1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #include <asm/uasm.h>
23
24 #define RS_MASK 0x1f
25 #define RS_SH 16
26 #define RT_MASK 0x1f
27 #define RT_SH 21
28 #define SCIMM_MASK 0x3ff
29 #define SCIMM_SH 16
30
31 /* This macro sets the non-variable bits of an instruction. */
32 #define M(a, b, c, d, e, f) \
33 ((a) << OP_SH \
34 | (b) << RT_SH \
35 | (c) << RS_SH \
36 | (d) << RD_SH \
37 | (e) << RE_SH \
38 | (f) << FUNC_SH)
39
40 #include "uasm.c"
41
42 static const struct insn insn_table_MM[insn_invalid] = {
43 [insn_addu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
44 [insn_addiu] = {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
45 [insn_and] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
46 [insn_andi] = {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
47 [insn_beq] = {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
48 [insn_beql] = {0, 0},
49 [insn_bgez] = {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
50 [insn_bgezl] = {0, 0},
51 [insn_bltz] = {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
52 [insn_bltzl] = {0, 0},
53 [insn_bne] = {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
54 [insn_cache] = {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
55 [insn_cfc1] = {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
56 [insn_cfcmsa] = {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
57 [insn_ctc1] = {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
58 [insn_ctcmsa] = {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
59 [insn_daddu] = {0, 0},
60 [insn_daddiu] = {0, 0},
61 [insn_di] = {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
62 [insn_divu] = {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
63 [insn_dmfc0] = {0, 0},
64 [insn_dmtc0] = {0, 0},
65 [insn_dsll] = {0, 0},
66 [insn_dsll32] = {0, 0},
67 [insn_dsra] = {0, 0},
68 [insn_dsrl] = {0, 0},
69 [insn_dsrl32] = {0, 0},
70 [insn_drotr] = {0, 0},
71 [insn_drotr32] = {0, 0},
72 [insn_dsubu] = {0, 0},
73 [insn_eret] = {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
74 [insn_ins] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
75 [insn_ext] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
76 [insn_j] = {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
77 [insn_jal] = {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
78 [insn_jalr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
79 [insn_jr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
80 [insn_lb] = {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
81 [insn_ld] = {0, 0},
82 [insn_lh] = {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
83 [insn_ll] = {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
84 [insn_lld] = {0, 0},
85 [insn_lui] = {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
86 [insn_lw] = {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
87 [insn_mfc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
88 [insn_mfhi] = {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
89 [insn_mflo] = {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
90 [insn_mtc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
91 [insn_mthi] = {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
92 [insn_mtlo] = {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
93 [insn_mul] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
94 [insn_or] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
95 [insn_ori] = {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
96 [insn_pref] = {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
97 [insn_rfe] = {0, 0},
98 [insn_sc] = {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
99 [insn_scd] = {0, 0},
100 [insn_sd] = {0, 0},
101 [insn_sll] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
102 [insn_sllv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
103 [insn_slt] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
104 [insn_sltiu] = {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
105 [insn_sltu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
106 [insn_sra] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
107 [insn_srav] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD},
108 [insn_srl] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
109 [insn_srlv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
110 [insn_rotr] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
111 [insn_subu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
112 [insn_sw] = {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
113 [insn_sync] = {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
114 [insn_tlbp] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
115 [insn_tlbr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
116 [insn_tlbwi] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
117 [insn_tlbwr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
118 [insn_wait] = {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
119 [insn_wsbh] = {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
120 [insn_xor] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
121 [insn_xori] = {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
122 [insn_dins] = {0, 0},
123 [insn_dinsm] = {0, 0},
124 [insn_syscall] = {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
125 [insn_bbit0] = {0, 0},
126 [insn_bbit1] = {0, 0},
127 [insn_lwx] = {0, 0},
128 [insn_ldx] = {0, 0},
129 };
130
131 #undef M
132
build_bimm(s32 arg)133 static inline u32 build_bimm(s32 arg)
134 {
135 WARN(arg > 0xffff || arg < -0x10000,
136 KERN_WARNING "Micro-assembler field overflow\n");
137
138 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
139
140 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
141 }
142
build_jimm(u32 arg)143 static inline u32 build_jimm(u32 arg)
144 {
145
146 WARN(arg & ~((JIMM_MASK << 2) | 1),
147 KERN_WARNING "Micro-assembler field overflow\n");
148
149 return (arg >> 1) & JIMM_MASK;
150 }
151
152 /*
153 * The order of opcode arguments is implicitly left to right,
154 * starting with RS and ending with FUNC or IMM.
155 */
build_insn(u32 ** buf,enum opcode opc,...)156 static void build_insn(u32 **buf, enum opcode opc, ...)
157 {
158 const struct insn *ip;
159 va_list ap;
160 u32 op;
161
162 if (opc < 0 || opc >= insn_invalid ||
163 (opc == insn_daddiu && r4k_daddiu_bug()) ||
164 (insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
165 panic("Unsupported Micro-assembler instruction %d", opc);
166
167 ip = &insn_table_MM[opc];
168
169 op = ip->match;
170 va_start(ap, opc);
171 if (ip->fields & RS) {
172 if (opc == insn_mfc0 || opc == insn_mtc0 ||
173 opc == insn_cfc1 || opc == insn_ctc1)
174 op |= build_rt(va_arg(ap, u32));
175 else
176 op |= build_rs(va_arg(ap, u32));
177 }
178 if (ip->fields & RT) {
179 if (opc == insn_mfc0 || opc == insn_mtc0 ||
180 opc == insn_cfc1 || opc == insn_ctc1)
181 op |= build_rs(va_arg(ap, u32));
182 else
183 op |= build_rt(va_arg(ap, u32));
184 }
185 if (ip->fields & RD)
186 op |= build_rd(va_arg(ap, u32));
187 if (ip->fields & RE)
188 op |= build_re(va_arg(ap, u32));
189 if (ip->fields & SIMM)
190 op |= build_simm(va_arg(ap, s32));
191 if (ip->fields & UIMM)
192 op |= build_uimm(va_arg(ap, u32));
193 if (ip->fields & BIMM)
194 op |= build_bimm(va_arg(ap, s32));
195 if (ip->fields & JIMM)
196 op |= build_jimm(va_arg(ap, u32));
197 if (ip->fields & FUNC)
198 op |= build_func(va_arg(ap, u32));
199 if (ip->fields & SET)
200 op |= build_set(va_arg(ap, u32));
201 if (ip->fields & SCIMM)
202 op |= build_scimm(va_arg(ap, u32));
203 va_end(ap);
204
205 #ifdef CONFIG_CPU_LITTLE_ENDIAN
206 **buf = ((op & 0xffff) << 16) | (op >> 16);
207 #else
208 **buf = op;
209 #endif
210 (*buf)++;
211 }
212
213 static inline void
__resolve_relocs(struct uasm_reloc * rel,struct uasm_label * lab)214 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
215 {
216 long laddr = (long)lab->addr;
217 long raddr = (long)rel->addr;
218
219 switch (rel->type) {
220 case R_MIPS_PC16:
221 #ifdef CONFIG_CPU_LITTLE_ENDIAN
222 *rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
223 #else
224 *rel->addr |= build_bimm(laddr - (raddr + 4));
225 #endif
226 break;
227
228 default:
229 panic("Unsupported Micro-assembler relocation %d",
230 rel->type);
231 }
232 }
233