xref: /linux/arch/powerpc/kernel/prom.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/module.h>
31 #include <linux/kexec.h>
32 #include <linux/debugfs.h>
33 #include <linux/irq.h>
34 
35 #include <asm/prom.h>
36 #include <asm/rtas.h>
37 #include <asm/lmb.h>
38 #include <asm/page.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/smp.h>
44 #include <asm/system.h>
45 #include <asm/mmu.h>
46 #include <asm/pgtable.h>
47 #include <asm/pci.h>
48 #include <asm/iommu.h>
49 #include <asm/btext.h>
50 #include <asm/sections.h>
51 #include <asm/machdep.h>
52 #include <asm/pSeries_reconfig.h>
53 #include <asm/pci-bridge.h>
54 #include <asm/kexec.h>
55 
56 #ifdef DEBUG
57 #define DBG(fmt...) printk(KERN_ERR fmt)
58 #else
59 #define DBG(fmt...)
60 #endif
61 
62 
63 static int __initdata dt_root_addr_cells;
64 static int __initdata dt_root_size_cells;
65 
66 #ifdef CONFIG_PPC64
67 int __initdata iommu_is_off;
68 int __initdata iommu_force_on;
69 unsigned long tce_alloc_start, tce_alloc_end;
70 #endif
71 
72 typedef u32 cell_t;
73 
74 #if 0
75 static struct boot_param_header *initial_boot_params __initdata;
76 #else
77 struct boot_param_header *initial_boot_params;
78 #endif
79 
80 static struct device_node *allnodes = NULL;
81 
82 /* use when traversing tree through the allnext, child, sibling,
83  * or parent members of struct device_node.
84  */
85 static DEFINE_RWLOCK(devtree_lock);
86 
87 /* export that to outside world */
88 struct device_node *of_chosen;
89 
90 static inline char *find_flat_dt_string(u32 offset)
91 {
92 	return ((char *)initial_boot_params) +
93 		initial_boot_params->off_dt_strings + offset;
94 }
95 
96 /**
97  * This function is used to scan the flattened device-tree, it is
98  * used to extract the memory informations at boot before we can
99  * unflatten the tree
100  */
101 int __init of_scan_flat_dt(int (*it)(unsigned long node,
102 				     const char *uname, int depth,
103 				     void *data),
104 			   void *data)
105 {
106 	unsigned long p = ((unsigned long)initial_boot_params) +
107 		initial_boot_params->off_dt_struct;
108 	int rc = 0;
109 	int depth = -1;
110 
111 	do {
112 		u32 tag = *((u32 *)p);
113 		char *pathp;
114 
115 		p += 4;
116 		if (tag == OF_DT_END_NODE) {
117 			depth --;
118 			continue;
119 		}
120 		if (tag == OF_DT_NOP)
121 			continue;
122 		if (tag == OF_DT_END)
123 			break;
124 		if (tag == OF_DT_PROP) {
125 			u32 sz = *((u32 *)p);
126 			p += 8;
127 			if (initial_boot_params->version < 0x10)
128 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
129 			p += sz;
130 			p = _ALIGN(p, 4);
131 			continue;
132 		}
133 		if (tag != OF_DT_BEGIN_NODE) {
134 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
135 			       " device tree !\n", tag);
136 			return -EINVAL;
137 		}
138 		depth++;
139 		pathp = (char *)p;
140 		p = _ALIGN(p + strlen(pathp) + 1, 4);
141 		if ((*pathp) == '/') {
142 			char *lp, *np;
143 			for (lp = NULL, np = pathp; *np; np++)
144 				if ((*np) == '/')
145 					lp = np+1;
146 			if (lp != NULL)
147 				pathp = lp;
148 		}
149 		rc = it(p, pathp, depth, data);
150 		if (rc != 0)
151 			break;
152 	} while(1);
153 
154 	return rc;
155 }
156 
157 unsigned long __init of_get_flat_dt_root(void)
158 {
159 	unsigned long p = ((unsigned long)initial_boot_params) +
160 		initial_boot_params->off_dt_struct;
161 
162 	while(*((u32 *)p) == OF_DT_NOP)
163 		p += 4;
164 	BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
165 	p += 4;
166 	return _ALIGN(p + strlen((char *)p) + 1, 4);
167 }
168 
169 /**
170  * This  function can be used within scan_flattened_dt callback to get
171  * access to properties
172  */
173 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
174 				 unsigned long *size)
175 {
176 	unsigned long p = node;
177 
178 	do {
179 		u32 tag = *((u32 *)p);
180 		u32 sz, noff;
181 		const char *nstr;
182 
183 		p += 4;
184 		if (tag == OF_DT_NOP)
185 			continue;
186 		if (tag != OF_DT_PROP)
187 			return NULL;
188 
189 		sz = *((u32 *)p);
190 		noff = *((u32 *)(p + 4));
191 		p += 8;
192 		if (initial_boot_params->version < 0x10)
193 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
194 
195 		nstr = find_flat_dt_string(noff);
196 		if (nstr == NULL) {
197 			printk(KERN_WARNING "Can't find property index"
198 			       " name !\n");
199 			return NULL;
200 		}
201 		if (strcmp(name, nstr) == 0) {
202 			if (size)
203 				*size = sz;
204 			return (void *)p;
205 		}
206 		p += sz;
207 		p = _ALIGN(p, 4);
208 	} while(1);
209 }
210 
211 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
212 {
213 	const char* cp;
214 	unsigned long cplen, l;
215 
216 	cp = of_get_flat_dt_prop(node, "compatible", &cplen);
217 	if (cp == NULL)
218 		return 0;
219 	while (cplen > 0) {
220 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
221 			return 1;
222 		l = strlen(cp) + 1;
223 		cp += l;
224 		cplen -= l;
225 	}
226 
227 	return 0;
228 }
229 
230 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
231 				       unsigned long align)
232 {
233 	void *res;
234 
235 	*mem = _ALIGN(*mem, align);
236 	res = (void *)*mem;
237 	*mem += size;
238 
239 	return res;
240 }
241 
242 static unsigned long __init unflatten_dt_node(unsigned long mem,
243 					      unsigned long *p,
244 					      struct device_node *dad,
245 					      struct device_node ***allnextpp,
246 					      unsigned long fpsize)
247 {
248 	struct device_node *np;
249 	struct property *pp, **prev_pp = NULL;
250 	char *pathp;
251 	u32 tag;
252 	unsigned int l, allocl;
253 	int has_name = 0;
254 	int new_format = 0;
255 
256 	tag = *((u32 *)(*p));
257 	if (tag != OF_DT_BEGIN_NODE) {
258 		printk("Weird tag at start of node: %x\n", tag);
259 		return mem;
260 	}
261 	*p += 4;
262 	pathp = (char *)*p;
263 	l = allocl = strlen(pathp) + 1;
264 	*p = _ALIGN(*p + l, 4);
265 
266 	/* version 0x10 has a more compact unit name here instead of the full
267 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
268 	 * it later. We detect this because the first character of the name is
269 	 * not '/'.
