1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/init.h> 17 #include <linux/threads.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 #include <linux/pci.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/bitops.h> 24 #include <linux/export.h> 25 #include <linux/kexec.h> 26 #include <linux/irq.h> 27 #include <linux/memblock.h> 28 #include <linux/of.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/cpu.h> 32 #include <linux/pgtable.h> 33 #include <linux/seq_buf.h> 34 35 #include <asm/rtas.h> 36 #include <asm/page.h> 37 #include <asm/processor.h> 38 #include <asm/irq.h> 39 #include <asm/io.h> 40 #include <asm/kdump.h> 41 #include <asm/smp.h> 42 #include <asm/mmu.h> 43 #include <asm/paca.h> 44 #include <asm/powernv.h> 45 #include <asm/iommu.h> 46 #include <asm/btext.h> 47 #include <asm/sections.h> 48 #include <asm/setup.h> 49 #include <asm/pci-bridge.h> 50 #include <asm/kexec.h> 51 #include <asm/opal.h> 52 #include <asm/fadump.h> 53 #include <asm/epapr_hcalls.h> 54 #include <asm/firmware.h> 55 #include <asm/dt_cpu_ftrs.h> 56 #include <asm/drmem.h> 57 #include <asm/ultravisor.h> 58 #include <asm/prom.h> 59 #include <asm/plpks.h> 60 61 #include <mm/mmu_decl.h> 62 63 #ifdef DEBUG 64 #define DBG(fmt...) printk(KERN_ERR fmt) 65 #else 66 #define DBG(fmt...) 67 #endif 68 69 int *chip_id_lookup_table; 70 71 #ifdef CONFIG_PPC64 72 int __initdata iommu_is_off; 73 int __initdata iommu_force_on; 74 unsigned long tce_alloc_start, tce_alloc_end; 75 u64 ppc64_rma_size; 76 unsigned int boot_cpu_node_count __ro_after_init; 77 #endif 78 static phys_addr_t first_memblock_size; 79 static int __initdata boot_cpu_count; 80 81 static int __init early_parse_mem(char *p) 82 { 83 if (!p) 84 return 1; 85 86 memory_limit = PAGE_ALIGN(memparse(p, &p)); 87 DBG("memory limit = 0x%llx\n", memory_limit); 88 89 return 0; 90 } 91 early_param("mem", early_parse_mem); 92 93 /* 94 * overlaps_initrd - check for overlap with page aligned extension of 95 * initrd. 96 */ 97 static inline int overlaps_initrd(unsigned long start, unsigned long size) 98 { 99 #ifdef CONFIG_BLK_DEV_INITRD 100 if (!initrd_start) 101 return 0; 102 103 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && 104 start <= ALIGN(initrd_end, PAGE_SIZE); 105 #else 106 return 0; 107 #endif 108 } 109 110 /** 111 * move_device_tree - move tree to an unused area, if needed. 112 * 113 * The device tree may be allocated beyond our memory limit, or inside the 114 * crash kernel region for kdump, or within the page aligned range of initrd. 115 * If so, move it out of the way. 116 */ 117 static void __init move_device_tree(void) 118 { 119 unsigned long start, size; 120 void *p; 121 122 DBG("-> move_device_tree\n"); 123 124 start = __pa(initial_boot_params); 125 size = fdt_totalsize(initial_boot_params); 126 127 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 128 !memblock_is_memory(start + size - 1) || 129 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 130 p = memblock_alloc_raw(size, PAGE_SIZE); 131 if (!p) 132 panic("Failed to allocate %lu bytes to move device tree\n", 133 size); 134 memcpy(p, initial_boot_params, size); 135 initial_boot_params = p; 136 DBG("Moved device tree to 0x%px\n", p); 137 } 138 139 DBG("<- move_device_tree\n"); 140 } 141 142 /* 143 * ibm,pa/pi-features is a per-cpu property that contains a string of 144 * attribute descriptors, each of which has a 2 byte header plus up 145 * to 254 bytes worth of processor attribute bits. First header 146 * byte specifies the number of bytes following the header. 147 * Second header byte is an "attribute-specifier" type, of which 148 * zero is the only currently-defined value. 149 * Implementation: Pass in the byte and bit offset for the feature 150 * that we are interested in. The function will return -1 if the 151 * pa-features property is missing, or a 1/0 to indicate if the feature 152 * is supported/not supported. Note that the bit numbers are 153 * big-endian to match the definition in PAPR. 154 * Note: the 'clear' flag clears the feature if the bit is set in the 155 * ibm,pa/pi-features property, it does not set the feature if the 156 * bit is clear. 