1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 38 #include <asm/prom.h> 39 #include <asm/rtas.h> 40 #include <asm/page.h> 41 #include <asm/processor.h> 42 #include <asm/irq.h> 43 #include <asm/io.h> 44 #include <asm/kdump.h> 45 #include <asm/smp.h> 46 #include <asm/mmu.h> 47 #include <asm/paca.h> 48 #include <asm/pgtable.h> 49 #include <asm/iommu.h> 50 #include <asm/btext.h> 51 #include <asm/sections.h> 52 #include <asm/machdep.h> 53 #include <asm/pci-bridge.h> 54 #include <asm/kexec.h> 55 #include <asm/opal.h> 56 #include <asm/fadump.h> 57 #include <asm/debug.h> 58 59 #include <mm/mmu_decl.h> 60 61 #ifdef DEBUG 62 #define DBG(fmt...) printk(KERN_ERR fmt) 63 #else 64 #define DBG(fmt...) 65 #endif 66 67 #ifdef CONFIG_PPC64 68 int __initdata iommu_is_off; 69 int __initdata iommu_force_on; 70 unsigned long tce_alloc_start, tce_alloc_end; 71 u64 ppc64_rma_size; 72 #endif 73 static phys_addr_t first_memblock_size; 74 static int __initdata boot_cpu_count; 75 76 static int __init early_parse_mem(char *p) 77 { 78 if (!p) 79 return 1; 80 81 memory_limit = PAGE_ALIGN(memparse(p, &p)); 82 DBG("memory limit = 0x%llx\n", memory_limit); 83 84 return 0; 85 } 86 early_param("mem", early_parse_mem); 87 88 /* 89 * overlaps_initrd - check for overlap with page aligned extension of 90 * initrd. 91 */ 92 static inline int overlaps_initrd(unsigned long start, unsigned long size) 93 { 94 #ifdef CONFIG_BLK_DEV_INITRD 95 if (!initrd_start) 96 return 0; 97 98 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 99 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 100 #else 101 return 0; 102 #endif 103 } 104 105 /** 106 * move_device_tree - move tree to an unused area, if needed. 107 * 108 * The device tree may be allocated beyond our memory limit, or inside the 109 * crash kernel region for kdump, or within the page aligned range of initrd. 110 * If so, move it out of the way. 111 */ 112 static void __init move_device_tree(void) 113 { 114 unsigned long start, size; 115 void *p; 116 117 DBG("-> move_device_tree\n"); 118 119 start = __pa(initial_boot_params); 120 size = fdt_totalsize(initial_boot_params); 121 122 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 123 overlaps_crashkernel(start, size) || 124 overlaps_initrd(start, size)) { 125 p = __va(memblock_alloc(size, PAGE_SIZE)); 126 memcpy(p, initial_boot_params, size); 127 initial_boot_params = p; 128 DBG("Moved device tree to 0x%p\n", p); 129 } 130 131 DBG("<- move_device_tree\n"); 132 } 133 134 /* 135 * ibm,pa-features is a per-cpu property that contains a string of 136 * attribute descriptors, each of which has a 2 byte header plus up 137 * to 254 bytes worth of processor attribute bits. First header 138 * byte specifies the number of bytes following the header. 139 * Second header byte is an "attribute-specifier" type, of which 140 * zero is the only currently-defined value. 141 * Implementation: Pass in the byte and bit offset for the feature 142 * that we are interested in. The function will return -1 if the 143 * pa-features property is missing, or a 1/0 to indicate if the feature 144 * is supported/not supported. Note that the bit numbers are 145 * big-endian to match the definition in PAPR. 146 */ 147 static struct ibm_pa_feature { 148 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 149 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 150 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 151 unsigned char pabyte; /* byte number in ibm,pa-features */ 152 unsigned char pabit; /* bit number (big-endian) */ 153 unsigned char invert; /* if 1, pa bit set => clear feature */ 154 } ibm_pa_features[] __initdata = { 155 {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0}, 156 {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0}, 157 {CPU_FTR_CTRL, 0, 0, 0, 3, 0}, 158 {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0}, 159 {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1}, 160 {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0}, 161 {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0}, 162 /* 163 * If the kernel doesn't support TM (ie. CONFIG_PPC_TRANSACTIONAL_MEM=n), 164 * we don't want to turn on CPU_FTR_TM here, so we use CPU_FTR_TM_COMP 165 * which is 0 if the kernel doesn't support TM. 166 */ 167 {CPU_FTR_TM_COMP, 0, 0, 22, 0, 0}, 168 }; 169 170 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 171 unsigned long tablelen, 172 struct ibm_pa_feature *fp, 173 unsigned long ft_size) 174 { 175 unsigned long i, len, bit; 176 177 /* find descriptor with type == 0 */ 178 for (;;) { 179 if (tablelen < 3) 180 return; 181 len = 2 + ftrs[0]; 182 if (tablelen < len) 183 return; /* descriptor 0 not found */ 184 if (ftrs[1] == 0) 185 break; 186 tablelen -= len; 187 ftrs += len; 188 } 189 190 /* loop over bits we know about */ 191 for (i = 0; i < ft_size; ++i, ++fp) { 192 if (fp->pabyte >= ftrs[0]) 193 continue; 194 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 195 if (bit ^ fp->invert) { 196 cur_cpu_spec->cpu_features |= fp->cpu_features; 197 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 198 cur_cpu_spec->mmu_features |= fp->mmu_features; 199 } else { 200 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 201 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 202 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 203 } 204 } 205 } 206 207 static void __init check_cpu_pa_features(unsigned long node) 208 { 209 const unsigned char *pa_ftrs; 210 int tablelen; 211 212 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 213 if (pa_ftrs == NULL) 214 return; 215 216 scan_features(node, pa_ftrs, tablelen, 217 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 218 } 219 220 #ifdef CONFIG_PPC_STD_MMU_64 221 static void __init init_mmu_slb_size(unsigned long node) 222 { 223 const __be32 *slb_size_ptr; 224 225 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 226 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 227 228 if (slb_size_ptr) 229 mmu_slb_size = be32_to_cpup(slb_size_ptr); 230 } 231 #else 232 #define init_mmu_slb_size(node) do { } while(0) 233 #endif 234 235 static struct feature_property { 236 const char *name; 237 u32 min_value; 238 unsigned long cpu_feature; 239 unsigned long cpu_user_ftr; 240 } feature_properties[] __initdata = { 241 #ifdef CONFIG_ALTIVEC 242 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 243 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 244 #endif /* CONFIG_ALTIVEC */ 245 #ifdef CONFIG_VSX 246 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 247 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 248 #endif /* CONFIG_VSX */ 249 #ifdef CONFIG_PPC64 250 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 251 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 252 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 253 #endif /* CONFIG_PPC64 */ 254 }; 255 256 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 257 static inline void identical_pvr_fixup(unsigned long node) 258 { 259 unsigned int pvr; 260 const char *model = of_get_flat_dt_prop(node, "model", NULL); 261 262 /* 263 * Since 440GR(x)/440EP(x) processors have the same pvr, 264 * we check the node path and set bit 28 in the cur_cpu_spec 265 * pvr for EP(x) processor version. This bit is always 0 in 266 * the "real" pvr. Then we call identify_cpu again with 267 * the new logical pvr to enable FPU support. 