xref: /linux/arch/powerpc/kernel/prom.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 #include <linux/debugfs.h>
34 
35 #include <asm/prom.h>
36 #include <asm/rtas.h>
37 #include <asm/lmb.h>
38 #include <asm/page.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/smp.h>
44 #include <asm/system.h>
45 #include <asm/mmu.h>
46 #include <asm/pgtable.h>
47 #include <asm/pci.h>
48 #include <asm/iommu.h>
49 #include <asm/btext.h>
50 #include <asm/sections.h>
51 #include <asm/machdep.h>
52 #include <asm/pSeries_reconfig.h>
53 #include <asm/pci-bridge.h>
54 #include <asm/kexec.h>
55 
56 #ifdef DEBUG
57 #define DBG(fmt...) printk(KERN_ERR fmt)
58 #else
59 #define DBG(fmt...)
60 #endif
61 
62 
63 static int __initdata dt_root_addr_cells;
64 static int __initdata dt_root_size_cells;
65 
66 #ifdef CONFIG_PPC64
67 int __initdata iommu_is_off;
68 int __initdata iommu_force_on;
69 unsigned long tce_alloc_start, tce_alloc_end;
70 #endif
71 
72 typedef u32 cell_t;
73 
74 #if 0
75 static struct boot_param_header *initial_boot_params __initdata;
76 #else
77 struct boot_param_header *initial_boot_params;
78 #endif
79 
80 static struct device_node *allnodes = NULL;
81 
82 /* use when traversing tree through the allnext, child, sibling,
83  * or parent members of struct device_node.
84  */
85 static DEFINE_RWLOCK(devtree_lock);
86 
87 /* export that to outside world */
88 struct device_node *of_chosen;
89 
90 struct device_node *dflt_interrupt_controller;
91 int num_interrupt_controllers;
92 
93 /*
94  * Wrapper for allocating memory for various data that needs to be
95  * attached to device nodes as they are processed at boot or when
96  * added to the device tree later (e.g. DLPAR).  At boot there is
97  * already a region reserved so we just increment *mem_start by size;
98  * otherwise we call kmalloc.
99  */
100 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
101 {
102 	unsigned long tmp;
103 
104 	if (!mem_start)
105 		return kmalloc(size, GFP_KERNEL);
106 
107 	tmp = *mem_start;
108 	*mem_start += size;
109 	return (void *)tmp;
110 }
111 
112 /*
113  * Find the device_node with a given phandle.
114  */
115 static struct device_node * find_phandle(phandle ph)
116 {
117 	struct device_node *np;
118 
119 	for (np = allnodes; np != 0; np = np->allnext)
120 		if (np->linux_phandle == ph)
121 			return np;
122 	return NULL;
123 }
124 
125 /*
126  * Find the interrupt parent of a node.
127  */
128 static struct device_node * __devinit intr_parent(struct device_node *p)
129 {
130 	phandle *parp;
131 
132 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
133 	if (parp == NULL)
134 		return p->parent;
135 	p = find_phandle(*parp);
136 	if (p != NULL)
137 		return p;
138 	/*
139 	 * On a powermac booted with BootX, we don't get to know the
140 	 * phandles for any nodes, so find_phandle will return NULL.
141 	 * Fortunately these machines only have one interrupt controller
142 	 * so there isn't in fact any ambiguity.  -- paulus
143 	 */
144 	if (num_interrupt_controllers == 1)
145 		p = dflt_interrupt_controller;
146 	return p;
147 }
148 
149 /*
150  * Find out the size of each entry of the interrupts property
151  * for a node.
152  */
153 int __devinit prom_n_intr_cells(struct device_node *np)
154 {
155 	struct device_node *p;
156 	unsigned int *icp;
157 
158 	for (p = np; (p = intr_parent(p)) != NULL; ) {
159 		icp = (unsigned int *)
160 			get_property(p, "#interrupt-cells", NULL);
161 		if (icp != NULL)
162 			return *icp;
163 		if (get_property(p, "interrupt-controller", NULL) != NULL
164 		    || get_property(p, "interrupt-map", NULL) != NULL) {
165 			printk("oops, node %s doesn't have #interrupt-cells\n",
166 			       p->full_name);
167 			return 1;
168 		}
169 	}
170 #ifdef DEBUG_IRQ
171 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
172 #endif
173 	return 1;
174 }
175 
176 /*
177  * Map an interrupt from a device up to the platform interrupt
178  * descriptor.
179  */
180 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
181 				   struct device_node *np, unsigned int *ints,
182 				   int nintrc)
183 {
184 	struct device_node *p, *ipar;
185 	unsigned int *imap, *imask, *ip;
186 	int i, imaplen, match;
187 	int newintrc = 0, newaddrc = 0;
188 	unsigned int *reg;
189 	int naddrc;
190 
191 	reg = (unsigned int *) get_property(np, "reg", NULL);
192 	naddrc = prom_n_addr_cells(np);
193 	p = intr_parent(np);
194 	while (p != NULL) {
195 		if (get_property(p, "interrupt-controller", NULL) != NULL)
196 			/* this node is an interrupt controller, stop here */
197 			break;
198 		imap = (unsigned int *)
199 			get_property(p, "interrupt-map", &imaplen);
200 		if (imap == NULL) {
201 			p = intr_parent(p);
202 			continue;
203 		}
204 		imask = (unsigned int *)
205 			get_property(p, "interrupt-map-mask", NULL);
206 		if (imask == NULL) {
207 			printk("oops, %s has interrupt-map but no mask\n",
208 			       p->full_name);
209 			return 0;
210 		}
211 		imaplen /= sizeof(unsigned int);
212 		match = 0;
213 		ipar = NULL;
214 		while (imaplen > 0 && !match) {
215 			/* check the child-interrupt field */
216 			match = 1;
217 			for (i = 0; i < naddrc && match; ++i)
218 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
219 			for (; i < naddrc + nintrc && match; ++i)
220 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
221 			imap += naddrc + nintrc;
222 			imaplen -= naddrc + nintrc;
223 			/* grab the interrupt parent */
224 			ipar = find_phandle((phandle) *imap++);
225 			--imaplen;
226 			if (ipar == NULL && num_interrupt_controllers == 1)
227 				/* cope with BootX not giving us phandles */
228 				ipar = dflt_interrupt_controller;
229 			if (ipar == NULL) {
230 				printk("oops, no int parent %x in map of %s\n",
231 				       imap[-1], p->full_name);
232 				return 0;
233 			}
234 			/* find the parent's # addr and intr cells */
235 			ip = (unsigned int *)
236 				get_property(ipar, "#interrupt-cells", NULL);
237 			if (ip == NULL) {
238 				printk("oops, no #interrupt-cells on %s\n",
239 				       ipar->full_name);
240 				return 0;
241 			}
242 			newintrc = *ip;
243 			ip = (unsigned int *)
244 				get_property(ipar, "#address-cells", NULL);
245 			newaddrc = (ip == NULL)? 0: *ip;
246 			imap += newaddrc + newintrc;
247 			imaplen -= newaddrc + newintrc;
248 		}
249 		if (imaplen < 0) {
250 			printk("oops, error decoding int-map on %s, len=%d\n",
251 			       p->full_name, imaplen);
252 			return 0;
253 		}
254 		if (!match) {
255 #ifdef DEBUG_IRQ
256 			printk("oops, no match in %s int-map for %s\n",
257 			       p->full_name, np->full_name);
258 #endif
259 			return 0;
260 		}
261 		p = ipar;
262 		naddrc = newaddrc;
263 		nintrc = newintrc;
264 		ints = imap - nintrc;
265 		reg = ints - naddrc;
266 	}
267 	if (p == NULL) {
268 #ifdef DEBUG_IRQ
269 		printk("hmmm, int tree for %s doesn't have ctrler\n",
270 		       np->full_name);
271 #endif
272 		return 0;
273 	}
274 	*irq = ints;
275 	*ictrler = p;
276 	return nintrc;
277 }
278 
279 static unsigned char map_isa_senses[4] = {
280 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
282 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
283 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
284 };
285 
286 static unsigned char map_mpic_senses[4] = {
287 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
289 	/* 2 seems to be used for the 8259 cascade... */
290 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
291 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
292 };
293 
294 static int __devinit finish_node_interrupts(struct device_node *np,
295 					    unsigned long *mem_start,
296 					    int measure_only)
297 {
298 	unsigned int *ints;
299 	int intlen, intrcells, intrcount;
300 	int i, j, n, sense;
301 	unsigned int *irq, virq;
302 	struct device_node *ic;
303 	int trace = 0;
304 
305 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
306 #define TRACE(fmt...)