270 	 */
271 	if ((*pathp) != '/') {
272 		new_format = 1;
273 		if (fpsize == 0) {
274 			/* root node: special case. fpsize accounts for path
275 			 * plus terminating zero. root node only has '/', so
276 			 * fpsize should be 2, but we want to avoid the first
277 			 * level nodes to have two '/' so we use fpsize 1 here
278 			 */
279 			fpsize = 1;
280 			allocl = 2;
281 		} else {
282 			/* account for '/' and path size minus terminal 0
283 			 * already in 'l'
284 			 */
285 			fpsize += l;
286 			allocl = fpsize;
287 		}
288 	}
289 
290 
291 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
292 				__alignof__(struct device_node));
293 	if (allnextpp) {
294 		memset(np, 0, sizeof(*np));
295 		np->full_name = ((char*)np) + sizeof(struct device_node);
296 		if (new_format) {
297 			char *p = np->full_name;
298 			/* rebuild full path for new format */
299 			if (dad && dad->parent) {
300 				strcpy(p, dad->full_name);
301 #ifdef DEBUG
302 				if ((strlen(p) + l + 1) != allocl) {
303 					DBG("%s: p: %d, l: %d, a: %d\n",
304 					    pathp, (int)strlen(p), l, allocl);
305 				}
306 #endif
307 				p += strlen(p);
308 			}
309 			*(p++) = '/';
310 			memcpy(p, pathp, l);
311 		} else
312 			memcpy(np->full_name, pathp, l);
313 		prev_pp = &np->properties;
314 		**allnextpp = np;
315 		*allnextpp = &np->allnext;
316 		if (dad != NULL) {
317 			np->parent = dad;
318 			/* we temporarily use the next field as `last_child'*/
319 			if (dad->next == 0)
320 				dad->child = np;
321 			else
322 				dad->next->sibling = np;
323 			dad->next = np;
324 		}
325 		kref_init(&np->kref);
326 	}
327 	while(1) {
328 		u32 sz, noff;
329 		char *pname;
330 
331 		tag = *((u32 *)(*p));
332 		if (tag == OF_DT_NOP) {
333 			*p += 4;
334 			continue;
335 		}
336 		if (tag != OF_DT_PROP)
337 			break;
338 		*p += 4;
339 		sz = *((u32 *)(*p));
340 		noff = *((u32 *)((*p) + 4));
341 		*p += 8;
342 		if (initial_boot_params->version < 0x10)
343 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
344 
345 		pname = find_flat_dt_string(noff);
346 		if (pname == NULL) {
347 			printk("Can't find property name in list !\n");
348 			break;
349 		}
350 		if (strcmp(pname, "name") == 0)
351 			has_name = 1;
352 		l = strlen(pname) + 1;
353 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
354 					__alignof__(struct property));
355 		if (allnextpp) {
356 			if (strcmp(pname, "linux,phandle") == 0) {
357 				np->node = *((u32 *)*p);
358 				if (np->linux_phandle == 0)
359 					np->linux_phandle = np->node;
360 			}
361 			if (strcmp(pname, "ibm,phandle") == 0)
362 				np->linux_phandle = *((u32 *)*p);
363 			pp->name = pname;
364 			pp->length = sz;
365 			pp->value = (void *)*p;
366 			*prev_pp = pp;
367 			prev_pp = &pp->next;
368 		}
369 		*p = _ALIGN((*p) + sz, 4);
370 	}
371 	/* with version 0x10 we may not have the name property, recreate
372 	 * it here from the unit name if absent
373 	 */
374 	if (!has_name) {
375 		char *p = pathp, *ps = pathp, *pa = NULL;
376 		int sz;
377 
378 		while (*p) {
379 			if ((*p) == '@')
380 				pa = p;
381 			if ((*p) == '/')
382 				ps = p + 1;
383 			p++;
384 		}
385 		if (pa < ps)
386 			pa = p;
387 		sz = (pa - ps) + 1;
388 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
389 					__alignof__(struct property));
390 		if (allnextpp) {
391 			pp->name = "name";
392 			pp->length = sz;
393 			pp->value = (unsigned char *)(pp + 1);
394 			*prev_pp = pp;
395 			prev_pp = &pp->next;
396 			memcpy(pp->value, ps, sz - 1);
397 			((char *)pp->value)[sz - 1] = 0;
398 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
399 		}
400 	}
401 	if (allnextpp) {
402 		*prev_pp = NULL;
403 		np->name = get_property(np, "name", NULL);
404 		np->type = get_property(np, "device_type", NULL);
405 
406 		if (!np->name)
407 			np->name = "<NULL>";
408 		if (!np->type)
409 			np->type = "<NULL>";
410 	}
411 	while (tag == OF_DT_BEGIN_NODE) {
412 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
413 		tag = *((u32 *)(*p));
414 	}
415 	if (tag != OF_DT_END_NODE) {
416 		printk("Weird tag at end of node: %x\n", tag);
417 		return mem;
418 	}
419 	*p += 4;
420 	return mem;
421 }
422 
423 static int __init early_parse_mem(char *p)
424 {
425 	if (!p)
426 		return 1;
427 
428 	memory_limit = PAGE_ALIGN(memparse(p, &p));
429 	DBG("memory limit = 0x%lx\n", memory_limit);
430 
431 	return 0;
432 }
433 early_param("mem", early_parse_mem);
434 
435 /*
436  * The device tree may be allocated below our memory limit, or inside the
437  * crash kernel region for kdump. If so, move it out now.
