xref: /linux/arch/powerpc/kernel/prom.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53 
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63 
64 #ifdef CONFIG_PPC64
65 int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69 
70 typedef u32 cell_t;
71 
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77 
78 static struct device_node *allnodes = NULL;
79 
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84 
85 /* export that to outside world */
86 struct device_node *of_chosen;
87 
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90 
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 	unsigned long tmp;
101 
102 	if (!mem_start)
103 		return kmalloc(size, GFP_KERNEL);
104 
105 	tmp = *mem_start;
106 	*mem_start += size;
107 	return (void *)tmp;
108 }
109 
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 	struct device_node *np;
116 
117 	for (np = allnodes; np != 0; np = np->allnext)
118 		if (np->linux_phandle == ph)
119 			return np;
120 	return NULL;
121 }
122 
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 	phandle *parp;
129 
130 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 	if (parp == NULL)
132 		return p->parent;
133 	p = find_phandle(*parp);
134 	if (p != NULL)
135 		return p;
136 	/*
137 	 * On a powermac booted with BootX, we don't get to know the
138 	 * phandles for any nodes, so find_phandle will return NULL.
139 	 * Fortunately these machines only have one interrupt controller
140 	 * so there isn't in fact any ambiguity.  -- paulus
141 	 */
142 	if (num_interrupt_controllers == 1)
143 		p = dflt_interrupt_controller;
144 	return p;
145 }
146 
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 	struct device_node *p;
154 	unsigned int *icp;
155 
156 	for (p = np; (p = intr_parent(p)) != NULL; ) {
157 		icp = (unsigned int *)
158 			get_property(p, "#interrupt-cells", NULL);
159 		if (icp != NULL)
160 			return *icp;
161 		if (get_property(p, "interrupt-controller", NULL) != NULL
162 		    || get_property(p, "interrupt-map", NULL) != NULL) {
163 			printk("oops, node %s doesn't have #interrupt-cells\n",
164 			       p->full_name);
165 			return 1;
166 		}
167 	}
168 #ifdef DEBUG_IRQ
169 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 	return 1;
172 }
173 
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 				   struct device_node *np, unsigned int *ints,
180 				   int nintrc)
181 {
182 	struct device_node *p, *ipar;
183 	unsigned int *imap, *imask, *ip;
184 	int i, imaplen, match;
185 	int newintrc = 0, newaddrc = 0;
186 	unsigned int *reg;
187 	int naddrc;
188 
189 	reg = (unsigned int *) get_property(np, "reg", NULL);
190 	naddrc = prom_n_addr_cells(np);
191 	p = intr_parent(np);
192 	while (p != NULL) {
193 		if (get_property(p, "interrupt-controller", NULL) != NULL)
194 			/* this node is an interrupt controller, stop here */
195 			break;
196 		imap = (unsigned int *)
197 			get_property(p, "interrupt-map", &imaplen);
198 		if (imap == NULL) {
199 			p = intr_parent(p);
200 			continue;
201 		}
202 		imask = (unsigned int *)
203 			get_property(p, "interrupt-map-mask", NULL);
204 		if (imask == NULL) {
205 			printk("oops, %s has interrupt-map but no mask\n",
206 			       p->full_name);
207 			return 0;
208 		}
209 		imaplen /= sizeof(unsigned int);
210 		match = 0;
211 		ipar = NULL;
212 		while (imaplen > 0 && !match) {
213 			/* check the child-interrupt field */
214 			match = 1;
215 			for (i = 0; i < naddrc && match; ++i)
216 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 			for (; i < naddrc + nintrc && match; ++i)
218 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 			imap += naddrc + nintrc;
220 			imaplen -= naddrc + nintrc;
221 			/* grab the interrupt parent */
222 			ipar = find_phandle((phandle) *imap++);
223 			--imaplen;
224 			if (ipar == NULL && num_interrupt_controllers == 1)
225 				/* cope with BootX not giving us phandles */
226 				ipar = dflt_interrupt_controller;
227 			if (ipar == NULL) {
228 				printk("oops, no int parent %x in map of %s\n",
229 				       imap[-1], p->full_name);
230 				return 0;
231 			}
232 			/* find the parent's # addr and intr cells */
233 			ip = (unsigned int *)
234 				get_property(ipar, "#interrupt-cells", NULL);
235 			if (ip == NULL) {
236 				printk("oops, no #interrupt-cells on %s\n",
237 				       ipar->full_name);
238 				return 0;
239 			}
240 			newintrc = *ip;
241 			ip = (unsigned int *)
242 				get_property(ipar, "#address-cells", NULL);
243 			newaddrc = (ip == NULL)? 0: *ip;
244 			imap += newaddrc + newintrc;
245 			imaplen -= newaddrc + newintrc;
246 		}
247 		if (imaplen < 0) {
248 			printk("oops, error decoding int-map on %s, len=%d\n",
249 			       p->full_name, imaplen);
250 			return 0;
251 		}
252 		if (!match) {
253 #ifdef DEBUG_IRQ
254 			printk("oops, no match in %s int-map for %s\n",
255 			       p->full_name, np->full_name);
256 #endif
257 			return 0;
258 		}
259 		p = ipar;
260 		naddrc = newaddrc;
261 		nintrc = newintrc;
262 		ints = imap - nintrc;
263 		reg = ints - naddrc;
264 	}
265 	if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 		printk("hmmm, int tree for %s doesn't have ctrler\n",
268 		       np->full_name);
269 #endif
270 		return 0;
271 	}
272 	*irq = ints;
273 	*ictrler = p;
274 	return nintrc;
275 }
276 
277 static unsigned char map_isa_senses[4] = {
278 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283 
284 static unsigned char map_mpic_senses[4] = {
285 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 	/* 2 seems to be used for the 8259 cascade... */
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291 
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 					    unsigned long *mem_start,
294 					    int measure_only)
295 {
296 	unsigned int *ints;
297 	int intlen, intrcells, intrcount;
298 	int i, j, n, sense;
299 	unsigned int *irq, virq;
300 	struct device_node *ic;
301 	int trace = 0;
302 
303 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305 
306 	if (!strcmp(np->name, "smu-doorbell"))
307 		trace = 1;
308 
309 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 	      num_interrupt_controllers);
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = IRQ_SENSE_LEVEL
339 				| IRQ_POLARITY_NEGATIVE;
340 		}
341 		return 0;
342 	}
343 
344 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 	if (ints == NULL)
347 		return 0;
348 	intrcells = prom_n_intr_cells(np);
349 	intlen /= intrcells * sizeof(unsigned int);
350 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 	if (!np->intrs)
353 		return -ENOMEM;
354 
355 	if (measure_only)
356 		return 0;
357 
358 	intrcount = 0;
359 	for (i = 0; i < intlen; ++i, ints += intrcells) {
360 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 		if (n <= 0)
363 			continue;
364 
365 		/* don't map IRQ numbers under a cascaded 8259 controller */
366 		if (ic && device_is_compatible(ic, "chrp,iic")) {
367 			np->intrs[intrcount].line = irq[0];
368 			sense = (n > 1)? (irq[1] & 3): 3;
369 			np->intrs[intrcount].sense = map_isa_senses[sense];
370 		} else {
371 			virq = virt_irq_create_mapping(irq[0]);
372 			TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 			if (virq == NO_IRQ) {
375 				printk(KERN_CRIT "Could not allocate interrupt"
376 				       " number for %s\n", np->full_name);
377 				continue;
378 			}
379 #endif
380 			np->intrs[intrcount].line = irq_offset_up(virq);
381 			sense = (n > 1)? (irq[1] & 3): 1;
382 
383 			/* Apple uses bits in there in a different way, let's
384 			 * only keep the real sense bit on macs
385 			 */
386 			if (machine_is(powermac))
387 				sense &= 0x1;
388 			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 		}