307 
308 	if (!strcmp(np->name, "smu-doorbell"))
309 		trace = 1;
310 
311 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
312 	      num_interrupt_controllers);
313 
314 	if (num_interrupt_controllers == 0) {
315 		/*
316 		 * Old machines just have a list of interrupt numbers
317 		 * and no interrupt-controller nodes.
318 		 */
319 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
320 						     &intlen);
321 		/* XXX old interpret_pci_props looked in parent too */
322 		/* XXX old interpret_macio_props looked for interrupts
323 		   before AAPL,interrupts */
324 		if (ints == NULL)
325 			ints = (unsigned int *) get_property(np, "interrupts",
326 							     &intlen);
327 		if (ints == NULL)
328 			return 0;
329 
330 		np->n_intrs = intlen / sizeof(unsigned int);
331 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
332 				       mem_start);
333 		if (!np->intrs)
334 			return -ENOMEM;
335 		if (measure_only)
336 			return 0;
337 
338 		for (i = 0; i < np->n_intrs; ++i) {
339 			np->intrs[i].line = *ints++;
340 			np->intrs[i].sense = IRQ_SENSE_LEVEL
341 				| IRQ_POLARITY_NEGATIVE;
342 		}
343 		return 0;
344 	}
345 
346 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
347 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
348 	if (ints == NULL)
349 		return 0;
350 	intrcells = prom_n_intr_cells(np);
351 	intlen /= intrcells * sizeof(unsigned int);
352 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
353 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
354 	if (!np->intrs)
355 		return -ENOMEM;
356 
357 	if (measure_only)
358 		return 0;
359 
360 	intrcount = 0;
361 	for (i = 0; i < intlen; ++i, ints += intrcells) {
362 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
363 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
364 		if (n <= 0)
365 			continue;
366 
367 		/* don't map IRQ numbers under a cascaded 8259 controller */
368 		if (ic && device_is_compatible(ic, "chrp,iic")) {
369 			np->intrs[intrcount].line = irq[0];
370 			sense = (n > 1)? (irq[1] & 3): 3;
371 			np->intrs[intrcount].sense = map_isa_senses[sense];
372 		} else {
373 			virq = virt_irq_create_mapping(irq[0]);
374 			TRACE("virq=%d\n", virq);
375 #ifdef CONFIG_PPC64
376 			if (virq == NO_IRQ) {
377 				printk(KERN_CRIT "Could not allocate interrupt"
378 				       " number for %s\n", np->full_name);
379 				continue;
380 			}
381 #endif
382 			np->intrs[intrcount].line = irq_offset_up(virq);
383 			sense = (n > 1)? (irq[1] & 3): 1;
384 
385 			/* Apple uses bits in there in a different way, let's
386 			 * only keep the real sense bit on macs
387 			 */
388 			if (machine_is(powermac))
389 				sense &= 0x1;
390 			np->intrs[intrcount].sense = map_mpic_senses[sense];
391 		}
392 
393 #ifdef CONFIG_PPC64
394 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
395 		if (machine_is(powermac) && ic && ic->parent) {
396 			char *name = get_property(ic->parent, "name", NULL);
397 			if (name && !strcmp(name, "u3"))
398 				np->intrs[intrcount].line += 128;
399 			else if (!(name && (!strcmp(name, "mac-io") ||
400 					    !strcmp(name, "u4"))))
401 				/* ignore other cascaded controllers, such as
402 				   the k2-sata-root */
403 				break;
404 		}
405 #endif /* CONFIG_PPC64 */
406 		if (n > 2) {
407 			printk("hmmm, got %d intr cells for %s:", n,
408 			       np->full_name);
409 			for (j = 0; j < n; ++j)
410 				printk(" %d", irq[j]);
411 			printk("\n");
412 		}
413 		++intrcount;
414 	}
415 	np->n_intrs = intrcount;
416 
417 	return 0;
418 }
419 
420 static int __devinit finish_node(struct device_node *np,
421 				 unsigned long *mem_start,
422 				 int measure_only)
423 {
424 	struct device_node *child;
425 	int rc = 0;
426 
427 	rc = finish_node_interrupts(np, mem_start, measure_only);
428 	if (rc)
429 		goto out;
430 
431 	for (child = np->child; child != NULL; child = child->sibling) {
432 		rc = finish_node(child, mem_start, measure_only);
433 		if (rc)
434 			goto out;
435 	}
436 out:
437 	return rc;
438 }
439 
440 static void __init scan_interrupt_controllers(void)
441 {
442 	struct device_node *np;
443 	int n = 0;
444 	char *name, *ic;
445 	int iclen;
446 
447 	for (np = allnodes; np != NULL; np = np->allnext) {
448 		ic = get_property(np, "interrupt-controller", &iclen);
449 		name = get_property(np, "name", NULL);
450 		/* checking iclen makes sure we don't get a false
451 		   match on /chosen.interrupt_controller */
452 		if ((name != NULL
453 		     && strcmp(name, "interrupt-controller") == 0)
454 		    || (ic != NULL && iclen == 0
455 			&& strcmp(name, "AppleKiwi"))) {
456 			if (n == 0)
457 				dflt_interrupt_controller = np;
458 			++n;
459 		}
460 	}
461 	num_interrupt_controllers = n;
462 }
463 
464 /**
465  * finish_device_tree is called once things are running normally
466  * (i.e. with text and data mapped to the address they were linked at).
467  * It traverses the device tree and fills in some of the additional,
468  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
469  * mapping is also initialized at this point.
470  */
471 void __init finish_device_tree(void)
472 {
473 	unsigned long start, end, size = 0;
474 
475 	DBG(" -> finish_device_tree\n");
476 
477 #ifdef CONFIG_PPC64
478 	/* Initialize virtual IRQ map */
479 	virt_irq_init();
480 #endif
481 	scan_interrupt_controllers();
482 
483 	/*
484 	 * Finish device-tree (pre-parsing some properties etc...)
