xref: /linux/arch/powerpc/kernel/prom.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53 
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63 
64 #ifdef CONFIG_PPC64
65 int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69 
70 typedef u32 cell_t;
71 
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77 
78 static struct device_node *allnodes = NULL;
79 
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84 
85 /* export that to outside world */
86 struct device_node *of_chosen;
87 
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90 
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 	unsigned long tmp;
101 
102 	if (!mem_start)
103 		return kmalloc(size, GFP_KERNEL);
104 
105 	tmp = *mem_start;
106 	*mem_start += size;
107 	return (void *)tmp;
108 }
109 
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 	struct device_node *np;
116 
117 	for (np = allnodes; np != 0; np = np->allnext)
118 		if (np->linux_phandle == ph)
119 			return np;
120 	return NULL;
121 }
122 
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 	phandle *parp;
129 
130 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 	if (parp == NULL)
132 		return p->parent;
133 	p = find_phandle(*parp);
134 	if (p != NULL)
135 		return p;
136 	/*
137 	 * On a powermac booted with BootX, we don't get to know the
138 	 * phandles for any nodes, so find_phandle will return NULL.
139 	 * Fortunately these machines only have one interrupt controller
140 	 * so there isn't in fact any ambiguity.  -- paulus
141 	 */
142 	if (num_interrupt_controllers == 1)
143 		p = dflt_interrupt_controller;
144 	return p;
145 }
146 
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 	struct device_node *p;
154 	unsigned int *icp;
155 
156 	for (p = np; (p = intr_parent(p)) != NULL; ) {
157 		icp = (unsigned int *)
158 			get_property(p, "#interrupt-cells", NULL);
159 		if (icp != NULL)
160 			return *icp;
161 		if (get_property(p, "interrupt-controller", NULL) != NULL
162 		    || get_property(p, "interrupt-map", NULL) != NULL) {
163 			printk("oops, node %s doesn't have #interrupt-cells\n",
164 			       p->full_name);
165 			return 1;
166 		}
167 	}
168 #ifdef DEBUG_IRQ
169 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 	return 1;
172 }
173 
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 				   struct device_node *np, unsigned int *ints,
180 				   int nintrc)
181 {
182 	struct device_node *p, *ipar;
183 	unsigned int *imap, *imask, *ip;
184 	int i, imaplen, match;
185 	int newintrc = 0, newaddrc = 0;
186 	unsigned int *reg;
187 	int naddrc;
188 
189 	reg = (unsigned int *) get_property(np, "reg", NULL);
190 	naddrc = prom_n_addr_cells(np);
191 	p = intr_parent(np);
192 	while (p != NULL) {
193 		if (get_property(p, "interrupt-controller", NULL) != NULL)
194 			/* this node is an interrupt controller, stop here */
195 			break;
196 		imap = (unsigned int *)
197 			get_property(p, "interrupt-map", &imaplen);
198 		if (imap == NULL) {
199 			p = intr_parent(p);
200 			continue;
201 		}
202 		imask = (unsigned int *)
203 			get_property(p, "interrupt-map-mask", NULL);
204 		if (imask == NULL) {
205 			printk("oops, %s has interrupt-map but no mask\n",
206 			       p->full_name);
207 			return 0;
208 		}
209 		imaplen /= sizeof(unsigned int);
210 		match = 0;
211 		ipar = NULL;
212 		while (imaplen > 0 && !match) {
213 			/* check the child-interrupt field */
214 			match = 1;
215 			for (i = 0; i < naddrc && match; ++i)
216 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 			for (; i < naddrc + nintrc && match; ++i)
218 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 			imap += naddrc + nintrc;
220 			imaplen -= naddrc + nintrc;
221 			/* grab the interrupt parent */
222 			ipar = find_phandle((phandle) *imap++);
223 			--imaplen;
224 			if (ipar == NULL && num_interrupt_controllers == 1)
225 				/* cope with BootX not giving us phandles */
226 				ipar = dflt_interrupt_controller;
227 			if (ipar == NULL) {
228 				printk("oops, no int parent %x in map of %s\n",
229 				       imap[-1], p->full_name);
230 				return 0;
231 			}
232 			/* find the parent's # addr and intr cells */
233 			ip = (unsigned int *)
234 				get_property(ipar, "#interrupt-cells", NULL);
235 			if (ip == NULL) {
236 				printk("oops, no #interrupt-cells on %s\n",
237 				       ipar->full_name);
238 				return 0;
239 			}
240 			newintrc = *ip;
241 			ip = (unsigned int *)
242 				get_property(ipar, "#address-cells", NULL);
243 			newaddrc = (ip == NULL)? 0: *ip;
244 			imap += newaddrc + newintrc;
245 			imaplen -= newaddrc + newintrc;
246 		}
247 		if (imaplen < 0) {
248 			printk("oops, error decoding int-map on %s, len=%d\n",
249 			       p->full_name, imaplen);
250 			return 0;
251 		}
252 		if (!match) {
253 #ifdef DEBUG_IRQ
254 			printk("oops, no match in %s int-map for %s\n",
255 			       p->full_name, np->full_name);
256 #endif
257 			return 0;
258 		}
259 		p = ipar;
260 		naddrc = newaddrc;
261 		nintrc = newintrc;
262 		ints = imap - nintrc;
263 		reg = ints - naddrc;
264 	}
265 	if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 		printk("hmmm, int tree for %s doesn't have ctrler\n",
268 		       np->full_name);
269 #endif
270 		return 0;
271 	}
272 	*irq = ints;
273 	*ictrler = p;
274 	return nintrc;
275 }
276 
277 static unsigned char map_isa_senses[4] = {
278 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283 
284 static unsigned char map_mpic_senses[4] = {
285 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 	/* 2 seems to be used for the 8259 cascade... */
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291 
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 					    unsigned long *mem_start,
294 					    int measure_only)
295 {
296 	unsigned int *ints;
297 	int intlen, intrcells, intrcount;
298 	int i, j, n, sense;
299 	unsigned int *irq, virq;
300 	struct device_node *ic;
301 	int trace = 0;
302 
303 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305 
306 	if (!strcmp(np->name, "smu-doorbell"))
307 		trace = 1;
308 
309 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 	      num_interrupt_controllers);
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = IRQ_SENSE_LEVEL
339 				| IRQ_POLARITY_NEGATIVE;
340 		}
341 		return 0;
342 	}
343 
344 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 	if (ints == NULL)
347 		return 0;
348 	intrcells = prom_n_intr_cells(np);
349 	intlen /= intrcells * sizeof(unsigned int);
350 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 	if (!np->intrs)
353 		return -ENOMEM;
354 
355 	if (measure_only)
356 		return 0;
357 
358 	intrcount = 0;
359 	for (i = 0; i < intlen; ++i, ints += intrcells) {
360 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 		if (n <= 0)
363 			continue;
364 
365 		/* don't map IRQ numbers under a cascaded 8259 controller */
366 		if (ic && device_is_compatible(ic, "chrp,iic")) {
367 			np->intrs[intrcount].line = irq[0];
368 			sense = (n > 1)? (irq[1] & 3): 3;
369 			np->intrs[intrcount].sense = map_isa_senses[sense];
370 		} else {
371 			virq = virt_irq_create_mapping(irq[0]);
372 			TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 			if (virq == NO_IRQ) {
375 				printk(KERN_CRIT "Could not allocate interrupt"
376 				       " number for %s\n", np->full_name);
377 				continue;
378 			}
379 #endif
380 			np->intrs[intrcount].line = irq_offset_up(virq);
381 			sense = (n > 1)? (irq[1] & 3): 1;
382 
383 			/* Apple uses bits in there in a different way, let's
384 			 * only keep the real sense bit on macs
385 			 */
386 			if (machine_is(powermac))
387 				sense &= 0x1;
388 			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 		}