390 
391 #ifdef CONFIG_PPC64
392 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 		if (machine_is(powermac) && ic && ic->parent) {
394 			char *name = get_property(ic->parent, "name", NULL);
395 			if (name && !strcmp(name, "u3"))
396 				np->intrs[intrcount].line += 128;
397 			else if (!(name && (!strcmp(name, "mac-io") ||
398 					    !strcmp(name, "u4"))))
399 				/* ignore other cascaded controllers, such as
400 				   the k2-sata-root */
401 				break;
402 		}
403 #endif /* CONFIG_PPC64 */
404 		if (n > 2) {
405 			printk("hmmm, got %d intr cells for %s:", n,
406 			       np->full_name);
407 			for (j = 0; j < n; ++j)
408 				printk(" %d", irq[j]);
409 			printk("\n");
410 		}
411 		++intrcount;
412 	}
413 	np->n_intrs = intrcount;
414 
415 	return 0;
416 }
417 
418 static int __devinit finish_node(struct device_node *np,
419 				 unsigned long *mem_start,
420 				 int measure_only)
421 {
422 	struct device_node *child;
423 	int rc = 0;
424 
425 	rc = finish_node_interrupts(np, mem_start, measure_only);
426 	if (rc)
427 		goto out;
428 
429 	for (child = np->child; child != NULL; child = child->sibling) {
430 		rc = finish_node(child, mem_start, measure_only);
431 		if (rc)
432 			goto out;
433 	}
434 out:
435 	return rc;
436 }
437 
438 static void __init scan_interrupt_controllers(void)
439 {
440 	struct device_node *np;
441 	int n = 0;
442 	char *name, *ic;
443 	int iclen;
444 
445 	for (np = allnodes; np != NULL; np = np->allnext) {
446 		ic = get_property(np, "interrupt-controller", &iclen);
447 		name = get_property(np, "name", NULL);
448 		/* checking iclen makes sure we don't get a false
449 		   match on /chosen.interrupt_controller */
450 		if ((name != NULL
451 		     && strcmp(name, "interrupt-controller") == 0)
452 		    || (ic != NULL && iclen == 0
453 			&& strcmp(name, "AppleKiwi"))) {
454 			if (n == 0)
455 				dflt_interrupt_controller = np;
456 			++n;
457 		}
458 	}
459 	num_interrupt_controllers = n;
460 }
461 
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471 	unsigned long start, end, size = 0;
472 
473 	DBG(" -> finish_device_tree\n");
474 
475 #ifdef CONFIG_PPC64
476 	/* Initialize virtual IRQ map */
477 	virt_irq_init();
478 #endif
479 	scan_interrupt_controllers();
480 
481 	/*
482 	 * Finish device-tree (pre-parsing some properties etc...)
483 	 * We do this in 2 passes. One with "measure_only" set, which
484 	 * will only measure the amount of memory needed, then we can
485 	 * allocate that memory, and call finish_node again. However,
486 	 * we must be careful as most routines will fail nowadays when
487 	 * prom_alloc() returns 0, so we must make sure our first pass
488 	 * doesn't start at 0. We pre-initialize size to 16 for that
489 	 * reason and then remove those additional 16 bytes
490 	 */
491 	size = 16;
492 	finish_node(allnodes, &size, 1);
493 	size -= 16;
494 
495 	if (0 == size)
496 		end = start = 0;
497 	else
498 		end = start = (unsigned long)__va(lmb_alloc(size, 128));
499 
500 	finish_node(allnodes, &end, 0);
501 	BUG_ON(end != start + size);
502 
503 	DBG(" <- finish_device_tree\n");
504 }
505 
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508 	return ((char *)initial_boot_params) +
509 		initial_boot_params->off_dt_strings + offset;
510 }
511 
512 /**
513  * This function is used to scan the flattened device-tree, it is
514  * used to extract the memory informations at boot before we can
515  * unflatten the tree
516  */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 				     const char *uname, int depth,
519 				     void *data),
520 			   void *data)
521 {
522 	unsigned long p = ((unsigned long)initial_boot_params) +
523 		initial_boot_params->off_dt_struct;
524 	int rc = 0;
525 	int depth = -1;
526 
527 	do {
528 		u32 tag = *((u32 *)p);
529 		char *pathp;
530 
531 		p += 4;
532 		if (tag == OF_DT_END_NODE) {
533 			depth --;
534 			continue;
535 		}
536 		if (tag == OF_DT_NOP)
537 			continue;
538 		if (tag == OF_DT_END)
539 			break;
540 		if (tag == OF_DT_PROP) {
541 			u32 sz = *((u32 *)p);
542 			p += 8;
543 			if (initial_boot_params->version < 0x10)
544 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 			p += sz;
546 			p = _ALIGN(p, 4);
547 			continue;
548 		}
549 		if (tag != OF_DT_BEGIN_NODE) {
550 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 			       " device tree !\n", tag);
552 			return -EINVAL;
553 		}
554 		depth++;
555 		pathp = (char *)p;
556 		p = _ALIGN(p + strlen(pathp) + 1, 4);
557 		if ((*pathp) == '/') {
558 			char *lp, *np;
559 			for (lp = NULL, np = pathp; *np; np++)
560 				if ((*np) == '/')
561 					lp = np+1;
562 			if (lp != NULL)
563 				pathp = lp;
564 		}
565 		rc = it(p, pathp, depth, data);
566 		if (rc != 0)
567 			break;
568 	} while(1);
569 
570 	return rc;
571 }
572 
573 unsigned long __init of_get_flat_dt_root(void)
574 {
575 	unsigned long p = ((unsigned long)initial_boot_params) +
576 		initial_boot_params->off_dt_struct;
577 
578 	while(*((u32 *)p) == OF_DT_NOP)
579 		p += 4;
580 	BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
581 	p += 4;
582 	return _ALIGN(p + strlen((char *)p) + 1, 4);
583 }
584 
585 /**
586  * This  function can be used within scan_flattened_dt callback to get
587  * access to properties
588  */
589 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
590 				 unsigned long *size)
591 {
592 	unsigned long p = node;
593 
594 	do {
595 		u32 tag = *((u32 *)p);
596 		u32 sz, noff;
597 		const char *nstr;
598 
599 		p += 4;
600 		if (tag == OF_DT_NOP)
601 			continue;
602 		if (tag != OF_DT_PROP)
603 			return NULL;
604 
605 		sz = *((u32 *)p);
606 		noff = *((u32 *)(p + 4));
607 		p += 8;
608 		if (initial_boot_params->version < 0x10)
609 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
610 
611 		nstr = find_flat_dt_string(noff);
612 		if (nstr == NULL) {
613 			printk(KERN_WARNING "Can't find property index"
614 			       " name !\n");
615 			return NULL;
616 		}
617 		if (strcmp(name, nstr) == 0) {
618 			if (size)
619 				*size = sz;
620 			return (void *)p;
621 		}
622 		p += sz;
623 		p = _ALIGN(p, 4);
624 	} while(1);
625 }
626 
627 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
628 {
629 	const char* cp;
630 	unsigned long cplen, l;
631 
632 	cp = of_get_flat_dt_prop(node, "compatible", &cplen);
633 	if (cp == NULL)
634 		return 0;
635 	while (cplen > 0) {
636 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
637 			return 1;
638 		l = strlen(cp) + 1;
639 		cp += l;
640 		cplen -= l;
641 	}
642 
643 	return 0;
644 }
645 
646 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
647 				       unsigned long align)
648 {
649 	void *res;
650 
651 	*mem = _ALIGN(*mem, align);
652 	res = (void *)*mem;
653 	*mem += size;
654 
655 	return res;
656 }
657 
658 static unsigned long __init unflatten_dt_node(unsigned long mem,
659 					      unsigned long *p,
660 					      struct device_node *dad,
661 					      struct device_node ***allnextpp,
662 					      unsigned long fpsize)
663 {
664 	struct device_node *np;
665 	struct property *pp, **prev_pp = NULL;
666 	char *pathp;
667 	u32 tag;
668 	unsigned int l, allocl;
669 	int has_name = 0;
670 	int new_format = 0;
671 
672 	tag = *((u32 *)(*p));
673 	if (tag != OF_DT_BEGIN_NODE) {
674 		printk("Weird tag at start of node: %x\n", tag);
675 		return mem;
676 	}
677 	*p += 4;
678 	pathp = (char *)*p;
679 	l = allocl = strlen(pathp) + 1;
680 	*p = _ALIGN(*p + l, 4);
681 
682 	/* version 0x10 has a more compact unit name here instead of the full
683 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
684 	 * it later. We detect this because the first character of the name is
685 	 * not '/'.
