1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/delay.h> 27 #include <linux/initrd.h> 28 #include <linux/bitops.h> 29 #include <linux/export.h> 30 #include <linux/kexec.h> 31 #include <linux/irq.h> 32 #include <linux/memblock.h> 33 #include <linux/of.h> 34 #include <linux/of_fdt.h> 35 #include <linux/libfdt.h> 36 #include <linux/cpu.h> 37 38 #include <asm/prom.h> 39 #include <asm/rtas.h> 40 #include <asm/page.h> 41 #include <asm/processor.h> 42 #include <asm/irq.h> 43 #include <asm/io.h> 44 #include <asm/kdump.h> 45 #include <asm/smp.h> 46 #include <asm/mmu.h> 47 #include <asm/paca.h> 48 #include <asm/pgtable.h> 49 #include <asm/powernv.h> 50 #include <asm/iommu.h> 51 #include <asm/btext.h> 52 #include <asm/sections.h> 53 #include <asm/machdep.h> 54 #include <asm/pci-bridge.h> 55 #include <asm/kexec.h> 56 #include <asm/opal.h> 57 #include <asm/fadump.h> 58 #include <asm/epapr_hcalls.h> 59 #include <asm/firmware.h> 60 #include <asm/dt_cpu_ftrs.h> 61 #include <asm/drmem.h> 62 63 #include <mm/mmu_decl.h> 64 65 #ifdef DEBUG 66 #define DBG(fmt...) printk(KERN_ERR fmt) 67 #else 68 #define DBG(fmt...) 69 #endif 70 71 #ifdef CONFIG_PPC64 72 int __initdata iommu_is_off; 73 int __initdata iommu_force_on; 74 unsigned long tce_alloc_start, tce_alloc_end; 75 u64 ppc64_rma_size; 76 #endif 77 static phys_addr_t first_memblock_size; 78 static int __initdata boot_cpu_count; 79 80 static int __init early_parse_mem(char *p) 81 { 82 if (!p) 83 return 1; 84 85 memory_limit = PAGE_ALIGN(memparse(p, &p)); 86 DBG("memory limit = 0x%llx\n", memory_limit); 87 88 return 0; 89 } 90 early_param("mem", early_parse_mem); 91 92 /* 93 * overlaps_initrd - check for overlap with page aligned extension of 94 * initrd. 95 */ 96 static inline int overlaps_initrd(unsigned long start, unsigned long size) 97 { 98 #ifdef CONFIG_BLK_DEV_INITRD 99 if (!initrd_start) 100 return 0; 101 102 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 103 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 104 #else 105 return 0; 106 #endif 107 } 108 109 /** 110 * move_device_tree - move tree to an unused area, if needed. 111 * 112 * The device tree may be allocated beyond our memory limit, or inside the 113 * crash kernel region for kdump, or within the page aligned range of initrd. 114 * If so, move it out of the way. 115 */ 116 static void __init move_device_tree(void) 117 { 118 unsigned long start, size; 119 void *p; 120 121 DBG("-> move_device_tree\n"); 122 123 start = __pa(initial_boot_params); 124 size = fdt_totalsize(initial_boot_params); 125 126 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 127 overlaps_crashkernel(start, size) || 128 overlaps_initrd(start, size)) { 129 p = __va(memblock_alloc(size, PAGE_SIZE)); 130 memcpy(p, initial_boot_params, size); 131 initial_boot_params = p; 132 DBG("Moved device tree to 0x%p\n", p); 133 } 134 135 DBG("<- move_device_tree\n"); 136 } 137 138 /* 139 * ibm,pa-features is a per-cpu property that contains a string of 140 * attribute descriptors, each of which has a 2 byte header plus up 141 * to 254 bytes worth of processor attribute bits. First header 142 * byte specifies the number of bytes following the header. 143 * Second header byte is an "attribute-specifier" type, of which 144 * zero is the only currently-defined value. 145 * Implementation: Pass in the byte and bit offset for the feature 146 * that we are interested in. The function will return -1 if the 147 * pa-features property is missing, or a 1/0 to indicate if the feature 148 * is supported/not supported. Note that the bit numbers are 149 * big-endian to match the definition in PAPR. 150 */ 151 static struct ibm_pa_feature { 152 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 153 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 154 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 155 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 156 unsigned char pabyte; /* byte number in ibm,pa-features */ 157 unsigned char pabit; /* bit number (big-endian) */ 158 unsigned char invert; /* if 1, pa bit set => clear feature */ 159 } ibm_pa_features[] __initdata = { 160 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 161 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 162 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 