157 */ 158 struct ibm_feature { 159 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 160 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 161 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 162 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 163 unsigned char pabyte; /* byte number in ibm,pa/pi-features */ 164 unsigned char pabit; /* bit number (big-endian) */ 165 unsigned char clear; /* if 1, pa bit set => clear feature */ 166 }; 167 168 static struct ibm_feature ibm_pa_features[] __initdata = { 169 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 170 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 171 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 172 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 173 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 174 #ifdef CONFIG_PPC_RADIX_MMU 175 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, 176 #endif 177 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 178 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 179 /* 180 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 181 * we don't want to turn on TM here, so we use the *_COMP versions 182 * which are 0 if the kernel doesn't support TM. 183 */ 184 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 185 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 186 187 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, 188 { .pabyte = 68, .pabit = 5, .cpu_features = CPU_FTR_DEXCR_NPHIE }, 189 }; 190 191 /* 192 * ibm,pi-features property provides the support of processor specific 193 * options not described in ibm,pa-features. Right now use byte 0, bit 3 194 * which indicates the occurrence of DSI interrupt when the paste operation 195 * on the suspended NX window. 196 */ 197 static struct ibm_feature ibm_pi_features[] __initdata = { 198 { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI }, 199 { .pabyte = 0, .pabit = 4, .cpu_features = CPU_FTR_DBELL, .clear = 1 }, 200 }; 201 202 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 203 unsigned long tablelen, 204 struct ibm_feature *fp, 205 unsigned long ft_size) 206 { 207 unsigned long i, len, bit; 208 209 /* find descriptor with type == 0 */ 210 for (;;) { 211 if (tablelen < 3) 212 return; 213 len = 2 + ftrs[0]; 214 if (tablelen < len) 215 return; /* descriptor 0 not found */ 216 if (ftrs[1] == 0) 217 break; 218 tablelen -= len; 219 ftrs += len; 220 } 221 222 /* loop over bits we know about */ 223 for (i = 0; i < ft_size; ++i, ++fp) { 224 if (fp->pabyte >= ftrs[0]) 225 continue; 226 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 227 if (bit && !fp->clear) { 228 cur_cpu_spec->cpu_features |= fp->cpu_features; 229 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 230 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 231 cur_cpu_spec->mmu_features |= fp->mmu_features; 232 } else if (bit == fp->clear) { 233 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 234 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 235 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 236 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 237 } 238 } 239 } 240 241 static void __init check_cpu_features(unsigned long node, char *name, 242 struct ibm_feature *fp, 243 unsigned long size) 244 { 245 const unsigned char *pa_ftrs; 246 int tablelen; 247 248 pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen); 249 if (pa_ftrs == NULL) 250 return; 251 252 scan_features(node, pa_ftrs, tablelen, fp, size); 253 } 254 255 #ifdef CONFIG_PPC_64S_HASH_MMU 256 static void __init init_mmu_slb_size(unsigned long node) 257 { 258 const __be32 *slb_size_ptr; 259 260 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 261 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 262 263 if (slb_size_ptr) 264 mmu_slb_size = be32_to_cpup(slb_size_ptr); 265 } 266 #else 267 #define init_mmu_slb_size(node) do { } while(0) 268 #endif 269 270 static struct feature_property { 271 const char *name; 272 u32 min_value; 273 unsigned long cpu_feature; 274 unsigned long cpu_user_ftr; 275 } feature_properties[] __initdata = { 276 #ifdef CONFIG_ALTIVEC 277 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 278 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 279 #endif /* CONFIG_ALTIVEC */ 280 #ifdef CONFIG_VSX 281 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 282 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 