1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/init.h> 17 #include <linux/threads.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 #include <linux/pci.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/bitops.h> 24 #include <linux/export.h> 25 #include <linux/kexec.h> 26 #include <linux/irq.h> 27 #include <linux/memblock.h> 28 #include <linux/of.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/cpu.h> 32 #include <linux/pgtable.h> 33 #include <linux/seq_buf.h> 34 35 #include <asm/rtas.h> 36 #include <asm/page.h> 37 #include <asm/processor.h> 38 #include <asm/irq.h> 39 #include <asm/io.h> 40 #include <asm/kdump.h> 41 #include <asm/smp.h> 42 #include <asm/mmu.h> 43 #include <asm/paca.h> 44 #include <asm/powernv.h> 45 #include <asm/iommu.h> 46 #include <asm/btext.h> 47 #include <asm/sections.h> 48 #include <asm/setup.h> 49 #include <asm/pci-bridge.h> 50 #include <asm/kexec.h> 51 #include <asm/opal.h> 52 #include <asm/fadump.h> 53 #include <asm/epapr_hcalls.h> 54 #include <asm/firmware.h> 55 #include <asm/dt_cpu_ftrs.h> 56 #include <asm/drmem.h> 57 #include <asm/ultravisor.h> 58 #include <asm/prom.h> 59 60 #include <mm/mmu_decl.h> 61 62 #ifdef DEBUG 63 #define DBG(fmt...) printk(KERN_ERR fmt) 64 #else 65 #define DBG(fmt...) 66 #endif 67 68 int *chip_id_lookup_table; 69 70 #ifdef CONFIG_PPC64 71 int __initdata iommu_is_off; 72 int __initdata iommu_force_on; 73 unsigned long tce_alloc_start, tce_alloc_end; 74 u64 ppc64_rma_size; 75 unsigned int boot_cpu_node_count __ro_after_init; 76 #endif 77 static phys_addr_t first_memblock_size; 78 static int __initdata boot_cpu_count; 79 80 static int __init early_parse_mem(char *p) 81 { 82 if (!p) 83 return 1; 84 85 memory_limit = PAGE_ALIGN(memparse(p, &p)); 86 DBG("memory limit = 0x%llx\n", memory_limit); 87 88 return 0; 89 } 90 early_param("mem", early_parse_mem); 91 92 /* 93 * overlaps_initrd - check for overlap with page aligned extension of 94 * initrd. 95 */ 96 static inline int overlaps_initrd(unsigned long start, unsigned long size) 97 { 98 #ifdef CONFIG_BLK_DEV_INITRD 99 if (!initrd_start) 100 return 0; 101 102 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && 103 start <= ALIGN(initrd_end, PAGE_SIZE); 104 #else 105 return 0; 106 #endif 107 } 108 109 /** 110 * move_device_tree - move tree to an unused area, if needed. 111 * 112 * The device tree may be allocated beyond our memory limit, or inside the 113 * crash kernel region for kdump, or within the page aligned range of initrd. 114 * If so, move it out of the way. 115 */ 116 static void __init move_device_tree(void) 117 { 118 unsigned long start, size; 119 void *p; 120 121 DBG("-> move_device_tree\n"); 122 123 start = __pa(initial_boot_params); 124 size = fdt_totalsize(initial_boot_params); 125 126 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 127 !memblock_is_memory(start + size - 1) || 128 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 129 p = memblock_alloc_raw(size, PAGE_SIZE); 130 if (!p) 131 panic("Failed to allocate %lu bytes to move device tree\n", 132 size); 133 memcpy(p, initial_boot_params, size); 134 initial_boot_params = p; 135 DBG("Moved device tree to 0x%px\n", p); 136 } 137 138 DBG("<- move_device_tree\n"); 139 } 140 141 /* 142 * ibm,pa/pi-features is a per-cpu property that contains a string of 143 * attribute descriptors, each of which has a 2 byte header plus up 144 * to 254 bytes worth of processor attribute bits. First header 145 * byte specifies the number of bytes following the header. 146 * Second header byte is an "attribute-specifier" type, of which 147 * zero is the only currently-defined value. 