163 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 164 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 165 #ifdef CONFIG_PPC_RADIX_MMU 166 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 167 #endif 168 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 169 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 170 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 171 /* 172 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 173 * we don't want to turn on TM here, so we use the *_COMP versions 174 * which are 0 if the kernel doesn't support TM. 175 */ 176 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 177 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 178 }; 179 180 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 181 unsigned long tablelen, 182 struct ibm_pa_feature *fp, 183 unsigned long ft_size) 184 { 185 unsigned long i, len, bit; 186 187 /* find descriptor with type == 0 */ 188 for (;;) { 189 if (tablelen < 3) 190 return; 191 len = 2 + ftrs[0]; 192 if (tablelen < len) 193 return; /* descriptor 0 not found */ 194 if (ftrs[1] == 0) 195 break; 196 tablelen -= len; 197 ftrs += len; 198 } 199 200 /* loop over bits we know about */ 201 for (i = 0; i < ft_size; ++i, ++fp) { 202 if (fp->pabyte >= ftrs[0]) 203 continue; 204 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 205 if (bit ^ fp->invert) { 206 cur_cpu_spec->cpu_features |= fp->cpu_features; 207 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 208 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 209 cur_cpu_spec->mmu_features |= fp->mmu_features; 210 } else { 211 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 212 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 213 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 214 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 215 } 216 } 217 } 218 219 static void __init check_cpu_pa_features(unsigned long node) 220 { 221 const unsigned char *pa_ftrs; 222 int tablelen; 223 224 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 225 if (pa_ftrs == NULL) 226 return; 227 228 scan_features(node, pa_ftrs, tablelen, 229 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 230 } 231 232 #ifdef CONFIG_PPC_BOOK3S_64 233 static void __init init_mmu_slb_size(unsigned long node) 234 { 235 const __be32 *slb_size_ptr; 236 237 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 238 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 239 240 if (slb_size_ptr) 241 mmu_slb_size = be32_to_cpup(slb_size_ptr); 242 } 243 #else 244 #define init_mmu_slb_size(node) do { } while(0) 245 #endif 246 247 static struct feature_property { 248 const char *name; 249 u32 min_value; 250 unsigned long cpu_feature; 251 unsigned long cpu_user_ftr; 252 } feature_properties[] __initdata = { 253 #ifdef CONFIG_ALTIVEC 254 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 255 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 256 #endif /* CONFIG_ALTIVEC */ 257 #ifdef CONFIG_VSX 258 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 259 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 260 #endif /* CONFIG_VSX */ 261 #ifdef CONFIG_PPC64 262 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 263 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 264 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 265 #endif /* CONFIG_PPC64 */ 266 }; 267 268 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 269 static inline void identical_pvr_fixup(unsigned long node) 270 { 271 unsigned int pvr; 272 const char *model = of_get_flat_dt_prop(node, "model", NULL); 273 274 /* 275 * Since 440GR(x)/440EP(x) processors have the same pvr, 276 * we check the node path and set bit 28 in the cur_cpu_spec 277 * pvr for EP(x) processor version. This bit is always 0 in 278 * the "real" pvr. Then we call identify_cpu again with 279 * the new logical pvr to enable FPU support. 