1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/init.h> 17 #include <linux/threads.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 #include <linux/pci.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/bitops.h> 24 #include <linux/export.h> 25 #include <linux/kexec.h> 26 #include <linux/irq.h> 27 #include <linux/memblock.h> 28 #include <linux/of.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/cpu.h> 32 #include <linux/pgtable.h> 33 #include <linux/seq_buf.h> 34 35 #include <asm/rtas.h> 36 #include <asm/page.h> 37 #include <asm/processor.h> 38 #include <asm/irq.h> 39 #include <asm/io.h> 40 #include <asm/kdump.h> 41 #include <asm/smp.h> 42 #include <asm/mmu.h> 43 #include <asm/paca.h> 44 #include <asm/powernv.h> 45 #include <asm/iommu.h> 46 #include <asm/btext.h> 47 #include <asm/sections.h> 48 #include <asm/setup.h> 49 #include <asm/pci-bridge.h> 50 #include <asm/kexec.h> 51 #include <asm/opal.h> 52 #include <asm/fadump.h> 53 #include <asm/epapr_hcalls.h> 54 #include <asm/firmware.h> 55 #include <asm/dt_cpu_ftrs.h> 56 #include <asm/drmem.h> 57 #include <asm/ultravisor.h> 58 #include <asm/prom.h> 59 #include <asm/plpks.h> 60 61 #include <mm/mmu_decl.h> 62 63 #ifdef DEBUG 64 #define DBG(fmt...) printk(KERN_ERR fmt) 65 #else 66 #define DBG(fmt...) 67 #endif 68 69 int *chip_id_lookup_table; 70 71 #ifdef CONFIG_PPC64 72 int __initdata iommu_is_off; 73 int __initdata iommu_force_on; 74 unsigned long tce_alloc_start, tce_alloc_end; 75 u64 ppc64_rma_size; 76 unsigned int boot_cpu_node_count __ro_after_init; 77 #endif 78 static phys_addr_t first_memblock_size; 79 static int __initdata boot_cpu_count; 80 81 static int __init early_parse_mem(char *p) 82 { 83 if (!p) 84 return 1; 85 86 memory_limit = PAGE_ALIGN(memparse(p, &p)); 87 DBG("memory limit = 0x%llx\n", memory_limit); 88 89 return 0; 90 } 91 early_param("mem", early_parse_mem); 92 93 /* 94 * overlaps_initrd - check for overlap with page aligned extension of 95 * initrd. 96 */ 97 static inline int overlaps_initrd(unsigned long start, unsigned long size) 98 { 99 #ifdef CONFIG_BLK_DEV_INITRD 100 if (!initrd_start) 101 return 0; 102 103 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && 104 start <= ALIGN(initrd_end, PAGE_SIZE); 105 #else 106 return 0; 107 #endif 108 } 109 110 /** 111 * move_device_tree - move tree to an unused area, if needed. 112 * 113 * The device tree may be allocated beyond our memory limit, or inside the 114 * crash kernel region for kdump, or within the page aligned range of initrd. 115 * If so, move it out of the way. 116 */ 117 static void __init move_device_tree(void) 118 { 119 unsigned long start, size; 120 void *p; 121 122 DBG("-> move_device_tree\n"); 123 124 start = __pa(initial_boot_params); 125 size = fdt_totalsize(initial_boot_params); 126 127 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 128 !memblock_is_memory(start + size - 1) || 129 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 130 p = memblock_alloc_raw(size, PAGE_SIZE); 131 if (!p) 132 panic("Failed to allocate %lu bytes to move device tree\n", 133 size); 134 memcpy(p, initial_boot_params, size); 135 initial_boot_params = p; 136 DBG("Moved device tree to 0x%px\n", p); 137 } 138 139 DBG("<- move_device_tree\n"); 140 } 141 142 /* 143 * ibm,pa/pi-features is a per-cpu property that contains a string of 144 * attribute descriptors, each of which has a 2 byte header plus up 145 * to 254 bytes worth of processor attribute bits. First header 146 * byte specifies the number of bytes following the header. 147 * Second header byte is an "attribute-specifier" type, of which 148 * zero is the only currently-defined value. 