283 #endif /* CONFIG_VSX */ 284 #ifdef CONFIG_PPC64 285 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 286 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 287 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 288 #endif /* CONFIG_PPC64 */ 289 }; 290 291 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 292 static __init void identical_pvr_fixup(unsigned long node) 293 { 294 unsigned int pvr; 295 const char *model = of_get_flat_dt_prop(node, "model", NULL); 296 297 /* 298 * Since 440GR(x)/440EP(x) processors have the same pvr, 299 * we check the node path and set bit 28 in the cur_cpu_spec 300 * pvr for EP(x) processor version. This bit is always 0 in 301 * the "real" pvr. Then we call identify_cpu again with 302 * the new logical pvr to enable FPU support. 303 */ 304 if (model && strstr(model, "440EP")) { 305 pvr = cur_cpu_spec->pvr_value | 0x8; 306 identify_cpu(0, pvr); 307 DBG("Using logical pvr %x for %s\n", pvr, model); 308 } 309 } 310 #else 311 #define identical_pvr_fixup(node) do { } while(0) 312 #endif 313 314 static void __init check_cpu_feature_properties(unsigned long node) 315 { 316 int i; 317 struct feature_property *fp = feature_properties; 318 const __be32 *prop; 319 320 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 321 prop = of_get_flat_dt_prop(node, fp->name, NULL); 322 if (prop && be32_to_cpup(prop) >= fp->min_value) { 323 cur_cpu_spec->cpu_features |= fp->cpu_feature; 324 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 325 } 326 } 327 } 328 329 static int __init early_init_dt_scan_cpus(unsigned long node, 330 const char *uname, int depth, 331 void *data) 332 { 333 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 334 const __be32 *prop; 335 const __be32 *intserv; 336 int i, nthreads; 337 int len; 338 int found = -1; 339 int found_thread = 0; 340 341 /* We are scanning "cpu" nodes only */ 342 if (type == NULL || strcmp(type, "cpu") != 0) 343 return 0; 344 345 if (IS_ENABLED(CONFIG_PPC64)) 346 boot_cpu_node_count++; 347 348 /* Get physical cpuid */ 349 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 350 if (!intserv) 351 intserv = of_get_flat_dt_prop(node, "reg", &len); 352 353 nthreads = len / sizeof(int); 354 355 /* 356 * Now see if any of these threads match our boot cpu. 357 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 358 */ 359 for (i = 0; i < nthreads; i++) { 360 if (be32_to_cpu(intserv[i]) == 361 fdt_boot_cpuid_phys(initial_boot_params)) { 362 found = boot_cpu_count; 363 found_thread = i; 364 } 365 #ifdef CONFIG_SMP 366 /* logical cpu id is always 0 on UP kernels */ 367 boot_cpu_count++; 368 #endif 369 } 370 371 /* Not the boot CPU */ 372 if (found < 0) 373 return 0; 374 375 boot_cpuid = found; 376 377 if (IS_ENABLED(CONFIG_PPC64)) 378 boot_cpu_hwid = be32_to_cpu(intserv[found_thread]); 379 380 if (nr_cpu_ids % nthreads != 0) { 381 set_nr_cpu_ids(ALIGN(nr_cpu_ids, nthreads)); 382 pr_warn("nr_cpu_ids was not a multiple of threads_per_core, adjusted to %d\n", 383 nr_cpu_ids); 384 } 385 386 if (boot_cpuid >= nr_cpu_ids) { 387 // Remember boot core for smp_setup_cpu_maps() 388 boot_core_hwid = be32_to_cpu(intserv[0]); 389 390 pr_warn("Boot CPU %d (core hwid %d) >= nr_cpu_ids, adjusted boot CPU to %d\n", 391 boot_cpuid, boot_core_hwid, found_thread); 392 393 // Adjust boot CPU to appear on logical core 0 394 boot_cpuid = found_thread; 395 } 396 397 DBG("boot cpu: logical %d physical %d\n", boot_cpuid, 398 be32_to_cpu(intserv[found_thread])); 399 400 /* 401 * PAPR defines "logical" PVR values for cpus that 402 * meet various levels of the architecture: 403 * 0x0f000001 Architecture version 2.04 404 * 0x0f000002 Architecture version 2.05 405 * If the cpu-version property in the cpu node contains 406 * such a value, we call identify_cpu again with the 407 * logical PVR value in order to use the cpu feature 408 * bits appropriate for the architecture level. 409 * 410 * A POWER6 partition in "POWER6 architected" mode 411 * uses the 0x0f000002 PVR value; in POWER5+ mode 412 * it uses 0x0f000001. 413 * 414 * If we're using device tree CPU feature discovery then we don't 415 * support the cpu-version property, and it's the responsibility of the 416 * firmware/hypervisor to provide the correct feature set for the 417 * architecture level via the ibm,powerpc-cpu-features binding. 