485 	 * We do this in 2 passes. One with "measure_only" set, which
486 	 * will only measure the amount of memory needed, then we can
487 	 * allocate that memory, and call finish_node again. However,
488 	 * we must be careful as most routines will fail nowadays when
489 	 * prom_alloc() returns 0, so we must make sure our first pass
490 	 * doesn't start at 0. We pre-initialize size to 16 for that
491 	 * reason and then remove those additional 16 bytes
492 	 */
493 	size = 16;
494 	finish_node(allnodes, &size, 1);
495 	size -= 16;
496 
497 	if (0 == size)
498 		end = start = 0;
499 	else
500 		end = start = (unsigned long)__va(lmb_alloc(size, 128));
501 
502 	finish_node(allnodes, &end, 0);
503 	BUG_ON(end != start + size);
504 
505 	DBG(" <- finish_device_tree\n");
506 }
507 
508 static inline char *find_flat_dt_string(u32 offset)
509 {
510 	return ((char *)initial_boot_params) +
511 		initial_boot_params->off_dt_strings + offset;
512 }
513 
514 /**
515  * This function is used to scan the flattened device-tree, it is
516  * used to extract the memory informations at boot before we can
517  * unflatten the tree
518  */
519 int __init of_scan_flat_dt(int (*it)(unsigned long node,
520 				     const char *uname, int depth,
521 				     void *data),
522 			   void *data)
523 {
524 	unsigned long p = ((unsigned long)initial_boot_params) +
525 		initial_boot_params->off_dt_struct;
526 	int rc = 0;
527 	int depth = -1;
528 
529 	do {
530 		u32 tag = *((u32 *)p);
531 		char *pathp;
532 
533 		p += 4;
534 		if (tag == OF_DT_END_NODE) {
535 			depth --;
536 			continue;
537 		}
538 		if (tag == OF_DT_NOP)
539 			continue;
540 		if (tag == OF_DT_END)
541 			break;
542 		if (tag == OF_DT_PROP) {
543 			u32 sz = *((u32 *)p);
544 			p += 8;
545 			if (initial_boot_params->version < 0x10)
546 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
547 			p += sz;
548 			p = _ALIGN(p, 4);
549 			continue;
550 		}
551 		if (tag != OF_DT_BEGIN_NODE) {
552 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
553 			       " device tree !\n", tag);
554 			return -EINVAL;
555 		}
556 		depth++;
557 		pathp = (char *)p;
558 		p = _ALIGN(p + strlen(pathp) + 1, 4);
559 		if ((*pathp) == '/') {
560 			char *lp, *np;
561 			for (lp = NULL, np = pathp; *np; np++)
562 				if ((*np) == '/')
563 					lp = np+1;
564 			if (lp != NULL)
565 				pathp = lp;
566 		}
567 		rc = it(p, pathp, depth, data);
568 		if (rc != 0)
569 			break;
570 	} while(1);
571 
572 	return rc;
573 }
574 
575 unsigned long __init of_get_flat_dt_root(void)
576 {
577 	unsigned long p = ((unsigned long)initial_boot_params) +
578 		initial_boot_params->off_dt_struct;
579 
580 	while(*((u32 *)p) == OF_DT_NOP)
581 		p += 4;
582 	BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
583 	p += 4;
584 	return _ALIGN(p + strlen((char *)p) + 1, 4);
585 }
586 
587 /**
588  * This  function can be used within scan_flattened_dt callback to get
589  * access to properties
590  */
591 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
592 				 unsigned long *size)
593 {
594 	unsigned long p = node;
595 
596 	do {
597 		u32 tag = *((u32 *)p);
598 		u32 sz, noff;
599 		const char *nstr;
600 
601 		p += 4;
602 		if (tag == OF_DT_NOP)
603 			continue;
604 		if (tag != OF_DT_PROP)
605 			return NULL;
606 
607 		sz = *((u32 *)p);
608 		noff = *((u32 *)(p + 4));
609 		p += 8;
610 		if (initial_boot_params->version < 0x10)
611 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
612 
613 		nstr = find_flat_dt_string(noff);
614 		if (nstr == NULL) {
615 			printk(KERN_WARNING "Can't find property index"
616 			       " name !\n");
617 			return NULL;
618 		}
619 		if (strcmp(name, nstr) == 0) {
620 			if (size)
621 				*size = sz;
622 			return (void *)p;
623 		}
624 		p += sz;
625 		p = _ALIGN(p, 4);
626 	} while(1);
627 }
628 
629 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
630 {
631 	const char* cp;
632 	unsigned long cplen, l;
633 
634 	cp = of_get_flat_dt_prop(node, "compatible", &cplen);
635 	if (cp == NULL)
636 		return 0;
637 	while (cplen > 0) {
638 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
639 			return 1;
640 		l = strlen(cp) + 1;
641 		cp += l;
642 		cplen -= l;
643 	}
644 
645 	return 0;
646 }
647 
648 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
649 				       unsigned long align)
650 {
651 	void *res;
652 
653 	*mem = _ALIGN(*mem, align);
654 	res = (void *)*mem;
655 	*mem += size;
656 
657 	return res;
658 }
659 
660 static unsigned long __init unflatten_dt_node(unsigned long mem,
661 					      unsigned long *p,
662 					      struct device_node *dad,
663 					      struct device_node ***allnextpp,
664 					      unsigned long fpsize)
665 {
666 	struct device_node *np;
667 	struct property *pp, **prev_pp = NULL;
668 	char *pathp;
669 	u32 tag;
670 	unsigned int l, allocl;
671 	int has_name = 0;
672 	int new_format = 0;
673 
674 	tag = *((u32 *)(*p));
675 	if (tag != OF_DT_BEGIN_NODE) {
676 		printk("Weird tag at start of node: %x\n", tag);
677 		return mem;
678 	}
679 	*p += 4;
680 	pathp = (char *)*p;
681 	l = allocl = strlen(pathp) + 1;
682 	*p = _ALIGN(*p + l, 4);
683 
684 	/* version 0x10 has a more compact unit name here instead of the full
685 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
686 	 * it later. We detect this because the first character of the name is
687 	 * not '/'.
688 	 */
689 	if ((*pathp) != '/') {
690 		new_format = 1;
691 		if (fpsize == 0) {
692 			/* root node: special case. fpsize accounts for path
693 			 * plus terminating zero. root node only has '/', so
694 			 * fpsize should be 2, but we want to avoid the first
695 			 * level nodes to have two '/' so we use fpsize 1 here
696 			 */
697 			fpsize = 1;
698 			allocl = 2;
699 		} else {
700 			/* account for '/' and path size minus terminal 0
701 			 * already in 'l'
702 			 */
703 			fpsize += l;
704 			allocl = fpsize;
705 		}
706 	}
707 
708 
709 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
710 				__alignof__(struct device_node));
711 	if (allnextpp) {
712 		memset(np, 0, sizeof(*np));
713 		np->full_name = ((char*)np) + sizeof(struct device_node);
714 		if (new_format) {
715 			char *p = np->full_name;
716 			/* rebuild full path for new format */
717 			if (dad && dad->parent) {
718 				strcpy(p, dad->full_name);
719 #ifdef DEBUG
720 				if ((strlen(p) + l + 1) != allocl) {
721 					DBG("%s: p: %d, l: %d, a: %d\n",
722 					    pathp, (int)strlen(p), l, allocl);
723 				}
724 #endif
725 				p += strlen(p);
726 			}
727 			*(p++) = '/';
728 			memcpy(p, pathp, l);
729 		} else
730 			memcpy(np->full_name, pathp, l);
731 		prev_pp = &np->properties;
732 		**allnextpp = np;
733 		*allnextpp = &np->allnext;
734 		if (dad != NULL) {
735 			np->parent = dad;
736 			/* we temporarily use the next field as `last_child'*/
737 			if (dad->next == 0)
738 				dad->child = np;
739 			else
740 				dad->next->sibling = np;
741 			dad->next = np;
742 		}
743 		kref_init(&np->kref);
744 	}
745 	while(1) {
746 		u32 sz, noff;
747 		char *pname;
748 
749 		tag = *((u32 *)(*p));
750 		if (tag == OF_DT_NOP) {
751 			*p += 4;
752 			continue;
753 		}
754 		if (tag != OF_DT_PROP)
755 			break;
756 		*p += 4;
757 		sz = *((u32 *)(*p));
758 		noff = *((u32 *)((*p) + 4));
759 		*p += 8;
760 		if (initial_boot_params->version < 0x10)
761 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
762 
763 		pname = find_flat_dt_string(noff);
764 		if (pname == NULL) {
765 			printk("Can't find property name in list !\n");
766 			break;
767 		}
768 		if (strcmp(pname, "name") == 0)
769 			has_name = 1;
770 		l = strlen(pname) + 1;
771 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
772 					__alignof__(struct property));
773 		if (allnextpp) {
774 			if (strcmp(pname, "linux,phandle") == 0) {
775 				np->node = *((u32 *)*p);
776 				if (np->linux_phandle == 0)
777 					np->linux_phandle = np->node;
778 			}
779 			if (strcmp(pname, "ibm,phandle") == 0)
780 				np->linux_phandle = *((u32 *)*p);
781 			pp->name = pname;
782 			pp->length = sz;
783 			pp->value = (void *)*p;
784 			*prev_pp = pp;
785 			prev_pp = &pp->next;
786 		}
787 		*p = _ALIGN((*p) + sz, 4);
788 	}
789 	/* with version 0x10 we may not have the name property, recreate
790 	 * it here from the unit name if absent
791 	 */
792 	if (!has_name) {
793 		char *p = pathp, *ps = pathp, *pa = NULL;
794 		int sz;
795 
796 		while (*p) {
797 			if ((*p) == '@')
798 				pa = p;
799 			if ((*p) == '/')
800 				ps = p + 1;
801 			p++;
802 		}
803 		if (pa < ps)
804 			pa = p;
805 		sz = (pa - ps) + 1;
806 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
807 					__alignof__(struct property));
808 		if (allnextpp) {
809 			pp->name = "name";
810 			pp->length = sz;
811 			pp->value = (unsigned char *)(pp + 1);
812 			*prev_pp = pp;
813 			prev_pp = &pp->next;
814 			memcpy(pp->value, ps, sz - 1);
815 			((char *)pp->value)[sz - 1] = 0;
816 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
817 		}
818 	}
819 	if (allnextpp) {
820 		*prev_pp = NULL;
821 		np->name = get_property(np, "name", NULL);
822 		np->type = get_property(np, "device_type", NULL);
823 
824 		if (!np->name)
825 			np->name = "<NULL>";
826 		if (!np->type)
827 			np->type = "<NULL>";
828 	}
829 	while (tag == OF_DT_BEGIN_NODE) {
830 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
831 		tag = *((u32 *)(*p));
832 	}
833 	if (tag != OF_DT_END_NODE) {
834 		printk("Weird tag at end of node: %x\n", tag);
835 		return mem;
836 	}
837 	*p += 4;
838 	return mem;
839 }
840 
841 static int __init early_parse_mem(char *p)
842 {
843 	if (!p)
844 		return 1;
845 
846 	memory_limit = PAGE_ALIGN(memparse(p, &p));
847 	DBG("memory limit = 0x%lx\n", memory_limit);
848 
849 	return 0;
850 }
851 early_param("mem", early_parse_mem);
852 
853 /*
854  * The device tree may be allocated below our memory limit, or inside the
855  * crash kernel region for kdump. If so, move it out now.
