
240 
check_cpu_features(unsigned long node,char * name,struct ibm_feature * fp,unsigned long size)241 static void __init check_cpu_features(unsigned long node, char *name,
242 				      struct ibm_feature *fp,
243 				      unsigned long size)
244 {
245 	const unsigned char *pa_ftrs;
246 	int tablelen;
247 
248 	pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen);
249 	if (pa_ftrs == NULL)
250 		return;
251 
252 	scan_features(node, pa_ftrs, tablelen, fp, size);
253 }
254 
255 #ifdef CONFIG_PPC_64S_HASH_MMU
init_mmu_slb_size(unsigned long node)256 static void __init init_mmu_slb_size(unsigned long node)
257 {
258 	const __be32 *slb_size_ptr;
259 
260 	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
261 			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
262 
263 	if (slb_size_ptr)
264 		mmu_slb_size = be32_to_cpup(slb_size_ptr);
265 }
266 #else
267 #define init_mmu_slb_size(node) do { } while(0)
268 #endif
269 
270 static struct feature_property {
271 	const char *name;
272 	u32 min_value;
273 	unsigned long cpu_feature;
274 	unsigned long cpu_user_ftr;
275 } feature_properties[] __initdata = {
276 #ifdef CONFIG_ALTIVEC
277 	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
278 	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
279 #endif /* CONFIG_ALTIVEC */
280 #ifdef CONFIG_VSX
281 	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
282 	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
283 #endif /* CONFIG_VSX */
284 #ifdef CONFIG_PPC64
285 	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
286 	{"ibm,purr", 1, CPU_FTR_PURR, 0},
287 	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
288 #endif /* CONFIG_PPC64 */
289 };
290 
291 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
identical_pvr_fixup(unsigned long node)292 static __init void identical_pvr_fixup(unsigned long node)
293 {
294 	unsigned int pvr;
295 	const char *model = of_get_flat_dt_prop(node, "model", NULL);
296 
297 	/*
298 	 * Since 440GR(x)/440EP(x) processors have the same pvr,
299 	 * we check the node path and set bit 28 in the cur_cpu_spec
300 	 * pvr for EP(x) processor version. This bit is always 0 in
301 	 * the "real" pvr. Then we call identify_cpu again with
302 	 * the new logical pvr to enable FPU support.
303 	 */
304 	if (model && strstr(model, "440EP")) {
305 		pvr = cur_cpu_spec->pvr_value | 0x8;
306 		identify_cpu(0, pvr);
307 		DBG("Using logical pvr %x for %s\n", pvr, model);
308 	}
309 }
310 #else
311 #define identical_pvr_fixup(node) do { } while(0)
312 #endif
313 
check_cpu_feature_properties(unsigned long node)314 static void __init check_cpu_feature_properties(unsigned long node)
315 {
316 	int i;
317 	struct feature_property *fp = feature_properties;
318 	const __be32 *prop;
319 
320 	for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
321 		prop = of_get_flat_dt_prop(node, fp->name, NULL);
322 		if (prop && be32_to_cpup(prop) >= fp->min_value) {
323 			cur_cpu_spec->cpu_features |= fp->cpu_feature;
324 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
325 		}
326 	}
327 }
328 
early_init_dt_scan_cpus(unsigned long node,const char * uname,int depth,void * data)329 static int __init early_init_dt_scan_cpus(unsigned long node,
330 					  const char *uname, int depth,
331 					  void *data)
332 {
333 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
334 	const __be32 *cpu_version = NULL;
335 	const __be32 *prop;
336 	const __be32 *intserv;
337 	int i, nthreads;
338 	int len;
339 	int found = -1;
340 	int found_thread = 0;
341 
342 	/* We are scanning "cpu" nodes only */
343 	if (type == NULL || strcmp(type, "cpu") != 0)
344 		return 0;
345 
346 	if (IS_ENABLED(CONFIG_PPC64))
347 		boot_cpu_node_count++;
348 
349 	/* Get physical cpuid */
350 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
351 	if (!intserv)
352 		intserv = of_get_flat_dt_prop(node, "reg", &len);
353 
354 	nthreads = len / sizeof(int);
355 
356 	/*
357 	 * Now see if any of these threads match our boot cpu.