418 */ 419 if (!dt_cpu_ftrs_in_use()) { 420 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 421 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) { 422 identify_cpu(0, be32_to_cpup(prop)); 423 seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(prop)); 424 } 425 426 check_cpu_feature_properties(node); 427 check_cpu_features(node, "ibm,pa-features", ibm_pa_features, 428 ARRAY_SIZE(ibm_pa_features)); 429 check_cpu_features(node, "ibm,pi-features", ibm_pi_features, 430 ARRAY_SIZE(ibm_pi_features)); 431 } 432 433 identical_pvr_fixup(node); 434 init_mmu_slb_size(node); 435 436 #ifdef CONFIG_PPC64 437 if (nthreads == 1) 438 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 439 else if (!dt_cpu_ftrs_in_use()) 440 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 441 #endif 442 443 return 0; 444 } 445 446 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 447 const char *uname, 448 int depth, void *data) 449 { 450 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 451 452 /* Use common scan routine to determine if this is the chosen node */ 453 if (early_init_dt_scan_chosen(data) < 0) 454 return 0; 455 456 #ifdef CONFIG_PPC64 457 /* check if iommu is forced on or off */ 458 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 459 iommu_is_off = 1; 460 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 461 iommu_force_on = 1; 462 #endif 463 464 /* mem=x on the command line is the preferred mechanism */ 465 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 466 if (lprop) 467 memory_limit = *lprop; 468 469 #ifdef CONFIG_PPC64 470 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 471 if (lprop) 472 tce_alloc_start = *lprop; 473 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 474 if (lprop) 475 tce_alloc_end = *lprop; 476 #endif 477 478 #ifdef CONFIG_KEXEC_CORE 479 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 480 if (lprop) 481 crashk_res.start = *lprop; 482 483 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 484 if (lprop) 485 crashk_res.end = crashk_res.start + *lprop - 1; 486 #endif 487 488 /* break now */ 489 return 1; 490 } 491 492 /* 493 * Compare the range against max mem limit and update 494 * size if it cross the limit. 495 */ 496 497 #ifdef CONFIG_SPARSEMEM 498 static bool __init validate_mem_limit(u64 base, u64 *size) 499 { 500 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 501 502 if (base >= max_mem) 503 return false; 504 if ((base + *size) > max_mem) 505 *size = max_mem - base; 506 return true; 507 } 508 #else 509 static bool __init validate_mem_limit(u64 base, u64 *size) 510 { 511 return true; 512 } 513 #endif 514 515 #ifdef CONFIG_PPC_PSERIES 516 /* 517 * Interpret the ibm dynamic reconfiguration memory LMBs. 518 * This contains a list of memory blocks along with NUMA affinity 519 * information. 520 */ 521 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, 522 const __be32 **usm, 523 void *data) 524 { 525 u64 base, size; 526 int is_kexec_kdump = 0, rngs; 527 528 base = lmb->base_addr; 529 size = drmem_lmb_size(); 530 rngs = 1; 531 532 /* 533 * Skip this block if the reserved bit is set in flags 534 * or if the block is not assigned to this partition. 535 */ 536 if ((lmb->flags & DRCONF_MEM_RESERVED) || 537 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 538 return 0; 539 540 if (*usm) 541 is_kexec_kdump = 1; 542 543 if (is_kexec_kdump) { 544 /* 545 * For each memblock in ibm,dynamic-memory, a 546 * corresponding entry in linux,drconf-usable-memory 547 * property contains a counter 'p' followed by 'p' 548 * (base, size) duple. Now read the counter from 549 * linux,drconf-usable-memory property 550 */ 551 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 552 if (!rngs) /* there are no (base, size) duple */ 553 return 0; 554 } 555 556 do { 557 if (is_kexec_kdump) { 558 base = dt_mem_next_cell(dt_root_addr_cells, usm); 559 size = dt_mem_next_cell(dt_root_size_cells, usm); 560 } 561 562 if (iommu_is_off) { 563 if (base >= 0x80000000ul) 564 continue; 565 if ((base + size) > 0x80000000ul) 566 size = 0x80000000ul - base; 567 } 568 569 if (!validate_mem_limit(base, &size)) 570 continue; 571 572 DBG("Adding: %llx -> %llx\n", base, size); 573 