856  */
857 static void move_device_tree(void)
858 {
859 	unsigned long start, size;
860 	void *p;
861 
862 	DBG("-> move_device_tree\n");
863 
864 	start = __pa(initial_boot_params);
865 	size = initial_boot_params->totalsize;
866 
867 	if ((memory_limit && (start + size) > memory_limit) ||
868 			overlaps_crashkernel(start, size)) {
869 		p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
870 		memcpy(p, initial_boot_params, size);
871 		initial_boot_params = (struct boot_param_header *)p;
872 		DBG("Moved device tree to 0x%p\n", p);
873 	}
874 
875 	DBG("<- move_device_tree\n");
876 }
877 
878 /**
879  * unflattens the device-tree passed by the firmware, creating the
880  * tree of struct device_node. It also fills the "name" and "type"
881  * pointers of the nodes so the normal device-tree walking functions
882  * can be used (this used to be done by finish_device_tree)
883  */
884 void __init unflatten_device_tree(void)
885 {
886 	unsigned long start, mem, size;
887 	struct device_node **allnextp = &allnodes;
888 
889 	DBG(" -> unflatten_device_tree()\n");
890 
891 	/* First pass, scan for size */
892 	start = ((unsigned long)initial_boot_params) +
893 		initial_boot_params->off_dt_struct;
894 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
895 	size = (size | 3) + 1;
896 
897 	DBG("  size is %lx, allocating...\n", size);
898 
899 	/* Allocate memory for the expanded device tree */
900 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
901 	mem = (unsigned long) __va(mem);
902 
903 	((u32 *)mem)[size / 4] = 0xdeadbeef;
904 
905 	DBG("  unflattening %lx...\n", mem);
906 
907 	/* Second pass, do actual unflattening */
908 	start = ((unsigned long)initial_boot_params) +
909 		initial_boot_params->off_dt_struct;
910 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
911 	if (*((u32 *)start) != OF_DT_END)
912 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
913 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
914 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
915 		       ((u32 *)mem)[size / 4] );
916 	*allnextp = NULL;
917 
918 	/* Get pointer to OF "/chosen" node for use everywhere */
919 	of_chosen = of_find_node_by_path("/chosen");
920 	if (of_chosen == NULL)
921 		of_chosen = of_find_node_by_path("/chosen@0");
922 
923 	DBG(" <- unflatten_device_tree()\n");
924 }
925 
926 /*
927  * ibm,pa-features is a per-cpu property that contains a string of
928  * attribute descriptors, each of which has a 2 byte header plus up
929  * to 254 bytes worth of processor attribute bits.  First header
930  * byte specifies the number of bytes following the header.
931  * Second header byte is an "attribute-specifier" type, of which
932  * zero is the only currently-defined value.
933  * Implementation:  Pass in the byte and bit offset for the feature
934  * that we are interested in.  The function will return -1 if the
935  * pa-features property is missing, or a 1/0 to indicate if the feature
936  * is supported/not supported.  Note that the bit numbers are
937  * big-endian to match the definition in PAPR.
938  */
939 static struct ibm_pa_feature {
940 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
941 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
942 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
943 	unsigned char	pabit;		/* bit number (big-endian) */
944 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
945 } ibm_pa_features[] __initdata = {
946 	{0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
947 	{0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
948 	{CPU_FTR_SLB, 0,		0, 2, 0},
949 	{CPU_FTR_CTRL, 0,		0, 3, 0},
950 	{CPU_FTR_NOEXECUTE, 0,		0, 6, 0},
951 	{CPU_FTR_NODSISRALIGN, 0,	1, 1, 1},
952 #if 0
953 	/* put this back once we know how to test if firmware does 64k IO */
954 	{CPU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
955 #endif
956 	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
957 };
958 
959 static void __init check_cpu_pa_features(unsigned long node)
960 {
961 	unsigned char *pa_ftrs;
962 	unsigned long len, tablelen, i, bit;
963 
964 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
965 	if (pa_ftrs == NULL)
966 		return;
967 
968 	/* find descriptor with type == 0 */
969 	for (;;) {
970 		if (tablelen < 3)
971 			return;
972 		len = 2 + pa_ftrs[0];
973 		if (tablelen < len)
974 			return;		/* descriptor 0 not found */
975 		if (pa_ftrs[1] == 0)
976 			break;
977 		tablelen -= len;
978 		pa_ftrs += len;
979 	}
980 
981 	/* loop over bits we know about */
982 	for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) {
983 		struct ibm_pa_feature *fp = &ibm_pa_features[i];
984 
985 		if (fp->pabyte >= pa_ftrs[0])
986 			continue;
987 		bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
988 		if (bit ^ fp->invert) {
989 			cur_cpu_spec->cpu_features |= fp->cpu_features;
990 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
991 		} else {
992 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
993 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
994 		}
995 	}
996 }
997 
998 static int __init early_init_dt_scan_cpus(unsigned long node,
999 					  const char *uname, int depth,
1000 					  void *data)
1001 {
1002 	static int logical_cpuid = 0;
1003 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1004 #ifdef CONFIG_ALTIVEC
1005 	u32 *prop;
1006 #endif
1007 	u32 *intserv;
1008 	int i, nthreads;
1009 	unsigned long len;
1010 	int found = 0;
1011 
1012 	/* We are scanning "cpu" nodes only */
1013 	if (type == NULL || strcmp(type, "cpu") != 0)
1014 		return 0;
1015 
1016 	/* Get physical cpuid */
1017 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
1018 	if (intserv) {
1019 		nthreads = len / sizeof(int);
1020 	} else {
1021 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
1022 		nthreads = 1;
1023 	}
1024 
1025 	/*
1026 	 * Now see if any of these threads match our boot cpu.
1027 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
1028 	 */
1029 	for (i = 0; i < nthreads; i++) {
1030 		/*
1031 		 * version 2 of the kexec param format adds the phys cpuid of
1032 		 * booted proc.
1033 		 */
1034 		if (initial_boot_params && initial_boot_params->version >= 2) {
1035 			if (intserv[i] ==
1036 					initial_boot_params->boot_cpuid_phys) {
1037 				found = 1;
1038 				break;
1039 			}
1040 		} else {
1041 			/*
1042 			 * Check if it's the boot-cpu, set it's hw index now,
1043 			 * unfortunately this format did not support booting
1044 			 * off secondary threads.