358 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
359 	 */
360 	for (i = 0; i < nthreads; i++) {
361 		if (be32_to_cpu(intserv[i]) ==
362 			fdt_boot_cpuid_phys(initial_boot_params)) {
363 			found = boot_cpu_count;
364 			found_thread = i;
365 		}
366 #ifdef CONFIG_SMP
367 		/* logical cpu id is always 0 on UP kernels */
368 		boot_cpu_count++;
369 #endif
370 	}
371 
372 	/* Not the boot CPU */
373 	if (found < 0)
374 		return 0;
375 
376 	boot_cpuid = found;
377 
378 	if (IS_ENABLED(CONFIG_PPC64))
379 		boot_cpu_hwid = be32_to_cpu(intserv[found_thread]);
380 
381 	if (nr_cpu_ids % nthreads != 0) {
382 		set_nr_cpu_ids(ALIGN(nr_cpu_ids, nthreads));
383 		pr_warn("nr_cpu_ids was not a multiple of threads_per_core, adjusted to %d\n",
384 			nr_cpu_ids);
385 	}
386 
387 	if (boot_cpuid >= nr_cpu_ids) {
388 		// Remember boot core for smp_setup_cpu_maps()
389 		boot_core_hwid = be32_to_cpu(intserv[0]);
390 
391 		pr_warn("Boot CPU %d (core hwid %d) >= nr_cpu_ids, adjusted boot CPU to %d\n",
392 			boot_cpuid, boot_core_hwid, found_thread);
393 
394 		// Adjust boot CPU to appear on logical core 0
395 		boot_cpuid = found_thread;
396 	}
397 
398 	DBG("boot cpu: logical %d physical %d\n", boot_cpuid,
399 	    be32_to_cpu(intserv[found_thread]));
400 
401 	/*
402 	 * PAPR defines "logical" PVR values for cpus that
403 	 * meet various levels of the architecture:
404 	 * 0x0f000001	Architecture version 2.04
405 	 * 0x0f000002	Architecture version 2.05
406 	 * If the cpu-version property in the cpu node contains
407 	 * such a value, we call identify_cpu again with the
408 	 * logical PVR value in order to use the cpu feature
409 	 * bits appropriate for the architecture level.
410 	 *
411 	 * A POWER6 partition in "POWER6 architected" mode
412 	 * uses the 0x0f000002 PVR value; in POWER5+ mode
413 	 * it uses 0x0f000001.
414 	 *
415 	 * If we're using device tree CPU feature discovery then we don't
416 	 * support the cpu-version property, and it's the responsibility of the
417 	 * firmware/hypervisor to provide the correct feature set for the
418 	 * architecture level via the ibm,powerpc-cpu-features binding.