268 */ 269 if (model && strstr(model, "440EP")) { 270 pvr = cur_cpu_spec->pvr_value | 0x8; 271 identify_cpu(0, pvr); 272 DBG("Using logical pvr %x for %s\n", pvr, model); 273 } 274 } 275 #else 276 #define identical_pvr_fixup(node) do { } while(0) 277 #endif 278 279 static void __init check_cpu_feature_properties(unsigned long node) 280 { 281 unsigned long i; 282 struct feature_property *fp = feature_properties; 283 const __be32 *prop; 284 285 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { 286 prop = of_get_flat_dt_prop(node, fp->name, NULL); 287 if (prop && be32_to_cpup(prop) >= fp->min_value) { 288 cur_cpu_spec->cpu_features |= fp->cpu_feature; 289 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 290 } 291 } 292 } 293 294 static int __init early_init_dt_scan_cpus(unsigned long node, 295 const char *uname, int depth, 296 void *data) 297 { 298 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 299 const __be32 *prop; 300 const __be32 *intserv; 301 int i, nthreads; 302 int len; 303 int found = -1; 304 int found_thread = 0; 305 306 /* We are scanning "cpu" nodes only */ 307 if (type == NULL || strcmp(type, "cpu") != 0) 308 return 0; 309 310 /* Get physical cpuid */ 311 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 312 if (!intserv) 313 intserv = of_get_flat_dt_prop(node, "reg", &len); 314 315 nthreads = len / sizeof(int); 316 317 /* 318 * Now see if any of these threads match our boot cpu. 319 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 320 */ 321 for (i = 0; i < nthreads; i++) { 322 /* 323 * version 2 of the kexec param format adds the phys cpuid of 324 * booted proc. 325 */ 326 if (fdt_version(initial_boot_params) >= 2) { 327 if (be32_to_cpu(intserv[i]) == 328 fdt_boot_cpuid_phys(initial_boot_params)) { 329 found = boot_cpu_count; 330 found_thread = i; 331 } 332 } else { 333 /* 334 * Check if it's the boot-cpu, set it's hw index now, 335 * unfortunately this format did not support booting 336 * off secondary threads. 337 */ 338 if (of_get_flat_dt_prop(node, 339 "linux,boot-cpu", NULL) != NULL) 340 found = boot_cpu_count; 341 } 342 #ifdef CONFIG_SMP 343 /* logical cpu id is always 0 on UP kernels */ 344 boot_cpu_count++; 345 #endif 346 } 347 348 /* Not the boot CPU */ 349 if (found < 0) 350 return 0; 351 352 DBG("boot cpu: logical %d physical %d\n", found, 353 be32_to_cpu(intserv[found_thread])); 354 boot_cpuid = found; 355 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 356 357 /* 358 * PAPR defines "logical" PVR values for cpus that 359 * meet various levels of the architecture: 360 * 0x0f000001 Architecture version 2.04 361 * 0x0f000002 Architecture version 2.05 362 * If the cpu-version property in the cpu node contains 363 * such a value, we call identify_cpu again with the 364 * logical PVR value in order to use the cpu feature 365 * bits appropriate for the architecture level. 366 * 367 * A POWER6 partition in "POWER6 architected" mode 368 * uses the 0x0f000002 PVR value; in POWER5+ mode 369 * it uses 0x0f000001. 370 */ 371 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 372 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 373 identify_cpu(0, be32_to_cpup(prop)); 374 375 identical_pvr_fixup(node); 376 377 check_cpu_feature_properties(node); 378 check_cpu_pa_features(node); 379 init_mmu_slb_size(node); 380 381 #ifdef CONFIG_PPC64 382 if (nthreads > 1) 383 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 384 else 385 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 386 #endif 387 return 0; 388 } 389 390 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 391 const char *uname, 392 int depth, void *data) 393 { 394 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 395 396 /* Use common scan routine to determine if this is the chosen node */ 397 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 398 return 0; 399 400 #ifdef CONFIG_PPC64 401 /* check if iommu is forced on or off */ 402 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 403 iommu_is_off = 1; 404 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 405 iommu_force_on = 1; 406 #endif 407 408 /* mem=x on the command line is the preferred mechanism */ 409 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 410 if (lprop) 411 memory_limit = *lprop; 412 413 #ifdef CONFIG_PPC64 414 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 415 if (lprop) 416 tce_alloc_start = *lprop; 417 