438  */
439 static void move_device_tree(void)
440 {
441 	unsigned long start, size;
442 	void *p;
443 
444 	DBG("-> move_device_tree\n");
445 
446 	start = __pa(initial_boot_params);
447 	size = initial_boot_params->totalsize;
448 
449 	if ((memory_limit && (start + size) > memory_limit) ||
450 			overlaps_crashkernel(start, size)) {
451 		p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
452 		memcpy(p, initial_boot_params, size);
453 		initial_boot_params = (struct boot_param_header *)p;
454 		DBG("Moved device tree to 0x%p\n", p);
455 	}
456 
457 	DBG("<- move_device_tree\n");
458 }
459 
460 /**
461  * unflattens the device-tree passed by the firmware, creating the
462  * tree of struct device_node. It also fills the "name" and "type"
463  * pointers of the nodes so the normal device-tree walking functions
464  * can be used (this used to be done by finish_device_tree)
465  */
466 void __init unflatten_device_tree(void)
467 {
468 	unsigned long start, mem, size;
469 	struct device_node **allnextp = &allnodes;
470 
471 	DBG(" -> unflatten_device_tree()\n");
472 
473 	/* First pass, scan for size */
474 	start = ((unsigned long)initial_boot_params) +
475 		initial_boot_params->off_dt_struct;
476 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
477 	size = (size | 3) + 1;
478 
479 	DBG("  size is %lx, allocating...\n", size);
480 
481 	/* Allocate memory for the expanded device tree */
482 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
483 	mem = (unsigned long) __va(mem);
484 
485 	((u32 *)mem)[size / 4] = 0xdeadbeef;
486 
487 	DBG("  unflattening %lx...\n", mem);
488 
489 	/* Second pass, do actual unflattening */
490 	start = ((unsigned long)initial_boot_params) +
491 		initial_boot_params->off_dt_struct;
492 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
493 	if (*((u32 *)start) != OF_DT_END)
494 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
495 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
496 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
497 		       ((u32 *)mem)[size / 4] );
498 	*allnextp = NULL;
499 
500 	/* Get pointer to OF "/chosen" node for use everywhere */
501 	of_chosen = of_find_node_by_path("/chosen");
502 	if (of_chosen == NULL)
503 		of_chosen = of_find_node_by_path("/chosen@0");
504 
505 	DBG(" <- unflatten_device_tree()\n");
506 }
507 
508 /*
509  * ibm,pa-features is a per-cpu property that contains a string of
510  * attribute descriptors, each of which has a 2 byte header plus up
511  * to 254 bytes worth of processor attribute bits.  First header
512  * byte specifies the number of bytes following the header.
513  * Second header byte is an "attribute-specifier" type, of which
514  * zero is the only currently-defined value.
515  * Implementation:  Pass in the byte and bit offset for the feature
516  * that we are interested in.  The function will return -1 if the
517  * pa-features property is missing, or a 1/0 to indicate if the feature
518  * is supported/not supported.  Note that the bit numbers are
519  * big-endian to match the definition in PAPR.
520  */
521 static struct ibm_pa_feature {
522 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
523 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
524 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
525 	unsigned char	pabit;		/* bit number (big-endian) */
526 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
527 } ibm_pa_features[] __initdata = {
528 	{0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
529 	{0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
530 	{CPU_FTR_SLB, 0,		0, 2, 0},
531 	{CPU_FTR_CTRL, 0,		0, 3, 0},
532 	{CPU_FTR_NOEXECUTE, 0,		0, 6, 0},
533 	{CPU_FTR_NODSISRALIGN, 0,	1, 1, 1},
534 #if 0
535 	/* put this back once we know how to test if firmware does 64k IO */
536 	{CPU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
537 #endif
538 	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
539 };
540 
541 static void __init check_cpu_pa_features(unsigned long node)
542 {
543 	unsigned char *pa_ftrs;
544 	unsigned long len, tablelen, i, bit;
545 
546 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
547 	if (pa_ftrs == NULL)
548 		return;
549 
550 	/* find descriptor with type == 0 */
551 	for (;;) {
552 		if (tablelen < 3)
553 			return;
554 		len = 2 + pa_ftrs[0];
555 		if (tablelen < len)
556 			return;		/* descriptor 0 not found */
557 		if (pa_ftrs[1] == 0)
558 			break;
559 		tablelen -= len;
560 		pa_ftrs += len;
561 	}
562 
563 	/* loop over bits we know about */
564 	for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) {
565 		struct ibm_pa_feature *fp = &ibm_pa_features[i];
566 
567 		if (fp->pabyte >= pa_ftrs[0])
568 			continue;
569 		bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
570 		if (bit ^ fp->invert) {
571 			cur_cpu_spec->cpu_features |= fp->cpu_features;
572 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
573 		} else {
574 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
575 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
576 		}
577 	}
578 }
579 
580 static int __init early_init_dt_scan_cpus(unsigned long node,
581 					  const char *uname, int depth,
582 					  void *data)
583 {
584 	static int logical_cpuid = 0;
585 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
586 #ifdef CONFIG_ALTIVEC
587 	u32 *prop;
588 #endif
589 	u32 *intserv;
590 	int i, nthreads;
591 	unsigned long len;
592 	int found = 0;
593 
594 	/* We are scanning "cpu" nodes only */
595 	if (type == NULL || strcmp(type, "cpu") != 0)
596 		return 0;
597 
598 	/* Get physical cpuid */
599 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
600 	if (intserv) {
601 		nthreads = len / sizeof(int);
602 	} else {
603 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
604 		nthreads = 1;
605 	}
606 
607 	/*
608 	 * Now see if any of these threads match our boot cpu.
609 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
610 	 */
611 	for (i = 0; i < nthreads; i++) {
612 		/*
613 		 * version 2 of the kexec param format adds the phys cpuid of
614 		 * booted proc.
615 		 */
616 		if (initial_boot_params && initial_boot_params->version >= 2) {
617 			if (intserv[i] ==
618 					initial_boot_params->boot_cpuid_phys) {
619 				found = 1;
620 				break;
621 			}
622 		} else {
623 			/*
624 			 * Check if it's the boot-cpu, set it's hw index now,
625 			 * unfortunately this format did not support booting
626 			 * off secondary threads.