419 	 */
420 	if (!dt_cpu_ftrs_in_use()) {
421 		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
422 		if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) {
423 			identify_cpu(0, be32_to_cpup(prop));
424 			cpu_version = prop;
425 		}
426 
427 		check_cpu_feature_properties(node);
428 		check_cpu_features(node, "ibm,pa-features", ibm_pa_features,
429 				   ARRAY_SIZE(ibm_pa_features));
430 		check_cpu_features(node, "ibm,pi-features", ibm_pi_features,
431 				   ARRAY_SIZE(ibm_pi_features));
432 	}
433 
434 	identical_pvr_fixup(node);
435 
436 	// We can now add the CPU name & PVR to the hardware description
437 	seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR));
438 	if (cpu_version)
439 		seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(cpu_version));
440 
441 	init_mmu_slb_size(node);
442 
443 #ifdef CONFIG_PPC64
444 	if (nthreads == 1)
445 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
446 	else if (!dt_cpu_ftrs_in_use())
447 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
448 #endif
449 
450 	return 0;
451 }
452 
early_init_dt_scan_chosen_ppc(unsigned long node,const char * uname,int depth,void * data)453 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
454 						const char *uname,
455 						int depth, void *data)
456 {
457 	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
458 
459 	/* Use common scan routine to determine if this is the chosen node */
460 	if (early_init_dt_scan_chosen(data) < 0)
461 		return 0;
462 
463 #ifdef CONFIG_PPC64
464 	/* check if iommu is forced on or off */
465 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
466 		iommu_is_off = 1;
467 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
468 		iommu_force_on = 1;
469 #endif
470 
471 	/* mem=x on the command line is the preferred mechanism */
472 	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
473 	if (lprop)
474 		memory_limit = *lprop;
475 
476 #ifdef CONFIG_PPC64
477 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
478 	if (lprop)
479 		tce_alloc_start = *lprop;
480 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
481 	if (lprop)
482 		tce_alloc_end = *lprop;
483 #endif
484 
485 #ifdef CONFIG_CRASH_RESERVE
486 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
487 	if (lprop)
488 		crashk_res.start = *lprop;
489 
490 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
491 	if (lprop)
492 		crashk_res.end = crashk_res.start + *lprop - 1;
493 #endif
494 
495 	/* break now */
496 	return 1;
497 }
498 
499 /*
500  * Compare the range against max mem limit and update
501  * size if it cross the limit.
502  */
503 
504 #ifdef CONFIG_SPARSEMEM
validate_mem_limit(u64 base,u64 * size)505 static bool __init validate_mem_limit(u64 base, u64 *size)
506 {
507 	u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
508 
509 	if (base >= max_mem)
510 		return false;
511 	if ((base + *size) > max_mem)
512 		*size = max_mem - base;
513 	return true;
514 }
515 #else
validate_mem_limit(u64 base,u64 * size)516 static bool __init validate_mem_limit(u64 base, u64 *size)
517 {
518 	return true;
519 }
520 #endif
521 
522 #ifdef CONFIG_PPC_PSERIES
523 /*
524  * Interpret the ibm dynamic reconfiguration memory LMBs.
525  * This contains a list of memory blocks along with NUMA affinity
526  * information.
527  */
early_init_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)528 static int  __init early_init_drmem_lmb(struct drmem_lmb *lmb,
529 					const __be32 **usm,
530 					void *data)
531 {
532 	u64 base, size;
533 	int is_kexec_kdump = 0, rngs;
534 
535 	base = lmb->base_addr;
536 	size = drmem_lmb_size();
537 	rngs = 1;
538 
539 	/*
540 	 * Skip this block if the reserved bit is set in flags
541 	 * or if the block is not assigned to this partition.