148 * Implementation: Pass in the byte and bit offset for the feature 149 * that we are interested in. The function will return -1 if the 150 * pa-features property is missing, or a 1/0 to indicate if the feature 151 * is supported/not supported. Note that the bit numbers are 152 * big-endian to match the definition in PAPR. 153 */ 154 struct ibm_feature { 155 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 156 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 157 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 158 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 159 unsigned char pabyte; /* byte number in ibm,pa/pi-features */ 160 unsigned char pabit; /* bit number (big-endian) */ 161 unsigned char invert; /* if 1, pa bit set => clear feature */ 162 }; 163 164 static struct ibm_feature ibm_pa_features[] __initdata = { 165 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 166 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 167 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 168 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 169 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 170 #ifdef CONFIG_PPC_RADIX_MMU 171 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, 172 #endif 173 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 174 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 175 /* 176 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 177 * we don't want to turn on TM here, so we use the *_COMP versions 178 * which are 0 if the kernel doesn't support TM. 179 */ 180 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 181 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 182 183 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, 184 }; 185 186 /* 187 * ibm,pi-features property provides the support of processor specific 188 * options not described in ibm,pa-features. Right now use byte 0, bit 3 189 * which indicates the occurrence of DSI interrupt when the paste operation 190 * on the suspended NX window. 191 */ 192 static struct ibm_feature ibm_pi_features[] __initdata = { 193 { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI }, 194 }; 195 196 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 197 unsigned long tablelen, 198 struct ibm_feature *fp, 199 unsigned long ft_size) 200 { 201 unsigned long i, len, bit; 202 203 /* find descriptor with type == 0 */ 204 for (;;) { 205 if (tablelen < 3) 206 return; 207 len = 2 + ftrs[0]; 208 if (tablelen < len) 209 return; /* descriptor 0 not found */ 210 if (ftrs[1] == 0) 211 break; 212 tablelen -= len; 213 ftrs += len; 214 } 215 216 /* loop over bits we know about */ 217 for (i = 0; i < ft_size; ++i, ++fp) { 218 if (fp->pabyte >= ftrs[0]) 219 continue; 220 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 221 if (bit ^ fp->invert) { 222 cur_cpu_spec->cpu_features |= fp->cpu_features; 223 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 224 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 225 cur_cpu_spec->mmu_features |= fp->mmu_features; 226 } else { 227 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 228 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 229 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 230 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 231 } 232 } 233 } 234 235 static void __init check_cpu_features(unsigned long node, char *name, 236 struct ibm_feature *fp, 237 unsigned long size) 238 { 239 const unsigned char *pa_ftrs; 240 int tablelen; 241 242 pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen); 243 if (pa_ftrs == NULL) 244 return; 245 246 scan_features(node, pa_ftrs, tablelen, fp, size); 247 } 248 249 #ifdef CONFIG_PPC_64S_HASH_MMU 250 static void __init init_mmu_slb_size(unsigned long node) 251 { 252 const __be32 *slb_size_ptr; 253 254 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 255 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 256 257 if (slb_size_ptr) 258 mmu_slb_size = be32_to_cpup(slb_size_ptr); 259 } 260 #else 261 #define init_mmu_slb_size(node) do { } while(0) 262 #endif 263 264 static struct feature_property { 265 const char *name; 266 u32 min_value; 267 unsigned long cpu_feature; 268 unsigned long cpu_user_ftr; 269 } feature_properties[] __initdata = { 270 #ifdef CONFIG_ALTIVEC 271 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 272 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 273 #endif /* CONFIG_ALTIVEC */ 274 #ifdef CONFIG_VSX 275 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 276 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 277 #endif /* CONFIG_VSX */ 278 #ifdef CONFIG_PPC64 279 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 280 