627 			 */
628 			if (of_get_flat_dt_prop(node,
629 					"linux,boot-cpu", NULL) != NULL) {
630 				found = 1;
631 				break;
632 			}
633 		}
634 
635 #ifdef CONFIG_SMP
636 		/* logical cpu id is always 0 on UP kernels */
637 		logical_cpuid++;
638 #endif
639 	}
640 
641 	if (found) {
642 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
643 			intserv[i]);
644 		boot_cpuid = logical_cpuid;
645 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
646 	}
647 
648 #ifdef CONFIG_ALTIVEC
649 	/* Check if we have a VMX and eventually update CPU features */
650 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
651 	if (prop && (*prop) > 0) {
652 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
653 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
654 	}
655 
656 	/* Same goes for Apple's "altivec" property */
657 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
658 	if (prop) {
659 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
660 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
661 	}
662 #endif /* CONFIG_ALTIVEC */
663 
664 	check_cpu_pa_features(node);
665 
666 #ifdef CONFIG_PPC_PSERIES
667 	if (nthreads > 1)
668 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
669 	else
670 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
671 #endif
672 
673 	return 0;
674 }
675 
676 static int __init early_init_dt_scan_chosen(unsigned long node,
677 					    const char *uname, int depth, void *data)
678 {
679 	unsigned long *lprop;
680 	unsigned long l;
681 	char *p;
682 
683 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
684 
685 	if (depth != 1 ||
686 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
687 		return 0;
688 
689 #ifdef CONFIG_PPC64
690 	/* check if iommu is forced on or off */
691 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
692 		iommu_is_off = 1;
693 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
694 		iommu_force_on = 1;
695 #endif
696 
697 	/* mem=x on the command line is the preferred mechanism */
698  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
699  	if (lprop)
700  		memory_limit = *lprop;
701 
702 #ifdef CONFIG_PPC64
703  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
704  	if (lprop)
705  		tce_alloc_start = *lprop;
706  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
707  	if (lprop)
708  		tce_alloc_end = *lprop;
709 #endif
710 
711 #ifdef CONFIG_KEXEC
712        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
713        if (lprop)
714                crashk_res.start = *lprop;
715 
716        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
717        if (lprop)
718                crashk_res.end = crashk_res.start + *lprop - 1;
719 #endif
720 
721 	/* Retreive command line */
722  	p = of_get_flat_dt_prop(node, "bootargs", &l);
723 	if (p != NULL && l > 0)
724 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
725 
726 #ifdef CONFIG_CMDLINE
727 	if (l == 0 || (l == 1 && (*p) == 0))
728 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
729 #endif /* CONFIG_CMDLINE */
730 
731 	DBG("Command line is: %s\n", cmd_line);
732 
733 	/* break now */
734 	return 1;
735 }
736 
737 static int __init early_init_dt_scan_root(unsigned long node,
738 					  const char *uname, int depth, void *data)
739 {
740 	u32 *prop;
741 
742 	if (depth != 0)
743 		return 0;
744 
745 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
746 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
747 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
748 
749 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
750 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
751 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
752 
753 	/* break now */
754 	return 1;
755 }
756 
757 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
758 {
759 	cell_t *p = *cellp;
760 
761 	*cellp = p + s;
762 	return of_read_ulong(p, s);
763 }
764 
765 
766 static int __init early_init_dt_scan_memory(unsigned long node,
767 					    const char *uname, int depth, void *data)
768 {
769 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
770 	cell_t *reg, *endp;
771 	unsigned long l;
772 
773 	/* We are scanning "memory" nodes only */
774 	if (type == NULL) {
775 		/*
776 		 * The longtrail doesn't have a device_type on the
777 		 * /memory node, so look for the node called /memory@0.
778 		 */
779 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
780 			return 0;
781 	} else if (strcmp(type, "memory") != 0)
782 		return 0;
783 
784 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
785 	if (reg == NULL)
786 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
787 	if (reg == NULL)
788 		return 0;
789 
790 	endp = reg + (l / sizeof(cell_t));
791 
792 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
793 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
794 
795 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
796 		unsigned long base, size;
797 
798 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
799 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
800 
801 		if (size == 0)
802 			continue;
803 		DBG(" - %lx ,  %lx\n", base, size);
804 #ifdef CONFIG_PPC64
805 		if (iommu_is_off) {
806 			if (base >= 0x80000000ul)
807 				continue;
808 			if ((base + size) > 0x80000000ul)
809 				size = 0x80000000ul - base;
810 		}
811 #endif
812 		lmb_add(base, size);
813 	}
814 	return 0;
815 }
816 
817 static void __init early_reserve_mem(void)
818 {
819 	u64 base, size;
820 	u64 *reserve_map;
821 	unsigned long self_base;
822 	unsigned long self_size;
823 
824 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
825 					initial_boot_params->off_mem_rsvmap);
826 
827 	/* before we do anything, lets reserve the dt blob */
828 	self_base = __pa((unsigned long)initial_boot_params);
829 	self_size = initial_boot_params->totalsize;
830 	lmb_reserve(self_base, self_size);
831 
832 #ifdef CONFIG_PPC32
833 	/*
834 	 * Handle the case where we might be booting from an old kexec
835 	 * image that setup the mem_rsvmap as pairs of 32-bit values
836 	 */
837 	if (*reserve_map > 0xffffffffull) {
838 		u32 base_32, size_32;
839 		u32 *reserve_map_32 = (u32 *)reserve_map;
840 
841 		while (1) {
842 			base_32 = *(reserve_map_32++);
843 			size_32 = *(reserve_map_32++);
844 			if (size_32 == 0)
845 				break;
846 			/* skip if the reservation is for the blob */
847 			if (base_32 == self_base && size_32 == self_size)
848 				continue;
849 			DBG("reserving: %x -> %x\n", base_32, size_32);
850 			lmb_reserve(base_32, size_32);
851 		}
852 		return;
853 	}
854 #endif
855 	while (1) {
856 		base = *(reserve_map++);
857 		size = *(reserve_map++);
858 		if (size == 0)
859 			break;
860 		/* skip if the reservation is for the blob */
861 		if (base == self_base && size == self_size)
862 			continue;
863 		DBG("reserving: %llx -> %llx\n", base, size);
864 		lmb_reserve(base, size);
865 	}
866 
867 #if 0
868 	DBG("memory reserved, lmbs :\n");
869       	lmb_dump_all();
870 #endif
871 }
872 
873 void __init early_init_devtree(void *params)
874 {
875 	DBG(" -> early_init_devtree()\n");
876 
877 	/* Setup flat device-tree pointer */
878 	initial_boot_params = params;
879 
880 #ifdef CONFIG_PPC_RTAS
881 	/* Some machines might need RTAS info for debugging, grab it now. */
882 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
883 #endif
884 
885 	/* Retrieve various informations from the /chosen node of the
886 	 * device-tree, including the platform type, initrd location and
887 	 * size, TCE reserve, and more ...