542 	 */
543 	if ((lmb->flags & DRCONF_MEM_RESERVED) ||
544 	    !(lmb->flags & DRCONF_MEM_ASSIGNED))
545 		return 0;
546 
547 	if (*usm)
548 		is_kexec_kdump = 1;
549 
550 	if (is_kexec_kdump) {
551 		/*
552 		 * For each memblock in ibm,dynamic-memory, a
553 		 * corresponding entry in linux,drconf-usable-memory
554 		 * property contains a counter 'p' followed by 'p'
555 		 * (base, size) duple. Now read the counter from
556 		 * linux,drconf-usable-memory property
557 		 */
558 		rngs = dt_mem_next_cell(dt_root_size_cells, usm);
559 		if (!rngs) /* there are no (base, size) duple */
560 			return 0;
561 	}
562 
563 	do {
564 		if (is_kexec_kdump) {
565 			base = dt_mem_next_cell(dt_root_addr_cells, usm);
566 			size = dt_mem_next_cell(dt_root_size_cells, usm);
567 		}
568 
569 		if (iommu_is_off) {
570 			if (base >= 0x80000000ul)
571 				continue;
572 			if ((base + size) > 0x80000000ul)
573 				size = 0x80000000ul - base;
574 		}
575 
576 		if (!validate_mem_limit(base, &size))
577 			continue;
578 
579 		DBG("Adding: %llx -> %llx\n", base, size);
580 		memblock_add(base, size);
581 
582 		if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
583 			memblock_mark_hotplug(base, size);
584 	} while (--rngs);
585 
586 	return 0;
587 }
588 #endif /* CONFIG_PPC_PSERIES */
589 
early_init_dt_scan_memory_ppc(void)590 static int __init early_init_dt_scan_memory_ppc(void)
591 {
592 #ifdef CONFIG_PPC_PSERIES
593 	const void *fdt = initial_boot_params;
594 	int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
595 
596 	if (node > 0)
597 		walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
598 
599 #endif
600 
601 	return early_init_dt_scan_memory();
602 }
603 
604 /*
605  * For a relocatable kernel, we need to get the memstart_addr first,
606  * then use it to calculate the virtual kernel start address. This has
607  * to happen at a very early stage (before machine_init). In this case,
608  * we just want to get the memstart_address and would not like to mess the
609  * memblock at this stage. So introduce a variable to skip the memblock_add()
610  * for this reason.
611  */
612 #ifdef CONFIG_RELOCATABLE
613 static int add_mem_to_memblock = 1;
614 #else
615 #define add_mem_to_memblock 1
616 #endif
617 
early_init_dt_add_memory_arch(u64 base,u64 size)618 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
619 {
620 #ifdef CONFIG_PPC64
621 	if (iommu_is_off) {
622 		if (base >= 0x80000000ul)
623 			return;
624 		if ((base + size) > 0x80000000ul)
625 			size = 0x80000000ul - base;
626 	}
627 #endif
628 	/* Keep track of the beginning of memory -and- the size of
629 	 * the very first block in the device-tree as it represents
630 	 * the RMA on ppc64 server
631 	 */
632 	if (base < memstart_addr) {
633 		memstart_addr = base;
634 		first_memblock_size = size;
635 	}
636 
637 	/* Add the chunk to the MEMBLOCK list */
638 	if (add_mem_to_memblock) {
639 		if (validate_mem_limit(base, &size))
640 			memblock_add(base, size);
641 	}
642 }
643 
early_reserve_mem_dt(void)644 static void __init early_reserve_mem_dt(void)
645 {
646 	unsigned long i, dt_root;
647 	int len;
648 	const __be32 *prop;
649 
650 	early_init_fdt_reserve_self();
651 	early_init_fdt_scan_reserved_mem();
652 
653 	dt_root = of_get_flat_dt_root();
654 
655 	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
656 
657 	if (!prop)
658 		return;
659 
660 	DBG("Found new-style reserved-ranges\n");
661 
662 	/* Each reserved range is an (address,size) pair, 2 cells each,
663 	 * totalling 4 cells per range. */
664 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
665 		u64 base, size;
666 
667 		base = of_read_number(prop + (i * 4) + 0, 2);
668 		size = of_read_number(prop + (i * 4) + 2, 2);
669 
670 		if (size) {
671 			DBG("reserving: %llx -> %llx\n", base, size);
672 			memblock_reserve(base, size);
673 		}
674 	}
675 }
676 
early_reserve_mem(void)677 static void __init early_reserve_mem(void)
678 {
679 	__be64 *reserve_map;
680 
681 	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
682 			fdt_off_mem_rsvmap(initial_boot_params));
683 
684 	/* Look for the new "reserved-regions" property in the DT */