686 	 */
687 	if ((*pathp) != '/') {
688 		new_format = 1;
689 		if (fpsize == 0) {
690 			/* root node: special case. fpsize accounts for path
691 			 * plus terminating zero. root node only has '/', so
692 			 * fpsize should be 2, but we want to avoid the first
693 			 * level nodes to have two '/' so we use fpsize 1 here
694 			 */
695 			fpsize = 1;
696 			allocl = 2;
697 		} else {
698 			/* account for '/' and path size minus terminal 0
699 			 * already in 'l'
700 			 */
701 			fpsize += l;
702 			allocl = fpsize;
703 		}
704 	}
705 
706 
707 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
708 				__alignof__(struct device_node));
709 	if (allnextpp) {
710 		memset(np, 0, sizeof(*np));
711 		np->full_name = ((char*)np) + sizeof(struct device_node);
712 		if (new_format) {
713 			char *p = np->full_name;
714 			/* rebuild full path for new format */
715 			if (dad && dad->parent) {
716 				strcpy(p, dad->full_name);
717 #ifdef DEBUG
718 				if ((strlen(p) + l + 1) != allocl) {
719 					DBG("%s: p: %d, l: %d, a: %d\n",
720 					    pathp, (int)strlen(p), l, allocl);
721 				}
722 #endif
723 				p += strlen(p);
724 			}
725 			*(p++) = '/';
726 			memcpy(p, pathp, l);
727 		} else
728 			memcpy(np->full_name, pathp, l);
729 		prev_pp = &np->properties;
730 		**allnextpp = np;
731 		*allnextpp = &np->allnext;
732 		if (dad != NULL) {
733 			np->parent = dad;
734 			/* we temporarily use the next field as `last_child'*/
735 			if (dad->next == 0)
736 				dad->child = np;
737 			else
738 				dad->next->sibling = np;
739 			dad->next = np;
740 		}
741 		kref_init(&np->kref);
742 	}
743 	while(1) {
744 		u32 sz, noff;
745 		char *pname;
746 
747 		tag = *((u32 *)(*p));
748 		if (tag == OF_DT_NOP) {
749 			*p += 4;
750 			continue;
751 		}
752 		if (tag != OF_DT_PROP)
753 			break;
754 		*p += 4;
755 		sz = *((u32 *)(*p));
756 		noff = *((u32 *)((*p) + 4));
757 		*p += 8;
758 		if (initial_boot_params->version < 0x10)
759 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
760 
761 		pname = find_flat_dt_string(noff);
762 		if (pname == NULL) {
763 			printk("Can't find property name in list !\n");
764 			break;
765 		}
766 		if (strcmp(pname, "name") == 0)
767 			has_name = 1;
768 		l = strlen(pname) + 1;
769 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
770 					__alignof__(struct property));
771 		if (allnextpp) {
772 			if (strcmp(pname, "linux,phandle") == 0) {
773 				np->node = *((u32 *)*p);
774 				if (np->linux_phandle == 0)
775 					np->linux_phandle = np->node;
776 			}
777 			if (strcmp(pname, "ibm,phandle") == 0)
778 				np->linux_phandle = *((u32 *)*p);
779 			pp->name = pname;
780 			pp->length = sz;
781 			pp->value = (void *)*p;
782 			*prev_pp = pp;
783 			prev_pp = &pp->next;
784 		}
785 		*p = _ALIGN((*p) + sz, 4);
786 	}
787 	/* with version 0x10 we may not have the name property, recreate
788 	 * it here from the unit name if absent
789 	 */
790 	if (!has_name) {
791 		char *p = pathp, *ps = pathp, *pa = NULL;
792 		int sz;
793 
794 		while (*p) {
795 			if ((*p) == '@')
796 				pa = p;
797 			if ((*p) == '/')
798 				ps = p + 1;
799 			p++;
800 		}
801 		if (pa < ps)
802 			pa = p;
803 		sz = (pa - ps) + 1;
804 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
805 					__alignof__(struct property));
806 		if (allnextpp) {
807 			pp->name = "name";
808 			pp->length = sz;
809 			pp->value = (unsigned char *)(pp + 1);
810 			*prev_pp = pp;
811 			prev_pp = &pp->next;
812 			memcpy(pp->value, ps, sz - 1);
813 			((char *)pp->value)[sz - 1] = 0;
814 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
815 		}
816 	}
817 	if (allnextpp) {
818 		*prev_pp = NULL;
819 		np->name = get_property(np, "name", NULL);
820 		np->type = get_property(np, "device_type", NULL);
821 
822 		if (!np->name)
823 			np->name = "<NULL>";
824 		if (!np->type)
825 			np->type = "<NULL>";
826 	}
827 	while (tag == OF_DT_BEGIN_NODE) {
828 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
829 		tag = *((u32 *)(*p));
830 	}
831 	if (tag != OF_DT_END_NODE) {
832 		printk("Weird tag at end of node: %x\n", tag);
833 		return mem;
834 	}
835 	*p += 4;
836 	return mem;
837 }
838 
839 
840 /**
841  * unflattens the device-tree passed by the firmware, creating the
842  * tree of struct device_node. It also fills the "name" and "type"
843  * pointers of the nodes so the normal device-tree walking functions
844  * can be used (this used to be done by finish_device_tree)
845  */
846 void __init unflatten_device_tree(void)
847 {
848 	unsigned long start, mem, size;
849 	struct device_node **allnextp = &allnodes;
850 
851 	DBG(" -> unflatten_device_tree()\n");
852 
853 	/* First pass, scan for size */
854 	start = ((unsigned long)initial_boot_params) +
855 		initial_boot_params->off_dt_struct;
856 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
857 	size = (size | 3) + 1;
858 
859 	DBG("  size is %lx, allocating...\n", size);
860 
861 	/* Allocate memory for the expanded device tree */
862 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
863 	mem = (unsigned long) __va(mem);
864 
865 	((u32 *)mem)[size / 4] = 0xdeadbeef;
866 
867 	DBG("  unflattening %lx...\n", mem);
868 
869 	/* Second pass, do actual unflattening */
870 	start = ((unsigned long)initial_boot_params) +
871 		initial_boot_params->off_dt_struct;
872 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
873 	if (*((u32 *)start) != OF_DT_END)
874 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
875 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
876 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
877 		       ((u32 *)mem)[size / 4] );
878 	*allnextp = NULL;
879 
880 	/* Get pointer to OF "/chosen" node for use everywhere */
881 	of_chosen = of_find_node_by_path("/chosen");
882 	if (of_chosen == NULL)
883 		of_chosen = of_find_node_by_path("/chosen@0");
884 
885 	DBG(" <- unflatten_device_tree()\n");
886 }
887 
888 /*
889  * ibm,pa-features is a per-cpu property that contains a string of
890  * attribute descriptors, each of which has a 2 byte header plus up
891  * to 254 bytes worth of processor attribute bits.  First header
892  * byte specifies the number of bytes following the header.