888 	 */
889 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
890 
891 	/* Scan memory nodes and rebuild LMBs */
892 	lmb_init();
893 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
894 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
895 
896 	/* Save command line for /proc/cmdline and then parse parameters */
897 	strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
898 	parse_early_param();
899 
900 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
901 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
902 	reserve_kdump_trampoline();
903 	reserve_crashkernel();
904 	early_reserve_mem();
905 
906 	lmb_enforce_memory_limit(memory_limit);
907 	lmb_analyze();
908 
909 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
910 
911 	/* We may need to relocate the flat tree, do it now.
912 	 * FIXME .. and the initrd too? */
913 	move_device_tree();
914 
915 	DBG("Scanning CPUs ...\n");
916 
917 	/* Retreive CPU related informations from the flat tree
918 	 * (altivec support, boot CPU ID, ...)
919 	 */
920 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
921 
922 	DBG(" <- early_init_devtree()\n");
923 }
924 
925 #undef printk
926 
927 int
928 prom_n_addr_cells(struct device_node* np)
929 {
930 	const int *ip;
931 	do {
932 		if (np->parent)
933 			np = np->parent;
934 		ip = get_property(np, "#address-cells", NULL);
935 		if (ip != NULL)
936 			return *ip;
937 	} while (np->parent);
938 	/* No #address-cells property for the root node, default to 1 */
939 	return 1;
940 }
941 EXPORT_SYMBOL(prom_n_addr_cells);
942 
943 int
944 prom_n_size_cells(struct device_node* np)
945 {
946 	const int* ip;
947 	do {
948 		if (np->parent)
949 			np = np->parent;
950 		ip = get_property(np, "#size-cells", NULL);
951 		if (ip != NULL)
952 			return *ip;
953 	} while (np->parent);
954 	/* No #size-cells property for the root node, default to 1 */
955 	return 1;
956 }
957 EXPORT_SYMBOL(prom_n_size_cells);
958 
959 /**
960  * Construct and return a list of the device_nodes with a given name.
961  */
962 struct device_node *find_devices(const char *name)
963 {
964 	struct device_node *head, **prevp, *np;
965 
966 	prevp = &head;
967 	for (np = allnodes; np != 0; np = np->allnext) {
968 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
969 			*prevp = np;
970 			prevp = &np->next;
971 		}
972 	}
973 	*prevp = NULL;
974 	return head;
975 }
976 EXPORT_SYMBOL(find_devices);
977 
978 /**
979  * Construct and return a list of the device_nodes with a given type.
980  */
981 struct device_node *find_type_devices(const char *type)
982 {
983 	struct device_node *head, **prevp, *np;
984 
985 	prevp = &head;
986 	for (np = allnodes; np != 0; np = np->allnext) {
987 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
988 			*prevp = np;
989 			prevp = &np->next;
990 		}
991 	}
992 	*prevp = NULL;
993 	return head;
994 }
995 EXPORT_SYMBOL(find_type_devices);
996 
997 /**
998  * Returns all nodes linked together
999  */
1000 struct device_node *find_all_nodes(void)
1001 {
1002 	struct device_node *head, **prevp, *np;
1003 
1004 	prevp = &head;
1005 	for (np = allnodes; np != 0; np = np->allnext) {
1006 		*prevp = np;
1007 		prevp = &np->next;
1008 	}
1009 	*prevp = NULL;
1010 	return head;
1011 }
1012 EXPORT_SYMBOL(find_all_nodes);
1013 
1014 /** Checks if the given "compat" string matches one of the strings in
1015  * the device's "compatible" property
1016  */
1017 int device_is_compatible(struct device_node *device, const char *compat)
1018 {
1019 	const char* cp;
1020 	int cplen, l;
1021 
1022 	cp = get_property(device, "compatible", &cplen);
1023 	if (cp == NULL)
1024 		return 0;
1025 	while (cplen > 0) {
1026 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1027 			return 1;
1028 		l = strlen(cp) + 1;
1029 		cp += l;
1030 		cplen -= l;
1031 	}
1032 
1033 	return 0;
1034 }
1035 EXPORT_SYMBOL(device_is_compatible);
1036 
1037 
1038 /**
1039  * Indicates whether the root node has a given value in its
1040  * compatible property.
1041  */
1042 int machine_is_compatible(const char *compat)
1043 {
1044 	struct device_node *root;
1045 	int rc = 0;
1046 
1047 	root = of_find_node_by_path("/");
1048 	if (root) {
1049 		rc = device_is_compatible(root, compat);
1050 		of_node_put(root);
1051 	}
1052 	return rc;
1053 }
1054 EXPORT_SYMBOL(machine_is_compatible);
1055 
1056 /**
1057  * Construct and return a list of the device_nodes with a given type
1058  * and compatible property.
1059  */
1060 struct device_node *find_compatible_devices(const char *type,
1061 					    const char *compat)
1062 {
1063 	struct device_node *head, **prevp, *np;
1064 
1065 	prevp = &head;
1066 	for (np = allnodes; np != 0; np = np->allnext) {
1067 		if (type != NULL
1068 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1069 			continue;
1070 		if (device_is_compatible(np, compat)) {
1071 			*prevp = np;
1072 			prevp = &np->next;
1073 		}
1074 	}
1075 	*prevp = NULL;
1076 	return head;
1077 }
1078 EXPORT_SYMBOL(find_compatible_devices);
1079 
1080 /**
1081  * Find the device_node with a given full_name.
1082  */
1083 struct device_node *find_path_device(const char *path)
1084 {
1085 	struct device_node *np;
1086 
1087 	for (np = allnodes; np != 0; np = np->allnext)
1088 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1089 			return np;
1090 	return NULL;
1091 }
1092 EXPORT_SYMBOL(find_path_device);
1093 
1094 /*******
1095  *
1096  * New implementation of the OF "find" APIs, return a refcounted
1097  * object, call of_node_put() when done.  The device tree and list
1098  * are protected by a rw_lock.
1099  *
1100  * Note that property management will need some locking as well,
1101  * this isn't dealt with yet.