685 	early_reserve_mem_dt();
686 
687 #ifdef CONFIG_BLK_DEV_INITRD
688 	/* Then reserve the initrd, if any */
689 	if (initrd_start && (initrd_end > initrd_start)) {
690 		memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
691 			ALIGN(initrd_end, PAGE_SIZE) -
692 			ALIGN_DOWN(initrd_start, PAGE_SIZE));
693 	}
694 #endif /* CONFIG_BLK_DEV_INITRD */
695 
696 	if (!IS_ENABLED(CONFIG_PPC32))
697 		return;
698 
699 	/*
700 	 * Handle the case where we might be booting from an old kexec
701 	 * image that setup the mem_rsvmap as pairs of 32-bit values
702 	 */
703 	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
704 		u32 base_32, size_32;
705 		__be32 *reserve_map_32 = (__be32 *)reserve_map;
706 
707 		DBG("Found old 32-bit reserve map\n");
708 
709 		while (1) {
710 			base_32 = be32_to_cpup(reserve_map_32++);
711 			size_32 = be32_to_cpup(reserve_map_32++);
712 			if (size_32 == 0)
713 				break;
714 			DBG("reserving: %x -> %x\n", base_32, size_32);
715 			memblock_reserve(base_32, size_32);
716 		}
717 		return;
718 	}
719 }
720 
721 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
722 static bool tm_disabled __initdata;
723 
parse_ppc_tm(char * str)724 static int __init parse_ppc_tm(char *str)
725 {
726 	bool res;
727 
728 	if (kstrtobool(str, &res))
729 		return -EINVAL;
730 
731 	tm_disabled = !res;
732 
733 	return 0;
734 }
735 early_param("ppc_tm", parse_ppc_tm);
736 
tm_init(void)737 static void __init tm_init(void)
738 {
739 	if (tm_disabled) {
740 		pr_info("Disabling hardware transactional memory (HTM)\n");
741 		cur_cpu_spec->cpu_user_features2 &=
742 			~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
743 		cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
744 		return;
745 	}
746 
747 	pnv_tm_init();
748 }
749 #else
tm_init(void)750 static void tm_init(void) { }
751 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
752 
753 static int __init
early_init_dt_scan_model(unsigned long node,const char * uname,int depth,void * data)754 early_init_dt_scan_model(unsigned long node, const char *uname,
755 			 int depth, void *data)
756 {
757 	const char *prop;
758 
759 	if (depth != 0)
760 		return 0;
761 
762 	prop = of_get_flat_dt_prop(node, "model", NULL);
763 	if (prop)
764 		seq_buf_printf(&ppc_hw_desc, "%s ", prop);
765 
766 	/* break now */
767 	return 1;
768 }
769 
770 #ifdef CONFIG_PPC64
save_fscr_to_task(void)771 static void __init save_fscr_to_task(void)
772 {
773 	/*
774 	 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
775 	 * have configured via the device tree features or via __init_FSCR().
776 	 * That value will then be propagated to pid 1 (init) and all future
777 	 * processes.
778 	 */
779 	if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
780 		init_task.thread.fscr = mfspr(SPRN_FSCR);
781 }
782 #else
save_fscr_to_task(void)783 static inline void save_fscr_to_task(void) {}
784 #endif
785 
786 
early_init_devtree(void * params)787 void __init early_init_devtree(void *params)
788 {
789 	phys_addr_t int_vector_size;
790 
791 	DBG(" -> early_init_devtree(%px)\n", params);
792 
793 	/* Too early to BUG_ON(), do it by hand */
794 	if (!early_init_dt_verify(params))
795 		panic("BUG: Failed verifying flat device tree, bad version?");
796 
797 	of_scan_flat_dt(early_init_dt_scan_model, NULL);
798 
799 #ifdef CONFIG_PPC_RTAS
800 	/* Some machines might need RTAS info for debugging, grab it now. */
801 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
802 #endif
803 
804 #ifdef CONFIG_PPC_POWERNV
805 	/* Some machines might need OPAL info for debugging, grab it now. */
806 	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
807 
808 	/* Scan tree for ultravisor feature */
809 	of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
810 #endif
811 
812 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
813 	/* scan tree to see if dump is active during last boot */
814 	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
815 #endif
816 
817 	/* Retrieve various informations from the /chosen node of the
818 	 * device-tree, including the platform type, initrd location and
819 	 * size, TCE reserve, and more ...