390 
391 #ifdef CONFIG_PPC64
392 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 		if (machine_is(powermac) && ic && ic->parent) {
394 			char *name = get_property(ic->parent, "name", NULL);
395 			if (name && !strcmp(name, "u3"))
396 				np->intrs[intrcount].line += 128;
397 			else if (!(name && (!strcmp(name, "mac-io") ||
398 					    !strcmp(name, "u4"))))
399 				/* ignore other cascaded controllers, such as
400 				   the k2-sata-root */
401 				break;
402 		}
403 #endif /* CONFIG_PPC64 */
404 		if (n > 2) {
405 			printk("hmmm, got %d intr cells for %s:", n,
406 			       np->full_name);
407 			for (j = 0; j < n; ++j)
408 				printk(" %d", irq[j]);
409 			printk("\n");
410 		}
411 		++intrcount;
412 	}
413 	np->n_intrs = intrcount;
414 
415 	return 0;
416 }
417 
418 static int __devinit finish_node(struct device_node *np,
419 				 unsigned long *mem_start,
420 				 int measure_only)
421 {
422 	struct device_node *child;
423 	int rc = 0;
424 
425 	rc = finish_node_interrupts(np, mem_start, measure_only);
426 	if (rc)
427 		goto out;
428 
429 	for (child = np->child; child != NULL; child = child->sibling) {
430 		rc = finish_node(child, mem_start, measure_only);
431 		if (rc)
432 			goto out;
433 	}
434 out:
435 	return rc;
436 }
437 
438 static void __init scan_interrupt_controllers(void)
439 {
440 	struct device_node *np;
441 	int n = 0;
442 	char *name, *ic;
443 	int iclen;
444 
445 	for (np = allnodes; np != NULL; np = np->allnext) {
446 		ic = get_property(np, "interrupt-controller", &iclen);
447 		name = get_property(np, "name", NULL);
448 		/* checking iclen makes sure we don't get a false
449 		   match on /chosen.interrupt_controller */
450 		if ((name != NULL
451 		     && strcmp(name, "interrupt-controller") == 0)
452 		    || (ic != NULL && iclen == 0
453 			&& strcmp(name, "AppleKiwi"))) {
454 			if (n == 0)
455 				dflt_interrupt_controller = np;
456 			++n;
457 		}
458 	}
459 	num_interrupt_controllers = n;
460 }
461 
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471 	unsigned long start, end, size = 0;
472 
473 	DBG(" -> finish_device_tree\n");
474 
475 #ifdef CONFIG_PPC64
476 	/* Initialize virtual IRQ map */
477 	virt_irq_init();
478 #endif
479 	scan_interrupt_controllers();
480 
481 	/*
482 	 * Finish device-tree (pre-parsing some properties etc...)
483 	 * We do this in 2 passes. One with "measure_only" set, which
484 	 * will only measure the amount of memory needed, then we can
485 	 * allocate that memory, and call finish_node again. However,
486 	 * we must be careful as most routines will fail nowadays when
487 	 * prom_alloc() returns 0, so we must make sure our first pass
488 	 * doesn't start at 0. We pre-initialize size to 16 for that
489 	 * reason and then remove those additional 16 bytes
490 	 */
491 	size = 16;
492 	finish_node(allnodes, &size, 1);
493 	size -= 16;
494 
495 	if (0 == size)
496 		end = start = 0;
497 	else
498 		end = start = (unsigned long)__va(lmb_alloc(size, 128));
499 
500 	finish_node(allnodes, &end, 0);
501 	BUG_ON(end != start + size);
502 
503 	DBG(" <- finish_device_tree\n");
504 }
505 
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508 	return ((char *)initial_boot_params) +
509 		initial_boot_params->off_dt_strings + offset;
510 }
511 
512 /**
513  * This function is used to scan the flattened device-tree, it is
514  * used to extract the memory informations at boot before we can
515  * unflatten the tree
516  */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 				     const char *uname, int depth,
519 				     void *data),
520 			   void *data)
521 {
522 	unsigned long p = ((unsigned long)initial_boot_params) +
523 		initial_boot_params->off_dt_struct;
524 	int rc = 0;
525 	int depth = -1;
526 
527 	do {
528 		u32 tag = *((u32 *)p);
529 		char *pathp;
530 
531 		p += 4;
532 		if (tag == OF_DT_END_NODE) {
533 			depth --;
534 			continue;
535 		}
536 		if (tag == OF_DT_NOP)
537 			continue;
538 		if (tag == OF_DT_END)
539 			break;
540 		if (tag == OF_DT_PROP) {
541 			u32 sz = *((u32 *)p);
542 			p += 8;
543 			if (initial_boot_params->version < 0x10)
544 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 			p += sz;
546 			p = _ALIGN(p, 4);
547 			continue;
548 		}
549 		if (tag != OF_DT_BEGIN_NODE) {
550 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 			       " device tree !\n", tag);
552 			return -EINVAL;
553 		}
554 		depth++;
555 		pathp = (char *)p;
556 		p = _ALIGN(p + strlen(pathp) + 1, 4);
557 		if ((*pathp) == '/') {
558 			char *lp, *np;
559 			for (lp = NULL, np = pathp; *np; np++)
560 				if ((*np) == '/')
561 					lp = np+1;
562 			if (lp != NULL)
563 				pathp = lp;
564 		}
565 		rc = it(p, pathp, depth, data);
566 		if (rc != 0)
567 			break;
568 	} while(1);
569 
570 	return rc;
571 }
572 
573 unsigned long __init of_get_flat_dt_root(void)
574 {
575 	unsigned long p = ((unsigned long)initial_boot_params) +
576 		initial_boot_params->off_dt_struct;
577 
578 	while(*((u32 *)p) == OF_DT_NOP)
579 		p += 4;
580 	BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
581 	p += 4;
582 	return _ALIGN(p + strlen((char *)p) + 1, 4);
583 }
584 
585 /**
586  * This  function can be used within scan_flattened_dt callback to get
587  * access to properties
588  */
589 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
590 				 unsigned long *size)
591 {
592 	unsigned long p = node;
593 
594 	do {
595 		u32 tag = *((u32 *)p);
596 		u32 sz, noff;
597 		const char *nstr;
598 
599 		p += 4;
600 		if (tag == OF_DT_NOP)
601 			continue;
602 		if (tag != OF_DT_PROP)
603 			return NULL;
604 
605 		sz = *((u32 *)p);
606 		noff = *((u32 *)(p + 4));
607 		p += 8;
608 		if (initial_boot_params->version < 0x10)
609 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
610 
611 		nstr = find_flat_dt_string(noff);
612 		if (nstr == NULL) {
613 			printk(KERN_WARNING "Can't find property index"
614 			       " name !\n");
615 			return NULL;
616 		}
617 		if (strcmp(name, nstr) == 0) {
618 			if (size)
619 				*size = sz;
620 			return (void *)p;
621 		}
622 		p += sz;
623 		p = _ALIGN(p, 4);
624 	} while(1);
625 }
626 
627 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
628 {
629 	const char* cp;
630 	unsigned long cplen, l;
631 
632 	cp = of_get_flat_dt_prop(node, "compatible", &cplen);
633 	if (cp == NULL)
634 		return 0;
635 	while (cplen > 0) {
636 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
637 			return 1;
638 		l = strlen(cp) + 1;
639 		cp += l;
640 		cplen -= l;
641 	}
642 
643 	return 0;
644 }
645 
646 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
647 				       unsigned long align)
648 {
649 	void *res;
650 
651 	*mem = _ALIGN(*mem, align);
652 	res = (void *)*mem;
653 	*mem += size;
654 
655 	return res;
656 }
657 
658 static unsigned long __init unflatten_dt_node(unsigned long mem,
659 					      unsigned long *p,
660 					      struct device_node *dad,
661 					      struct device_node ***allnextpp,
662 					      unsigned long fpsize)
663 {
664 	struct device_node *np;
665 	struct property *pp, **prev_pp = NULL;
666 	char *pathp;
667 	u32 tag;
668 	unsigned int l, allocl;
669 	int has_name = 0;
670 	int new_format = 0;
671 
672 	tag = *((u32 *)(*p));
673 	if (tag != OF_DT_BEGIN_NODE) {
674 		printk("Weird tag at start of node: %x\n", tag);
675 		return mem;
676 	}
677 	*p += 4;
678 	pathp = (char *)*p;
679 	l = allocl = strlen(pathp) + 1;
680 	*p = _ALIGN(*p + l, 4);
681 
682 	/* version 0x10 has a more compact unit name here instead of the full
683 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
684 	 * it later. We detect this because the first character of the name is
685 	 * not '/'.