149 * Implementation: Pass in the byte and bit offset for the feature 150 * that we are interested in. The function will return -1 if the 151 * pa-features property is missing, or a 1/0 to indicate if the feature 152 * is supported/not supported. Note that the bit numbers are 153 * big-endian to match the definition in PAPR. 154 * Note: the 'clear' flag clears the feature if the bit is set in the 155 * ibm,pa/pi-features property, it does not set the feature if the 156 * bit is clear. 157 */ 158 struct ibm_feature { 159 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 160 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 161 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 162 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 163 unsigned char pabyte; /* byte number in ibm,pa/pi-features */ 164 unsigned char pabit; /* bit number (big-endian) */ 165 unsigned char clear; /* if 1, pa bit set => clear feature */ 166 }; 167 168 static struct ibm_feature ibm_pa_features[] __initdata = { 169 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 170 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 171 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 172 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 173 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 174 #ifdef CONFIG_PPC_RADIX_MMU 175 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, 176 #endif 177 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 178 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 179 /* 180 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 181 * we don't want to turn on TM here, so we use the *_COMP versions 182 * which are 0 if the kernel doesn't support TM. 183 */ 184 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 185 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 186 187 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, 188 { .pabyte = 68, .pabit = 5, .cpu_features = CPU_FTR_DEXCR_NPHIE }, 189 }; 190 191 /* 192 * ibm,pi-features property provides the support of processor specific 193 * options not described in ibm,pa-features. Right now use byte 0, bit 3 194 * which indicates the occurrence of DSI interrupt when the paste operation 195 * on the suspended NX window. 196 */ 197 static struct ibm_feature ibm_pi_features[] __initdata = { 198 { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI }, 199 { .pabyte = 0, .pabit = 4, .cpu_features = CPU_FTR_DBELL, .clear = 1 }, 200 }; 201 202 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 203 unsigned long tablelen, 204 struct ibm_feature *fp, 205 unsigned long ft_size) 206 { 207 unsigned long i, len, bit; 208 209 /* find descriptor with type == 0 */ 210 for (;;) { 211 if (tablelen < 3) 212 return; 213 len = 2 + ftrs[0]; 214 if (tablelen < len) 215 return; /* descriptor 0 not found */ 216 if (ftrs[1] == 0) 217 break; 218 tablelen -= len; 219 ftrs += len; 220 } 221 222 /* loop over bits we know about */ 223 for (i = 0; i < ft_size; ++i, ++fp) { 224 if (fp->pabyte >= ftrs[0]) 225 continue; 226 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 227 if (bit && !fp->clear) { 228 cur_cpu_spec->cpu_features |= fp->cpu_features; 229 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 230 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 231 cur_cpu_spec->mmu_features |= fp->mmu_features; 232 } else if (bit == fp->clear) { 233 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 234 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 235 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 236 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 237 } 238 } 239 } 240 241 static void __init check_cpu_features(unsigned long node, char *name, 242 struct ibm_feature *fp, 243 unsigned long size) 244 { 245 const unsigned char *pa_ftrs; 246 int tablelen; 247 248 pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen); 249 if (pa_ftrs == NULL) 250 return; 251 252 scan_features(node, pa_ftrs, tablelen, fp, size); 253 } 254 255 #ifdef