1045 			 */
1046 			if (of_get_flat_dt_prop(node,
1047 					"linux,boot-cpu", NULL) != NULL) {
1048 				found = 1;
1049 				break;
1050 			}
1051 		}
1052 
1053 #ifdef CONFIG_SMP
1054 		/* logical cpu id is always 0 on UP kernels */
1055 		logical_cpuid++;
1056 #endif
1057 	}
1058 
1059 	if (found) {
1060 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
1061 			intserv[i]);
1062 		boot_cpuid = logical_cpuid;
1063 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
1064 	}
1065 
1066 #ifdef CONFIG_ALTIVEC
1067 	/* Check if we have a VMX and eventually update CPU features */
1068 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1069 	if (prop && (*prop) > 0) {
1070 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1071 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1072 	}
1073 
1074 	/* Same goes for Apple's "altivec" property */
1075 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1076 	if (prop) {
1077 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1078 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1079 	}
1080 #endif /* CONFIG_ALTIVEC */
1081 
1082 	check_cpu_pa_features(node);
1083 
1084 #ifdef CONFIG_PPC_PSERIES
1085 	if (nthreads > 1)
1086 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1087 	else
1088 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1089 #endif
1090 
1091 	return 0;
1092 }
1093 
1094 static int __init early_init_dt_scan_chosen(unsigned long node,
1095 					    const char *uname, int depth, void *data)
1096 {
1097 	unsigned long *lprop;
1098 	unsigned long l;
1099 	char *p;
1100 
1101 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1102 
1103 	if (depth != 1 ||
1104 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1105 		return 0;
1106 
1107 #ifdef CONFIG_PPC64
1108 	/* check if iommu is forced on or off */
1109 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1110 		iommu_is_off = 1;
1111 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1112 		iommu_force_on = 1;
1113 #endif
1114 
1115 	/* mem=x on the command line is the preferred mechanism */
1116  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1117  	if (lprop)
1118  		memory_limit = *lprop;
1119 
1120 #ifdef CONFIG_PPC64
1121  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1122  	if (lprop)
1123  		tce_alloc_start = *lprop;
1124  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1125  	if (lprop)
1126  		tce_alloc_end = *lprop;
1127 #endif
1128 
1129 #ifdef CONFIG_KEXEC
1130        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1131        if (lprop)
1132                crashk_res.start = *lprop;
1133 
1134        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1135        if (lprop)
1136                crashk_res.end = crashk_res.start + *lprop - 1;
1137 #endif
1138 
1139 	/* Retreive command line */
1140  	p = of_get_flat_dt_prop(node, "bootargs", &l);
1141 	if (p != NULL && l > 0)
1142 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1143 
1144 #ifdef CONFIG_CMDLINE
1145 	if (l == 0 || (l == 1 && (*p) == 0))
1146 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1147 #endif /* CONFIG_CMDLINE */
1148 
1149 	DBG("Command line is: %s\n", cmd_line);
1150 
1151 	/* break now */
1152 	return 1;
1153 }
1154 
1155 static int __init early_init_dt_scan_root(unsigned long node,
1156 					  const char *uname, int depth, void *data)
1157 {
1158 	u32 *prop;
1159 
1160 	if (depth != 0)
1161 		return 0;
1162 
1163 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1164 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1165 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1166 
1167 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1168 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1169 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1170 
1171 	/* break now */
1172 	return 1;
1173 }
1174 
1175 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1176 {
1177 	cell_t *p = *cellp;
1178 	unsigned long r;
1179 
1180 	/* Ignore more than 2 cells */
1181 	while (s > sizeof(unsigned long) / 4) {
1182 		p++;
1183 		s--;
1184 	}
1185 	r = *p++;
1186 #ifdef CONFIG_PPC64
1187 	if (s > 1) {
1188 		r <<= 32;
1189 		r |= *(p++);
1190 		s--;
1191 	}
1192 #endif
1193 
1194 	*cellp = p;
1195 	return r;
1196 }
1197 
1198 
1199 static int __init early_init_dt_scan_memory(unsigned long node,
1200 					    const char *uname, int depth, void *data)
1201 {
1202 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1203 	cell_t *reg, *endp;
1204 	unsigned long l;
1205 
1206 	/* We are scanning "memory" nodes only */
1207 	if (type == NULL) {
1208 		/*
1209 		 * The longtrail doesn't have a device_type on the
1210 		 * /memory node, so look for the node called /memory@0.
1211 		 */
1212 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1213 			return 0;
1214 	} else if (strcmp(type, "memory") != 0)
1215 		return 0;
1216 
1217 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1218 	if (reg == NULL)
1219 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1220 	if (reg == NULL)
1221 		return 0;
1222 
1223 	endp = reg + (l / sizeof(cell_t));
1224 
1225 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1226 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1227 
1228 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1229 		unsigned long base, size;
1230 
1231 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1232 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1233 
1234 		if (size == 0)
1235 			continue;
1236 		DBG(" - %lx ,  %lx\n", base, size);
1237 #ifdef CONFIG_PPC64
1238 		if (iommu_is_off) {
1239 			if (base >= 0x80000000ul)
1240 				continue;
1241 			if ((base + size) > 0x80000000ul)
1242 				size = 0x80000000ul - base;
1243 		}
1244 #endif
1245 		lmb_add(base, size);
1246 	}
1247 	return 0;
1248 }
1249 
1250 static void __init early_reserve_mem(void)
1251 {
1252 	u64 base, size;
1253 	u64 *reserve_map;
1254 	unsigned long self_base;
1255 	unsigned long self_size;
1256 
1257 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1258 					initial_boot_params->off_mem_rsvmap);
1259 
1260 	/* before we do anything, lets reserve the dt blob */
1261 	self_base = __pa((unsigned long)initial_boot_params);
1262 	self_size = initial_boot_params->totalsize;
1263 	lmb_reserve(self_base, self_size);
1264 
1265 #ifdef CONFIG_PPC32
1266 	/*
1267 	 * Handle the case where we might be booting from an old kexec
1268 	 * image that setup the mem_rsvmap as pairs of 32-bit values
1269 	 */
1270 	if (*reserve_map > 0xffffffffull) {
1271 		u32 base_32, size_32;
1272 		u32 *reserve_map_32 = (u32 *)reserve_map;
1273 
1274 		while (1) {
1275 			base_32 = *(reserve_map_32++);
1276 			size_32 = *(reserve_map_32++);
1277 			if (size_32 == 0)
1278 				break;
1279 			/* skip if the reservation is for the blob */
1280 			if (base_32 == self_base && size_32 == self_size)
1281 				continue;
1282 			DBG("reserving: %x -> %x\n", base_32, size_32);
1283 			lmb_reserve(base_32, size_32);
1284 		}
1285 		return;
1286 	}
1287 #endif
1288 	while (1) {
1289 		base = *(reserve_map++);
1290 		size = *(reserve_map++);
1291 		if (size == 0)
1292 			break;
1293 		/* skip if the reservation is for the blob */
1294 		if (base == self_base && size == self_size)
1295 			continue;
1296 		DBG("reserving: %llx -> %llx\n", base, size);
1297 		lmb_reserve(base, size);
1298 	}
1299 
1300 #if 0
1301 	DBG("memory reserved, lmbs :\n");
1302       	lmb_dump_all();
1303 #endif
1304 }
1305 
1306 void __init early_init_devtree(void *params)
1307 {
1308 	DBG(" -> early_init_devtree()\n");
1309 
1310 	/* Setup flat device-tree pointer */
1311 	initial_boot_params = params;
1312 
1313 #ifdef CONFIG_PPC_RTAS
1314 	/* Some machines might need RTAS info for debugging, grab it now. */
1315 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
1316 #endif
1317 
1318 	/* Retrieve various informations from the /chosen node of the
1319 	 * device-tree, including the platform type, initrd location and
1320 	 * size, TCE reserve, and more ...
1321 	 */
1322 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1323 
1324 	/* Scan memory nodes and rebuild LMBs */
1325 	lmb_init();
1326 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1327 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1328 
1329 	/* Save command line for /proc/cmdline and then parse parameters */
1330 	strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
1331 	parse_early_param();
1332 
1333 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1334 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1335 	reserve_kdump_trampoline();
1336 	reserve_crashkernel();
1337 	early_reserve_mem();
1338 
1339 	lmb_enforce_memory_limit(memory_limit);
1340 	lmb_analyze();
1341 
1342 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1343 
1344 	/* We may need to relocate the flat tree, do it now.
1345 	 * FIXME .. and the initrd too? */
1346 	move_device_tree();
1347 
1348 	DBG("Scanning CPUs ...\n");
1349 
1350 	/* Retreive CPU related informations from the flat tree
1351 	 * (altivec support, boot CPU ID, ...)