686 	 */
687 	if ((*pathp) != '/') {
688 		new_format = 1;
689 		if (fpsize == 0) {
690 			/* root node: special case. fpsize accounts for path
691 			 * plus terminating zero. root node only has '/', so
692 			 * fpsize should be 2, but we want to avoid the first
693 			 * level nodes to have two '/' so we use fpsize 1 here
694 			 */
695 			fpsize = 1;
696 			allocl = 2;
697 		} else {
698 			/* account for '/' and path size minus terminal 0
699 			 * already in 'l'
700 			 */
701 			fpsize += l;
702 			allocl = fpsize;
703 		}
704 	}
705 
706 
707 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
708 				__alignof__(struct device_node));
709 	if (allnextpp) {
710 		memset(np, 0, sizeof(*np));
711 		np->full_name = ((char*)np) + sizeof(struct device_node);
712 		if (new_format) {
713 			char *p = np->full_name;
714 			/* rebuild full path for new format */
715 			if (dad && dad->parent) {
716 				strcpy(p, dad->full_name);
717 #ifdef DEBUG
718 				if ((strlen(p) + l + 1) != allocl) {
719 					DBG("%s: p: %d, l: %d, a: %d\n",
720 					    pathp, (int)strlen(p), l, allocl);
721 				}
722 #endif
723 				p += strlen(p);
724 			}
725 			*(p++) = '/';
726 			memcpy(p, pathp, l);
727 		} else
728 			memcpy(np->full_name, pathp, l);
729 		prev_pp = &np->properties;
730 		**allnextpp = np;
731 		*allnextpp = &np->allnext;
732 		if (dad != NULL) {
733 			np->parent = dad;
734 			/* we temporarily use the next field as `last_child'*/
735 			if (dad->next == 0)
736 				dad->child = np;
737 			else
738 				dad->next->sibling = np;
739 			dad->next = np;
740 		}
741 		kref_init(&np->kref);
742 	}
743 	while(1) {
744 		u32 sz, noff;
745 		char *pname;
746 
747 		tag = *((u32 *)(*p));
748 		if (tag == OF_DT_NOP) {
749 			*p += 4;
750 			continue;
751 		}
752 		if (tag != OF_DT_PROP)
753 			break;
754 		*p += 4;
755 		sz = *((u32 *)(*p));
756 		noff = *((u32 *)((*p) + 4));
757 		*p += 8;
758 		if (initial_boot_params->version < 0x10)
759 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
760 
761 		pname = find_flat_dt_string(noff);
762 		if (pname == NULL) {
763 			printk("Can't find property name in list !\n");
764 			break;
765 		}
766 		if (strcmp(pname, "name") == 0)
767 			has_name = 1;
768 		l = strlen(pname) + 1;
769 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
770 					__alignof__(struct property));
771 		if (allnextpp) {
772 			if (strcmp(pname, "linux,phandle") == 0) {
773 				np->node = *((u32 *)*p);
774 				if (np->linux_phandle == 0)
775 					np->linux_phandle = np->node;
776 			}
777 			if (strcmp(pname, "ibm,phandle") == 0)
778 				np->linux_phandle = *((u32 *)*p);
779 			pp->name = pname;
780 			pp->length = sz;
781 			pp->value = (void *)*p;
782 			*prev_pp = pp;
783 			prev_pp = &pp->next;
784 		}
785 		*p = _ALIGN((*p) + sz, 4);
786 	}
787 	/* with version 0x10 we may not have the name property, recreate
788 	 * it here from the unit name if absent
789 	 */
790 	if (!has_name) {
791 		char *p = pathp, *ps = pathp, *pa = NULL;
792 		int sz;
793 
794 		while (*p) {
795 			if ((*p) == '@')
796 				pa = p;
797 			if ((*p) == '/')
798 				ps = p + 1;
799 			p++;
800 		}
801 		if (pa < ps)
802 			pa = p;
803 		sz = (pa - ps) + 1;
804 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
805 					__alignof__(struct property));
806 		if (allnextpp) {
807 			pp->name = "name";
808 			pp->length = sz;
809 			pp->value = (unsigned char *)(pp + 1);
810 			*prev_pp = pp;
811 			prev_pp = &pp->next;
812 			memcpy(pp->value, ps, sz - 1);
813 			((char *)pp->value)[sz - 1] = 0;
814 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
815 		}
816 	}
817 	if (allnextpp) {
818 		*prev_pp = NULL;
819 		np->name = get_property(np, "name", NULL);
820 		np->type = get_property(np, "device_type", NULL);
821 
822 		if (!np->name)
823 			np->name = "<NULL>";
824 		if (!np->type)
825 			np->type = "<NULL>";
826 	}
827 	while (tag == OF_DT_BEGIN_NODE) {
828 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
829 		tag = *((u32 *)(*p));
830 	}
831 	if (tag != OF_DT_END_NODE) {
832 		printk("Weird tag at end of node: %x\n", tag);
833 		return mem;
834 	}
835 	*p += 4;
836 	return mem;
837 }
838 
839 
840 /**
841  * unflattens the device-tree passed by the firmware, creating the
842  * tree of struct device_node. It also fills the "name" and "type"
843  * pointers of the nodes so the normal device-tree walking functions
844  * can be used (this used to be done by finish_device_tree)
845  */
846 void __init unflatten_device_tree(void)
847 {
848 	unsigned long start, mem, size;
849 	struct device_node **allnextp = &allnodes;
850 
851 	DBG(" -> unflatten_device_tree()\n");
852 
853 	/* First pass, scan for size */
854 	start = ((unsigned long)initial_boot_params) +
855 		initial_boot_params->off_dt_struct;
856 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
857 	size = (size | 3) + 1;
858 
859 	DBG("  size is %lx, allocating...\n", size);
860 
861 	/* Allocate memory for the expanded device tree */
862 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
863 	mem = (unsigned long) __va(mem);
864 
865 	((u32 *)mem)[size / 4] = 0xdeadbeef;
866 
867 	DBG("  unflattening %lx...\n", mem);
868 
869 	/* Second pass, do actual unflattening */
870 	start = ((unsigned long)initial_boot_params) +
871 		initial_boot_params->off_dt_struct;
872 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
873 	if (*((u32 *)start) != OF_DT_END)
874 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
875 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
876 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
877 		       ((u32 *)mem)[size / 4] );
878 	*allnextp = NULL;
879 
880 	/* Get pointer to OF "/chosen" node for use everywhere */
881 	of_chosen = of_find_node_by_path("/chosen");
882 	if (of_chosen == NULL)
883 		of_chosen = of_find_node_by_path("/chosen@0");
884 
885 	DBG(" <- unflatten_device_tree()\n");
886 }
887 
888 static int __init early_init_dt_scan_cpus(unsigned long node,
889 					  const char *uname, int depth,
890 					  void *data)
891 {
892 	static int logical_cpuid = 0;
893 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
894 #ifdef CONFIG_ALTIVEC
895 	u32 *prop;
896 #endif
897 	u32 *intserv;
898 	int i, nthreads;
899 	unsigned long len;
900 	int found = 0;
901 
902 	/* We are scanning "cpu" nodes only */