280 */ 281 if (model && strstr(model, "440EP")) { 282 pvr = cur_cpu_spec->pvr_value | 0x8; 283 identify_cpu(0, pvr); 284 DBG("Using logical pvr %x for %s\n", pvr, model); 285 } 286 } 287 #else 288 #define identical_pvr_fixup(node) do { } while(0) 289 #endif 290 291 static void __init check_cpu_feature_properties(unsigned long node) 292 { 293 int i; 294 struct feature_property *fp = feature_properties; 295 const __be32 *prop; 296 297 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 298 prop = of_get_flat_dt_prop(node, fp->name, NULL); 299 if (prop && be32_to_cpup(prop) >= fp->min_value) { 300 cur_cpu_spec->cpu_features |= fp->cpu_feature; 301 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 302 } 303 } 304 } 305 306 static int __init early_init_dt_scan_cpus(unsigned long node, 307 const char *uname, int depth, 308 void *data) 309 { 310 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 311 const __be32 *prop; 312 const __be32 *intserv; 313 int i, nthreads; 314 int len; 315 int found = -1; 316 int found_thread = 0; 317 318 /* We are scanning "cpu" nodes only */ 319 if (type == NULL || strcmp(type, "cpu") != 0) 320 return 0; 321 322 /* Get physical cpuid */ 323 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 324 if (!intserv) 325 intserv = of_get_flat_dt_prop(node, "reg", &len); 326 327 nthreads = len / sizeof(int); 328 329 /* 330 * Now see if any of these threads match our boot cpu. 331 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 332 */ 333 for (i = 0; i < nthreads; i++) { 334 if (be32_to_cpu(intserv[i]) == 335 fdt_boot_cpuid_phys(initial_boot_params)) { 336 found = boot_cpu_count; 337 found_thread = i; 338 } 339 #ifdef CONFIG_SMP 340 /* logical cpu id is always 0 on UP kernels */ 341 boot_cpu_count++; 342 #endif 343 } 344 345 /* Not the boot CPU */ 346 if (found < 0) 347 return 0; 348 349 DBG("boot cpu: logical %d physical %d\n", found, 350 be32_to_cpu(intserv[found_thread])); 351 boot_cpuid = found; 352 353 /* 354 * PAPR defines "logical" PVR values for cpus that 355 * meet various levels of the architecture: 356 * 0x0f000001 Architecture version 2.04 357 * 0x0f000002 Architecture version 2.05 358 * If the cpu-version property in the cpu node contains 359 * such a value, we call identify_cpu again with the 360 * logical PVR value in order to use the cpu feature 361 * bits appropriate for the architecture level. 362 * 363 * A POWER6 partition in "POWER6 architected" mode 364 * uses the 0x0f000002 PVR value; in POWER5+ mode 365 * it uses 0x0f000001. 366 * 367 * If we're using device tree CPU feature discovery then we don't 368 * support the cpu-version property, and it's the responsibility of the 369 * firmware/hypervisor to provide the correct feature set for the 370 * architecture level via the ibm,powerpc-cpu-features binding. 371 */ 372 if (!dt_cpu_ftrs_in_use()) { 373 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 374 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 375 identify_cpu(0, be32_to_cpup(prop)); 376 377 check_cpu_feature_properties(node); 378 check_cpu_pa_features(node); 379 } 380 381 identical_pvr_fixup(node); 382 init_mmu_slb_size(node); 383 384 #ifdef CONFIG_PPC64 385 if (nthreads == 1) 386 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 387 else if (!dt_cpu_ftrs_in_use()) 388 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 389 allocate_paca(boot_cpuid); 390 #endif 391 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 392 393 return 0; 394 } 395 396 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 397 const char *uname, 398 int depth, void *data) 399 { 400 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 401 402 /* Use common scan routine to determine if this is the chosen node */ 403 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 404 return 0; 405 406 #ifdef CONFIG_PPC64 407 /* check if iommu is forced on or off */ 408 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 409 iommu_is_off = 1; 410 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 411 iommu_force_on = 1; 412 #endif 413 414 /* mem=x on the command line is the preferred mechanism */ 415 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 416 if (lprop) 417 memory_limit = *lprop; 418 419 #ifdef CONFIG_PPC64 420 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 421 if (lprop) 422 tce_alloc_start = *lprop; 423 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 424 if (lprop) 425 tce_alloc_end = *lprop; 426 #endif 427 428 #ifdef CONFIG_KEXEC_CORE 429 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 430 if (lprop) 431 crashk_res.start = *lprop; 432 433 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 434 if (lprop) 435 crashk_res.end = crashk_res.start + *lprop - 1; 436 #endif 437 438 /* break now */ 439 return 1; 440 } 441 442 /* 443 * Compare the range against max mem limit and update 444 * size if it cross the limit. 