CONFIG_PPC_64S_HASH_MMU 256 static void __init init_mmu_slb_size(unsigned long node) 257 { 258 const __be32 *slb_size_ptr; 259 260 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 261 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 262 263 if (slb_size_ptr) 264 mmu_slb_size = be32_to_cpup(slb_size_ptr); 265 } 266 #else 267 #define init_mmu_slb_size(node) do { } while(0) 268 #endif 269 270 static struct feature_property { 271 const char *name; 272 u32 min_value; 273 unsigned long cpu_feature; 274 unsigned long cpu_user_ftr; 275 } feature_properties[] __initdata = { 276 #ifdef CONFIG_ALTIVEC 277 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 278 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 279 #endif /* CONFIG_ALTIVEC */ 280 #ifdef CONFIG_VSX 281 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 282 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 283 #endif /* CONFIG_VSX */ 284 #ifdef CONFIG_PPC64 285 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 286 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 287 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 288 #endif /* CONFIG_PPC64 */ 289 }; 290 291 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 292 static __init void identical_pvr_fixup(unsigned long node) 293 { 294 unsigned int pvr; 295 const char *model = of_get_flat_dt_prop(node, "model", NULL); 296 297 /* 298 * Since 440GR(x)/440EP(x) processors have the same pvr, 299 * we check the node path and set bit 28 in the cur_cpu_spec 300 * pvr for EP(x) processor version. This bit is always 0 in 301 * the "real" pvr. Then we call identify_cpu again with 302 * the new logical pvr to enable FPU support. 303 */ 304 if (model && strstr(model, "440EP")) { 305 pvr = cur_cpu_spec->pvr_value | 0x8; 306 identify_cpu(0, pvr); 307 DBG("Using logical pvr %x for %s\n", pvr, model); 308 } 309 } 310 #else 311 #define identical_pvr_fixup(node) do { } while(0) 312 #endif 313 314 static void __init check_cpu_feature_properties(unsigned long node) 315 { 316 int i; 317 struct feature_property *fp = feature_properties; 318 const __be32 *prop; 319 320 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 321 prop = of_get_flat_dt_prop(node, fp->name, NULL); 322 if (prop && be32_to_cpup(prop) >= fp->min_value) { 323 cur_cpu_spec->cpu_features |= fp->cpu_feature; 324 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 325 } 326 } 327 } 328 329 static int __init early_init_dt_scan_cpus(unsigned long node, 330 const char *uname, int depth, 331 void *data) 332 { 333 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 334 const __be32 *cpu_version = NULL; 335 const __be32 *prop; 336 const __be32 *intserv; 337 int i, nthreads; 338 int len; 339 int found = -1; 340 int found_thread = 0; 341 342 /* We are scanning "cpu" nodes only */ 343 if (type == NULL || strcmp(type, "cpu") != 0) 344 return 0; 345 346 if (IS_ENABLED(CONFIG_PPC64)) 347 boot_cpu_node_count++; 348 349 /* Get physical cpuid */ 350 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 351 if (!intserv) 352 intserv = of_get_flat_dt_prop(node, "reg", &len); 353 354 nthreads = len / sizeof(int); 355 356 /* 357 * Now see if any of these threads match our boot cpu. 358 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 359 */ 360 for (i = 0; i < nthreads; i++) { 361 if (be32_to_cpu(intserv[i]) == 362 fdt_boot_cpuid_phys(initial_boot_params)) { 363 found = boot_cpu_count; 364 found_thread = i; 365 } 366 #ifdef CONFIG_SMP 367 /* logical cpu id is always 0 on UP kernels */ 368 boot_cpu_count++; 369 #endif 370 } 371 372 /* Not the boot CPU */ 373 if (found < 0) 374 return 0; 375 376 boot_cpuid = found; 377 378 if (IS_ENABLED(CONFIG_PPC64)) 379 boot_cpu_hwid = be32_to_cpu(intserv[found_thread]); 380 381 if (nr_cpu_ids % nthreads != 0) { 382 set_nr_cpu_ids(ALIGN(nr_cpu_ids, nthreads)); 