1102  *
1103  *******/
1104 
1105 /**
1106  *	of_find_node_by_name - Find a node by its "name" property
1107  *	@from:	The node to start searching from or NULL, the node
1108  *		you pass will not be searched, only the next one
1109  *		will; typically, you pass what the previous call
1110  *		returned. of_node_put() will be called on it
1111  *	@name:	The name string to match against
1112  *
1113  *	Returns a node pointer with refcount incremented, use
1114  *	of_node_put() on it when done.
1115  */
1116 struct device_node *of_find_node_by_name(struct device_node *from,
1117 	const char *name)
1118 {
1119 	struct device_node *np;
1120 
1121 	read_lock(&devtree_lock);
1122 	np = from ? from->allnext : allnodes;
1123 	for (; np != NULL; np = np->allnext)
1124 		if (np->name != NULL && strcasecmp(np->name, name) == 0
1125 		    && of_node_get(np))
1126 			break;
1127 	if (from)
1128 		of_node_put(from);
1129 	read_unlock(&devtree_lock);
1130 	return np;
1131 }
1132 EXPORT_SYMBOL(of_find_node_by_name);
1133 
1134 /**
1135  *	of_find_node_by_type - Find a node by its "device_type" property
1136  *	@from:	The node to start searching from or NULL, the node
1137  *		you pass will not be searched, only the next one
1138  *		will; typically, you pass what the previous call
1139  *		returned. of_node_put() will be called on it
1140  *	@name:	The type string to match against
1141  *
1142  *	Returns a node pointer with refcount incremented, use
1143  *	of_node_put() on it when done.
1144  */
1145 struct device_node *of_find_node_by_type(struct device_node *from,
1146 	const char *type)
1147 {
1148 	struct device_node *np;
1149 
1150 	read_lock(&devtree_lock);
1151 	np = from ? from->allnext : allnodes;
1152 	for (; np != 0; np = np->allnext)
1153 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1154 		    && of_node_get(np))
1155 			break;
1156 	if (from)
1157 		of_node_put(from);
1158 	read_unlock(&devtree_lock);
1159 	return np;
1160 }
1161 EXPORT_SYMBOL(of_find_node_by_type);
1162 
1163 /**
1164  *	of_find_compatible_node - Find a node based on type and one of the
1165  *                                tokens in its "compatible" property
1166  *	@from:		The node to start searching from or NULL, the node
1167  *			you pass will not be searched, only the next one
1168  *			will; typically, you pass what the previous call
1169  *			returned. of_node_put() will be called on it
1170  *	@type:		The type string to match "device_type" or NULL to ignore
1171  *	@compatible:	The string to match to one of the tokens in the device
1172  *			"compatible" list.
1173  *
1174  *	Returns a node pointer with refcount incremented, use
1175  *	of_node_put() on it when done.
1176  */
1177 struct device_node *of_find_compatible_node(struct device_node *from,
1178 	const char *type, const char *compatible)
1179 {
1180 	struct device_node *np;
1181 
1182 	read_lock(&devtree_lock);
1183 	np = from ? from->allnext : allnodes;
1184 	for (; np != 0; np = np->allnext) {
1185 		if (type != NULL
1186 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1187 			continue;
1188 		if (device_is_compatible(np, compatible) && of_node_get(np))
1189 			break;
1190 	}
1191 	if (from)
1192 		of_node_put(from);
1193 	read_unlock(&devtree_lock);
1194 	return np;
1195 }
1196 EXPORT_SYMBOL(of_find_compatible_node);
1197 
1198 /**
1199  *	of_find_node_by_path - Find a node matching a full OF path
1200  *	@path:	The full path to match
1201  *
1202  *	Returns a node pointer with refcount incremented, use
1203  *	of_node_put() on it when done.
1204  */
1205 struct device_node *of_find_node_by_path(const char *path)
1206 {
1207 	struct device_node *np = allnodes;
1208 
1209 	read_lock(&devtree_lock);
1210 	for (; np != 0; np = np->allnext) {
1211 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1212 		    && of_node_get(np))
1213 			break;
1214 	}
1215 	read_unlock(&devtree_lock);
1216 	return np;
1217 }
1218 EXPORT_SYMBOL(of_find_node_by_path);
1219 
1220 /**
1221  *	of_find_node_by_phandle - Find a node given a phandle
1222  *	@handle:	phandle of the node to find
1223  *
1224  *	Returns a node pointer with refcount incremented, use
1225  *	of_node_put() on it when done.
1226  */
1227 struct device_node *of_find_node_by_phandle(phandle handle)
1228 {
1229 	struct device_node *np;
1230 
1231 	read_lock(&devtree_lock);
1232 	for (np = allnodes; np != 0; np = np->allnext)
1233 		if (np->linux_phandle == handle)
1234 			break;
1235 	if (np)
1236 		of_node_get(np);
1237 	read_unlock(&devtree_lock);
1238 	return np;
1239 }
1240 EXPORT_SYMBOL(of_find_node_by_phandle);
1241 
1242 /**
1243  *	of_find_all_nodes - Get next node in global list
1244  *	@prev:	Previous node or NULL to start iteration
1245  *		of_node_put() will be called on it
1246  *
1247  *	Returns a node pointer with refcount incremented, use
1248  *	of_node_put() on it when done.
1249  */
1250 struct device_node *of_find_all_nodes(struct device_node *prev)
1251 {
1252 	struct device_node *np;
1253 
1254 	read_lock(&devtree_lock);
1255 	np = prev ? prev->allnext : allnodes;
1256 	for (; np != 0; np = np->allnext)
1257 		if (of_node_get(np))
1258 			break;
1259 	if (prev)
1260 		of_node_put(prev);
1261 	read_unlock(&devtree_lock);
1262 	return np;
1263 }
1264 EXPORT_SYMBOL(of_find_all_nodes);
1265 
1266 /**
1267  *	of_get_parent - Get a node's parent if any
1268  *	@node:	Node to get parent
1269  *
1270  *	Returns a node pointer with refcount incremented, use
1271  *	of_node_put() on it when done.
1272  */
1273 struct device_node *of_get_parent(const struct device_node *node)
1274 {
1275 	struct device_node *np;
1276 
1277 	if (!node)
1278 		return NULL;
1279 
1280 	read_lock(&devtree_lock);
1281 	np = of_node_get(node->parent);
1282 	read_unlock(&devtree_lock);
1283 	return np;
1284 }
1285 EXPORT_SYMBOL(of_get_parent);
1286 
1287 /**
1288  *	of_get_next_child - Iterate a node childs
1289  *	@node:	parent node
1290  *	@prev:	previous child of the parent node, or NULL to get first
1291  *
1292  *	Returns a node pointer with refcount incremented, use
1293  *	of_node_put() on it when done.