893  * Second header byte is an "attribute-specifier" type, of which
894  * zero is the only currently-defined value.
895  * Implementation:  Pass in the byte and bit offset for the feature
896  * that we are interested in.  The function will return -1 if the
897  * pa-features property is missing, or a 1/0 to indicate if the feature
898  * is supported/not supported.  Note that the bit numbers are
899  * big-endian to match the definition in PAPR.
900  */
901 static struct ibm_pa_feature {
902 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
903 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
904 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
905 	unsigned char	pabit;		/* bit number (big-endian) */
906 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
907 } ibm_pa_features[] __initdata = {
908 	{0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
909 	{0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
910 	{CPU_FTR_SLB, 0,		0, 2, 0},
911 	{CPU_FTR_CTRL, 0,		0, 3, 0},
912 	{CPU_FTR_NOEXECUTE, 0,		0, 6, 0},
913 	{CPU_FTR_NODSISRALIGN, 0,	1, 1, 1},
914 	{CPU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
915 };
916 
917 static void __init check_cpu_pa_features(unsigned long node)
918 {
919 	unsigned char *pa_ftrs;
920 	unsigned long len, tablelen, i, bit;
921 
922 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
923 	if (pa_ftrs == NULL)
924 		return;
925 
926 	/* find descriptor with type == 0 */
927 	for (;;) {
928 		if (tablelen < 3)
929 			return;
930 		len = 2 + pa_ftrs[0];
931 		if (tablelen < len)
932 			return;		/* descriptor 0 not found */
933 		if (pa_ftrs[1] == 0)
934 			break;
935 		tablelen -= len;
936 		pa_ftrs += len;
937 	}
938 
939 	/* loop over bits we know about */
940 	for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) {
941 		struct ibm_pa_feature *fp = &ibm_pa_features[i];
942 
943 		if (fp->pabyte >= pa_ftrs[0])
944 			continue;
945 		bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
946 		if (bit ^ fp->invert) {
947 			cur_cpu_spec->cpu_features |= fp->cpu_features;
948 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
949 		} else {
950 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
951 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
952 		}
953 	}
954 }
955 
956 static int __init early_init_dt_scan_cpus(unsigned long node,
957 					  const char *uname, int depth,
958 					  void *data)
959 {
960 	static int logical_cpuid = 0;
961 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
962 #ifdef CONFIG_ALTIVEC
963 	u32 *prop;
964 #endif
965 	u32 *intserv;
966 	int i, nthreads;
967 	unsigned long len;
968 	int found = 0;
969 
970 	/* We are scanning "cpu" nodes only */
971 	if (type == NULL || strcmp(type, "cpu") != 0)
972 		return 0;
973 
974 	/* Get physical cpuid */
975 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
976 	if (intserv) {
977 		nthreads = len / sizeof(int);
978 	} else {
979 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
980 		nthreads = 1;
981 	}
982 
983 	/*
984 	 * Now see if any of these threads match our boot cpu.
985 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
986 	 */
987 	for (i = 0; i < nthreads; i++) {
988 		/*
989 		 * version 2 of the kexec param format adds the phys cpuid of
990 		 * booted proc.
991 		 */
992 		if (initial_boot_params && initial_boot_params->version >= 2) {
993 			if (intserv[i] ==
994 					initial_boot_params->boot_cpuid_phys) {
995 				found = 1;
996 				break;
997 			}
998 		} else {
999 			/*
1000 			 * Check if it's the boot-cpu, set it's hw index now,
1001 			 * unfortunately this format did not support booting
1002 			 * off secondary threads.
1003 			 */
1004 			if (of_get_flat_dt_prop(node,
1005 					"linux,boot-cpu", NULL) != NULL) {
1006 				found = 1;
1007 				break;
1008 			}
1009 		}
1010 
1011 #ifdef CONFIG_SMP
1012 		/* logical cpu id is always 0 on UP kernels */
1013 		logical_cpuid++;
1014 #endif
1015 	}
1016 
1017 	if (found) {
1018 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
1019 			intserv[i]);
1020 		boot_cpuid = logical_cpuid;
1021 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
1022 	}
1023 
1024 #ifdef CONFIG_ALTIVEC
1025 	/* Check if we have a VMX and eventually update CPU features */
1026 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1027 	if (prop && (*prop) > 0) {
1028 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1029 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1030 	}
1031 
1032 	/* Same goes for Apple's "altivec" property */
1033 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1034 	if (prop) {
1035 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1036 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1037 	}
1038 #endif /* CONFIG_ALTIVEC */
1039 
1040 	check_cpu_pa_features(node);
1041 
1042 #ifdef CONFIG_PPC_PSERIES
1043 	if (nthreads > 1)
1044 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1045 	else
1046 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1047 #endif
1048 
1049 	return 0;
1050 }
1051 
1052 static int __init early_init_dt_scan_chosen(unsigned long node,
1053 					    const char *uname, int depth, void *data)
1054 {
1055 	unsigned long *lprop;
1056 	unsigned long l;
1057 	char *p;
1058 
1059 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1060 
1061 	if (depth != 1 ||
1062 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1063 		return 0;
1064 
1065 #ifdef CONFIG_PPC64
1066 	/* check if iommu is forced on or off */
1067 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1068 		iommu_is_off = 1;
1069 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1070 		iommu_force_on = 1;
1071 #endif
1072 
1073  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1074  	if (lprop)
1075  		memory_limit = *lprop;
1076 
1077 #ifdef CONFIG_PPC64
1078  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1079  	if (lprop)
1080  		tce_alloc_start = *lprop;
1081  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1082  	if (lprop)
1083  		tce_alloc_end = *lprop;
1084 #endif
1085 
1086 #ifdef CONFIG_PPC_RTAS
1087 	/* To help early debugging via the front panel, we retrieve a minimal
1088 	 * set of RTAS infos now if available
1089 	 */
1090 	{
1091 		u64 *basep, *entryp, *sizep;
1092 
1093 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1094 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1095 		sizep = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1096 		if (basep && entryp && sizep) {
1097 			rtas.base = *basep;
1098 			rtas.entry = *entryp;
1099 			rtas.size = *sizep;
1100 		}
1101 	}
1102 #endif /* CONFIG_PPC_RTAS */
1103 
1104 #ifdef CONFIG_KEXEC
1105        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1106        if (lprop)
1107                crashk_res.start = *lprop;
1108 
1109        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1110        if (lprop)
1111                crashk_res.end = crashk_res.start + *lprop - 1;
1112 #endif
1113 
1114 	/* Retreive command line */
1115  	p = of_get_flat_dt_prop(node, "bootargs", &l);
1116 	if (p != NULL && l > 0)
1117 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1118 
1119 #ifdef CONFIG_CMDLINE
1120 	if (l == 0 || (l == 1 && (*p) == 0))
1121 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1122 #endif /* CONFIG_CMDLINE */
1123 
1124 	DBG("Command line is: %s\n", cmd_line);
1125 
1126 	if (strstr(cmd_line, "mem=")) {
1127 		char *p, *q;
1128 
1129 		for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1130 			q = p + 4;
1131 			if (p > cmd_line && p[-1] != ' ')
1132 				continue;
1133 			memory_limit = memparse(q, &q);
1134 		}
1135 	}
1136 
1137 	/* break now */
1138 	return 1;
1139 }
1140 
1141 static int __init early_init_dt_scan_root(unsigned long node,
1142 					  const char *uname, int depth, void *data)
1143 {
1144 	u32 *prop;
1145 
1146 	if (depth != 0)
1147 		return 0;
1148 
1149 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1150 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1151 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1152 
1153 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1154 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1155 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1156 
1157 	/* break now */
1158 	return 1;
1159 }
1160 
1161 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1162 {
1163 	cell_t *p = *cellp;
1164 	unsigned long r;
1165 
1166 	/* Ignore more than 2 cells */
1167 	while (s > sizeof(unsigned long) / 4) {
1168 		p++;
1169 		s--;
1170 	}
1171 	r = *p++;
1172 #ifdef CONFIG_PPC64
1173 	if (s > 1) {
1174 		r <<= 32;
1175 		r |= *(p++);
1176 		s--;
1177 	}
1178 #endif
1179 
1180 	*cellp = p;
1181 	return r;
1182 }
1183 
1184 
1185 static int __init early_init_dt_scan_memory(unsigned long node,
1186 					    const char *uname, int depth, void *data)
1187 {
1188 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1189 	cell_t *reg, *endp;
1190 	unsigned long l;
1191 
1192 	/* We are scanning "memory" nodes only */
1193 	if (type == NULL) {
1194 		/*
1195 		 * The longtrail doesn't have a device_type on the
1196 		 * /memory node, so look for the node called /memory@0.