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 281 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 282 #endif /* CONFIG_PPC64 */ 283 }; 284 285 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 286 static __init void identical_pvr_fixup(unsigned long node) 287 { 288 unsigned int pvr; 289 const char *model = of_get_flat_dt_prop(node, "model", NULL); 290 291 /* 292 * Since 440GR(x)/440EP(x) processors have the same pvr, 293 * we check the node path and set bit 28 in the cur_cpu_spec 294 * pvr for EP(x) processor version. This bit is always 0 in 295 * the "real" pvr. Then we call identify_cpu again with 296 * the new logical pvr to enable FPU support. 297 */ 298 if (model && strstr(model, "440EP")) { 299 pvr = cur_cpu_spec->pvr_value | 0x8; 300 identify_cpu(0, pvr); 301 DBG("Using logical pvr %x for %s\n", pvr, model); 302 } 303 } 304 #else 305 #define identical_pvr_fixup(node) do { } while(0) 306 #endif 307 308 static void __init check_cpu_feature_properties(unsigned long node) 309 { 310 int i; 311 struct feature_property *fp = feature_properties; 312 const __be32 *prop; 313 314 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 315 prop = of_get_flat_dt_prop(node, fp->name, NULL); 316 if (prop && be32_to_cpup(prop) >= fp->min_value) { 317 cur_cpu_spec->cpu_features |= fp->cpu_feature; 318 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 319 } 320 } 321 } 322 323 static int __init early_init_dt_scan_cpus(unsigned long node, 324 const char *uname, int depth, 325 void *data) 326 { 327 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 328 const __be32 *prop; 329 const __be32 *intserv; 330 int i, nthreads; 331 int len; 332 int found = -1; 333 int found_thread = 0; 334 335 /* We are scanning "cpu" nodes only */ 336 if (type == NULL || strcmp(type, "cpu") != 0) 337 return 0; 338 339 if (IS_ENABLED(CONFIG_PPC64)) 340 boot_cpu_node_count++; 341 342 /* Get physical cpuid */ 343 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 344 if (!intserv) 345 intserv = of_get_flat_dt_prop(node, "reg", &len); 346 347 nthreads = len / sizeof(int); 348 349 /* 350 * Now see if any of these threads match our boot cpu. 351 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 352 */ 353 for (i = 0; i < nthreads; i++) { 354 if (be32_to_cpu(intserv[i]) == 355 fdt_boot_cpuid_phys(initial_boot_params)) { 356 found = boot_cpu_count; 357 found_thread = i; 358 } 359 #ifdef CONFIG_SMP 360 /* logical cpu id is always 0 on UP kernels */ 361 boot_cpu_count++; 362 #endif 363 } 364 365 /* Not the boot CPU */ 366 if (found < 0) 367 return 0; 368 369 DBG("boot cpu: logical %d physical %d\n", found, 370 be32_to_cpu(intserv[found_thread])); 371 boot_cpuid = found; 372 373 // Pass the boot CPU's hard CPU id back to our caller 374 *((u32 *)data) = be32_to_cpu(intserv[found_thread]); 375 376 /* 377 * PAPR defines "logical" PVR values for cpus that 378 * meet various levels of the architecture: 379 * 0x0f000001 Architecture version 2.04 380 * 0x0f000002 Architecture version 2.05 381 * If the cpu-version property in the cpu node contains 382 * such a value, we call identify_cpu again with the 383 * logical PVR value in order to use the cpu feature 384 * bits appropriate for the architecture level. 385 * 386 * A POWER6 partition in "POWER6 architected" mode 387 * uses the 0x0f000002 PVR value; in POWER5+ mode 388 * it uses 0x0f000001. 389 * 390 * If we're using device tree CPU feature discovery then we don't 391 * support the cpu-version property, and it's the responsibility of the 392 * firmware/hypervisor to provide the correct feature set for the 393 * architecture level via the ibm,powerpc-cpu-features binding. 