1294  */
1295 struct device_node *of_get_next_child(const struct device_node *node,
1296 	struct device_node *prev)
1297 {
1298 	struct device_node *next;
1299 
1300 	read_lock(&devtree_lock);
1301 	next = prev ? prev->sibling : node->child;
1302 	for (; next != 0; next = next->sibling)
1303 		if (of_node_get(next))
1304 			break;
1305 	if (prev)
1306 		of_node_put(prev);
1307 	read_unlock(&devtree_lock);
1308 	return next;
1309 }
1310 EXPORT_SYMBOL(of_get_next_child);
1311 
1312 /**
1313  *	of_node_get - Increment refcount of a node
1314  *	@node:	Node to inc refcount, NULL is supported to
1315  *		simplify writing of callers
1316  *
1317  *	Returns node.
1318  */
1319 struct device_node *of_node_get(struct device_node *node)
1320 {
1321 	if (node)
1322 		kref_get(&node->kref);
1323 	return node;
1324 }
1325 EXPORT_SYMBOL(of_node_get);
1326 
1327 static inline struct device_node * kref_to_device_node(struct kref *kref)
1328 {
1329 	return container_of(kref, struct device_node, kref);
1330 }
1331 
1332 /**
1333  *	of_node_release - release a dynamically allocated node
1334  *	@kref:  kref element of the node to be released
1335  *
1336  *	In of_node_put() this function is passed to kref_put()
1337  *	as the destructor.
1338  */
1339 static void of_node_release(struct kref *kref)
1340 {
1341 	struct device_node *node = kref_to_device_node(kref);
1342 	struct property *prop = node->properties;
1343 
1344 	if (!OF_IS_DYNAMIC(node))
1345 		return;
1346 	while (prop) {
1347 		struct property *next = prop->next;
1348 		kfree(prop->name);
1349 		kfree(prop->value);
1350 		kfree(prop);
1351 		prop = next;
1352 
1353 		if (!prop) {
1354 			prop = node->deadprops;
1355 			node->deadprops = NULL;
1356 		}
1357 	}
1358 	kfree(node->full_name);
1359 	kfree(node->data);
1360 	kfree(node);
1361 }
1362 
1363 /**
1364  *	of_node_put - Decrement refcount of a node
1365  *	@node:	Node to dec refcount, NULL is supported to
1366  *		simplify writing of callers
1367  *
1368  */
1369 void of_node_put(struct device_node *node)
1370 {
1371 	if (node)
1372 		kref_put(&node->kref, of_node_release);
1373 }
1374 EXPORT_SYMBOL(of_node_put);
1375 
1376 /*
1377  * Plug a device node into the tree and global list.
1378  */
1379 void of_attach_node(struct device_node *np)
1380 {
1381 	write_lock(&devtree_lock);
1382 	np->sibling = np->parent->child;
1383 	np->allnext = allnodes;
1384 	np->parent->child = np;
1385 	allnodes = np;
1386 	write_unlock(&devtree_lock);
1387 }
1388 
1389 /*
1390  * "Unplug" a node from the device tree.  The caller must hold
1391  * a reference to the node.  The memory associated with the node
1392  * is not freed until its refcount goes to zero.
1393  */
1394 void of_detach_node(const struct device_node *np)
1395 {
1396 	struct device_node *parent;
1397 
1398 	write_lock(&devtree_lock);
1399 
1400 	parent = np->parent;
1401 
1402 	if (allnodes == np)
1403 		allnodes = np->allnext;
1404 	else {
1405 		struct device_node *prev;
1406 		for (prev = allnodes;
1407 		     prev->allnext != np;
1408 		     prev = prev->allnext)
1409 			;
1410 		prev->allnext = np->allnext;
1411 	}
1412 
1413 	if (parent->child == np)
1414 		parent->child = np->sibling;
1415 	else {
1416 		struct device_node *prevsib;
1417 		for (prevsib = np->parent->child;
1418 		     prevsib->sibling != np;
1419 		     prevsib = prevsib->sibling)
1420 			;
1421 		prevsib->sibling = np->sibling;
1422 	}
1423 
1424 	write_unlock(&devtree_lock);
1425 }
1426 
1427 #ifdef CONFIG_PPC_PSERIES
1428 /*
1429  * Fix up the uninitialized fields in a new device node:
1430  * name, type and pci-specific fields
1431  */
1432 
1433 static int of_finish_dynamic_node(struct device_node *node)
1434 {
1435 	struct device_node *parent = of_get_parent(node);
1436 	int err = 0;
1437 	const phandle *ibm_phandle;
1438 
1439 	node->name = get_property(node, "name", NULL);
1440 	node->type = get_property(node, "device_type", NULL);
1441 
1442 	if (!parent) {
1443 		err = -ENODEV;
1444 		goto out;
1445 	}
1446 
1447 	/* We don't support that function on PowerMac, at least
1448 	 * not yet
1449 	 */
1450 	if (machine_is(powermac))
1451 		return -ENODEV;
1452 
1453 	/* fix up new node's linux_phandle field */
1454 	if ((ibm_phandle = get_property(node, "ibm,phandle", NULL)))
1455 		node->linux_phandle = *ibm_phandle;
1456 
1457 out:
1458 	of_node_put(parent);
1459 	return err;
1460 }
1461 
1462 static int prom_reconfig_notifier(struct notifier_block *nb,
1463 				  unsigned long action, void *node)
1464 {
1465 	int err;
1466 
1467 	switch (action) {
1468 	case PSERIES_RECONFIG_ADD:
1469 		err = of_finish_dynamic_node(node);
1470 		if (err < 0) {
1471 			printk(KERN_ERR "finish_node returned %d\n", err);
1472 			err = NOTIFY_BAD;
1473 		}
1474 		break;
1475 	default:
1476 		err = NOTIFY_DONE;
1477 		break;
1478 	}
1479 	return err;
1480 }
1481 
1482 static struct notifier_block prom_reconfig_nb = {
1483 	.notifier_call = prom_reconfig_notifier,
1484 	.priority = 10, /* This one needs to run first */
1485 };
1486 
1487 static int __init prom_reconfig_setup(void)
1488 {
1489 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1490 }
1491 __initcall(prom_reconfig_setup);
1492 #endif
1493 
1494 struct property *of_find_property(struct device_node *np, const char *name,
1495 				  int *lenp)
1496 {
1497 	struct property *pp;
1498 
1499 	read_lock(&devtree_lock);
1500 	for (pp = np->properties; pp != 0; pp = pp->next)
1501 		if (strcmp(pp->name, name) == 0) {
1502 			if (lenp != 0)
1503 				*lenp = pp->length;
1504 			break;
1505 		}
1506 	read_unlock(&devtree_lock);
1507 
1508 	return pp;
1509 }
1510 
1511 /*
1512  * Find a property with a given name for a given node
1513  * and return the value.