383 pr_warn("nr_cpu_ids was not a multiple of threads_per_core, adjusted to %d\n", 384 nr_cpu_ids); 385 } 386 387 if (boot_cpuid >= nr_cpu_ids) { 388 // Remember boot core for smp_setup_cpu_maps() 389 boot_core_hwid = be32_to_cpu(intserv[0]); 390 391 pr_warn("Boot CPU %d (core hwid %d) >= nr_cpu_ids, adjusted boot CPU to %d\n", 392 boot_cpuid, boot_core_hwid, found_thread); 393 394 // Adjust boot CPU to appear on logical core 0 395 boot_cpuid = found_thread; 396 } 397 398 DBG("boot cpu: logical %d physical %d\n", boot_cpuid, 399 be32_to_cpu(intserv[found_thread])); 400 401 /* 402 * PAPR defines "logical" PVR values for cpus that 403 * meet various levels of the architecture: 404 * 0x0f000001 Architecture version 2.04 405 * 0x0f000002 Architecture version 2.05 406 * If the cpu-version property in the cpu node contains 407 * such a value, we call identify_cpu again with the 408 * logical PVR value in order to use the cpu feature 409 * bits appropriate for the architecture level. 410 * 411 * A POWER6 partition in "POWER6 architected" mode 412 * uses the 0x0f000002 PVR value; in POWER5+ mode 413 * it uses 0x0f000001. 414 * 415 * If we're using device tree CPU feature discovery then we don't 416 * support the cpu-version property, and it's the responsibility of the 417 * firmware/hypervisor to provide the correct feature set for the 418 * architecture level via the ibm,powerpc-cpu-features binding. 419 */ 420 if (!dt_cpu_ftrs_in_use()) { 421 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 422 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) { 423 identify_cpu(0, be32_to_cpup(prop)); 424 cpu_version = prop; 425 } 426 427 check_cpu_feature_properties(node); 428 check_cpu_features(node, "ibm,pa-features", ibm_pa_features, 429 ARRAY_SIZE(ibm_pa_features)); 430 check_cpu_features(node, "ibm,pi-features", ibm_pi_features, 431 ARRAY_SIZE(ibm_pi_features)); 432 } 433 434 identical_pvr_fixup(node); 435 436 // We can now add the CPU name & PVR to the hardware description 437 seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR)); 438 if (cpu_version) 439 seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(cpu_version)); 440 441 init_mmu_slb_size(node); 442 443 #ifdef CONFIG_PPC64 444 if (nthreads == 1) 445 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 446 else if (!dt_cpu_ftrs_in_use()) 447 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 448 #endif 449 450 return 0; 451 } 452 453 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 454 const char *uname, 455 int depth, void *data) 456 { 457 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 458 459 /* Use common scan routine to determine if this is the chosen node */ 460 if (early_init_dt_scan_chosen(data) < 0) 461 return 0; 462 463 #ifdef CONFIG_PPC64 464 /* check if iommu is forced on or off */ 465 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 466 iommu_is_off = 1; 467 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 468 iommu_force_on = 1; 469 #endif 470 471 /* mem=x on the command line is the preferred mechanism */ 472 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 473 if (lprop) 474 memory_limit = *lprop; 475 476 #ifdef CONFIG_PPC64 477 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 478 if (lprop) 479 tce_alloc_start = *lprop; 480 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 481 if (lprop) 482 tce_alloc_end = *lprop; 483 #endif 484 485 #ifdef CONFIG_CRASH_RESERVE 486 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 487 if (lprop) 488 crashk_res.start = *lprop; 489 490 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 491 if (lprop) 492 crashk_res.end = crashk_res.start + *lprop - 1; 493 #endif 494 495 /* break now */ 496 return 1; 497 } 498 499 /* 500 * Compare the range against max mem limit and update 501 * size if it cross the limit. 