903 	if (type == NULL || strcmp(type, "cpu") != 0)
904 		return 0;
905 
906 	/* Get physical cpuid */
907 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
908 	if (intserv) {
909 		nthreads = len / sizeof(int);
910 	} else {
911 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
912 		nthreads = 1;
913 	}
914 
915 	/*
916 	 * Now see if any of these threads match our boot cpu.
917 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
918 	 */
919 	for (i = 0; i < nthreads; i++) {
920 		/*
921 		 * version 2 of the kexec param format adds the phys cpuid of
922 		 * booted proc.
923 		 */
924 		if (initial_boot_params && initial_boot_params->version >= 2) {
925 			if (intserv[i] ==
926 					initial_boot_params->boot_cpuid_phys) {
927 				found = 1;
928 				break;
929 			}
930 		} else {
931 			/*
932 			 * Check if it's the boot-cpu, set it's hw index now,
933 			 * unfortunately this format did not support booting
934 			 * off secondary threads.
935 			 */
936 			if (of_get_flat_dt_prop(node,
937 					"linux,boot-cpu", NULL) != NULL) {
938 				found = 1;
939 				break;
940 			}
941 		}
942 
943 #ifdef CONFIG_SMP
944 		/* logical cpu id is always 0 on UP kernels */
945 		logical_cpuid++;
946 #endif
947 	}
948 
949 	if (found) {
950 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
951 			intserv[i]);
952 		boot_cpuid = logical_cpuid;
953 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
954 	}
955 
956 #ifdef CONFIG_ALTIVEC
957 	/* Check if we have a VMX and eventually update CPU features */
958 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
959 	if (prop && (*prop) > 0) {
960 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
961 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
962 	}
963 
964 	/* Same goes for Apple's "altivec" property */
965 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
966 	if (prop) {
967 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
968 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
969 	}
970 #endif /* CONFIG_ALTIVEC */
971 
972 #ifdef CONFIG_PPC_PSERIES
973 	if (nthreads > 1)
974 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
975 	else
976 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
977 #endif
978 
979 	return 0;
980 }
981 
982 static int __init early_init_dt_scan_chosen(unsigned long node,
983 					    const char *uname, int depth, void *data)
984 {
985 	unsigned long *lprop;
986 	unsigned long l;
987 	char *p;
988 
989 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
990 
991 	if (depth != 1 ||
992 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
993 		return 0;
994 
995 #ifdef CONFIG_PPC64
996 	/* check if iommu is forced on or off */
997 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
998 		iommu_is_off = 1;
999 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1000 		iommu_force_on = 1;
1001 #endif
1002 
1003  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1004  	if (lprop)
1005  		memory_limit = *lprop;
1006 
1007 #ifdef CONFIG_PPC64
1008  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1009  	if (lprop)
1010  		tce_alloc_start = *lprop;
1011  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1012  	if (lprop)
1013  		tce_alloc_end = *lprop;
1014 #endif
1015 
1016 #ifdef CONFIG_PPC_RTAS
1017 	/* To help early debugging via the front panel, we retrieve a minimal
1018 	 * set of RTAS infos now if available
1019 	 */
1020 	{
1021 		u64 *basep, *entryp, *sizep;
1022 
1023 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1024 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1025 		sizep = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1026 		if (basep && entryp && sizep) {
1027 			rtas.base = *basep;
1028 			rtas.entry = *entryp;
1029 			rtas.size = *sizep;
1030 		}
1031 	}
1032 #endif /* CONFIG_PPC_RTAS */
1033 
1034 #ifdef CONFIG_KEXEC
1035        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1036        if (lprop)
1037                crashk_res.start = *lprop;
1038 
1039        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1040        if (lprop)
1041                crashk_res.end = crashk_res.start + *lprop - 1;
1042 #endif
1043 
1044 	/* Retreive command line */
1045  	p = of_get_flat_dt_prop(node, "bootargs", &l);
1046 	if (p != NULL && l > 0)
1047 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1048 
1049 #ifdef CONFIG_CMDLINE
1050 	if (l == 0 || (l == 1 && (*p) == 0))
1051 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1052 #endif /* CONFIG_CMDLINE */
1053 
1054 	DBG("Command line is: %s\n", cmd_line);
1055 
1056 	if (strstr(cmd_line, "mem=")) {
1057 		char *p, *q;
1058 
1059 		for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1060 			q = p + 4;
1061 			if (p > cmd_line && p[-1] != ' ')
1062 				continue;
1063 			memory_limit = memparse(q, &q);
1064 		}
1065 	}
1066 
1067 	/* break now */
1068 	return 1;
1069 }
1070 
1071 static int __init early_init_dt_scan_root(unsigned long node,
1072 					  const char *uname, int depth, void *data)
1073 {
1074 	u32 *prop;
1075 
1076 	if (depth != 0)
1077 		return 0;
1078 
1079 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1080 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1081 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1082 
1083 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1084 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1085 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1086 
1087 	/* break now */
1088 	return 1;
1089 }
1090 
1091 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1092 {
1093 	cell_t *p = *cellp;
1094 	unsigned long r;
1095 
1096 	/* Ignore more than 2 cells */
1097 	while (s > sizeof(unsigned long) / 4) {
1098 		p++;
1099 		s--;
1100 	}
1101 	r = *p++;
1102 #ifdef CONFIG_PPC64
1103 	if (s > 1) {
1104 		r <<= 32;
1105 		r |= *(p++);
1106 		s--;
1107 	}
1108 #endif
1109 
1110 	*cellp = p;
1111 	return r;
1112 }
1113 
1114 
1115 static int __init early_init_dt_scan_memory(unsigned long node,
1116 					    const char *uname, int depth, void *data)
1117 {
1118 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1119 	cell_t *reg, *endp;
1120 	unsigned long l;
1121 
1122 	/* We are scanning "memory" nodes only */
1123 	if (type == NULL) {
1124 		/*
1125 		 * The longtrail doesn't have a device_type on the
1126 		 * /memory node, so look for the node called /memory@0.