memblock_add(base, size); 574 575 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) 576 memblock_mark_hotplug(base, size); 577 } while (--rngs); 578 579 return 0; 580 } 581 #endif /* CONFIG_PPC_PSERIES */ 582 583 static int __init early_init_dt_scan_memory_ppc(void) 584 { 585 #ifdef CONFIG_PPC_PSERIES 586 const void *fdt = initial_boot_params; 587 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 588 589 if (node > 0) 590 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); 591 592 #endif 593 594 return early_init_dt_scan_memory(); 595 } 596 597 /* 598 * For a relocatable kernel, we need to get the memstart_addr first, 599 * then use it to calculate the virtual kernel start address. This has 600 * to happen at a very early stage (before machine_init). In this case, 601 * we just want to get the memstart_address and would not like to mess the 602 * memblock at this stage. So introduce a variable to skip the memblock_add() 603 * for this reason. 604 */ 605 #ifdef CONFIG_RELOCATABLE 606 static int add_mem_to_memblock = 1; 607 #else 608 #define add_mem_to_memblock 1 609 #endif 610 611 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 612 { 613 #ifdef CONFIG_PPC64 614 if (iommu_is_off) { 615 if (base >= 0x80000000ul) 616 return; 617 if ((base + size) > 0x80000000ul) 618 size = 0x80000000ul - base; 619 } 620 #endif 621 /* Keep track of the beginning of memory -and- the size of 622 * the very first block in the device-tree as it represents 623 * the RMA on ppc64 server 624 */ 625 if (base < memstart_addr) { 626 memstart_addr = base; 627 first_memblock_size = size; 628 } 629 630 /* Add the chunk to the MEMBLOCK list */ 631 if (add_mem_to_memblock) { 632 if (validate_mem_limit(base, &size)) 633 memblock_add(base, size); 634 } 635 } 636 637 static void __init early_reserve_mem_dt(void) 638 { 639 unsigned long i, dt_root; 640 int len; 641 const __be32 *prop; 642 643 early_init_fdt_reserve_self(); 644 early_init_fdt_scan_reserved_mem(); 645 646 dt_root = of_get_flat_dt_root(); 647 648 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 649 650 if (!prop) 651 return; 652 653 DBG("Found new-style reserved-ranges\n"); 654 655 /* Each reserved range is an (address,size) pair, 2 cells each, 656 * totalling 4 cells per range. */ 657 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 658 u64 base, size; 659 660 base = of_read_number(prop + (i * 4) + 0, 2); 661 size = of_read_number(prop + (i * 4) + 2, 2); 662 663 if (size) { 664 DBG("reserving: %llx -> %llx\n", base, size); 665 memblock_reserve(base, size); 666 } 667 } 668 } 669 670 static void __init early_reserve_mem(void) 671 { 672 __be64 *reserve_map; 673 674 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 675 fdt_off_mem_rsvmap(initial_boot_params)); 676 677 /* Look for the new "reserved-regions" property in the DT */ 678 early_reserve_mem_dt(); 679 680 #ifdef CONFIG_BLK_DEV_INITRD 681 /* Then reserve the initrd, if any */ 682 if (initrd_start && (initrd_end > initrd_start)) { 683 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 684 ALIGN(initrd_end, PAGE_SIZE) - 685 ALIGN_DOWN(initrd_start, PAGE_SIZE)); 686 } 687 #endif /* CONFIG_BLK_DEV_INITRD */ 688 689 if (!IS_ENABLED(CONFIG_PPC32)) 690 return; 691 692 /* 693 * Handle the case where we might be booting from an old kexec 694 * image that setup the mem_rsvmap as pairs of 32-bit values 695 */ 696 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 697 u32 base_32, size_32; 698 __be32 *reserve_map_32 = (__be32 *)reserve_map; 699 700 DBG("Found old 32-bit reserve map\n"); 701 702 while (1) { 703 base_32 = be32_to_cpup(reserve_map_32++); 704 size_32 = be32_to_cpup(reserve_map_32++); 705 if (size_32 == 0) 706 break; 707 DBG("reserving: %x -> %x\n", base_32, size_32); 708 memblock_reserve(base_32, size_32); 709 } 710 return; 711 } 712 } 713 714 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 715 static bool tm_disabled __initdata; 716 717 static int __init parse_ppc_tm(char *str) 718 { 719 bool res; 720 721 if (kstrtobool(str, &res)) 722 return -EINVAL; 723 724 tm_disabled = !res; 725 726 return 0; 727 } 728 early_param("ppc_tm", parse_ppc_tm); 729 730 static void __init tm_init(void) 731 { 732 if (tm_disabled) { 733 pr_info("Disabling hardware transactional memory (HTM)\n"); 734 cur_cpu_spec->cpu_user_features2 &= 735 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 736 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 737 return; 738 } 739 740 pnv_tm_init(); 741 } 742 #else 743 static void tm_init(void) { } 744 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 745 746 static int __init 747 early_init_dt_scan_model(unsigned long node, const char *uname, 748 int depth, void *data) 749 { 750 const char *prop; 751 752 if (depth != 0) 753 return 0; 754 755 prop = of_get_flat_dt_prop(node, "model", NULL); 756 if (prop) 757 seq_buf_printf(&ppc_hw_desc, "%s ", prop); 758 759 /* break now */ 760 return 1; 761 } 762 763 #ifdef CONFIG_PPC64 764 static void __init save_fscr_to_task(void) 765 { 766 /* 767 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we 768 * have configured via the device tree features or via __init_FSCR(). 769 * That value will then be propagated to pid 1 (init) and all future 770 * processes. 771 */ 772 if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 773 init_task.thread.fscr = mfspr(SPRN_FSCR); 774 } 775 #else 776 static inline void save_fscr_to_task(void) {} 777 #endif 778 779 780 void __init early_init_devtree(void *params) 781 { 782 phys_addr_t limit; 783 784 DBG(" -> early_init_devtree(%px)\n", params); 785 786 /* Too early to BUG_ON(), do it by hand */ 787 if (!early_init_dt_verify(params)) 788 panic("BUG: Failed verifying flat device tree, bad version?"); 789 790 of_scan_flat_dt(early_init_dt_scan_model, NULL); 791 792 #ifdef CONFIG_PPC_RTAS 793 /* Some machines might need RTAS info for debugging, grab it now. */ 794 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 795 #endif 796 797 #ifdef CONFIG_PPC_POWERNV 798 /* Some machines might need OPAL info for debugging, grab it now. */ 799 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 800 801 /* Scan tree for ultravisor feature */ 802 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); 803 #endif 804 805 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 806 /* scan tree to see if dump is active during last boot */ 807 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 808 #endif 809 810 /* Retrieve various informations from the /chosen node of the 811 * device-tree, including the platform type, initrd location and 812 * size, TCE reserve, and more ... 813 */ 814 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 815 816 /* Scan memory nodes and rebuild MEMBLOCKs */ 817 early_init_dt_scan_root(); 818 early_init_dt_scan_memory_ppc(); 819 820 /* 821 * As generic code authors expect to be able to use static keys 822 * in early_param() handlers, we initialize the static keys just 823 * before parsing early params (it's fine to call jump_label_init() 824 * more than once). 825 */ 826 jump_label_init(); 827 parse_early_param(); 828 829 /* make sure we've parsed cmdline for mem= before this */ 830 if (memory_limit) 831 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 832 setup_initial_memory_limit(memstart_addr, first_memblock_size); 833 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 834 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); 835 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 836 if (PHYSICAL_START > MEMORY_START) 837 memblock_reserve(MEMORY_START, 0x8000); 838 reserve_kdump_trampoline(); 839 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 840 /* 841 * If we fail to reserve memory for firmware-assisted dump then 842 * fallback to kexec based kdump. 843 */ 844 if (fadump_reserve_mem() == 0) 845 #endif 846 reserve_crashkernel(); 847 early_reserve_mem(); 848 849 /* Ensure that total memory size is page-aligned. */ 850 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 851 memblock_enforce_memory_limit(limit); 852 853 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) 854 if (!early_radix_enabled()) 855 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); 856 #endif 857 858 memblock_allow_resize(); 859 memblock_dump_all(); 860 861 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 862 863 /* We may need to relocate the flat tree, do it now. 864 * FIXME .. and the initrd too? */ 865 move_device_tree(); 866 867 DBG("Scanning CPUs ...