1197 		 */
1198 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1199 			return 0;
1200 	} else if (strcmp(type, "memory") != 0)
1201 		return 0;
1202 
1203 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1204 	if (reg == NULL)
1205 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1206 	if (reg == NULL)
1207 		return 0;
1208 
1209 	endp = reg + (l / sizeof(cell_t));
1210 
1211 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1212 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1213 
1214 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1215 		unsigned long base, size;
1216 
1217 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1218 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1219 
1220 		if (size == 0)
1221 			continue;
1222 		DBG(" - %lx ,  %lx\n", base, size);
1223 #ifdef CONFIG_PPC64
1224 		if (iommu_is_off) {
1225 			if (base >= 0x80000000ul)
1226 				continue;
1227 			if ((base + size) > 0x80000000ul)
1228 				size = 0x80000000ul - base;
1229 		}
1230 #endif
1231 		lmb_add(base, size);
1232 	}
1233 	return 0;
1234 }
1235 
1236 static void __init early_reserve_mem(void)
1237 {
1238 	u64 base, size;
1239 	u64 *reserve_map;
1240 
1241 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1242 					initial_boot_params->off_mem_rsvmap);
1243 #ifdef CONFIG_PPC32
1244 	/*
1245 	 * Handle the case where we might be booting from an old kexec
1246 	 * image that setup the mem_rsvmap as pairs of 32-bit values
1247 	 */
1248 	if (*reserve_map > 0xffffffffull) {
1249 		u32 base_32, size_32;
1250 		u32 *reserve_map_32 = (u32 *)reserve_map;
1251 
1252 		while (1) {
1253 			base_32 = *(reserve_map_32++);
1254 			size_32 = *(reserve_map_32++);
1255 			if (size_32 == 0)
1256 				break;
1257 			DBG("reserving: %x -> %x\n", base_32, size_32);
1258 			lmb_reserve(base_32, size_32);
1259 		}
1260 		return;
1261 	}
1262 #endif
1263 	while (1) {
1264 		base = *(reserve_map++);
1265 		size = *(reserve_map++);
1266 		if (size == 0)
1267 			break;
1268 		DBG("reserving: %llx -> %llx\n", base, size);
1269 		lmb_reserve(base, size);
1270 	}
1271 
1272 #if 0
1273 	DBG("memory reserved, lmbs :\n");
1274       	lmb_dump_all();
1275 #endif
1276 }
1277 
1278 void __init early_init_devtree(void *params)
1279 {
1280 	DBG(" -> early_init_devtree()\n");
1281 
1282 	/* Setup flat device-tree pointer */
1283 	initial_boot_params = params;
1284 
1285 	/* Retrieve various informations from the /chosen node of the
1286 	 * device-tree, including the platform type, initrd location and
1287 	 * size, TCE reserve, and more ...
1288 	 */
1289 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1290 
1291 	/* Scan memory nodes and rebuild LMBs */
1292 	lmb_init();
1293 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1294 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1295 	lmb_enforce_memory_limit(memory_limit);
1296 	lmb_analyze();
1297 
1298 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1299 
1300 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1301 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1302 #ifdef CONFIG_CRASH_DUMP
1303 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1304 #endif
1305 	early_reserve_mem();
1306 
1307 	DBG("Scanning CPUs ...\n");
1308 
1309 	/* Retreive CPU related informations from the flat tree
1310 	 * (altivec support, boot CPU ID, ...)
1311 	 */
1312 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1313 
1314 	DBG(" <- early_init_devtree()\n");
1315 }
1316 
1317 #undef printk
1318 
1319 int
1320 prom_n_addr_cells(struct device_node* np)
1321 {
1322 	int* ip;
1323 	do {
1324 		if (np->parent)
1325 			np = np->parent;
1326 		ip = (int *) get_property(np, "#address-cells", NULL);
1327 		if (ip != NULL)
1328 			return *ip;
1329 	} while (np->parent);
1330 	/* No #address-cells property for the root node, default to 1 */
1331 	return 1;
1332 }
1333 EXPORT_SYMBOL(prom_n_addr_cells);
1334 
1335 int
1336 prom_n_size_cells(struct device_node* np)
1337 {
1338 	int* ip;
1339 	do {
1340 		if (np->parent)
1341 			np = np->parent;
1342 		ip = (int *) get_property(np, "#size-cells", NULL);
1343 		if (ip != NULL)
1344 			return *ip;
1345 	} while (np->parent);
1346 	/* No #size-cells property for the root node, default to 1 */
1347 	return 1;
1348 }
1349 EXPORT_SYMBOL(prom_n_size_cells);
1350 
1351 /**
1352  * Work out the sense (active-low level / active-high edge)
1353  * of each interrupt from the device tree.
1354  */
1355 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1356 {
1357 	struct device_node *np;
1358 	int i, j;
1359 
1360 	/* default to level-triggered */
1361 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1362 
1363 	for (np = allnodes; np != 0; np = np->allnext) {
1364 		for (j = 0; j < np->n_intrs; j++) {
1365 			i = np->intrs[j].line;
1366 			if (i >= off && i < max)
1367 				senses[i-off] = np->intrs[j].sense;
1368 		}
1369 	}
1370 }
1371 
1372 /**
1373  * Construct and return a list of the device_nodes with a given name.