1127 		 */
1128 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1129 			return 0;
1130 	} else if (strcmp(type, "memory") != 0)
1131 		return 0;
1132 
1133 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1134 	if (reg == NULL)
1135 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1136 	if (reg == NULL)
1137 		return 0;
1138 
1139 	endp = reg + (l / sizeof(cell_t));
1140 
1141 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1142 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1143 
1144 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1145 		unsigned long base, size;
1146 
1147 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1148 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1149 
1150 		if (size == 0)
1151 			continue;
1152 		DBG(" - %lx ,  %lx\n", base, size);
1153 #ifdef CONFIG_PPC64
1154 		if (iommu_is_off) {
1155 			if (base >= 0x80000000ul)
1156 				continue;
1157 			if ((base + size) > 0x80000000ul)
1158 				size = 0x80000000ul - base;
1159 		}
1160 #endif
1161 		lmb_add(base, size);
1162 	}
1163 	return 0;
1164 }
1165 
1166 static void __init early_reserve_mem(void)
1167 {
1168 	u64 base, size;
1169 	u64 *reserve_map;
1170 
1171 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1172 					initial_boot_params->off_mem_rsvmap);
1173 #ifdef CONFIG_PPC32
1174 	/*
1175 	 * Handle the case where we might be booting from an old kexec
1176 	 * image that setup the mem_rsvmap as pairs of 32-bit values
1177 	 */
1178 	if (*reserve_map > 0xffffffffull) {
1179 		u32 base_32, size_32;
1180 		u32 *reserve_map_32 = (u32 *)reserve_map;
1181 
1182 		while (1) {
1183 			base_32 = *(reserve_map_32++);
1184 			size_32 = *(reserve_map_32++);
1185 			if (size_32 == 0)
1186 				break;
1187 			DBG("reserving: %x -> %x\n", base_32, size_32);
1188 			lmb_reserve(base_32, size_32);
1189 		}
1190 		return;
1191 	}
1192 #endif
1193 	while (1) {
1194 		base = *(reserve_map++);
1195 		size = *(reserve_map++);
1196 		if (size == 0)
1197 			break;
1198 		DBG("reserving: %llx -> %llx\n", base, size);
1199 		lmb_reserve(base, size);
1200 	}
1201 
1202 #if 0
1203 	DBG("memory reserved, lmbs :\n");
1204       	lmb_dump_all();
1205 #endif
1206 }
1207 
1208 void __init early_init_devtree(void *params)
1209 {
1210 	DBG(" -> early_init_devtree()\n");
1211 
1212 	/* Setup flat device-tree pointer */
1213 	initial_boot_params = params;
1214 
1215 	/* Retrieve various informations from the /chosen node of the
1216 	 * device-tree, including the platform type, initrd location and
1217 	 * size, TCE reserve, and more ...
1218 	 */
1219 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1220 
1221 	/* Scan memory nodes and rebuild LMBs */
1222 	lmb_init();
1223 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1224 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1225 	lmb_enforce_memory_limit(memory_limit);
1226 	lmb_analyze();
1227 
1228 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1229 
1230 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1231 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1232 #ifdef CONFIG_CRASH_DUMP
1233 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1234 #endif
1235 	early_reserve_mem();
1236 
1237 	DBG("Scanning CPUs ...\n");
1238 
1239 	/* Retreive CPU related informations from the flat tree
1240 	 * (altivec support, boot CPU ID, ...)
1241 	 */
1242 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1243 
1244 	DBG(" <- early_init_devtree()\n");
1245 }
1246 
1247 #undef printk
1248 
1249 int
1250 prom_n_addr_cells(struct device_node* np)
1251 {
1252 	int* ip;
1253 	do {
1254 		if (np->parent)
1255 			np = np->parent;
1256 		ip = (int *) get_property(np, "#address-cells", NULL);
1257 		if (ip != NULL)
1258 			return *ip;
1259 	} while (np->parent);
1260 	/* No #address-cells property for the root node, default to 1 */
1261 	return 1;
1262 }
1263 EXPORT_SYMBOL(prom_n_addr_cells);
1264 
1265 int
1266 prom_n_size_cells(struct device_node* np)
1267 {
1268 	int* ip;
1269 	do {
1270 		if (np->parent)
1271 			np = np->parent;
1272 		ip = (int *) get_property(np, "#size-cells", NULL);
1273 		if (ip != NULL)
1274 			return *ip;
1275 	} while (np->parent);
1276 	/* No #size-cells property for the root node, default to 1 */
1277 	return 1;
1278 }
1279 EXPORT_SYMBOL(prom_n_size_cells);
1280 
1281 /**
1282  * Work out the sense (active-low level / active-high edge)
1283  * of each interrupt from the device tree.
1284  */
1285 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1286 {
1287 	struct device_node *np;
1288 	int i, j;
1289 
1290 	/* default to level-triggered */
1291 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1292 
1293 	for (np = allnodes; np != 0; np = np->allnext) {
1294 		for (j = 0; j < np->n_intrs; j++) {
1295 			i = np->intrs[j].line;
1296 			if (i >= off && i < max)
1297 				senses[i-off] = np->intrs[j].sense;
1298 		}
1299 	}
1300 }
1301 
1302 /**
1303  * Construct and return a list of the device_nodes with a given name.
1304  */
1305 struct device_node *find_devices(const char *name)
1306 {
1307 	struct device_node *head, **prevp, *np;
1308 
1309 	prevp = &head;
1310 	for (np = allnodes; np != 0; np = np->allnext) {
1311 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1312 			*prevp = np;
1313 			prevp = &np->next;
1314 		}
1315 	}
1316 	*prevp = NULL;
1317 	return head;
1318 }
1319 EXPORT_SYMBOL(find_devices);
1320 
1321 /**
1322  * Construct and return a list of the device_nodes with a given type.