1352 	 */
1353 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1354 
1355 	DBG(" <- early_init_devtree()\n");
1356 }
1357 
1358 #undef printk
1359 
1360 int
1361 prom_n_addr_cells(struct device_node* np)
1362 {
1363 	int* ip;
1364 	do {
1365 		if (np->parent)
1366 			np = np->parent;
1367 		ip = (int *) get_property(np, "#address-cells", NULL);
1368 		if (ip != NULL)
1369 			return *ip;
1370 	} while (np->parent);
1371 	/* No #address-cells property for the root node, default to 1 */
1372 	return 1;
1373 }
1374 EXPORT_SYMBOL(prom_n_addr_cells);
1375 
1376 int
1377 prom_n_size_cells(struct device_node* np)
1378 {
1379 	int* ip;
1380 	do {
1381 		if (np->parent)
1382 			np = np->parent;
1383 		ip = (int *) get_property(np, "#size-cells", NULL);
1384 		if (ip != NULL)
1385 			return *ip;
1386 	} while (np->parent);
1387 	/* No #size-cells property for the root node, default to 1 */
1388 	return 1;
1389 }
1390 EXPORT_SYMBOL(prom_n_size_cells);
1391 
1392 /**
1393  * Work out the sense (active-low level / active-high edge)
1394  * of each interrupt from the device tree.
1395  */
1396 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1397 {
1398 	struct device_node *np;
1399 	int i, j;
1400 
1401 	/* default to level-triggered */
1402 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1403 
1404 	for (np = allnodes; np != 0; np = np->allnext) {
1405 		for (j = 0; j < np->n_intrs; j++) {
1406 			i = np->intrs[j].line;
1407 			if (i >= off && i < max)
1408 				senses[i-off] = np->intrs[j].sense;
1409 		}
1410 	}
1411 }
1412 
1413 /**
1414  * Construct and return a list of the device_nodes with a given name.
1415  */
1416 struct device_node *find_devices(const char *name)
1417 {
1418 	struct device_node *head, **prevp, *np;
1419 
1420 	prevp = &head;
1421 	for (np = allnodes; np != 0; np = np->allnext) {
1422 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1423 			*prevp = np;
1424 			prevp = &np->next;
1425 		}
1426 	}
1427 	*prevp = NULL;
1428 	return head;
1429 }
1430 EXPORT_SYMBOL(find_devices);
1431 
1432 /**
1433  * Construct and return a list of the device_nodes with a given type.
1434  */
1435 struct device_node *find_type_devices(const char *type)
1436 {
1437 	struct device_node *head, **prevp, *np;
1438 
1439 	prevp = &head;
1440 	for (np = allnodes; np != 0; np = np->allnext) {
1441 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1442 			*prevp = np;
1443 			prevp = &np->next;
1444 		}
1445 	}
1446 	*prevp = NULL;
1447 	return head;
1448 }
1449 EXPORT_SYMBOL(find_type_devices);
1450 
1451 /**
1452  * Returns all nodes linked together
1453  */
1454 struct device_node *find_all_nodes(void)
1455 {
1456 	struct device_node *head, **prevp, *np;
1457 
1458 	prevp = &head;
1459 	for (np = allnodes; np != 0; np = np->allnext) {
1460 		*prevp = np;
1461 		prevp = &np->next;
1462 	}
1463 	*prevp = NULL;
1464 	return head;
1465 }
1466 EXPORT_SYMBOL(find_all_nodes);
1467 
1468 /** Checks if the given "compat" string matches one of the strings in
1469  * the device's "compatible" property
1470  */
1471 int device_is_compatible(struct device_node *device, const char *compat)
1472 {
1473 	const char* cp;
1474 	int cplen, l;
1475 
1476 	cp = (char *) get_property(device, "compatible", &cplen);
1477 	if (cp == NULL)
1478 		return 0;
1479 	while (cplen > 0) {
1480 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1481 			return 1;
1482 		l = strlen(cp) + 1;
1483 		cp += l;
1484 		cplen -= l;
1485 	}
1486 
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(device_is_compatible);
1490 
1491 
1492 /**
1493  * Indicates whether the root node has a given value in its
1494  * compatible property.
1495  */
1496 int machine_is_compatible(const char *compat)
1497 {
1498 	struct device_node *root;
1499 	int rc = 0;
1500 
1501 	root = of_find_node_by_path("/");
1502 	if (root) {
1503 		rc = device_is_compatible(root, compat);
1504 		of_node_put(root);
1505 	}
1506 	return rc;
1507 }
1508 EXPORT_SYMBOL(machine_is_compatible);
1509 
1510 /**
1511  * Construct and return a list of the device_nodes with a given type
1512  * and compatible property.
1513  */
1514 struct device_node *find_compatible_devices(const char *type,
1515 					    const char *compat)
1516 {
1517 	struct device_node *head, **prevp, *np;
1518 
1519 	prevp = &head;
1520 	for (np = allnodes; np != 0; np = np->allnext) {
1521 		if (type != NULL
1522 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1523 			continue;
1524 		if (device_is_compatible(np, compat)) {
1525 			*prevp = np;
1526 			prevp = &np->next;
1527 		}
1528 	}
1529 	*prevp = NULL;
1530 	return head;
1531 }
1532 EXPORT_SYMBOL(find_compatible_devices);
1533 
1534 /**
1535  * Find the device_node with a given full_name.
1536  */
1537 struct device_node *find_path_device(const char *path)
1538 {
1539 	struct device_node *np;
1540 
1541 	for (np = allnodes; np != 0; np = np->allnext)
1542 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1543 			return np;
1544 	return NULL;
1545 }
1546 EXPORT_SYMBOL(find_path_device);
1547 
1548 /*******
1549  *
1550  * New implementation of the OF "find" APIs, return a refcounted
1551  * object, call of_node_put() when done.  The device tree and list
1552  * are protected by a rw_lock.
1553  *
1554  * Note that property management will need some locking as well,
1555  * this isn't dealt with yet.
1556  *
1557  *******/
1558 
1559 /**
1560  *	of_find_node_by_name - Find a node by its "name" property
1561  *	@from:	The node to start searching from or NULL, the node
1562  *		you pass will not be searched, only the next one
1563  *		will; typically, you pass what the previous call
1564  *		returned. of_node_put() will be called on it
1565  *	@name:	The name string to match against
1566  *
1567  *	Returns a node pointer with refcount incremented, use
1568  *	of_node_put() on it when done.
1569  */
1570 struct device_node *of_find_node_by_name(struct device_node *from,
1571 	const char *name)
1572 {
1573 	struct device_node *np;
1574 
1575 	read_lock(&devtree_lock);
1576 	np = from ? from->allnext : allnodes;
1577 	for (; np != NULL; np = np->allnext)
1578 		if (np->name != NULL && strcasecmp(np->name, name) == 0
1579 		    && of_node_get(np))
1580 			break;
1581 	if (from)
1582 		of_node_put(from);
1583 	read_unlock(&devtree_lock);
1584 	return np;
1585 }
1586 EXPORT_SYMBOL(of_find_node_by_name);
1587 
1588 /**
1589  *	of_find_node_by_type - Find a node by its "device_type" property
1590  *	@from:	The node to start searching from or NULL, the node
1591  *		you pass will not be searched, only the next one
1592  *		will; typically, you pass what the previous call
1593  *		returned. of_node_put() will be called on it
1594  *	@name:	The type string to match against
1595  *
1596  *	Returns a node pointer with refcount incremented, use
1597  *	of_node_put() on it when done.
1598  */
1599 struct device_node *of_find_node_by_type(struct device_node *from,
1600 	const char *type)
1601 {
1602 	struct device_node *np;
1603 
1604 	read_lock(&devtree_lock);
1605 	np = from ? from->allnext : allnodes;
1606 	for (; np != 0; np = np->allnext)
1607 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1608 		    && of_node_get(np))
1609 			break;
1610 	if (from)
1611 		of_node_put(from);
1612 	read_unlock(&devtree_lock);
1613 	return np;
1614 }
1615 EXPORT_SYMBOL(of_find_node_by_type);
1616 
1617 /**
1618  *	of_find_compatible_node - Find a node based on type and one of the
1619  *                                tokens in its "compatible" property
1620  *	@from:		The node to start searching from or NULL, the node
1621  *			you pass will not be searched, only the next one
1622  *			will; typically, you pass what the previous call
1623  *			returned. of_node_put() will be called on it
1624  *	@type:		The type string to match "device_type" or NULL to ignore
1625  *	@compatible:	The string to match to one of the tokens in the device
1626  *			"compatible" list.
1627  *
1628  *	Returns a node pointer with refcount incremented, use
1629  *	of_node_put() on it when done.