394 */ 395 if (!dt_cpu_ftrs_in_use()) { 396 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 397 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) { 398 identify_cpu(0, be32_to_cpup(prop)); 399 seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(prop)); 400 } 401 402 check_cpu_feature_properties(node); 403 check_cpu_features(node, "ibm,pa-features", ibm_pa_features, 404 ARRAY_SIZE(ibm_pa_features)); 405 check_cpu_features(node, "ibm,pi-features", ibm_pi_features, 406 ARRAY_SIZE(ibm_pi_features)); 407 } 408 409 identical_pvr_fixup(node); 410 init_mmu_slb_size(node); 411 412 #ifdef CONFIG_PPC64 413 if (nthreads == 1) 414 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 415 else if (!dt_cpu_ftrs_in_use()) 416 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 417 #endif 418 419 return 0; 420 } 421 422 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 423 const char *uname, 424 int depth, void *data) 425 { 426 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 427 428 /* Use common scan routine to determine if this is the chosen node */ 429 if (early_init_dt_scan_chosen(data) < 0) 430 return 0; 431 432 #ifdef CONFIG_PPC64 433 /* check if iommu is forced on or off */ 434 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 435 iommu_is_off = 1; 436 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 437 iommu_force_on = 1; 438 #endif 439 440 /* mem=x on the command line is the preferred mechanism */ 441 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 442 if (lprop) 443 memory_limit = *lprop; 444 445 #ifdef CONFIG_PPC64 446 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 447 if (lprop) 448 tce_alloc_start = *lprop; 449 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 450 if (lprop) 451 tce_alloc_end = *lprop; 452 #endif 453 454 #ifdef CONFIG_KEXEC_CORE 455 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 456 if (lprop) 457 crashk_res.start = *lprop; 458 459 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 460 if (lprop) 461 crashk_res.end = crashk_res.start + *lprop - 1; 462 #endif 463 464 /* break now */ 465 return 1; 466 } 467 468 /* 469 * Compare the range against max mem limit and update 470 * size if it cross the limit. 471 */ 472 473 #ifdef CONFIG_SPARSEMEM 474 static bool __init validate_mem_limit(u64 base, u64 *size) 475 { 476 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 477 478 if (base >= max_mem) 479 return false; 480 if ((base + *size) > max_mem) 481 *size = max_mem - base; 482 return true; 483 } 484 #else 485 static bool __init validate_mem_limit(u64 base, u64 *size) 486 { 487 return true; 488 } 489 #endif 490 491 #ifdef CONFIG_PPC_PSERIES 492 /* 493 * Interpret the ibm dynamic reconfiguration memory LMBs. 494 * This contains a list of memory blocks along with NUMA affinity 495 * information. 496 */ 497 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, 498 const __be32 **usm, 499 void *data) 500 { 501 u64 base, size; 502 int is_kexec_kdump = 0, rngs; 503 504 base = lmb->base_addr; 505 size = drmem_lmb_size(); 506 rngs = 1; 507 508 /* 509 * Skip this block if the reserved bit is set in flags 510 * or if the block is not assigned to this partition. 511 */ 512 if ((lmb->flags & DRCONF_MEM_RESERVED) || 513 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 514 return 0; 515 516 if (*usm) 517 is_kexec_kdump = 1; 518 519 if (is_kexec_kdump) { 520 /* 521 * For each memblock in ibm,dynamic-memory, a 522 * corresponding entry in linux,drconf-usable-memory 523 * property contains a counter 'p' followed by 'p' 524 * (base, size) duple. Now read the counter from 525 * linux,drconf-usable-memory property 526 */ 527 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 528 if (!rngs) /* there are no (base, size) duple */ 529 return 0; 530 } 531 532 do { 533 if (is_kexec_kdump) { 534 base = dt_mem_next_cell(dt_root_addr_cells, usm); 535 size = dt_mem_next_cell(dt_root_size_cells, usm); 536 } 537 538 if (iommu_is_off) { 539 if (base >= 0x80000000ul) 540 continue; 541 if ((base + size) > 0x80000000ul) 542 size = 0x80000000ul - base; 543 } 544 545 if (!validate_mem_limit(base, &size)) 546 continue; 547 548 DBG("Adding: %llx -> %llx\n", base, size); 549 memblock_add(base, size); 550 551 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) 552 memblock_mark_hotplug(base, size); 553 } while (--rngs); 554 555 return 0; 556 } 557 #endif /* CONFIG_PPC_PSERIES */ 558 559 static int __init early_init_dt_scan_memory_ppc(void) 560 { 561 #ifdef CONFIG_PPC_PSERIES 562 const void *fdt = initial_boot_params; 563 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 564 565 if (node > 0) 566 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); 567 568 #endif 569 570 return early_init_dt_scan_memory(); 571 } 572 573 /* 574 * For a relocatable kernel, we need to get the memstart_addr first, 575 * then use it to calculate the virtual kernel start address. This has 576 * to happen at a very early stage (before machine_init). In this case, 577 * we just want to get the memstart_address and would not like to mess the 578 * memblock at this stage. So introduce a variable to skip the memblock_add() 579 * for this reason. 