502 */ 503 504 #ifdef CONFIG_SPARSEMEM 505 static bool __init validate_mem_limit(u64 base, u64 *size) 506 { 507 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 508 509 if (base >= max_mem) 510 return false; 511 if ((base + *size) > max_mem) 512 *size = max_mem - base; 513 return true; 514 } 515 #else 516 static bool __init validate_mem_limit(u64 base, u64 *size) 517 { 518 return true; 519 } 520 #endif 521 522 #ifdef CONFIG_PPC_PSERIES 523 /* 524 * Interpret the ibm dynamic reconfiguration memory LMBs. 525 * This contains a list of memory blocks along with NUMA affinity 526 * information. 527 */ 528 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, 529 const __be32 **usm, 530 void *data) 531 { 532 u64 base, size; 533 int is_kexec_kdump = 0, rngs; 534 535 base = lmb->base_addr; 536 size = drmem_lmb_size(); 537 rngs = 1; 538 539 /* 540 * Skip this block if the reserved bit is set in flags 541 * or if the block is not assigned to this partition. 542 */ 543 if ((lmb->flags & DRCONF_MEM_RESERVED) || 544 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 545 return 0; 546 547 if (*usm) 548 is_kexec_kdump = 1; 549 550 if (is_kexec_kdump) { 551 /* 552 * For each memblock in ibm,dynamic-memory, a 553 * corresponding entry in linux,drconf-usable-memory 554 * property contains a counter 'p' followed by 'p' 555 * (base, size) duple. Now read the counter from 556 * linux,drconf-usable-memory property 557 */ 558 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 559 if (!rngs) /* there are no (base, size) duple */ 560 return 0; 561 } 562 563 do { 564 if (is_kexec_kdump) { 565 base = dt_mem_next_cell(dt_root_addr_cells, usm); 566 size = dt_mem_next_cell(dt_root_size_cells, usm); 567 } 568 569 if (iommu_is_off) { 570 if (base >= 0x80000000ul) 571 continue; 572 if ((base + size) > 0x80000000ul) 573 size = 0x80000000ul - base; 574 } 575 576 if (!validate_mem_limit(base, &size)) 577 continue; 578 579 DBG("Adding: %llx -> %llx\n", base, size); 580 memblock_add(base, size); 581 582 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) 583 memblock_mark_hotplug(base, size); 584 } while (--rngs); 585 586 return 0; 587 } 588 #endif /* CONFIG_PPC_PSERIES */ 589 590 static int __init early_init_dt_scan_memory_ppc(void) 591 { 592 #ifdef CONFIG_PPC_PSERIES 593 const void *fdt = initial_boot_params; 594 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 595 596 if (node > 0) 597 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); 598 599 #endif 600 601 return early_init_dt_scan_memory(); 602 } 603 604 /* 605 * For a relocatable kernel, we need to get the memstart_addr first, 606 * then use it to calculate the virtual kernel start address. This has 607 * to happen at a very early stage (before machine_init). In this case, 608 * we just want to get the memstart_address and would not like to mess the 609 * memblock at this stage. So introduce a variable to skip the memblock_add() 610 * for this reason. 611 */ 612 #ifdef CONFIG_RELOCATABLE 613 static int add_mem_to_memblock = 1; 614 #else 615 #define add_mem_to_memblock 1 616 #endif 617 618 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 619 { 620 #ifdef CONFIG_PPC64 621 if (iommu_is_off) { 622 if (base >= 0x80000000ul) 623 return; 624 if ((base + size) > 0x80000000ul) 625 size = 0x80000000ul - base; 626 } 627 #endif 628 /* Keep track of the beginning of memory -and- the size of 629 * the very first block in the device-tree as it represents 630 * the RMA on ppc64 server 631 */ 632 if (base < memstart_addr) { 633 memstart_addr = base; 634 first_memblock_size = size; 635 } 636 637 /* Add the chunk to the MEMBLOCK list */ 638 if (add_mem_to_memblock) { 639 if (validate_mem_limit(base, &size)) 640 memblock_add(base, size); 641 } 642 } 643 644 static void __init early_reserve_mem_dt(void) 645 { 646 unsigned long