1514  */
1515 const void *get_property(struct device_node *np, const char *name, int *lenp)
1516 {
1517 	struct property *pp = of_find_property(np,name,lenp);
1518 	return pp ? pp->value : NULL;
1519 }
1520 EXPORT_SYMBOL(get_property);
1521 
1522 /*
1523  * Add a property to a node
1524  */
1525 int prom_add_property(struct device_node* np, struct property* prop)
1526 {
1527 	struct property **next;
1528 
1529 	prop->next = NULL;
1530 	write_lock(&devtree_lock);
1531 	next = &np->properties;
1532 	while (*next) {
1533 		if (strcmp(prop->name, (*next)->name) == 0) {
1534 			/* duplicate ! don't insert it */
1535 			write_unlock(&devtree_lock);
1536 			return -1;
1537 		}
1538 		next = &(*next)->next;
1539 	}
1540 	*next = prop;
1541 	write_unlock(&devtree_lock);
1542 
1543 #ifdef CONFIG_PROC_DEVICETREE
1544 	/* try to add to proc as well if it was initialized */
1545 	if (np->pde)
1546 		proc_device_tree_add_prop(np->pde, prop);
1547 #endif /* CONFIG_PROC_DEVICETREE */
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Remove a property from a node.  Note that we don't actually
1554  * remove it, since we have given out who-knows-how-many pointers
1555  * to the data using get-property.  Instead we just move the property
1556  * to the "dead properties" list, so it won't be found any more.
1557  */
1558 int prom_remove_property(struct device_node *np, struct property *prop)
1559 {
1560 	struct property **next;
1561 	int found = 0;
1562 
1563 	write_lock(&devtree_lock);
1564 	next = &np->properties;
1565 	while (*next) {
1566 		if (*next == prop) {
1567 			/* found the node */
1568 			*next = prop->next;
1569 			prop->next = np->deadprops;
1570 			np->deadprops = prop;
1571 			found = 1;
1572 			break;
1573 		}
1574 		next = &(*next)->next;
1575 	}
1576 	write_unlock(&devtree_lock);
1577 
1578 	if (!found)
1579 		return -ENODEV;
1580 
1581 #ifdef CONFIG_PROC_DEVICETREE
1582 	/* try to remove the proc node as well */
1583 	if (np->pde)
1584 		proc_device_tree_remove_prop(np->pde, prop);
1585 #endif /* CONFIG_PROC_DEVICETREE */
1586 
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Update a property in a node.  Note that we don't actually
1592  * remove it, since we have given out who-knows-how-many pointers
1593  * to the data using get-property.  Instead we just move the property
1594  * to the "dead properties" list, and add the new property to the
1595  * property list
1596  */
1597 int prom_update_property(struct device_node *np,
1598 			 struct property *newprop,
1599 			 struct property *oldprop)
1600 {
1601 	struct property **next;
1602 	int found = 0;
1603 
1604 	write_lock(&devtree_lock);
1605 	next = &np->properties;
1606 	while (*next) {
1607 		if (*next == oldprop) {
1608 			/* found the node */
1609 			newprop->next = oldprop->next;
1610 			*next = newprop;
1611 			oldprop->next = np->deadprops;
1612 			np->deadprops = oldprop;
1613 			found = 1;
1614 			break;
1615 		}
1616 		next = &(*next)->next;
1617 	}
1618 	write_unlock(&devtree_lock);
1619 
1620 	if (!found)
1621 		return -ENODEV;
1622 
1623 #ifdef CONFIG_PROC_DEVICETREE
1624 	/* try to add to proc as well if it was initialized */
1625 	if (np->pde)
1626 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1627 #endif /* CONFIG_PROC_DEVICETREE */
1628 
1629 	return 0;
1630 }
1631 
1632 
1633 /* Find the device node for a given logical cpu number, also returns the cpu
1634  * local thread number (index in ibm,interrupt-server#s) if relevant and
1635  * asked for (non NULL)
1636  */
1637 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
1638 {
1639 	int hardid;
1640 	struct device_node *np;
1641 
1642 	hardid = get_hard_smp_processor_id(cpu);
1643 
1644 	for_each_node_by_type(np, "cpu") {
1645 		const u32 *intserv;
1646 		unsigned int plen, t;
1647 
1648 		/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
1649 		 * fallback to "reg" property and assume no threads
1650 		 */
1651 		intserv = get_property(np, "ibm,ppc-interrupt-server#s",
1652 				&plen);
1653 		if (intserv == NULL) {
1654 			const u32 *reg = get_property(np, "reg", NULL);
1655 			if (reg == NULL)
1656 				continue;
1657 			if (*reg == hardid) {
1658 				if (thread)
1659 					*thread = 0;
1660 				return np;
1661 			}
1662 		} else {
1663 			plen /= sizeof(u32);
1664 			for (t = 0; t < plen; t++) {
1665 				if (hardid == intserv[t]) {
1666 					if (thread)
1667 						*thread = t;
1668 					return np;
1669 				}
1670 			}
1671 		}
1672 	}
1673 	return NULL;
1674 }
1675 
1676 #ifdef DEBUG
1677 static struct debugfs_blob_wrapper flat_dt_blob;
1678 
1679 static int __init export_flat_device_tree(void)
1680 {
1681 	struct dentry *d;
1682 
1683 	d = debugfs_create_dir("powerpc", NULL);
1684 	if (!d)
1685 		return 1;
1686 
1687 	flat_dt_blob.data = initial_boot_params;
1688 	flat_dt_blob.size = initial_boot_params->totalsize;
1689 
1690 	d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
1691 				d, &flat_dt_blob);
1692 	if (!d)
1693 		return 1;
1694 
1695 	return 0;
1696 }
1697 __initcall(export_flat_device_tree);
1698 #endif
1699