580 */ 581 #ifdef CONFIG_RELOCATABLE 582 static int add_mem_to_memblock = 1; 583 #else 584 #define add_mem_to_memblock 1 585 #endif 586 587 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 588 { 589 #ifdef CONFIG_PPC64 590 if (iommu_is_off) { 591 if (base >= 0x80000000ul) 592 return; 593 if ((base + size) > 0x80000000ul) 594 size = 0x80000000ul - base; 595 } 596 #endif 597 /* Keep track of the beginning of memory -and- the size of 598 * the very first block in the device-tree as it represents 599 * the RMA on ppc64 server 600 */ 601 if (base < memstart_addr) { 602 memstart_addr = base; 603 first_memblock_size = size; 604 } 605 606 /* Add the chunk to the MEMBLOCK list */ 607 if (add_mem_to_memblock) { 608 if (validate_mem_limit(base, &size)) 609 memblock_add(base, size); 610 } 611 } 612 613 static void __init early_reserve_mem_dt(void) 614 { 615 unsigned long i, dt_root; 616 int len; 617 const __be32 *prop; 618 619 early_init_fdt_reserve_self(); 620 early_init_fdt_scan_reserved_mem(); 621 622 dt_root = of_get_flat_dt_root(); 623 624 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 625 626 if (!prop) 627 return; 628 629 DBG("Found new-style reserved-ranges\n"); 630 631 /* Each reserved range is an (address,size) pair, 2 cells each, 632 * totalling 4 cells per range. */ 633 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 634 u64 base, size; 635 636 base = of_read_number(prop + (i * 4) + 0, 2); 637 size = of_read_number(prop + (i * 4) + 2, 2); 638 639 if (size) { 640 DBG("reserving: %llx -> %llx\n", base, size); 641 memblock_reserve(base, size); 642 } 643 } 644 } 645 646 static void __init early_reserve_mem(void) 647 { 648 __be64 *reserve_map; 649 650 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 651 fdt_off_mem_rsvmap(initial_boot_params)); 652 653 /* Look for the new "reserved-regions" property in the DT */ 654 early_reserve_mem_dt(); 655 656 #ifdef CONFIG_BLK_DEV_INITRD 657 /* Then reserve the initrd, if any */ 658 if (initrd_start && (initrd_end > initrd_start)) { 659 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 660 ALIGN(initrd_end, PAGE_SIZE) - 661 ALIGN_DOWN(initrd_start, PAGE_SIZE)); 662 } 663 #endif /* CONFIG_BLK_DEV_INITRD */ 664 665 if (!IS_ENABLED(CONFIG_PPC32)) 666 return; 667 668 /* 669 * Handle the case where we might be booting from an old kexec 670 * image that setup the mem_rsvmap as pairs of 32-bit values 671 */ 672 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 673 u32 base_32, size_32; 674 __be32 *reserve_map_32 = (__be32 *)reserve_map; 675 676 DBG("Found old 32-bit reserve map\n"); 677 678 while (1) { 679 base_32 = be32_to_cpup(reserve_map_32++); 680 size_32 = be32_to_cpup(reserve_map_32++); 681 if (size_32 == 0) 682 break; 683 DBG("reserving: %x -> %x\n", base_32, size_32); 684 memblock_reserve(base_32, size_32); 685 } 686 return; 687 } 688 } 689 690 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 691 static bool tm_disabled __initdata; 692 693 static int __init parse_ppc_tm(char *str) 694 { 695 bool res; 696 697 if (kstrtobool(str, &res)) 698 return -EINVAL; 699 700 tm_disabled = !res; 701 702 return 0; 703 } 704 early_param("ppc_tm", parse_ppc_tm); 705 706 static void __init tm_init(void) 707 { 708 if (tm_disabled) { 709 pr_info("Disabling hardware transactional memory (HTM)\n"); 710 cur_cpu_spec->cpu_user_features2 &= 711 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 712 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 713 return; 714 } 715 716 pnv_tm_init(); 717 } 718 #else 719 static void tm_init(void) { } 720 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 721 722 static int __init 723 early_init_dt_scan_model(unsigned long node, const char *uname, 724 int depth, void *data) 725 { 726 const char *prop; 727 728 if (depth != 0) 729 return 0; 730 731 prop = of_get_flat_dt_prop(node, "model", NULL); 732 if (prop) 733 seq_buf_printf(&ppc_hw_desc, "%s ", prop); 734 735 /* break now */ 736 return 1; 737 } 738 739 #ifdef CONFIG_PPC64 740 static void __init save_fscr_to_task(void) 741 { 742 /* 743 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we 744 * have configured via the device tree features or via __init_FSCR(). 