i, dt_root; 647 int len; 648 const __be32 *prop; 649 650 early_init_fdt_reserve_self(); 651 early_init_fdt_scan_reserved_mem(); 652 653 dt_root = of_get_flat_dt_root(); 654 655 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 656 657 if (!prop) 658 return; 659 660 DBG("Found new-style reserved-ranges\n"); 661 662 /* Each reserved range is an (address,size) pair, 2 cells each, 663 * totalling 4 cells per range. */ 664 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 665 u64 base, size; 666 667 base = of_read_number(prop + (i * 4) + 0, 2); 668 size = of_read_number(prop + (i * 4) + 2, 2); 669 670 if (size) { 671 DBG("reserving: %llx -> %llx\n", base, size); 672 memblock_reserve(base, size); 673 } 674 } 675 } 676 677 static void __init early_reserve_mem(void) 678 { 679 __be64 *reserve_map; 680 681 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 682 fdt_off_mem_rsvmap(initial_boot_params)); 683 684 /* Look for the new "reserved-regions" property in the DT */ 685 early_reserve_mem_dt(); 686 687 #ifdef CONFIG_BLK_DEV_INITRD 688 /* Then reserve the initrd, if any */ 689 if (initrd_start && (initrd_end > initrd_start)) { 690 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 691 ALIGN(initrd_end, PAGE_SIZE) - 692 ALIGN_DOWN(initrd_start, PAGE_SIZE)); 693 } 694 #endif /* CONFIG_BLK_DEV_INITRD */ 695 696 if (!IS_ENABLED(CONFIG_PPC32)) 697 return; 698 699 /* 700 * Handle the case where we might be booting from an old kexec 701 * image that setup the mem_rsvmap as pairs of 32-bit values 702 */ 703 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 704 u32 base_32, size_32; 705 __be32 *reserve_map_32 = (__be32 *)reserve_map; 706 707 DBG("Found old 32-bit reserve map\n"); 708 709 while (1) { 710 base_32 = be32_to_cpup(reserve_map_32++); 711 size_32 = be32_to_cpup(reserve_map_32++); 712 if (size_32 == 0) 713 break; 714 DBG("reserving: %x -> %x\n", base_32, size_32); 715 memblock_reserve(base_32, size_32); 716 } 717 return; 718 } 719 } 720 721 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 722 static bool tm_disabled __initdata; 723 724 static int __init parse_ppc_tm(char *str) 725 { 726 bool res; 727 728 if (kstrtobool(str, &res)) 729 return -EINVAL; 730 731 tm_disabled = !res; 732 733 return 0; 734 } 735 early_param("ppc_tm", parse_ppc_tm); 736 737 static void __init tm_init(void) 738 { 739 if (tm_disabled) { 740 pr_info("Disabling hardware transactional memory (HTM)\n"); 741 cur_cpu_spec->cpu_user_features2 &= 742 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 743 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 744 return; 745 } 746 747 pnv_tm_init(); 748 } 749 #else 750 static void tm_init(void) { } 751 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 752 753 static int __init 754 early_init_dt_scan_model(unsigned long node, const char *uname, 755 int depth, void *data) 756 { 757 const char *prop; 758 759 if (depth != 0) 760 return 0; 761 762 prop = of_get_flat_dt_prop(node, "model", NULL); 763 if (prop) 764 seq_buf_printf(&ppc_hw_desc, "%s ", prop); 765 766 /* break now */ 767 return 1; 768 } 769 770 #ifdef CONFIG_PPC64 771 static void __init save_fscr_to_task(void) 772 { 773 /* 774 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we 775 * have configured via the device tree features or via __init_FSCR(). 776 * That value will then be propagated to pid 1 (init) and all future 777 * processes. 