820 	 */
821 	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
822 
823 	/* Append additional parameters passed for fadump capture kernel */
824 	fadump_append_bootargs();
825 
826 	/* Scan memory nodes and rebuild MEMBLOCKs */
827 	early_init_dt_scan_root();
828 	early_init_dt_scan_memory_ppc();
829 
830 	/*
831 	 * As generic code authors expect to be able to use static keys
832 	 * in early_param() handlers, we initialize the static keys just
833 	 * before parsing early params (it's fine to call jump_label_init()
834 	 * more than once).
835 	 */
836 	jump_label_init();
837 	parse_early_param();
838 
839 	/* make sure we've parsed cmdline for mem= before this */
840 	if (memory_limit)
841 		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
842 	setup_initial_memory_limit(memstart_addr, first_memblock_size);
843 	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
844 	memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START);
845 #ifdef CONFIG_PPC64
846 	/* If relocatable, reserve at least 32k for interrupt vectors etc. */
847 	int_vector_size = __end_interrupts - _stext;
848 	int_vector_size = max_t(phys_addr_t, SZ_32K, int_vector_size);
849 #else
850 	/* If relocatable, reserve first 32k for interrupt vectors etc. */
851 	int_vector_size = SZ_32K;
852 #endif
853 	if (PHYSICAL_START > MEMORY_START)
854 		memblock_reserve(MEMORY_START, int_vector_size);
855 	reserve_kdump_trampoline();
856 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
857 	/*
858 	 * If we fail to reserve memory for firmware-assisted dump then
859 	 * fallback to kexec based kdump.
860 	 */
861 	if (fadump_reserve_mem() == 0)
862 #endif
863 		reserve_crashkernel();
864 	early_reserve_mem();
865 
866 	if (memory_limit > memblock_phys_mem_size())
867 		memory_limit = 0;
868 
869 	/* Align down to 16 MB which is large page size with hash page translation */
870 	memory_limit = ALIGN_DOWN(memory_limit ?: memblock_phys_mem_size(), SZ_16M);
871 	memblock_enforce_memory_limit(memory_limit);
872 
873 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
874 	if (!early_radix_enabled())
875 		memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
876 #endif
877 
878 	memblock_allow_resize();
879 	memblock_dump_all();
880 
881 	DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
882 
883 	/* We may need to relocate the flat tree, do it now.
884 	 * FIXME .. and the initrd too? */
885 	move_device_tree();
886 
887 	DBG("Scanning CPUs ...\n");
888 
889 	dt_cpu_ftrs_scan();
890 
891 	/* Retrieve CPU related informations from the flat tree
892 	 * (altivec support, boot CPU ID, ...)
893 	 */
894 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
895 	if (boot_cpuid < 0) {
896 		printk("Failed to identify boot CPU !\n");
897 		BUG();
898 	}
899 
900 	save_fscr_to_task();
901 
902 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
903 	/* We'll later wait for secondaries to check in; there are
904 	 * NCPUS-1 non-boot CPUs  :-)
905 	 */
906 	spinning_secondaries = boot_cpu_count - 1;
907 #endif
908 
909 	mmu_early_init_devtree();
910 
911 #ifdef CONFIG_PPC_POWERNV
912 	/* Scan and build the list of machine check recoverable ranges */
913 	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
914 #endif
915 	epapr_paravirt_early_init();
916 
917 	/* Now try to figure out if we are running on LPAR and so on */
918 	pseries_probe_fw_features();
919 
920 	/*
921 	 * Initialize pkey features and default AMR/IAMR values
922 	 */
923 	pkey_early_init_devtree();
924 
925 #ifdef CONFIG_PPC_PS3
926 	/* Identify PS3 firmware */
927 	if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
928 		powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
929 #endif
930 
931 	/* If kexec left a PLPKS password in the DT, get it and clear it */
932 	plpks_early_init_devtree();
933 
934 	tm_init();
935 
936 	DBG(" <- early_init_devtree()\n");
937 }
938 
939 #ifdef CONFIG_RELOCATABLE
940 /*
941  * This function run before early_init_devtree, so we have to init
942  * initial_boot_params.