1374  */
1375 struct device_node *find_devices(const char *name)
1376 {
1377 	struct device_node *head, **prevp, *np;
1378 
1379 	prevp = &head;
1380 	for (np = allnodes; np != 0; np = np->allnext) {
1381 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1382 			*prevp = np;
1383 			prevp = &np->next;
1384 		}
1385 	}
1386 	*prevp = NULL;
1387 	return head;
1388 }
1389 EXPORT_SYMBOL(find_devices);
1390 
1391 /**
1392  * Construct and return a list of the device_nodes with a given type.
1393  */
1394 struct device_node *find_type_devices(const char *type)
1395 {
1396 	struct device_node *head, **prevp, *np;
1397 
1398 	prevp = &head;
1399 	for (np = allnodes; np != 0; np = np->allnext) {
1400 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1401 			*prevp = np;
1402 			prevp = &np->next;
1403 		}
1404 	}
1405 	*prevp = NULL;
1406 	return head;
1407 }
1408 EXPORT_SYMBOL(find_type_devices);
1409 
1410 /**
1411  * Returns all nodes linked together
1412  */
1413 struct device_node *find_all_nodes(void)
1414 {
1415 	struct device_node *head, **prevp, *np;
1416 
1417 	prevp = &head;
1418 	for (np = allnodes; np != 0; np = np->allnext) {
1419 		*prevp = np;
1420 		prevp = &np->next;
1421 	}
1422 	*prevp = NULL;
1423 	return head;
1424 }
1425 EXPORT_SYMBOL(find_all_nodes);
1426 
1427 /** Checks if the given "compat" string matches one of the strings in
1428  * the device's "compatible" property
1429  */
1430 int device_is_compatible(struct device_node *device, const char *compat)
1431 {
1432 	const char* cp;
1433 	int cplen, l;
1434 
1435 	cp = (char *) get_property(device, "compatible", &cplen);
1436 	if (cp == NULL)
1437 		return 0;
1438 	while (cplen > 0) {
1439 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1440 			return 1;
1441 		l = strlen(cp) + 1;
1442 		cp += l;
1443 		cplen -= l;
1444 	}
1445 
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL(device_is_compatible);
1449 
1450 
1451 /**
1452  * Indicates whether the root node has a given value in its
1453  * compatible property.
1454  */
1455 int machine_is_compatible(const char *compat)
1456 {
1457 	struct device_node *root;
1458 	int rc = 0;
1459 
1460 	root = of_find_node_by_path("/");
1461 	if (root) {
1462 		rc = device_is_compatible(root, compat);
1463 		of_node_put(root);
1464 	}
1465 	return rc;
1466 }
1467 EXPORT_SYMBOL(machine_is_compatible);
1468 
1469 /**
1470  * Construct and return a list of the device_nodes with a given type
1471  * and compatible property.
1472  */
1473 struct device_node *find_compatible_devices(const char *type,
1474 					    const char *compat)
1475 {
1476 	struct device_node *head, **prevp, *np;
1477 
1478 	prevp = &head;
1479 	for (np = allnodes; np != 0; np = np->allnext) {
1480 		if (type != NULL
1481 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1482 			continue;
1483 		if (device_is_compatible(np, compat)) {
1484 			*prevp = np;
1485 			prevp = &np->next;
1486 		}
1487 	}
1488 	*prevp = NULL;
1489 	return head;
1490 }
1491 EXPORT_SYMBOL(find_compatible_devices);
1492 
1493 /**
1494  * Find the device_node with a given full_name.
1495  */
1496 struct device_node *find_path_device(const char *path)
1497 {
1498 	struct device_node *np;
1499 
1500 	for (np = allnodes; np != 0; np = np->allnext)
1501 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1502 			return np;
1503 	return NULL;
1504 }
1505 EXPORT_SYMBOL(find_path_device);
1506 
1507 /*******
1508  *
1509  * New implementation of the OF "find" APIs, return a refcounted
1510  * object, call of_node_put() when done.  The device tree and list
1511  * are protected by a rw_lock.
1512  *
1513  * Note that property management will need some locking as well,
1514  * this isn't dealt with yet.
1515  *
1516  *******/
1517 
1518 /**
1519  *	of_find_node_by_name - Find a node by its "name" property
1520  *	@from:	The node to start searching from or NULL, the node
1521  *		you pass will not be searched, only the next one
1522  *		will; typically, you pass what the previous call
1523  *		returned. of_node_put() will be called on it
1524  *	@name:	The name string to match against
1525  *
1526  *	Returns a node pointer with refcount incremented, use
1527  *	of_node_put() on it when done.
1528  */
1529 struct device_node *of_find_node_by_name(struct device_node *from,
1530 	const char *name)
1531 {
1532 	struct device_node *np;
1533 
1534 	read_lock(&devtree_lock);
1535 	np = from ? from->allnext : allnodes;
1536 	for (; np != NULL; np = np->allnext)
1537 		if (np->name != NULL && strcasecmp(np->name, name) == 0
1538 		    && of_node_get(np))
1539 			break;
1540 	if (from)
1541 		of_node_put(from);
1542 	read_unlock(&devtree_lock);
1543 	return np;
1544 }
1545 EXPORT_SYMBOL(of_find_node_by_name);
1546 
1547 /**
1548  *	of_find_node_by_type - Find a node by its "device_type" property
1549  *	@from:	The node to start searching from or NULL, the node
1550  *		you pass will not be searched, only the next one
1551  *		will; typically, you pass what the previous call
1552  *		returned. of_node_put() will be called on it
1553  *	@name:	The type string to match against
1554  *
1555  *	Returns a node pointer with refcount incremented, use
1556  *	of_node_put() on it when done.
1557  */
1558 struct device_node *of_find_node_by_type(struct device_node *from,
1559 	const char *type)
1560 {
1561 	struct device_node *np;
1562 
1563 	read_lock(&devtree_lock);
1564 	np = from ? from->allnext : allnodes;
1565 	for (; np != 0; np = np->allnext)
1566 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1567 		    && of_node_get(np))
1568 			break;
1569 	if (from)
1570 		of_node_put(from);
1571 	read_unlock(&devtree_lock);
1572 	return np;
1573 }
1574 EXPORT_SYMBOL(of_find_node_by_type);
1575 
1576 /**
1577  *	of_find_compatible_node - Find a node based on type and one of the
1578  *                                tokens in its "compatible" property
1579  *	@from:		The node to start searching from or NULL, the node
1580  *			you pass will not be searched, only the next one
1581  *			will; typically, you pass what the previous call
1582  *			returned. of_node_put() will be called on it
1583  *	@type:		The type string to match "device_type" or NULL to ignore
1584  *	@compatible:	The string to match to one of the tokens in the device
1585  *			"compatible" list.
1586  *
1587  *	Returns a node pointer with refcount incremented, use
1588  *	of_node_put() on it when done.
1589  */
1590 struct device_node *of_find_compatible_node(struct device_node *from,
1591 	const char *type, const char *compatible)
1592 {
1593 	struct device_node *np;
1594 
1595 	read_lock(&devtree_lock);
1596 	np = from ? from->allnext : allnodes;
1597 	for (; np != 0; np = np->allnext) {
1598 		if (type != NULL
1599 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1600 			continue;
1601 		if (device_is_compatible(np, compatible) && of_node_get(np))
1602 			break;
1603 	}
1604 	if (from)
1605 		of_node_put(from);
1606 	read_unlock(&devtree_lock);
1607 	return np;
1608 }
1609 EXPORT_SYMBOL(of_find_compatible_node);
1610 
1611 /**
1612  *	of_find_node_by_path - Find a node matching a full OF path
1613  *	@path:	The full path to match
1614  *
1615  *	Returns a node pointer with refcount incremented, use
1616  *	of_node_put() on it when done.