778 */ 779 if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 780 init_task.thread.fscr = mfspr(SPRN_FSCR); 781 } 782 #else 783 static inline void save_fscr_to_task(void) {} 784 #endif 785 786 787 void __init early_init_devtree(void *params) 788 { 789 phys_addr_t int_vector_size; 790 791 DBG(" -> early_init_devtree(%px)\n", params); 792 793 /* Too early to BUG_ON(), do it by hand */ 794 if (!early_init_dt_verify(params, __pa(params))) 795 panic("BUG: Failed verifying flat device tree, bad version?"); 796 797 of_scan_flat_dt(early_init_dt_scan_model, NULL); 798 799 #ifdef CONFIG_PPC_RTAS 800 /* Some machines might need RTAS info for debugging, grab it now. */ 801 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 802 #endif 803 804 #ifdef CONFIG_PPC_POWERNV 805 /* Some machines might need OPAL info for debugging, grab it now. */ 806 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 807 808 /* Scan tree for ultravisor feature */ 809 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); 810 #endif 811 812 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 813 /* scan tree to see if dump is active during last boot */ 814 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 815 #endif 816 817 /* Retrieve various informations from the /chosen node of the 818 * device-tree, including the platform type, initrd location and 819 * size, TCE reserve, and more ... 820 */ 821 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 822 823 /* Append additional parameters passed for fadump capture kernel */ 824 fadump_append_bootargs(); 825 826 /* Scan memory nodes and rebuild MEMBLOCKs */ 827 early_init_dt_scan_root(); 828 early_init_dt_scan_memory_ppc(); 829 830 /* 831 * As generic code authors expect to be able to use static keys 832 * in early_param() handlers, we initialize the static keys just 833 * before parsing early params (it's fine to call jump_label_init() 834 * more than once). 835 */ 836 jump_label_init(); 837 parse_early_param(); 838 839 /* make sure we've parsed cmdline for mem= before this */ 840 if (memory_limit) 841 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 842 setup_initial_memory_limit(memstart_addr, first_memblock_size); 843 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 844 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); 845 #ifdef CONFIG_PPC64 846 /* If relocatable, reserve at least 32k for interrupt vectors etc. */ 847 int_vector_size = __end_interrupts - _stext; 848 int_vector_size = max_t(phys_addr_t, SZ_32K, int_vector_size); 849 #else 850 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 851 int_vector_size = SZ_32K; 852 #endif 853 if (PHYSICAL_START > MEMORY_START) 854 memblock_reserve(MEMORY_START, int_vector_size); 855 reserve_kdump_trampoline(); 856 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 857 /* 858 * If we fail to reserve memory for firmware-assisted dump then 859 * fallback to kexec based kdump. 860 */ 861 if (fadump_reserve_mem() == 0) 862 #endif 863 reserve_crashkernel(); 864 early_reserve_mem(); 865 866 if (memory_limit > memblock_phys_mem_size()) 867 memory_limit = 0; 868 869 /* Align down to 16 MB which is large page size with hash page translation */ 870 memory_limit = ALIGN_DOWN(memory_limit ?: memblock_phys_mem_size(), SZ_16M); 871 memblock_enforce_memory_limit(memory_limit); 872 873 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) 874 if (!early_radix_enabled()) 875 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); 876 #endif 877 878 memblock_allow_resize(); 879 memblock_dump_all(); 880 881 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 882 883 /* We may need to relocate the flat tree, do it now. 884 * FIXME .. and the initrd too? */ 885 move_device_tree(); 886 887 DBG("Scanning CPUs ...\n"); 888 889 dt_cpu_ftrs_scan(); 890 891 /* Retrieve CPU related informations from the flat tree 892 * (altivec support, boot CPU ID, ...) 893 */ 894 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 895 if (boot_cpuid < 0) { 896 printk("Failed to identify boot CPU !