745 * That value will then be propagated to pid 1 (init) and all future 746 * processes. 747 */ 748 if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 749 init_task.thread.fscr = mfspr(SPRN_FSCR); 750 } 751 #else 752 static inline void save_fscr_to_task(void) {} 753 #endif 754 755 756 void __init early_init_devtree(void *params) 757 { 758 u32 boot_cpu_hwid; 759 phys_addr_t limit; 760 761 DBG(" -> early_init_devtree(%px)\n", params); 762 763 /* Too early to BUG_ON(), do it by hand */ 764 if (!early_init_dt_verify(params)) 765 panic("BUG: Failed verifying flat device tree, bad version?"); 766 767 of_scan_flat_dt(early_init_dt_scan_model, NULL); 768 769 #ifdef CONFIG_PPC_RTAS 770 /* Some machines might need RTAS info for debugging, grab it now. */ 771 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 772 #endif 773 774 #ifdef CONFIG_PPC_POWERNV 775 /* Some machines might need OPAL info for debugging, grab it now. */ 776 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 777 778 /* Scan tree for ultravisor feature */ 779 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); 780 #endif 781 782 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 783 /* scan tree to see if dump is active during last boot */ 784 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 785 #endif 786 787 /* Retrieve various informations from the /chosen node of the 788 * device-tree, including the platform type, initrd location and 789 * size, TCE reserve, and more ... 790 */ 791 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 792 793 /* Scan memory nodes and rebuild MEMBLOCKs */ 794 early_init_dt_scan_root(); 795 early_init_dt_scan_memory_ppc(); 796 797 /* 798 * As generic code authors expect to be able to use static keys 799 * in early_param() handlers, we initialize the static keys just 800 * before parsing early params (it's fine to call jump_label_init() 801 * more than once). 802 */ 803 jump_label_init(); 804 parse_early_param(); 805 806 /* make sure we've parsed cmdline for mem= before this */ 807 if (memory_limit) 808 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 809 setup_initial_memory_limit(memstart_addr, first_memblock_size); 810 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 811 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); 812 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 813 if (PHYSICAL_START > MEMORY_START) 814 memblock_reserve(MEMORY_START, 0x8000); 815 reserve_kdump_trampoline(); 816 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 817 /* 818 * If we fail to reserve memory for firmware-assisted dump then 819 * fallback to kexec based kdump. 820 */ 821 if (fadump_reserve_mem() == 0) 822 #endif 823 reserve_crashkernel(); 824 early_reserve_mem(); 825 826 /* Ensure that total memory size is page-aligned. */ 827 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 828 memblock_enforce_memory_limit(limit); 829 830 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) 831 if (!early_radix_enabled()) 832 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); 833 #endif 834 835 memblock_allow_resize(); 836 memblock_dump_all(); 837 838 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 839 840 /* We may need to relocate the flat tree, do it now. 841 * FIXME .. and the initrd too? */ 842 move_device_tree(); 843 844 DBG("Scanning CPUs ...\n"); 845 846 dt_cpu_ftrs_scan(); 847 848 // We can now add the CPU name & PVR to the hardware description 849 seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR)); 850 851 /* Retrieve CPU related informations from the flat tree 852 * (altivec support, boot CPU ID, ...) 