1323  */
1324 struct device_node *find_type_devices(const char *type)
1325 {
1326 	struct device_node *head, **prevp, *np;
1327 
1328 	prevp = &head;
1329 	for (np = allnodes; np != 0; np = np->allnext) {
1330 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1331 			*prevp = np;
1332 			prevp = &np->next;
1333 		}
1334 	}
1335 	*prevp = NULL;
1336 	return head;
1337 }
1338 EXPORT_SYMBOL(find_type_devices);
1339 
1340 /**
1341  * Returns all nodes linked together
1342  */
1343 struct device_node *find_all_nodes(void)
1344 {
1345 	struct device_node *head, **prevp, *np;
1346 
1347 	prevp = &head;
1348 	for (np = allnodes; np != 0; np = np->allnext) {
1349 		*prevp = np;
1350 		prevp = &np->next;
1351 	}
1352 	*prevp = NULL;
1353 	return head;
1354 }
1355 EXPORT_SYMBOL(find_all_nodes);
1356 
1357 /** Checks if the given "compat" string matches one of the strings in
1358  * the device's "compatible" property
1359  */
1360 int device_is_compatible(struct device_node *device, const char *compat)
1361 {
1362 	const char* cp;
1363 	int cplen, l;
1364 
1365 	cp = (char *) get_property(device, "compatible", &cplen);
1366 	if (cp == NULL)
1367 		return 0;
1368 	while (cplen > 0) {
1369 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1370 			return 1;
1371 		l = strlen(cp) + 1;
1372 		cp += l;
1373 		cplen -= l;
1374 	}
1375 
1376 	return 0;
1377 }
1378 EXPORT_SYMBOL(device_is_compatible);
1379 
1380 
1381 /**
1382  * Indicates whether the root node has a given value in its
1383  * compatible property.
1384  */
1385 int machine_is_compatible(const char *compat)
1386 {
1387 	struct device_node *root;
1388 	int rc = 0;
1389 
1390 	root = of_find_node_by_path("/");
1391 	if (root) {
1392 		rc = device_is_compatible(root, compat);
1393 		of_node_put(root);
1394 	}
1395 	return rc;
1396 }
1397 EXPORT_SYMBOL(machine_is_compatible);
1398 
1399 /**
1400  * Construct and return a list of the device_nodes with a given type
1401  * and compatible property.
1402  */
1403 struct device_node *find_compatible_devices(const char *type,
1404 					    const char *compat)
1405 {
1406 	struct device_node *head, **prevp, *np;
1407 
1408 	prevp = &head;
1409 	for (np = allnodes; np != 0; np = np->allnext) {
1410 		if (type != NULL
1411 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1412 			continue;
1413 		if (device_is_compatible(np, compat)) {
1414 			*prevp = np;
1415 			prevp = &np->next;
1416 		}
1417 	}
1418 	*prevp = NULL;
1419 	return head;
1420 }
1421 EXPORT_SYMBOL(find_compatible_devices);
1422 
1423 /**
1424  * Find the device_node with a given full_name.
1425  */
1426 struct device_node *find_path_device(const char *path)
1427 {
1428 	struct device_node *np;
1429 
1430 	for (np = allnodes; np != 0; np = np->allnext)
1431 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1432 			return np;
1433 	return NULL;
1434 }
1435 EXPORT_SYMBOL(find_path_device);
1436 
1437 /*******
1438  *
1439  * New implementation of the OF "find" APIs, return a refcounted
1440  * object, call of_node_put() when done.  The device tree and list
1441  * are protected by a rw_lock.
1442  *
1443  * Note that property management will need some locking as well,
1444  * this isn't dealt with yet.
1445  *
1446  *******/
1447 
1448 /**
1449  *	of_find_node_by_name - Find a node by its "name" property
1450  *	@from:	The node to start searching from or NULL, the node
1451  *		you pass will not be searched, only the next one
1452  *		will; typically, you pass what the previous call
1453  *		returned. of_node_put() will be called on it
1454  *	@name:	The name string to match against
1455  *
1456  *	Returns a node pointer with refcount incremented, use
1457  *	of_node_put() on it when done.
1458  */
1459 struct device_node *of_find_node_by_name(struct device_node *from,
1460 	const char *name)
1461 {
1462 	struct device_node *np;
1463 
1464 	read_lock(&devtree_lock);
1465 	np = from ? from->allnext : allnodes;
1466 	for (; np != NULL; np = np->allnext)
1467 		if (np->name != NULL && strcasecmp(np->name, name) == 0
1468 		    && of_node_get(np))
1469 			break;
1470 	if (from)
1471 		of_node_put(from);
1472 	read_unlock(&devtree_lock);
1473 	return np;
1474 }
1475 EXPORT_SYMBOL(of_find_node_by_name);
1476 
1477 /**
1478  *	of_find_node_by_type - Find a node by its "device_type" property
1479  *	@from:	The node to start searching from or NULL, the node
1480  *		you pass will not be searched, only the next one
1481  *		will; typically, you pass what the previous call
1482  *		returned. of_node_put() will be called on it
1483  *	@name:	The type string to match against
1484  *
1485  *	Returns a node pointer with refcount incremented, use
1486  *	of_node_put() on it when done.
1487  */
1488 struct device_node *of_find_node_by_type(struct device_node *from,
1489 	const char *type)
1490 {
1491 	struct device_node *np;
1492 
1493 	read_lock(&devtree_lock);
1494 	np = from ? from->allnext : allnodes;
1495 	for (; np != 0; np = np->allnext)
1496 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1497 		    && of_node_get(np))
1498 			break;
1499 	if (from)
1500 		of_node_put(from);
1501 	read_unlock(&devtree_lock);
1502 	return np;
1503 }
1504 EXPORT_SYMBOL(of_find_node_by_type);
1505 
1506 /**
1507  *	of_find_compatible_node - Find a node based on type and one of the
1508  *                                tokens in its "compatible" property
1509  *	@from:		The node to start searching from or NULL, the node
1510  *			you pass will not be searched, only the next one
1511  *			will; typically, you pass what the previous call
1512  *			returned. of_node_put() will be called on it
1513  *	@type:		The type string to match "device_type" or NULL to ignore
1514  *	@compatible:	The string to match to one of the tokens in the device
1515  *			"compatible" list.
1516  *
1517  *	Returns a node pointer with refcount incremented, use
1518  *	of_node_put() on it when done.
1519  */
1520 struct device_node *of_find_compatible_node(struct device_node *from,
1521 	const char *type, const char *compatible)
1522 {
1523 	struct device_node *np;
1524 
1525 	read_lock(&devtree_lock);
1526 	np = from ? from->allnext : allnodes;
1527 	for (; np != 0; np = np->allnext) {
1528 		if (type != NULL
1529 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1530 			continue;
1531 		if (device_is_compatible(np, compatible) && of_node_get(np))
1532 			break;
1533 	}
1534 	if (from)
1535 		of_node_put(from);
1536 	read_unlock(&devtree_lock);
1537 	return np;
1538 }
1539 EXPORT_SYMBOL(of_find_compatible_node);
1540 
1541 /**
1542  *	of_find_node_by_path - Find a node matching a full OF path
1543  *	@path:	The full path to match
1544  *
1545  *	Returns a node pointer with refcount incremented, use
1546  *	of_node_put() on it when done.
1547  */
1548 struct device_node *of_find_node_by_path(const char *path)
1549 {
1550 	struct device_node *np = allnodes;
1551 
1552 	read_lock(&devtree_lock);
1553 	for (; np != 0; np = np->allnext) {
1554 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1555 		    && of_node_get(np))
1556 			break;
1557 	}
1558 	read_unlock(&devtree_lock);
1559 	return np;
1560 }
1561 EXPORT_SYMBOL(of_find_node_by_path);
1562 
1563 /**
1564  *	of_find_node_by_phandle - Find a node given a phandle
1565  *	@handle:	phandle of the node to find
1566  *
1567  *	Returns a node pointer with refcount incremented, use
1568  *	of_node_put() on it when done.