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 418 if (lprop) 419 tce_alloc_end = *lprop; 420 #endif 421 422 #ifdef CONFIG_KEXEC 423 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 424 if (lprop) 425 crashk_res.start = *lprop; 426 427 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 428 if (lprop) 429 crashk_res.end = crashk_res.start + *lprop - 1; 430 #endif 431 432 /* break now */ 433 return 1; 434 } 435 436 #ifdef CONFIG_PPC_PSERIES 437 /* 438 * Interpret the ibm,dynamic-memory property in the 439 * /ibm,dynamic-reconfiguration-memory node. 440 * This contains a list of memory blocks along with NUMA affinity 441 * information. 442 */ 443 static int __init early_init_dt_scan_drconf_memory(unsigned long node) 444 { 445 const __be32 *dm, *ls, *usm; 446 int l; 447 unsigned long n, flags; 448 u64 base, size, memblock_size; 449 unsigned int is_kexec_kdump = 0, rngs; 450 451 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); 452 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) 453 return 0; 454 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); 455 456 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); 457 if (dm == NULL || l < sizeof(__be32)) 458 return 0; 459 460 n = of_read_number(dm++, 1); /* number of entries */ 461 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) 462 return 0; 463 464 /* check if this is a kexec/kdump kernel. */ 465 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", 466 &l); 467 if (usm != NULL) 468 is_kexec_kdump = 1; 469 470 for (; n != 0; --n) { 471 base = dt_mem_next_cell(dt_root_addr_cells, &dm); 472 flags = of_read_number(&dm[3], 1); 473 /* skip DRC index, pad, assoc. list index, flags */ 474 dm += 4; 475 /* skip this block if the reserved bit is set in flags 476 or if the block is not assigned to this partition */ 477 if ((flags & DRCONF_MEM_RESERVED) || 478 !(flags & DRCONF_MEM_ASSIGNED)) 479 continue; 480 size = memblock_size; 481 rngs = 1; 482 if (is_kexec_kdump) { 483 /* 484 * For each memblock in ibm,dynamic-memory, a corresponding 485 * entry in linux,drconf-usable-memory property contains 486 * a counter 'p' followed by 'p' (base, size) duple. 487 * Now read the counter from 488 * linux,drconf-usable-memory property 489 */ 490 rngs = dt_mem_next_cell(dt_root_size_cells, &usm); 491 if (!rngs) /* there are no (base, size) duple */ 492 continue; 493 } 494 do { 495 if (is_kexec_kdump) { 496 base = dt_mem_next_cell(dt_root_addr_cells, 497 &usm); 498 size = dt_mem_next_cell(dt_root_size_cells, 499 &usm); 500 } 501 if (iommu_is_off) { 502 if (base >= 0x80000000ul) 503 continue; 504 if ((base + size) > 0x80000000ul) 505 size = 0x80000000ul - base; 506 } 507 memblock_add(base, size); 508 } while (--rngs); 509 } 510 memblock_dump_all(); 511 return 0; 512 } 513 #else 514 #define early_init_dt_scan_drconf_memory(node) 0 515 #endif /* CONFIG_PPC_PSERIES */ 516 517 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 518 const char *uname, 519 int depth, void *data) 520 { 521 if (depth == 1 && 522 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) 523 return early_init_dt_scan_drconf_memory(node); 524 525 return early_init_dt_scan_memory(node, uname, depth, data); 526 } 527 528 /* 529 * For a relocatable kernel, we need to get the memstart_addr first, 530 * then use it to calculate the virtual kernel start address. This has 531 * to happen at a very early stage (before machine_init). In this case, 532 * we just want to get the memstart_address and would not like to mess the 533 * memblock at this stage. So introduce a variable to skip the memblock_add() 534 * for this reason. 