445 */ 446 447 #ifdef CONFIG_SPARSEMEM 448 static bool validate_mem_limit(u64 base, u64 *size) 449 { 450 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 451 452 if (base >= max_mem) 453 return false; 454 if ((base + *size) > max_mem) 455 *size = max_mem - base; 456 return true; 457 } 458 #else 459 static bool validate_mem_limit(u64 base, u64 *size) 460 { 461 return true; 462 } 463 #endif 464 465 #ifdef CONFIG_PPC_PSERIES 466 /* 467 * Interpret the ibm dynamic reconfiguration memory LMBs. 468 * This contains a list of memory blocks along with NUMA affinity 469 * information. 470 */ 471 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb, 472 const __be32 **usm) 473 { 474 u64 base, size; 475 int is_kexec_kdump = 0, rngs; 476 477 base = lmb->base_addr; 478 size = drmem_lmb_size(); 479 rngs = 1; 480 481 /* 482 * Skip this block if the reserved bit is set in flags 483 * or if the block is not assigned to this partition. 484 */ 485 if ((lmb->flags & DRCONF_MEM_RESERVED) || 486 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 487 return; 488 489 if (*usm) 490 is_kexec_kdump = 1; 491 492 if (is_kexec_kdump) { 493 /* 494 * For each memblock in ibm,dynamic-memory, a 495 * corresponding entry in linux,drconf-usable-memory 496 * property contains a counter 'p' followed by 'p' 497 * (base, size) duple. Now read the counter from 498 * linux,drconf-usable-memory property 499 */ 500 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 501 if (!rngs) /* there are no (base, size) duple */ 502 return; 503 } 504 505 do { 506 if (is_kexec_kdump) { 507 base = dt_mem_next_cell(dt_root_addr_cells, usm); 508 size = dt_mem_next_cell(dt_root_size_cells, usm); 509 } 510 511 if (iommu_is_off) { 512 if (base >= 0x80000000ul) 513 continue; 514 if ((base + size) > 0x80000000ul) 515 size = 0x80000000ul - base; 516 } 517 518 DBG("Adding: %llx -> %llx\n", base, size); 519 if (validate_mem_limit(base, &size)) 520 memblock_add(base, size); 521 } while (--rngs); 522 } 523 #endif /* CONFIG_PPC_PSERIES */ 524 525 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 526 const char *uname, 527 int depth, void *data) 528 { 529 #ifdef CONFIG_PPC_PSERIES 530 if (depth == 1 && 531 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { 532 walk_drmem_lmbs_early(node, early_init_drmem_lmb); 533 return 0; 534 } 535 #endif 536 537 return early_init_dt_scan_memory(node, uname, depth, data); 538 } 539 540 /* 541 * For a relocatable kernel, we need to get the memstart_addr first, 542 * then use it to calculate the virtual kernel start address. This has 543 * to happen at a very early stage (before machine_init). In this case, 544 * we just want to get the memstart_address and would not like to mess the 545 * memblock at this stage. So introduce a variable to skip the memblock_add() 546 * for this reason. 547 */ 548 #ifdef CONFIG_RELOCATABLE 549 static int add_mem_to_memblock = 1; 550 #else 551 #define add_mem_to_memblock 1 552 #endif 553 554 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 555 { 556 #ifdef CONFIG_PPC64 557 if (iommu_is_off) { 558 if (base >= 0x80000000ul) 559 return; 560 if ((base + size) > 0x80000000ul) 561 size = 0x80000000ul - base; 562 } 563 #endif 564 /* Keep track of the beginning of memory -and- the size of 565 * the very first block in the device-tree as it represents 566 * the RMA on ppc64 server 567 */ 568 if (base < memstart_addr) { 569 memstart_addr = base; 570 first_memblock_size = size; 571 } 572 573 /* Add the chunk to the MEMBLOCK list */ 574 if (add_mem_to_memblock) { 575 if (validate_mem_limit(base, &size)) 576 memblock_add(base, size); 577 } 578 } 579 580 static void __init early_reserve_mem_dt(void) 581 { 582 unsigned long i, dt_root; 583 int len; 584 const __be32 *prop; 585 586 early_init_fdt_reserve_self(); 587 early_init_fdt_scan_reserved_mem(); 588 589 dt_root = of_get_flat_dt_root(); 590 591 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 592 593 if (!prop) 594 return; 595 596 DBG("Found new-style reserved-ranges\n"); 597 598 /* Each reserved range is an (address,size) pair, 2 cells each, 599 * totalling 4 cells per range. */ 600 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 601 u64 base, size; 602 603 base = of_read_number(prop + (i * 4) + 0, 2); 604 size = of_read_number(prop + (i * 4) + 2, 2); 605 606 if (size) { 607 DBG("reserving: %llx -> %llx\n", base, size); 608 memblock_reserve(base, size); 609 } 610 } 611 } 612 613 static void __init early_reserve_mem(void) 614 { 615 __be64 *reserve_map; 616 617 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 618 fdt_off_mem_rsvmap(initial_boot_params)); 619 620 /* Look for the new "reserved-regions" property in the DT */ 621 early_reserve_mem_dt(); 622 623 #ifdef CONFIG_BLK_DEV_INITRD 624 /* Then reserve the initrd, if any */ 625 if (initrd_start && (initrd_end > initrd_start)) { 626 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 627 _ALIGN_UP(initrd_end, PAGE_SIZE) - 628 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 629 } 630 #endif /* CONFIG_BLK_DEV_INITRD */ 631 632 #ifdef CONFIG_PPC32 633 /* 634 * Handle the case where we might be booting from an old kexec 635 * image that setup the mem_rsvmap as pairs of 32-bit values 636 */ 637 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 638 u32 base_32, size_32; 639 __be32 *reserve_map_32 = (__be32 *)reserve_map; 640 641 DBG("Found old 32-bit reserve map\n"); 642 643 while (1) { 644 base_32 = be32_to_cpup(reserve_map_32++); 645 size_32 = be32_to_cpup(reserve_map_32++); 646 if (size_32 == 0) 647 break; 648 DBG("reserving: %x -> %x\n", base_32, size_32); 649 memblock_reserve(base_32, size_32); 650 } 651 return; 652 } 653 #endif 654 } 655 656 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 657 static bool tm_disabled __initdata; 658 659 static int __init parse_ppc_tm(char *str) 660 { 661 bool res; 662 663 if (kstrtobool(str, &res)) 664 return -EINVAL; 665 666 tm_disabled = !res; 667 668 return 0; 669 } 670 early_param("ppc_tm", parse_ppc_tm); 671 672 static void __init tm_init(void) 673 { 674 if (tm_disabled) { 675 pr_info("Disabling hardware transactional memory (HTM)\n"); 676 cur_cpu_spec->cpu_user_features2 &= 677 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 678 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 679 return; 680 } 681 682 pnv_tm_init(); 683 } 684 #else 685 static void tm_init(void) { } 686 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 687 688 void __init early_init_devtree(void *params) 689 { 690 phys_addr_t limit; 691 692 DBG(" -> early_init_devtree(%p)\n", params); 693 694 /* Too early to BUG_ON(), do it by hand */ 695 if (!early_init_dt_verify(params)) 696 panic("BUG: Failed verifying flat device tree, bad version?"); 697 698 #ifdef CONFIG_PPC_RTAS 699 /* Some machines might need RTAS info for debugging, grab it now. */ 700 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 701 #endif 702 703 #ifdef CONFIG_PPC_POWERNV 704 /* Some machines might need OPAL info for debugging, grab it now. */ 705 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 706 #endif 707 708 #ifdef CONFIG_FA_DUMP 709 /* scan tree to see if dump is active during last boot */ 710 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 711 #endif 712 713 /* Retrieve various informations from the /chosen node of the 714 * device-tree, including the platform type, initrd location and 715 * size, TCE reserve, and more ... 716 */ 717 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 718 719 /* Scan memory nodes and rebuild MEMBLOCKs */ 720 of_scan_flat_dt(early_init_dt_scan_root, NULL); 721 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 722 723 parse_early_param(); 724 725 /* make sure we've parsed cmdline for mem= before this */ 726 if (memory_limit) 727 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 728 setup_initial_memory_limit(memstart_addr, first_memblock_size); 729 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 730 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 731 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 732 if (PHYSICAL_START > MEMORY_START) 733 memblock_reserve(MEMORY_START, 0x8000); 734 reserve_kdump_trampoline(); 735 #ifdef CONFIG_FA_DUMP 736 /* 737 * If we fail to reserve memory for firmware-assisted dump then 738 * fallback to kexec based kdump. 