1569  */
1570 struct device_node *of_find_node_by_phandle(phandle handle)
1571 {
1572 	struct device_node *np;
1573 
1574 	read_lock(&devtree_lock);
1575 	for (np = allnodes; np != 0; np = np->allnext)
1576 		if (np->linux_phandle == handle)
1577 			break;
1578 	if (np)
1579 		of_node_get(np);
1580 	read_unlock(&devtree_lock);
1581 	return np;
1582 }
1583 EXPORT_SYMBOL(of_find_node_by_phandle);
1584 
1585 /**
1586  *	of_find_all_nodes - Get next node in global list
1587  *	@prev:	Previous node or NULL to start iteration
1588  *		of_node_put() will be called on it
1589  *
1590  *	Returns a node pointer with refcount incremented, use
1591  *	of_node_put() on it when done.
1592  */
1593 struct device_node *of_find_all_nodes(struct device_node *prev)
1594 {
1595 	struct device_node *np;
1596 
1597 	read_lock(&devtree_lock);
1598 	np = prev ? prev->allnext : allnodes;
1599 	for (; np != 0; np = np->allnext)
1600 		if (of_node_get(np))
1601 			break;
1602 	if (prev)
1603 		of_node_put(prev);
1604 	read_unlock(&devtree_lock);
1605 	return np;
1606 }
1607 EXPORT_SYMBOL(of_find_all_nodes);
1608 
1609 /**
1610  *	of_get_parent - Get a node's parent if any
1611  *	@node:	Node to get parent
1612  *
1613  *	Returns a node pointer with refcount incremented, use
1614  *	of_node_put() on it when done.
1615  */
1616 struct device_node *of_get_parent(const struct device_node *node)
1617 {
1618 	struct device_node *np;
1619 
1620 	if (!node)
1621 		return NULL;
1622 
1623 	read_lock(&devtree_lock);
1624 	np = of_node_get(node->parent);
1625 	read_unlock(&devtree_lock);
1626 	return np;
1627 }
1628 EXPORT_SYMBOL(of_get_parent);
1629 
1630 /**
1631  *	of_get_next_child - Iterate a node childs
1632  *	@node:	parent node
1633  *	@prev:	previous child of the parent node, or NULL to get first
1634  *
1635  *	Returns a node pointer with refcount incremented, use
1636  *	of_node_put() on it when done.
1637  */
1638 struct device_node *of_get_next_child(const struct device_node *node,
1639 	struct device_node *prev)
1640 {
1641 	struct device_node *next;
1642 
1643 	read_lock(&devtree_lock);
1644 	next = prev ? prev->sibling : node->child;
1645 	for (; next != 0; next = next->sibling)
1646 		if (of_node_get(next))
1647 			break;
1648 	if (prev)
1649 		of_node_put(prev);
1650 	read_unlock(&devtree_lock);
1651 	return next;
1652 }
1653 EXPORT_SYMBOL(of_get_next_child);
1654 
1655 /**
1656  *	of_node_get - Increment refcount of a node
1657  *	@node:	Node to inc refcount, NULL is supported to
1658  *		simplify writing of callers
1659  *
1660  *	Returns node.
1661  */
1662 struct device_node *of_node_get(struct device_node *node)
1663 {
1664 	if (node)
1665 		kref_get(&node->kref);
1666 	return node;
1667 }
1668 EXPORT_SYMBOL(of_node_get);
1669 
1670 static inline struct device_node * kref_to_device_node(struct kref *kref)
1671 {
1672 	return container_of(kref, struct device_node, kref);
1673 }
1674 
1675 /**
1676  *	of_node_release - release a dynamically allocated node
1677  *	@kref:  kref element of the node to be released
1678  *
1679  *	In of_node_put() this function is passed to kref_put()
1680  *	as the destructor.
1681  */
1682 static void of_node_release(struct kref *kref)
1683 {
1684 	struct device_node *node = kref_to_device_node(kref);
1685 	struct property *prop = node->properties;
1686 
1687 	if (!OF_IS_DYNAMIC(node))
1688 		return;
1689 	while (prop) {
1690 		struct property *next = prop->next;
1691 		kfree(prop->name);
1692 		kfree(prop->value);
1693 		kfree(prop);
1694 		prop = next;
1695 
1696 		if (!prop) {
1697 			prop = node->deadprops;
1698 			node->deadprops = NULL;
1699 		}
1700 	}
1701 	kfree(node->intrs);
1702 	kfree(node->full_name);
1703 	kfree(node->data);
1704 	kfree(node);
1705 }
1706 
1707 /**
1708  *	of_node_put - Decrement refcount of a node
1709  *	@node:	Node to dec refcount, NULL is supported to
1710  *		simplify writing of callers
1711  *
1712  */
1713 void of_node_put(struct device_node *node)
1714 {
1715 	if (node)
1716 		kref_put(&node->kref, of_node_release);
1717 }
1718 EXPORT_SYMBOL(of_node_put);
1719 
1720 /*
1721  * Plug a device node into the tree and global list.
1722  */
1723 void of_attach_node(struct device_node *np)
1724 {
1725 	write_lock(&devtree_lock);
1726 	np->sibling = np->parent->child;
1727 	np->allnext = allnodes;
1728 	np->parent->child = np;
1729 	allnodes = np;
1730 	write_unlock(&devtree_lock);
1731 }
1732 
1733 /*
1734  * "Unplug" a node from the device tree.  The caller must hold
1735  * a reference to the node.  The memory associated with the node
1736  * is not freed until its refcount goes to zero.
1737  */
1738 void of_detach_node(const struct device_node *np)
1739 {
1740 	struct device_node *parent;
1741 
1742 	write_lock(&devtree_lock);
1743 
1744 	parent = np->parent;
1745 
1746 	if (allnodes == np)
1747 		allnodes = np->allnext;
1748 	else {
1749 		struct device_node *prev;
1750 		for (prev = allnodes;
1751 		     prev->allnext != np;
1752 		     prev = prev->allnext)
1753 			;
1754 		prev->allnext = np->allnext;
1755 	}
1756 
1757 	if (parent->child == np)
1758 		parent->child = np->sibling;
1759 	else {
1760 		struct device_node *prevsib;
1761 		for (prevsib = np->parent->child;
1762 		     prevsib->sibling != np;
1763 		     prevsib = prevsib->sibling)
1764 			;
1765 		prevsib->sibling = np->sibling;
1766 	}
1767 
1768 	write_unlock(&devtree_lock);
1769 }
1770 
1771 #ifdef CONFIG_PPC_PSERIES
1772 /*
1773  * Fix up the uninitialized fields in a new device node:
1774  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1775  *
1776  * A lot of boot-time code is duplicated here, because functions such
1777  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1778  * slab allocator.
1779  *
1780  * This should probably be split up into smaller chunks.