\n"); 897 BUG(); 898 } 899 900 save_fscr_to_task(); 901 902 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 903 /* We'll later wait for secondaries to check in; there are 904 * NCPUS-1 non-boot CPUs :-) 905 */ 906 spinning_secondaries = boot_cpu_count - 1; 907 #endif 908 909 mmu_early_init_devtree(); 910 911 /* Setup param area for passing additional parameters to fadump capture kernel. */ 912 fadump_setup_param_area(); 913 914 #ifdef CONFIG_PPC_POWERNV 915 /* Scan and build the list of machine check recoverable ranges */ 916 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 917 #endif 918 epapr_paravirt_early_init(); 919 920 /* Now try to figure out if we are running on LPAR and so on */ 921 pseries_probe_fw_features(); 922 923 /* 924 * Initialize pkey features and default AMR/IAMR values 925 */ 926 pkey_early_init_devtree(); 927 928 #ifdef CONFIG_PPC_PS3 929 /* Identify PS3 firmware */ 930 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 931 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 932 #endif 933 934 /* If kexec left a PLPKS password in the DT, get it and clear it */ 935 plpks_early_init_devtree(); 936 937 tm_init(); 938 939 DBG(" <- early_init_devtree()\n"); 940 } 941 942 #ifdef CONFIG_RELOCATABLE 943 /* 944 * This function run before early_init_devtree, so we have to init 945 * initial_boot_params. 946 */ 947 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 948 { 949 /* Setup flat device-tree pointer */ 950 initial_boot_params = params; 951 952 /* 953 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 954 * mess the memblock. 955 */ 956 add_mem_to_memblock = 0; 957 early_init_dt_scan_root(); 958 early_init_dt_scan_memory_ppc(); 959 add_mem_to_memblock = 1; 960 961 if (size) 962 *size = first_memblock_size; 963 } 964 #endif 965 966 /******* 967 * 968 * New implementation of the OF "find" APIs, return a refcounted 969 * object, call of_node_put() when done. The device tree and list 970 * are protected by a rw_lock. 971 * 972 * Note that property management will need some locking as well, 973 * this isn't dealt with yet. 974 * 975 *******/ 976 977 /** 978 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 979 * @np: device node of the device 980 * 981 * This looks for a property "ibm,chip-id" in the node or any 982 * of its parents and returns its content, or -1 if it cannot 983 * be found. 984 */ 985 int of_get_ibm_chip_id(struct device_node *np) 986 { 987 of_node_get(np); 988 while (np) { 989 u32 chip_id; 990 991 /* 992 * Skiboot may produce memory nodes that contain more than one 993 * cell in chip-id, we only read the first one here. 994 */ 995 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 996 of_node_put(np); 997 return chip_id; 998 } 999 1000 np = of_get_next_parent(np); 1001 } 1002 return -1; 1003 } 1004 EXPORT_SYMBOL(of_get_ibm_chip_id); 1005 1006 /** 1007 * cpu_to_chip_id - Return the cpus chip-id 1008 * @cpu: The logical cpu number. 1009 * 1010 * Return the value of the ibm,chip-id property corresponding to the given 1011 * logical cpu number. If the chip-id can not be found, returns -1. 1012 */ 1013 int cpu_to_chip_id(int cpu) 1014 { 1015 struct device_node *np; 1016 int ret = -1, idx; 1017 1018 idx = cpu / threads_per_core; 1019 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) 1020 return chip_id_lookup_table[idx]; 1021 1022 np = of_get_cpu_node(cpu, NULL); 1023 if (np) { 1024 ret = of_get_ibm_chip_id(np); 1025 of_node_put(np); 1026 1027 if (chip_id_lookup_table) 1028 chip_id_lookup_table[idx] = ret; 1029 } 1030 1031 return ret; 1032 } 1033 EXPORT_SYMBOL(cpu_to_chip_id); 1034 1035 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 1036 { 1037 #ifdef CONFIG_SMP 1038 /* 1039 * Early firmware scanning must use this rather than 1040 * get_hard_smp_processor_id because we don't have pacas allocated 1041 * until memory topology is discovered. 1042 */ 1043 if (cpu_to_phys_id != NULL) 1044 return (int)phys_id == cpu_to_phys_id[cpu]; 1045 #endif 1046 1047 return (int)phys_id == get_hard_smp_processor_id(cpu); 1048 } 1049