943  */
early_get_first_memblock_info(void * params,phys_addr_t * size)944 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
945 {
946 	/* Setup flat device-tree pointer */
947 	initial_boot_params = params;
948 
949 	/*
950 	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
951 	 * mess the memblock.
952 	 */
953 	add_mem_to_memblock = 0;
954 	early_init_dt_scan_root();
955 	early_init_dt_scan_memory_ppc();
956 	add_mem_to_memblock = 1;
957 
958 	if (size)
959 		*size = first_memblock_size;
960 }
961 #endif
962 
963 /*******
964  *
965  * New implementation of the OF "find" APIs, return a refcounted
966  * object, call of_node_put() when done.  The device tree and list
967  * are protected by a rw_lock.
968  *
969  * Note that property management will need some locking as well,
970  * this isn't dealt with yet.
971  *
972  *******/
973 
974 /**
975  * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
976  * @np: device node of the device
977  *
978  * This looks for a property "ibm,chip-id" in the node or any
979  * of its parents and returns its content, or -1 if it cannot
980  * be found.
981  */
of_get_ibm_chip_id(struct device_node * np)982 int of_get_ibm_chip_id(struct device_node *np)
983 {
984 	of_node_get(np);
985 	while (np) {
986 		u32 chip_id;
987 
988 		/*
989 		 * Skiboot may produce memory nodes that contain more than one
990 		 * cell in chip-id, we only read the first one here.
991 		 */
992 		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
993 			of_node_put(np);
994 			return chip_id;
995 		}
996 
997 		np = of_get_next_parent(np);
998 	}
999 	return -1;
1000 }
1001 EXPORT_SYMBOL(of_get_ibm_chip_id);
1002 
1003 /**
1004  * cpu_to_chip_id - Return the cpus chip-id
1005  * @cpu: The logical cpu number.
1006  *
1007  * Return the value of the ibm,chip-id property corresponding to the given
1008  * logical cpu number. If the chip-id can not be found, returns -1.
1009  */
cpu_to_chip_id(int cpu)1010 int cpu_to_chip_id(int cpu)
1011 {
1012 	struct device_node *np;
1013 	int ret = -1, idx;
1014 
1015 	idx = cpu / threads_per_core;
1016 	if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1)
1017 		return chip_id_lookup_table[idx];
1018 
1019 	np = of_get_cpu_node(cpu, NULL);
1020 	if (np) {
1021 		ret = of_get_ibm_chip_id(np);
1022 		of_node_put(np);
1023 
1024 		if (chip_id_lookup_table)
1025 			chip_id_lookup_table[idx] = ret;
1026 	}
1027 
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL(cpu_to_chip_id);
1031 
arch_match_cpu_phys_id(int cpu,u64 phys_id)1032 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
1033 {
1034 #ifdef CONFIG_SMP
1035 	/*
1036 	 * Early firmware scanning must use this rather than
1037 	 * get_hard_smp_processor_id because we don't have pacas allocated
1038 	 * until memory topology is discovered.
1039 	 */
1040 	if (cpu_to_phys_id != NULL)
1041 		return (int)phys_id == cpu_to_phys_id[cpu];
1042 #endif
1043 
1044 	return (int)phys_id == get_hard_smp_processor_id(cpu);
1045 }
1046