853 */ 854 of_scan_flat_dt(early_init_dt_scan_cpus, &boot_cpu_hwid); 855 if (boot_cpuid < 0) { 856 printk("Failed to identify boot CPU !\n"); 857 BUG(); 858 } 859 860 save_fscr_to_task(); 861 862 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 863 /* We'll later wait for secondaries to check in; there are 864 * NCPUS-1 non-boot CPUs :-) 865 */ 866 spinning_secondaries = boot_cpu_count - 1; 867 #endif 868 869 mmu_early_init_devtree(); 870 871 // NB. paca is not installed until later in early_setup() 872 allocate_paca_ptrs(); 873 allocate_paca(boot_cpuid); 874 set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid); 875 876 #ifdef CONFIG_PPC_POWERNV 877 /* Scan and build the list of machine check recoverable ranges */ 878 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 879 #endif 880 epapr_paravirt_early_init(); 881 882 /* Now try to figure out if we are running on LPAR and so on */ 883 pseries_probe_fw_features(); 884 885 /* 886 * Initialize pkey features and default AMR/IAMR values 887 */ 888 pkey_early_init_devtree(); 889 890 #ifdef CONFIG_PPC_PS3 891 /* Identify PS3 firmware */ 892 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 893 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 894 #endif 895 896 tm_init(); 897 898 DBG(" <- early_init_devtree()\n"); 899 } 900 901 #ifdef CONFIG_RELOCATABLE 902 /* 903 * This function run before early_init_devtree, so we have to init 904 * initial_boot_params. 905 */ 906 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 907 { 908 /* Setup flat device-tree pointer */ 909 initial_boot_params = params; 910 911 /* 912 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 913 * mess the memblock. 914 */ 915 add_mem_to_memblock = 0; 916 early_init_dt_scan_root(); 917 early_init_dt_scan_memory_ppc(); 918 add_mem_to_memblock = 1; 919 920 if (size) 921 *size = first_memblock_size; 922 } 923 #endif 924 925 /******* 926 * 927 * New implementation of the OF "find" APIs, return a refcounted 928 * object, call of_node_put() when done. The device tree and list 929 * are protected by a rw_lock. 930 * 931 * Note that property management will need some locking as well, 932 * this isn't dealt with yet. 933 * 934 *******/ 935 936 /** 937 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 938 * @np: device node of the device 939 * 940 * This looks for a property "ibm,chip-id" in the node or any 941 * of its parents and returns its content, or -1 if it cannot 942 * be found. 943 */ 944 int of_get_ibm_chip_id(struct device_node *np) 945 { 946 of_node_get(np); 947 while (np) { 948 u32 chip_id; 949 950 /* 951 * Skiboot may produce memory nodes that contain more than one 952 * cell in chip-id, we only read the first one here. 953 */ 954 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 955 of_node_put(np); 956 return chip_id; 957 } 958 959 np = of_get_next_parent(np); 960 } 961 return -1; 962 } 963 EXPORT_SYMBOL(of_get_ibm_chip_id); 964 965 /** 966 * cpu_to_chip_id - Return the cpus chip-id 967 * @cpu: The logical cpu number. 968 * 969 * Return the value of the ibm,chip-id property corresponding to the given 970 * logical cpu number. If the chip-id can not be found, returns -1. 971 */ 972 int cpu_to_chip_id(int cpu) 973 { 974 struct device_node *np; 975 int ret = -1, idx; 976 977 idx = cpu / threads_per_core; 978 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) 979 return chip_id_lookup_table[idx]; 980 981 np = of_get_cpu_node(cpu, NULL); 982 if (np) { 983 ret = of_get_ibm_chip_id(np); 984 of_node_put(np); 985 986 if (chip_id_lookup_table) 987 chip_id_lookup_table[idx] = ret; 988 } 989 990 return ret; 991 } 992 EXPORT_SYMBOL(cpu_to_chip_id); 993 994 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 995 { 996 #ifdef CONFIG_SMP 997 /* 998 * Early firmware scanning must use this rather than 999 * get_hard_smp_processor_id because we don't have pacas allocated 1000 * until memory topology is discovered. 1001 */ 1002 if (cpu_to_phys_id != NULL) 1003 return (int)phys_id == cpu_to_phys_id[cpu]; 1004 #endif 1005 1006 return (int)phys_id == get_hard_smp_processor_id(cpu); 1007 } 1008