1630  */
1631 struct device_node *of_find_compatible_node(struct device_node *from,
1632 	const char *type, const char *compatible)
1633 {
1634 	struct device_node *np;
1635 
1636 	read_lock(&devtree_lock);
1637 	np = from ? from->allnext : allnodes;
1638 	for (; np != 0; np = np->allnext) {
1639 		if (type != NULL
1640 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1641 			continue;
1642 		if (device_is_compatible(np, compatible) && of_node_get(np))
1643 			break;
1644 	}
1645 	if (from)
1646 		of_node_put(from);
1647 	read_unlock(&devtree_lock);
1648 	return np;
1649 }
1650 EXPORT_SYMBOL(of_find_compatible_node);
1651 
1652 /**
1653  *	of_find_node_by_path - Find a node matching a full OF path
1654  *	@path:	The full path to match
1655  *
1656  *	Returns a node pointer with refcount incremented, use
1657  *	of_node_put() on it when done.
1658  */
1659 struct device_node *of_find_node_by_path(const char *path)
1660 {
1661 	struct device_node *np = allnodes;
1662 
1663 	read_lock(&devtree_lock);
1664 	for (; np != 0; np = np->allnext) {
1665 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1666 		    && of_node_get(np))
1667 			break;
1668 	}
1669 	read_unlock(&devtree_lock);
1670 	return np;
1671 }
1672 EXPORT_SYMBOL(of_find_node_by_path);
1673 
1674 /**
1675  *	of_find_node_by_phandle - Find a node given a phandle
1676  *	@handle:	phandle of the node to find
1677  *
1678  *	Returns a node pointer with refcount incremented, use
1679  *	of_node_put() on it when done.
1680  */
1681 struct device_node *of_find_node_by_phandle(phandle handle)
1682 {
1683 	struct device_node *np;
1684 
1685 	read_lock(&devtree_lock);
1686 	for (np = allnodes; np != 0; np = np->allnext)
1687 		if (np->linux_phandle == handle)
1688 			break;
1689 	if (np)
1690 		of_node_get(np);
1691 	read_unlock(&devtree_lock);
1692 	return np;
1693 }
1694 EXPORT_SYMBOL(of_find_node_by_phandle);
1695 
1696 /**
1697  *	of_find_all_nodes - Get next node in global list
1698  *	@prev:	Previous node or NULL to start iteration
1699  *		of_node_put() will be called on it
1700  *
1701  *	Returns a node pointer with refcount incremented, use
1702  *	of_node_put() on it when done.
1703  */
1704 struct device_node *of_find_all_nodes(struct device_node *prev)
1705 {
1706 	struct device_node *np;
1707 
1708 	read_lock(&devtree_lock);
1709 	np = prev ? prev->allnext : allnodes;
1710 	for (; np != 0; np = np->allnext)
1711 		if (of_node_get(np))
1712 			break;
1713 	if (prev)
1714 		of_node_put(prev);
1715 	read_unlock(&devtree_lock);
1716 	return np;
1717 }
1718 EXPORT_SYMBOL(of_find_all_nodes);
1719 
1720 /**
1721  *	of_get_parent - Get a node's parent if any
1722  *	@node:	Node to get parent
1723  *
1724  *	Returns a node pointer with refcount incremented, use
1725  *	of_node_put() on it when done.
1726  */
1727 struct device_node *of_get_parent(const struct device_node *node)
1728 {
1729 	struct device_node *np;
1730 
1731 	if (!node)
1732 		return NULL;
1733 
1734 	read_lock(&devtree_lock);
1735 	np = of_node_get(node->parent);
1736 	read_unlock(&devtree_lock);
1737 	return np;
1738 }
1739 EXPORT_SYMBOL(of_get_parent);
1740 
1741 /**
1742  *	of_get_next_child - Iterate a node childs
1743  *	@node:	parent node
1744  *	@prev:	previous child of the parent node, or NULL to get first
1745  *
1746  *	Returns a node pointer with refcount incremented, use
1747  *	of_node_put() on it when done.
1748  */
1749 struct device_node *of_get_next_child(const struct device_node *node,
1750 	struct device_node *prev)
1751 {
1752 	struct device_node *next;
1753 
1754 	read_lock(&devtree_lock);
1755 	next = prev ? prev->sibling : node->child;
1756 	for (; next != 0; next = next->sibling)
1757 		if (of_node_get(next))
1758 			break;
1759 	if (prev)
1760 		of_node_put(prev);
1761 	read_unlock(&devtree_lock);
1762 	return next;
1763 }
1764 EXPORT_SYMBOL(of_get_next_child);
1765 
1766 /**
1767  *	of_node_get - Increment refcount of a node
1768  *	@node:	Node to inc refcount, NULL is supported to
1769  *		simplify writing of callers
1770  *
1771  *	Returns node.
1772  */
1773 struct device_node *of_node_get(struct device_node *node)
1774 {
1775 	if (node)
1776 		kref_get(&node->kref);
1777 	return node;
1778 }
1779 EXPORT_SYMBOL(of_node_get);
1780 
1781 static inline struct device_node * kref_to_device_node(struct kref *kref)
1782 {
1783 	return container_of(kref, struct device_node, kref);
1784 }
1785 
1786 /**
1787  *	of_node_release - release a dynamically allocated node
1788  *	@kref:  kref element of the node to be released
1789  *
1790  *	In of_node_put() this function is passed to kref_put()
1791  *	as the destructor.
1792  */
1793 static void of_node_release(struct kref *kref)
1794 {
1795 	struct device_node *node = kref_to_device_node(kref);
1796 	struct property *prop = node->properties;
1797 
1798 	if (!OF_IS_DYNAMIC(node))
1799 		return;
1800 	while (prop) {
1801 		struct property *next = prop->next;
1802 		kfree(prop->name);
1803 		kfree(prop->value);
1804 		kfree(prop);
1805 		prop = next;
1806 
1807 		if (!prop) {
1808 			prop = node->deadprops;
1809 			node->deadprops = NULL;
1810 		}
1811 	}
1812 	kfree(node->intrs);
1813 	kfree(node->full_name);
1814 	kfree(node->data);
1815 	kfree(node);
1816 }
1817 
1818 /**
1819  *	of_node_put - Decrement refcount of a node
1820  *	@node:	Node to dec refcount, NULL is supported to
1821  *		simplify writing of callers
1822  *
1823  */
1824 void of_node_put(struct device_node *node)
1825 {
1826 	if (node)
1827 		kref_put(&node->kref, of_node_release);
1828 }
1829 EXPORT_SYMBOL(of_node_put);
1830 
1831 /*
1832  * Plug a device node into the tree and global list.
1833  */
1834 void of_attach_node(struct device_node *np)
1835 {
1836 	write_lock(&devtree_lock);
1837 	np->sibling = np->parent->child;
1838 	np->allnext = allnodes;
1839 	np->parent->child = np;
1840 	allnodes = np;
1841 	write_unlock(&devtree_lock);
1842 }
1843 
1844 /*
1845  * "Unplug" a node from the device tree.  The caller must hold
1846  * a reference to the node.  The memory associated with the node
1847  * is not freed until its refcount goes to zero.
1848  */
1849 void of_detach_node(const struct device_node *np)
1850 {
1851 	struct device_node *parent;
1852 
1853 	write_lock(&devtree_lock);
1854 
1855 	parent = np->parent;
1856 
1857 	if (allnodes == np)
1858 		allnodes = np->allnext;
1859 	else {
1860 		struct device_node *prev;
1861 		for (prev = allnodes;
1862 		     prev->allnext != np;
1863 		     prev = prev->allnext)
1864 			;
1865 		prev->allnext = np->allnext;
1866 	}
1867 
1868 	if (parent->child == np)
1869 		parent->child = np->sibling;
1870 	else {
1871 		struct device_node *prevsib;
1872 		for (prevsib = np->parent->child;
1873 		     prevsib->sibling != np;
1874 		     prevsib = prevsib->sibling)
1875 			;
1876 		prevsib->sibling = np->sibling;
1877 	}
1878 
1879 	write_unlock(&devtree_lock);
1880 }
1881 
1882 #ifdef CONFIG_PPC_PSERIES
1883 /*
1884  * Fix up the uninitialized fields in a new device node:
1885  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1886  *
1887  * A lot of boot-time code is duplicated here, because functions such
1888  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1889  * slab allocator.
1890  *
1891  * This should probably be split up into smaller chunks.