535 */ 536 #ifdef CONFIG_RELOCATABLE 537 static int add_mem_to_memblock = 1; 538 #else 539 #define add_mem_to_memblock 1 540 #endif 541 542 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 543 { 544 #ifdef CONFIG_PPC64 545 if (iommu_is_off) { 546 if (base >= 0x80000000ul) 547 return; 548 if ((base + size) > 0x80000000ul) 549 size = 0x80000000ul - base; 550 } 551 #endif 552 /* Keep track of the beginning of memory -and- the size of 553 * the very first block in the device-tree as it represents 554 * the RMA on ppc64 server 555 */ 556 if (base < memstart_addr) { 557 memstart_addr = base; 558 first_memblock_size = size; 559 } 560 561 /* Add the chunk to the MEMBLOCK list */ 562 if (add_mem_to_memblock) 563 memblock_add(base, size); 564 } 565 566 static void __init early_reserve_mem_dt(void) 567 { 568 unsigned long i, dt_root; 569 int len; 570 const __be32 *prop; 571 572 early_init_fdt_reserve_self(); 573 early_init_fdt_scan_reserved_mem(); 574 575 dt_root = of_get_flat_dt_root(); 576 577 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 578 579 if (!prop) 580 return; 581 582 DBG("Found new-style reserved-ranges\n"); 583 584 /* Each reserved range is an (address,size) pair, 2 cells each, 585 * totalling 4 cells per range. */ 586 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 587 u64 base, size; 588 589 base = of_read_number(prop + (i * 4) + 0, 2); 590 size = of_read_number(prop + (i * 4) + 2, 2); 591 592 if (size) { 593 DBG("reserving: %llx -> %llx\n", base, size); 594 memblock_reserve(base, size); 595 } 596 } 597 } 598 599 static void __init early_reserve_mem(void) 600 { 601 __be64 *reserve_map; 602 603 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 604 fdt_off_mem_rsvmap(initial_boot_params)); 605 606 /* Look for the new "reserved-regions" property in the DT */ 607 early_reserve_mem_dt(); 608 609 #ifdef CONFIG_BLK_DEV_INITRD 610 /* Then reserve the initrd, if any */ 611 if (initrd_start && (initrd_end > initrd_start)) { 612 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 613 _ALIGN_UP(initrd_end, PAGE_SIZE) - 614 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 615 } 616 #endif /* CONFIG_BLK_DEV_INITRD */ 617 618 #ifdef CONFIG_PPC32 619 /* 620 * Handle the case where we might be booting from an old kexec 621 * image that setup the mem_rsvmap as pairs of 32-bit values 622 */ 623 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 624 u32 base_32, size_32; 625 __be32 *reserve_map_32 = (__be32 *)reserve_map; 626 627 DBG("Found old 32-bit reserve map\n"); 628 629 while (1) { 630 base_32 = be32_to_cpup(reserve_map_32++); 631 size_32 = be32_to_cpup(reserve_map_32++); 632 if (size_32 == 0) 633 break; 634 DBG("reserving: %x -> %x\n", base_32, size_32); 635 memblock_reserve(base_32, size_32); 636 } 637 return; 638 } 639 #endif 640 } 641 642 void __init early_init_devtree(void *params) 643 { 644 phys_addr_t limit; 645 646 DBG(" -> early_init_devtree(%p)\n", params); 647 648 /* Too early to BUG_ON(), do it by hand */ 649 if (!early_init_dt_verify(params)) 650 panic("BUG: Failed verifying flat device tree, bad version?"); 651 652 #ifdef CONFIG_PPC_RTAS 653 /* Some machines might need RTAS info for debugging, grab it now. */ 654 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 655 #endif 656 657 #ifdef CONFIG_PPC_POWERNV 658 /* Some machines might need OPAL info for debugging, grab it now. */ 659 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 660 #endif 661 662 #ifdef CONFIG_FA_DUMP 663 /* scan tree to see if dump is active during last boot */ 664 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 665 #endif 666 667 /* Retrieve various informations from the /chosen node of the 668 * device-tree, including the platform type, initrd location and 669 * size, TCE reserve, and more ... 670 */ 671 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 672 673 /* Scan memory nodes and rebuild MEMBLOCKs */ 674 of_scan_flat_dt(early_init_dt_scan_root, NULL); 675 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 676 677 parse_early_param(); 678 679 /* make sure we've parsed cmdline for mem= before this */ 680 if (memory_limit) 681 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 682 setup_initial_memory_limit(memstart_addr, first_memblock_size); 683 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 684 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 685 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 686 if (PHYSICAL_START > MEMORY_START) 687 memblock_reserve(MEMORY_START, 0x8000); 688 reserve_kdump_trampoline(); 689 #ifdef CONFIG_FA_DUMP 690 /* 691 * If we fail to reserve memory for firmware-assisted dump then 692 * fallback to kexec based kdump. 