\n"); 868 869 dt_cpu_ftrs_scan(); 870 871 // We can now add the CPU name & PVR to the hardware description 872 seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR)); 873 874 /* Retrieve CPU related informations from the flat tree 875 * (altivec support, boot CPU ID, ...) 876 */ 877 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 878 if (boot_cpuid < 0) { 879 printk("Failed to identify boot CPU !\n"); 880 BUG(); 881 } 882 883 save_fscr_to_task(); 884 885 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 886 /* We'll later wait for secondaries to check in; there are 887 * NCPUS-1 non-boot CPUs :-) 888 */ 889 spinning_secondaries = boot_cpu_count - 1; 890 #endif 891 892 mmu_early_init_devtree(); 893 894 #ifdef CONFIG_PPC_POWERNV 895 /* Scan and build the list of machine check recoverable ranges */ 896 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 897 #endif 898 epapr_paravirt_early_init(); 899 900 /* Now try to figure out if we are running on LPAR and so on */ 901 pseries_probe_fw_features(); 902 903 /* 904 * Initialize pkey features and default AMR/IAMR values 905 */ 906 pkey_early_init_devtree(); 907 908 #ifdef CONFIG_PPC_PS3 909 /* Identify PS3 firmware */ 910 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 911 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 912 #endif 913 914 /* If kexec left a PLPKS password in the DT, get it and clear it */ 915 plpks_early_init_devtree(); 916 917 tm_init(); 918 919 DBG(" <- early_init_devtree()\n"); 920 } 921 922 #ifdef CONFIG_RELOCATABLE 923 /* 924 * This function run before early_init_devtree, so we have to init 925 * initial_boot_params. 926 */ 927 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 928 { 929 /* Setup flat device-tree pointer */ 930 initial_boot_params = params; 931 932 /* 933 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 934 * mess the memblock. 935 */ 936 add_mem_to_memblock = 0; 937 early_init_dt_scan_root(); 938 early_init_dt_scan_memory_ppc(); 939 add_mem_to_memblock = 1; 940 941 if (size) 942 *size = first_memblock_size; 943 } 944 #endif 945 946 /******* 947 * 948 * New implementation of the OF "find" APIs, return a refcounted 949 * object, call of_node_put() when done. The device tree and list 950 * are protected by a rw_lock. 951 * 952 * Note that property management will need some locking as well, 953 * this isn't dealt with yet. 954 * 955 *******/ 956 957 /** 958 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 959 * @np: device node of the device 960 * 961 * This looks for a property "ibm,chip-id" in the node or any 962 * of its parents and returns its content, or -1 if it cannot 963 * be found. 964 */ 965 int of_get_ibm_chip_id(struct device_node *np) 966 { 967 of_node_get(np); 968 while (np) { 969 u32 chip_id; 970 971 /* 972 * Skiboot may produce memory nodes that contain more than one 973 * cell in chip-id, we only read the first one here. 974 */ 975 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 976 of_node_put(np); 977 return chip_id; 978 } 979 980 np = of_get_next_parent(np); 981 } 982 return -1; 983 } 984 EXPORT_SYMBOL(of_get_ibm_chip_id); 985 986 /** 987 * cpu_to_chip_id - Return the cpus chip-id 988 * @cpu: The logical cpu number. 989 * 990 * Return the value of the ibm,chip-id property corresponding to the given 991 * logical cpu number. If the chip-id can not be found, returns -1. 992 */ 993 int cpu_to_chip_id(int cpu) 994 { 995 struct device_node *np; 996 int ret = -1, idx; 997 998 idx = cpu / threads_per_core; 999 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) 1000 return chip_id_lookup_table[idx]; 1001 1002 np = of_get_cpu_node(cpu, NULL); 1003 if (np) { 1004 ret = of_get_ibm_chip_id(np); 1005 of_node_put(np); 1006 1007 if (chip_id_lookup_table) 1008 chip_id_lookup_table[idx] = ret; 1009 } 1010 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(cpu_to_chip_id); 1014 1015 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 1016 { 1017 #ifdef CONFIG_SMP 1018 /* 1019 * Early firmware scanning must use this rather than 1020 * get_hard_smp_processor_id because we don't have pacas allocated 1021 * until memory topology is discovered. 1022 */ 1023 if (cpu_to_phys_id != NULL) 1024 return (int)phys_id == cpu_to_phys_id[cpu]; 1025 #endif 1026 1027 return (int)phys_id == get_hard_smp_processor_id(cpu); 1028 } 1029