1892  */
1893 
1894 static int of_finish_dynamic_node(struct device_node *node)
1895 {
1896 	struct device_node *parent = of_get_parent(node);
1897 	int err = 0;
1898 	phandle *ibm_phandle;
1899 
1900 	node->name = get_property(node, "name", NULL);
1901 	node->type = get_property(node, "device_type", NULL);
1902 
1903 	if (!parent) {
1904 		err = -ENODEV;
1905 		goto out;
1906 	}
1907 
1908 	/* We don't support that function on PowerMac, at least
1909 	 * not yet
1910 	 */
1911 	if (machine_is(powermac))
1912 		return -ENODEV;
1913 
1914 	/* fix up new node's linux_phandle field */
1915 	if ((ibm_phandle = (unsigned int *)get_property(node,
1916 							"ibm,phandle", NULL)))
1917 		node->linux_phandle = *ibm_phandle;
1918 
1919 out:
1920 	of_node_put(parent);
1921 	return err;
1922 }
1923 
1924 static int prom_reconfig_notifier(struct notifier_block *nb,
1925 				  unsigned long action, void *node)
1926 {
1927 	int err;
1928 
1929 	switch (action) {
1930 	case PSERIES_RECONFIG_ADD:
1931 		err = of_finish_dynamic_node(node);
1932 		if (!err)
1933 			finish_node(node, NULL, 0);
1934 		if (err < 0) {
1935 			printk(KERN_ERR "finish_node returned %d\n", err);
1936 			err = NOTIFY_BAD;
1937 		}
1938 		break;
1939 	default:
1940 		err = NOTIFY_DONE;
1941 		break;
1942 	}
1943 	return err;
1944 }
1945 
1946 static struct notifier_block prom_reconfig_nb = {
1947 	.notifier_call = prom_reconfig_notifier,
1948 	.priority = 10, /* This one needs to run first */
1949 };
1950 
1951 static int __init prom_reconfig_setup(void)
1952 {
1953 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1954 }
1955 __initcall(prom_reconfig_setup);
1956 #endif
1957 
1958 struct property *of_find_property(struct device_node *np, const char *name,
1959 				  int *lenp)
1960 {
1961 	struct property *pp;
1962 
1963 	read_lock(&devtree_lock);
1964 	for (pp = np->properties; pp != 0; pp = pp->next)
1965 		if (strcmp(pp->name, name) == 0) {
1966 			if (lenp != 0)
1967 				*lenp = pp->length;
1968 			break;
1969 		}
1970 	read_unlock(&devtree_lock);
1971 
1972 	return pp;
1973 }
1974 
1975 /*
1976  * Find a property with a given name for a given node
1977  * and return the value.
1978  */
1979 unsigned char *get_property(struct device_node *np, const char *name,
1980 			    int *lenp)
1981 {
1982 	struct property *pp = of_find_property(np,name,lenp);
1983 	return pp ? pp->value : NULL;
1984 }
1985 EXPORT_SYMBOL(get_property);
1986 
1987 /*
1988  * Add a property to a node
1989  */
1990 int prom_add_property(struct device_node* np, struct property* prop)
1991 {
1992 	struct property **next;
1993 
1994 	prop->next = NULL;
1995 	write_lock(&devtree_lock);
1996 	next = &np->properties;
1997 	while (*next) {
1998 		if (strcmp(prop->name, (*next)->name) == 0) {
1999 			/* duplicate ! don't insert it */
2000 			write_unlock(&devtree_lock);
2001 			return -1;
2002 		}
2003 		next = &(*next)->next;
2004 	}
2005 	*next = prop;
2006 	write_unlock(&devtree_lock);
2007 
2008 #ifdef CONFIG_PROC_DEVICETREE
2009 	/* try to add to proc as well if it was initialized */
2010 	if (np->pde)
2011 		proc_device_tree_add_prop(np->pde, prop);
2012 #endif /* CONFIG_PROC_DEVICETREE */
2013 
2014 	return 0;
2015 }
2016 
2017 /*
2018  * Remove a property from a node.  Note that we don't actually
2019  * remove it, since we have given out who-knows-how-many pointers
2020  * to the data using get-property.  Instead we just move the property
2021  * to the "dead properties" list, so it won't be found any more.
2022  */
2023 int prom_remove_property(struct device_node *np, struct property *prop)
2024 {
2025 	struct property **next;
2026 	int found = 0;
2027 
2028 	write_lock(&devtree_lock);
2029 	next = &np->properties;
2030 	while (*next) {
2031 		if (*next == prop) {
2032 			/* found the node */
2033 			*next = prop->next;
2034 			prop->next = np->deadprops;
2035 			np->deadprops = prop;
2036 			found = 1;
2037 			break;
2038 		}
2039 		next = &(*next)->next;
2040 	}
2041 	write_unlock(&devtree_lock);
2042 
2043 	if (!found)
2044 		return -ENODEV;
2045 
2046 #ifdef CONFIG_PROC_DEVICETREE
2047 	/* try to remove the proc node as well */
2048 	if (np->pde)
2049 		proc_device_tree_remove_prop(np->pde, prop);
2050 #endif /* CONFIG_PROC_DEVICETREE */
2051 
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Update a property in a node.  Note that we don't actually
2057  * remove it, since we have given out who-knows-how-many pointers
2058  * to the data using get-property.  Instead we just move the property
2059  * to the "dead properties" list, and add the new property to the
2060  * property list
2061  */
2062 int prom_update_property(struct device_node *np,
2063 			 struct property *newprop,
2064 			 struct property *oldprop)
2065 {
2066 	struct property **next;
2067 	int found = 0;
2068 
2069 	write_lock(&devtree_lock);
2070 	next = &np->properties;
2071 	while (*next) {
2072 		if (*next == oldprop) {
2073 			/* found the node */
2074 			newprop->next = oldprop->next;
2075 			*next = newprop;
2076 			oldprop->next = np->deadprops;
2077 			np->deadprops = oldprop;
2078 			found = 1;
2079 			break;
2080 		}
2081 		next = &(*next)->next;
2082 	}
2083 	write_unlock(&devtree_lock);
2084 
2085 	if (!found)
2086 		return -ENODEV;
2087 
2088 #ifdef CONFIG_PROC_DEVICETREE
2089 	/* try to add to proc as well if it was initialized */
2090 	if (np->pde)
2091 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
2092 #endif /* CONFIG_PROC_DEVICETREE */
2093 
2094 	return 0;
2095 }
2096 
2097 
2098 /* Find the device node for a given logical cpu number, also returns the cpu
2099  * local thread number (index in ibm,interrupt-server#s) if relevant and
2100  * asked for (non NULL)
2101  */
2102 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
2103 {
2104 	int hardid;
2105 	struct device_node *np;
2106 
2107 	hardid = get_hard_smp_processor_id(cpu);
2108 
2109 	for_each_node_by_type(np, "cpu") {
2110 		u32 *intserv;
2111 		unsigned int plen, t;
2112 
2113 		/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
2114 		 * fallback to "reg" property and assume no threads
2115 		 */
2116 		intserv = (u32 *)get_property(np, "ibm,ppc-interrupt-server#s",
2117 					      &plen);
2118 		if (intserv == NULL) {
2119 			u32 *reg = (u32 *)get_property(np, "reg", NULL);
2120 			if (reg == NULL)
2121 				continue;
2122 			if (*reg == hardid) {
2123 				if (thread)
2124 					*thread = 0;
2125 				return np;
2126 			}
2127 		} else {
2128 			plen /= sizeof(u32);
2129 			for (t = 0; t < plen; t++) {
2130 				if (hardid == intserv[t]) {
2131 					if (thread)
2132 						*thread = t;
2133 					return np;
2134 				}
2135 			}
2136 		}
2137 	}
2138 	return NULL;
2139 }
2140 
2141 #ifdef DEBUG
2142 static struct debugfs_blob_wrapper flat_dt_blob;
2143 
2144 static int __init export_flat_device_tree(void)
2145 {
2146 	struct dentry *d;
2147 
2148 	d = debugfs_create_dir("powerpc", NULL);
2149 	if (!d)
2150 		return 1;
2151 
2152 	flat_dt_blob.data = initial_boot_params;
2153 	flat_dt_blob.size = initial_boot_params->totalsize;
2154 
2155 	d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
2156 				d, &flat_dt_blob);
2157 	if (!d)
2158 		return 1;
2159 
2160 	return 0;
2161 }
2162 __initcall(export_flat_device_tree);
2163 #endif
2164