693 */ 694 if (fadump_reserve_mem() == 0) 695 #endif 696 reserve_crashkernel(); 697 early_reserve_mem(); 698 699 /* Ensure that total memory size is page-aligned. */ 700 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 701 memblock_enforce_memory_limit(limit); 702 703 memblock_allow_resize(); 704 memblock_dump_all(); 705 706 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 707 708 /* We may need to relocate the flat tree, do it now. 709 * FIXME .. and the initrd too? */ 710 move_device_tree(); 711 712 allocate_pacas(); 713 714 DBG("Scanning CPUs ...\n"); 715 716 /* Retrieve CPU related informations from the flat tree 717 * (altivec support, boot CPU ID, ...) 718 */ 719 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 720 if (boot_cpuid < 0) { 721 printk("Failed to identify boot CPU !\n"); 722 BUG(); 723 } 724 725 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 726 /* We'll later wait for secondaries to check in; there are 727 * NCPUS-1 non-boot CPUs :-) 728 */ 729 spinning_secondaries = boot_cpu_count - 1; 730 #endif 731 732 #ifdef CONFIG_PPC_POWERNV 733 /* Scan and build the list of machine check recoverable ranges */ 734 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 735 #endif 736 737 DBG(" <- early_init_devtree()\n"); 738 } 739 740 #ifdef CONFIG_RELOCATABLE 741 /* 742 * This function run before early_init_devtree, so we have to init 743 * initial_boot_params. 744 */ 745 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 746 { 747 /* Setup flat device-tree pointer */ 748 initial_boot_params = params; 749 750 /* 751 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 752 * mess the memblock. 753 */ 754 add_mem_to_memblock = 0; 755 of_scan_flat_dt(early_init_dt_scan_root, NULL); 756 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 757 add_mem_to_memblock = 1; 758 759 if (size) 760 *size = first_memblock_size; 761 } 762 #endif 763 764 /******* 765 * 766 * New implementation of the OF "find" APIs, return a refcounted 767 * object, call of_node_put() when done. The device tree and list 768 * are protected by a rw_lock. 769 * 770 * Note that property management will need some locking as well, 771 * this isn't dealt with yet. 772 * 773 *******/ 774 775 /** 776 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 777 * @np: device node of the device 778 * 779 * This looks for a property "ibm,chip-id" in the node or any 780 * of its parents and returns its content, or -1 if it cannot 781 * be found. 782 */ 783 int of_get_ibm_chip_id(struct device_node *np) 784 { 785 of_node_get(np); 786 while(np) { 787 struct device_node *old = np; 788 const __be32 *prop; 789 790 prop = of_get_property(np, "ibm,chip-id", NULL); 791 if (prop) { 792 of_node_put(np); 793 return be32_to_cpup(prop); 794 } 795 np = of_get_parent(np); 796 of_node_put(old); 797 } 798 return -1; 799 } 800 EXPORT_SYMBOL(of_get_ibm_chip_id); 801 802 /** 803 * cpu_to_chip_id - Return the cpus chip-id 804 * @cpu: The logical cpu number. 805 * 806 * Return the value of the ibm,chip-id property corresponding to the given 807 * logical cpu number. If the chip-id can not be found, returns -1. 808 */ 809 int cpu_to_chip_id(int cpu) 810 { 811 struct device_node *np; 812 813 np = of_get_cpu_node(cpu, NULL); 814 if (!np) 815 return -1; 816 817 of_node_put(np); 818 return of_get_ibm_chip_id(np); 819 } 820 EXPORT_SYMBOL(cpu_to_chip_id); 821 822 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 823 { 824 return (int)phys_id == get_hard_smp_processor_id(cpu); 825 } 826