1617  */
1618 struct device_node *of_find_node_by_path(const char *path)
1619 {
1620 	struct device_node *np = allnodes;
1621 
1622 	read_lock(&devtree_lock);
1623 	for (; np != 0; np = np->allnext) {
1624 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1625 		    && of_node_get(np))
1626 			break;
1627 	}
1628 	read_unlock(&devtree_lock);
1629 	return np;
1630 }
1631 EXPORT_SYMBOL(of_find_node_by_path);
1632 
1633 /**
1634  *	of_find_node_by_phandle - Find a node given a phandle
1635  *	@handle:	phandle of the node to find
1636  *
1637  *	Returns a node pointer with refcount incremented, use
1638  *	of_node_put() on it when done.
1639  */
1640 struct device_node *of_find_node_by_phandle(phandle handle)
1641 {
1642 	struct device_node *np;
1643 
1644 	read_lock(&devtree_lock);
1645 	for (np = allnodes; np != 0; np = np->allnext)
1646 		if (np->linux_phandle == handle)
1647 			break;
1648 	if (np)
1649 		of_node_get(np);
1650 	read_unlock(&devtree_lock);
1651 	return np;
1652 }
1653 EXPORT_SYMBOL(of_find_node_by_phandle);
1654 
1655 /**
1656  *	of_find_all_nodes - Get next node in global list
1657  *	@prev:	Previous node or NULL to start iteration
1658  *		of_node_put() will be called on it
1659  *
1660  *	Returns a node pointer with refcount incremented, use
1661  *	of_node_put() on it when done.
1662  */
1663 struct device_node *of_find_all_nodes(struct device_node *prev)
1664 {
1665 	struct device_node *np;
1666 
1667 	read_lock(&devtree_lock);
1668 	np = prev ? prev->allnext : allnodes;
1669 	for (; np != 0; np = np->allnext)
1670 		if (of_node_get(np))
1671 			break;
1672 	if (prev)
1673 		of_node_put(prev);
1674 	read_unlock(&devtree_lock);
1675 	return np;
1676 }
1677 EXPORT_SYMBOL(of_find_all_nodes);
1678 
1679 /**
1680  *	of_get_parent - Get a node's parent if any
1681  *	@node:	Node to get parent
1682  *
1683  *	Returns a node pointer with refcount incremented, use
1684  *	of_node_put() on it when done.
1685  */
1686 struct device_node *of_get_parent(const struct device_node *node)
1687 {
1688 	struct device_node *np;
1689 
1690 	if (!node)
1691 		return NULL;
1692 
1693 	read_lock(&devtree_lock);
1694 	np = of_node_get(node->parent);
1695 	read_unlock(&devtree_lock);
1696 	return np;
1697 }
1698 EXPORT_SYMBOL(of_get_parent);
1699 
1700 /**
1701  *	of_get_next_child - Iterate a node childs
1702  *	@node:	parent node
1703  *	@prev:	previous child of the parent node, or NULL to get first
1704  *
1705  *	Returns a node pointer with refcount incremented, use
1706  *	of_node_put() on it when done.
1707  */
1708 struct device_node *of_get_next_child(const struct device_node *node,
1709 	struct device_node *prev)
1710 {
1711 	struct device_node *next;
1712 
1713 	read_lock(&devtree_lock);
1714 	next = prev ? prev->sibling : node->child;
1715 	for (; next != 0; next = next->sibling)
1716 		if (of_node_get(next))
1717 			break;
1718 	if (prev)
1719 		of_node_put(prev);
1720 	read_unlock(&devtree_lock);
1721 	return next;
1722 }
1723 EXPORT_SYMBOL(of_get_next_child);
1724 
1725 /**
1726  *	of_node_get - Increment refcount of a node
1727  *	@node:	Node to inc refcount, NULL is supported to
1728  *		simplify writing of callers
1729  *
1730  *	Returns node.
1731  */
1732 struct device_node *of_node_get(struct device_node *node)
1733 {
1734 	if (node)
1735 		kref_get(&node->kref);
1736 	return node;
1737 }
1738 EXPORT_SYMBOL(of_node_get);
1739 
1740 static inline struct device_node * kref_to_device_node(struct kref *kref)
1741 {
1742 	return container_of(kref, struct device_node, kref);
1743 }
1744 
1745 /**
1746  *	of_node_release - release a dynamically allocated node
1747  *	@kref:  kref element of the node to be released
1748  *
1749  *	In of_node_put() this function is passed to kref_put()
1750  *	as the destructor.
1751  */
1752 static void of_node_release(struct kref *kref)
1753 {
1754 	struct device_node *node = kref_to_device_node(kref);
1755 	struct property *prop = node->properties;
1756 
1757 	if (!OF_IS_DYNAMIC(node))
1758 		return;
1759 	while (prop) {
1760 		struct property *next = prop->next;
1761 		kfree(prop->name);
1762 		kfree(prop->value);
1763 		kfree(prop);
1764 		prop = next;
1765 
1766 		if (!prop) {
1767 			prop = node->deadprops;
1768 			node->deadprops = NULL;
1769 		}
1770 	}
1771 	kfree(node->intrs);
1772 	kfree(node->full_name);
1773 	kfree(node->data);
1774 	kfree(node);
1775 }
1776 
1777 /**
1778  *	of_node_put - Decrement refcount of a node
1779  *	@node:	Node to dec refcount, NULL is supported to
1780  *		simplify writing of callers
1781  *
1782  */
1783 void of_node_put(struct device_node *node)
1784 {
1785 	if (node)
1786 		kref_put(&node->kref, of_node_release);
1787 }
1788 EXPORT_SYMBOL(of_node_put);
1789 
1790 /*
1791  * Plug a device node into the tree and global list.
1792  */
1793 void of_attach_node(struct device_node *np)
1794 {
1795 	write_lock(&devtree_lock);
1796 	np->sibling = np->parent->child;
1797 	np->allnext = allnodes;
1798 	np->parent->child = np;
1799 	allnodes = np;
1800 	write_unlock(&devtree_lock);
1801 }
1802 
1803 /*
1804  * "Unplug" a node from the device tree.  The caller must hold
1805  * a reference to the node.  The memory associated with the node
1806  * is not freed until its refcount goes to zero.
1807  */
1808 void of_detach_node(const struct device_node *np)
1809 {
1810 	struct device_node *parent;
1811 
1812 	write_lock(&devtree_lock);
1813 
1814 	parent = np->parent;
1815 
1816 	if (allnodes == np)
1817 		allnodes = np->allnext;
1818 	else {
1819 		struct device_node *prev;
1820 		for (prev = allnodes;
1821 		     prev->allnext != np;
1822 		     prev = prev->allnext)
1823 			;
1824 		prev->allnext = np->allnext;
1825 	}
1826 
1827 	if (parent->child == np)
1828 		parent->child = np->sibling;
1829 	else {
1830 		struct device_node *prevsib;
1831 		for (prevsib = np->parent->child;
1832 		     prevsib->sibling != np;
1833 		     prevsib = prevsib->sibling)
1834 			;
1835 		prevsib->sibling = np->sibling;
1836 	}
1837 
1838 	write_unlock(&devtree_lock);
1839 }
1840 
1841 #ifdef CONFIG_PPC_PSERIES
1842 /*
1843  * Fix up the uninitialized fields in a new device node:
1844  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1845  *
1846  * A lot of boot-time code is duplicated here, because functions such
1847  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1848  * slab allocator.
1849  *
1850  * This should probably be split up into smaller chunks.