739 */ 740 if (fadump_reserve_mem() == 0) 741 #endif 742 reserve_crashkernel(); 743 early_reserve_mem(); 744 745 /* Ensure that total memory size is page-aligned. */ 746 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 747 memblock_enforce_memory_limit(limit); 748 749 memblock_allow_resize(); 750 memblock_dump_all(); 751 752 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 753 754 /* We may need to relocate the flat tree, do it now. 755 * FIXME .. and the initrd too? */ 756 move_device_tree(); 757 758 allocate_paca_ptrs(); 759 760 DBG("Scanning CPUs ...\n"); 761 762 dt_cpu_ftrs_scan(); 763 764 /* Retrieve CPU related informations from the flat tree 765 * (altivec support, boot CPU ID, ...) 766 */ 767 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 768 if (boot_cpuid < 0) { 769 printk("Failed to identify boot CPU !\n"); 770 BUG(); 771 } 772 773 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 774 /* We'll later wait for secondaries to check in; there are 775 * NCPUS-1 non-boot CPUs :-) 776 */ 777 spinning_secondaries = boot_cpu_count - 1; 778 #endif 779 780 mmu_early_init_devtree(); 781 782 #ifdef CONFIG_PPC_POWERNV 783 /* Scan and build the list of machine check recoverable ranges */ 784 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 785 #endif 786 epapr_paravirt_early_init(); 787 788 /* Now try to figure out if we are running on LPAR and so on */ 789 pseries_probe_fw_features(); 790 791 #ifdef CONFIG_PPC_PS3 792 /* Identify PS3 firmware */ 793 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 794 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 795 #endif 796 797 tm_init(); 798 799 DBG(" <- early_init_devtree()\n"); 800 } 801 802 #ifdef CONFIG_RELOCATABLE 803 /* 804 * This function run before early_init_devtree, so we have to init 805 * initial_boot_params. 806 */ 807 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 808 { 809 /* Setup flat device-tree pointer */ 810 initial_boot_params = params; 811 812 /* 813 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 814 * mess the memblock. 815 */ 816 add_mem_to_memblock = 0; 817 of_scan_flat_dt(early_init_dt_scan_root, NULL); 818 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 819 add_mem_to_memblock = 1; 820 821 if (size) 822 *size = first_memblock_size; 823 } 824 #endif 825 826 /******* 827 * 828 * New implementation of the OF "find" APIs, return a refcounted 829 * object, call of_node_put() when done. The device tree and list 830 * are protected by a rw_lock. 831 * 832 * Note that property management will need some locking as well, 833 * this isn't dealt with yet. 834 * 835 *******/ 836 837 /** 838 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 839 * @np: device node of the device 840 * 841 * This looks for a property "ibm,chip-id" in the node or any 842 * of its parents and returns its content, or -1 if it cannot 843 * be found. 844 */ 845 int of_get_ibm_chip_id(struct device_node *np) 846 { 847 of_node_get(np); 848 while (np) { 849 u32 chip_id; 850 851 /* 852 * Skiboot may produce memory nodes that contain more than one 853 * cell in chip-id, we only read the first one here. 854 */ 855 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 856 of_node_put(np); 857 return chip_id; 858 } 859 860 np = of_get_next_parent(np); 861 } 862 return -1; 863 } 864 EXPORT_SYMBOL(of_get_ibm_chip_id); 865 866 /** 867 * cpu_to_chip_id - Return the cpus chip-id 868 * @cpu: The logical cpu number. 869 * 870 * Return the value of the ibm,chip-id property corresponding to the given 871 * logical cpu number. If the chip-id can not be found, returns -1. 872 */ 873 int cpu_to_chip_id(int cpu) 874 { 875 struct device_node *np; 876 877 np = of_get_cpu_node(cpu, NULL); 878 if (!np) 879 return -1; 880 881 of_node_put(np); 882 return of_get_ibm_chip_id(np); 883 } 884 EXPORT_SYMBOL(cpu_to_chip_id); 885 886 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 887 { 888 #ifdef CONFIG_SMP 889 /* 890 * Early firmware scanning must use this rather than 891 * get_hard_smp_processor_id because we don't have pacas allocated 892 * until memory topology is discovered. 893 */ 894 if (cpu_to_phys_id != NULL) 895 return (int)phys_id == cpu_to_phys_id[cpu]; 896 #endif 897 898 return (int)phys_id == get_hard_smp_processor_id(cpu); 899 } 900