1781  */
1782 
1783 static int of_finish_dynamic_node(struct device_node *node)
1784 {
1785 	struct device_node *parent = of_get_parent(node);
1786 	int err = 0;
1787 	phandle *ibm_phandle;
1788 
1789 	node->name = get_property(node, "name", NULL);
1790 	node->type = get_property(node, "device_type", NULL);
1791 
1792 	if (!parent) {
1793 		err = -ENODEV;
1794 		goto out;
1795 	}
1796 
1797 	/* We don't support that function on PowerMac, at least
1798 	 * not yet
1799 	 */
1800 	if (machine_is(powermac))
1801 		return -ENODEV;
1802 
1803 	/* fix up new node's linux_phandle field */
1804 	if ((ibm_phandle = (unsigned int *)get_property(node,
1805 							"ibm,phandle", NULL)))
1806 		node->linux_phandle = *ibm_phandle;
1807 
1808 out:
1809 	of_node_put(parent);
1810 	return err;
1811 }
1812 
1813 static int prom_reconfig_notifier(struct notifier_block *nb,
1814 				  unsigned long action, void *node)
1815 {
1816 	int err;
1817 
1818 	switch (action) {
1819 	case PSERIES_RECONFIG_ADD:
1820 		err = of_finish_dynamic_node(node);
1821 		if (!err)
1822 			finish_node(node, NULL, 0);
1823 		if (err < 0) {
1824 			printk(KERN_ERR "finish_node returned %d\n", err);
1825 			err = NOTIFY_BAD;
1826 		}
1827 		break;
1828 	default:
1829 		err = NOTIFY_DONE;
1830 		break;
1831 	}
1832 	return err;
1833 }
1834 
1835 static struct notifier_block prom_reconfig_nb = {
1836 	.notifier_call = prom_reconfig_notifier,
1837 	.priority = 10, /* This one needs to run first */
1838 };
1839 
1840 static int __init prom_reconfig_setup(void)
1841 {
1842 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1843 }
1844 __initcall(prom_reconfig_setup);
1845 #endif
1846 
1847 struct property *of_find_property(struct device_node *np, const char *name,
1848 				  int *lenp)
1849 {
1850 	struct property *pp;
1851 
1852 	read_lock(&devtree_lock);
1853 	for (pp = np->properties; pp != 0; pp = pp->next)
1854 		if (strcmp(pp->name, name) == 0) {
1855 			if (lenp != 0)
1856 				*lenp = pp->length;
1857 			break;
1858 		}
1859 	read_unlock(&devtree_lock);
1860 
1861 	return pp;
1862 }
1863 
1864 /*
1865  * Find a property with a given name for a given node
1866  * and return the value.
1867  */
1868 unsigned char *get_property(struct device_node *np, const char *name,
1869 			    int *lenp)
1870 {
1871 	struct property *pp = of_find_property(np,name,lenp);
1872 	return pp ? pp->value : NULL;
1873 }
1874 EXPORT_SYMBOL(get_property);
1875 
1876 /*
1877  * Add a property to a node
1878  */
1879 int prom_add_property(struct device_node* np, struct property* prop)
1880 {
1881 	struct property **next;
1882 
1883 	prop->next = NULL;
1884 	write_lock(&devtree_lock);
1885 	next = &np->properties;
1886 	while (*next) {
1887 		if (strcmp(prop->name, (*next)->name) == 0) {
1888 			/* duplicate ! don't insert it */
1889 			write_unlock(&devtree_lock);
1890 			return -1;
1891 		}
1892 		next = &(*next)->next;
1893 	}
1894 	*next = prop;
1895 	write_unlock(&devtree_lock);
1896 
1897 #ifdef CONFIG_PROC_DEVICETREE
1898 	/* try to add to proc as well if it was initialized */
1899 	if (np->pde)
1900 		proc_device_tree_add_prop(np->pde, prop);
1901 #endif /* CONFIG_PROC_DEVICETREE */
1902 
1903 	return 0;
1904 }
1905 
1906 /*
1907  * Remove a property from a node.  Note that we don't actually
1908  * remove it, since we have given out who-knows-how-many pointers
1909  * to the data using get-property.  Instead we just move the property
1910  * to the "dead properties" list, so it won't be found any more.
1911  */
1912 int prom_remove_property(struct device_node *np, struct property *prop)
1913 {
1914 	struct property **next;
1915 	int found = 0;
1916 
1917 	write_lock(&devtree_lock);
1918 	next = &np->properties;
1919 	while (*next) {
1920 		if (*next == prop) {
1921 			/* found the node */
1922 			*next = prop->next;
1923 			prop->next = np->deadprops;
1924 			np->deadprops = prop;
1925 			found = 1;
1926 			break;
1927 		}
1928 		next = &(*next)->next;
1929 	}
1930 	write_unlock(&devtree_lock);
1931 
1932 	if (!found)
1933 		return -ENODEV;
1934 
1935 #ifdef CONFIG_PROC_DEVICETREE
1936 	/* try to remove the proc node as well */
1937 	if (np->pde)
1938 		proc_device_tree_remove_prop(np->pde, prop);
1939 #endif /* CONFIG_PROC_DEVICETREE */
1940 
1941 	return 0;
1942 }
1943 
1944 /*
1945  * Update a property in a node.  Note that we don't actually
1946  * remove it, since we have given out who-knows-how-many pointers
1947  * to the data using get-property.  Instead we just move the property
1948  * to the "dead properties" list, and add the new property to the
1949  * property list
1950  */
1951 int prom_update_property(struct device_node *np,
1952 			 struct property *newprop,
1953 			 struct property *oldprop)
1954 {
1955 	struct property **next;
1956 	int found = 0;
1957 
1958 	write_lock(&devtree_lock);
1959 	next = &np->properties;
1960 	while (*next) {
1961 		if (*next == oldprop) {
1962 			/* found the node */
1963 			newprop->next = oldprop->next;
1964 			*next = newprop;
1965 			oldprop->next = np->deadprops;
1966 			np->deadprops = oldprop;
1967 			found = 1;
1968 			break;
1969 		}
1970 		next = &(*next)->next;
1971 	}
1972 	write_unlock(&devtree_lock);
1973 
1974 	if (!found)
1975 		return -ENODEV;
1976 
1977 #ifdef CONFIG_PROC_DEVICETREE
1978 	/* try to add to proc as well if it was initialized */
1979 	if (np->pde)
1980 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1981 #endif /* CONFIG_PROC_DEVICETREE */
1982 
1983 	return 0;
1984 }
1985 
1986 #ifdef CONFIG_KEXEC
1987 /* We may have allocated the flat device tree inside the crash kernel region
1988  * in prom_init. If so we need to move it out into regular memory. */
1989 void kdump_move_device_tree(void)
1990 {
1991 	unsigned long start, end;
1992 	struct boot_param_header *new;
1993 
1994 	start = __pa((unsigned long)initial_boot_params);
1995 	end = start + initial_boot_params->totalsize;
1996 
1997 	if (end < crashk_res.start || start > crashk_res.end)
1998 		return;
1999 
2000 	new = (struct boot_param_header*)
2001 		__va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
2002 
2003 	memcpy(new, initial_boot_params, initial_boot_params->totalsize);
2004 
2005 	initial_boot_params = new;
2006 
2007 	DBG("Flat device tree blob moved to %p\n", initial_boot_params);
2008 
2009 	/* XXX should we unreserve the old DT? */
2010 }
2011 #endif /* CONFIG_KEXEC */
2012