1851  */
1852 
1853 static int of_finish_dynamic_node(struct device_node *node)
1854 {
1855 	struct device_node *parent = of_get_parent(node);
1856 	int err = 0;
1857 	phandle *ibm_phandle;
1858 
1859 	node->name = get_property(node, "name", NULL);
1860 	node->type = get_property(node, "device_type", NULL);
1861 
1862 	if (!parent) {
1863 		err = -ENODEV;
1864 		goto out;
1865 	}
1866 
1867 	/* We don't support that function on PowerMac, at least
1868 	 * not yet
1869 	 */
1870 	if (machine_is(powermac))
1871 		return -ENODEV;
1872 
1873 	/* fix up new node's linux_phandle field */
1874 	if ((ibm_phandle = (unsigned int *)get_property(node,
1875 							"ibm,phandle", NULL)))
1876 		node->linux_phandle = *ibm_phandle;
1877 
1878 out:
1879 	of_node_put(parent);
1880 	return err;
1881 }
1882 
1883 static int prom_reconfig_notifier(struct notifier_block *nb,
1884 				  unsigned long action, void *node)
1885 {
1886 	int err;
1887 
1888 	switch (action) {
1889 	case PSERIES_RECONFIG_ADD:
1890 		err = of_finish_dynamic_node(node);
1891 		if (!err)
1892 			finish_node(node, NULL, 0);
1893 		if (err < 0) {
1894 			printk(KERN_ERR "finish_node returned %d\n", err);
1895 			err = NOTIFY_BAD;
1896 		}
1897 		break;
1898 	default:
1899 		err = NOTIFY_DONE;
1900 		break;
1901 	}
1902 	return err;
1903 }
1904 
1905 static struct notifier_block prom_reconfig_nb = {
1906 	.notifier_call = prom_reconfig_notifier,
1907 	.priority = 10, /* This one needs to run first */
1908 };
1909 
1910 static int __init prom_reconfig_setup(void)
1911 {
1912 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1913 }
1914 __initcall(prom_reconfig_setup);
1915 #endif
1916 
1917 struct property *of_find_property(struct device_node *np, const char *name,
1918 				  int *lenp)
1919 {
1920 	struct property *pp;
1921 
1922 	read_lock(&devtree_lock);
1923 	for (pp = np->properties; pp != 0; pp = pp->next)
1924 		if (strcmp(pp->name, name) == 0) {
1925 			if (lenp != 0)
1926 				*lenp = pp->length;
1927 			break;
1928 		}
1929 	read_unlock(&devtree_lock);
1930 
1931 	return pp;
1932 }
1933 
1934 /*
1935  * Find a property with a given name for a given node
1936  * and return the value.
1937  */
1938 unsigned char *get_property(struct device_node *np, const char *name,
1939 			    int *lenp)
1940 {
1941 	struct property *pp = of_find_property(np,name,lenp);
1942 	return pp ? pp->value : NULL;
1943 }
1944 EXPORT_SYMBOL(get_property);
1945 
1946 /*
1947  * Add a property to a node
1948  */
1949 int prom_add_property(struct device_node* np, struct property* prop)
1950 {
1951 	struct property **next;
1952 
1953 	prop->next = NULL;
1954 	write_lock(&devtree_lock);
1955 	next = &np->properties;
1956 	while (*next) {
1957 		if (strcmp(prop->name, (*next)->name) == 0) {
1958 			/* duplicate ! don't insert it */
1959 			write_unlock(&devtree_lock);
1960 			return -1;
1961 		}
1962 		next = &(*next)->next;
1963 	}
1964 	*next = prop;
1965 	write_unlock(&devtree_lock);
1966 
1967 #ifdef CONFIG_PROC_DEVICETREE
1968 	/* try to add to proc as well if it was initialized */
1969 	if (np->pde)
1970 		proc_device_tree_add_prop(np->pde, prop);
1971 #endif /* CONFIG_PROC_DEVICETREE */
1972 
1973 	return 0;
1974 }
1975 
1976 /*
1977  * Remove a property from a node.  Note that we don't actually
1978  * remove it, since we have given out who-knows-how-many pointers
1979  * to the data using get-property.  Instead we just move the property
1980  * to the "dead properties" list, so it won't be found any more.
1981  */
1982 int prom_remove_property(struct device_node *np, struct property *prop)
1983 {
1984 	struct property **next;
1985 	int found = 0;
1986 
1987 	write_lock(&devtree_lock);
1988 	next = &np->properties;
1989 	while (*next) {
1990 		if (*next == prop) {
1991 			/* found the node */
1992 			*next = prop->next;
1993 			prop->next = np->deadprops;
1994 			np->deadprops = prop;
1995 			found = 1;
1996 			break;
1997 		}
1998 		next = &(*next)->next;
1999 	}
2000 	write_unlock(&devtree_lock);
2001 
2002 	if (!found)
2003 		return -ENODEV;
2004 
2005 #ifdef CONFIG_PROC_DEVICETREE
2006 	/* try to remove the proc node as well */
2007 	if (np->pde)
2008 		proc_device_tree_remove_prop(np->pde, prop);
2009 #endif /* CONFIG_PROC_DEVICETREE */
2010 
2011 	return 0;
2012 }
2013 
2014 /*
2015  * Update a property in a node.  Note that we don't actually
2016  * remove it, since we have given out who-knows-how-many pointers
2017  * to the data using get-property.  Instead we just move the property
2018  * to the "dead properties" list, and add the new property to the
2019  * property list
2020  */
2021 int prom_update_property(struct device_node *np,
2022 			 struct property *newprop,
2023 			 struct property *oldprop)
2024 {
2025 	struct property **next;
2026 	int found = 0;
2027 
2028 	write_lock(&devtree_lock);
2029 	next = &np->properties;
2030 	while (*next) {
2031 		if (*next == oldprop) {
2032 			/* found the node */
2033 			newprop->next = oldprop->next;
2034 			*next = newprop;
2035 			oldprop->next = np->deadprops;
2036 			np->deadprops = oldprop;
2037 			found = 1;
2038 			break;
2039 		}
2040 		next = &(*next)->next;
2041 	}
2042 	write_unlock(&devtree_lock);
2043 
2044 	if (!found)
2045 		return -ENODEV;
2046 
2047 #ifdef CONFIG_PROC_DEVICETREE
2048 	/* try to add to proc as well if it was initialized */
2049 	if (np->pde)
2050 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
2051 #endif /* CONFIG_PROC_DEVICETREE */
2052 
2053 	return 0;
2054 }
2055 
2056 #ifdef CONFIG_KEXEC
2057 /* We may have allocated the flat device tree inside the crash kernel region
2058  * in prom_init. If so we need to move it out into regular memory. */
2059 void kdump_move_device_tree(void)
2060 {
2061 	unsigned long start, end;
2062 	struct boot_param_header *new;
2063 
2064 	start = __pa((unsigned long)initial_boot_params);
2065 	end = start + initial_boot_params->totalsize;
2066 
2067 	if (end < crashk_res.start || start > crashk_res.end)
2068 		return;
2069 
2070 	new = (struct boot_param_header*)
2071 		__va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
2072 
2073 	memcpy(new, initial_boot_params, initial_boot_params->totalsize);
2074 
2075 	initial_boot_params = new;
2076 
2077 	DBG("Flat device tree blob moved to %p\n", initial_boot_params);
2078 
2079 	/* XXX should we unreserve the old DT? */
2080 }
2081 #endif /* CONFIG_KEXEC */
2082