xref: /linux/arch/mips/kvm/mips.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <asm/fpu.h>
22 #include <asm/page.h>
23 #include <asm/cacheflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/pgtable.h>
26 
27 #include <linux/kvm_host.h>
28 
29 #include "interrupt.h"
30 #include "commpage.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #ifndef VECTORSPACING
36 #define VECTORSPACING 0x100	/* for EI/VI mode */
37 #endif
38 
39 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
40 struct kvm_stats_debugfs_item debugfs_entries[] = {
41 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
42 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
43 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
44 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
45 	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
46 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
47 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
48 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
49 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
50 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
51 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
52 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
53 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
54 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
55 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
56 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
57 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
58 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
59 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
60 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
61 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
62 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
63 	{NULL}
64 };
65 
66 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
67 {
68 	int i;
69 
70 	for_each_possible_cpu(i) {
71 		vcpu->arch.guest_kernel_asid[i] = 0;
72 		vcpu->arch.guest_user_asid[i] = 0;
73 	}
74 
75 	return 0;
76 }
77 
78 /*
79  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
80  * Config7, so we are "runnable" if interrupts are pending
81  */
82 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
83 {
84 	return !!(vcpu->arch.pending_exceptions);
85 }
86 
87 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88 {
89 	return 1;
90 }
91 
92 int kvm_arch_hardware_enable(void)
93 {
94 	return 0;
95 }
96 
97 int kvm_arch_hardware_setup(void)
98 {
99 	return 0;
100 }
101 
102 void kvm_arch_check_processor_compat(void *rtn)
103 {
104 	*(int *)rtn = 0;
105 }
106 
107 static void kvm_mips_init_tlbs(struct kvm *kvm)
108 {
109 	unsigned long wired;
110 
111 	/*
112 	 * Add a wired entry to the TLB, it is used to map the commpage to
113 	 * the Guest kernel
114 	 */
115 	wired = read_c0_wired();
116 	write_c0_wired(wired + 1);
117 	mtc0_tlbw_hazard();
118 	kvm->arch.commpage_tlb = wired;
119 
120 	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
121 		  kvm->arch.commpage_tlb);
122 }
123 
124 static void kvm_mips_init_vm_percpu(void *arg)
125 {
126 	struct kvm *kvm = (struct kvm *)arg;
127 
128 	kvm_mips_init_tlbs(kvm);
129 	kvm_mips_callbacks->vm_init(kvm);
130 
131 }
132 
133 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
134 {
135 	if (atomic_inc_return(&kvm_mips_instance) == 1) {
136 		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
137 			  __func__);
138 		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
139 	}
140 
141 	return 0;
142 }
143 
144 bool kvm_arch_has_vcpu_debugfs(void)
145 {
146 	return false;
147 }
148 
149 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
150 {
151 	return 0;
152 }
153 
154 void kvm_mips_free_vcpus(struct kvm *kvm)
155 {
156 	unsigned int i;
157 	struct kvm_vcpu *vcpu;
158 
159 	/* Put the pages we reserved for the guest pmap */
160 	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
161 		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
162 			kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
163 	}
164 	kfree(kvm->arch.guest_pmap);
165 
166 	kvm_for_each_vcpu(i, vcpu, kvm) {
167 		kvm_arch_vcpu_free(vcpu);
168 	}
169 
170 	mutex_lock(&kvm->lock);
171 
172 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
173 		kvm->vcpus[i] = NULL;
174 
175 	atomic_set(&kvm->online_vcpus, 0);
176 
177 	mutex_unlock(&kvm->lock);
178 }
179 
180 static void kvm_mips_uninit_tlbs(void *arg)
181 {
182 	/* Restore wired count */
183 	write_c0_wired(0);
184 	mtc0_tlbw_hazard();
185 	/* Clear out all the TLBs */
186 	kvm_local_flush_tlb_all();
187 }
188 
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191 	kvm_mips_free_vcpus(kvm);
192 
193 	/* If this is the last instance, restore wired count */
194 	if (atomic_dec_return(&kvm_mips_instance) == 0) {
195 		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
196 			  __func__);
197 		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
198 	}
199 }
200 
201 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
202 			unsigned long arg)
203 {
204 	return -ENOIOCTLCMD;
205 }
206 
207 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
208 			    unsigned long npages)
209 {
210 	return 0;
211 }
212 
213 int kvm_arch_prepare_memory_region(struct kvm *kvm,
214 				   struct kvm_memory_slot *memslot,
215 				   const struct kvm_userspace_memory_region *mem,
216 				   enum kvm_mr_change change)
217 {
218 	return 0;
219 }
220 
221 void kvm_arch_commit_memory_region(struct kvm *kvm,
222 				   const struct kvm_userspace_memory_region *mem,
223 				   const struct kvm_memory_slot *old,
224 				   const struct kvm_memory_slot *new,
225 				   enum kvm_mr_change change)
226 {
227 	unsigned long npages = 0;
228 	int i;
229 
230 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
231 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
232 		  mem->memory_size, mem->userspace_addr);
233 
234 	/* Setup Guest PMAP table */
235 	if (!kvm->arch.guest_pmap) {
236 		if (mem->slot == 0)
237 			npages = mem->memory_size >> PAGE_SHIFT;
238 
239 		if (npages) {
240 			kvm->arch.guest_pmap_npages = npages;
241 			kvm->arch.guest_pmap =
242 			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
243 
244 			if (!kvm->arch.guest_pmap) {
245 				kvm_err("Failed to allocate guest PMAP\n");
246 				return;
247 			}
248 
249 			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
250 				  npages, kvm->arch.guest_pmap);
251 
252 			/* Now setup the page table */
253 			for (i = 0; i < npages; i++)
254 				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
255 		}
256 	}
257 }
258 
259 static inline void dump_handler(const char *symbol, void *start, void *end)
260 {
261 	u32 *p;
262 
263 	pr_debug("LEAF(%s)\n", symbol);
264 
265 	pr_debug("\t.set push\n");
266 	pr_debug("\t.set noreorder\n");
267 
268 	for (p = start; p < (u32 *)end; ++p)
269 		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
270 
271 	pr_debug("\t.set\tpop\n");
272 
273 	pr_debug("\tEND(%s)\n", symbol);
274 }
275 
276 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
277 {
278 	int err, size;
279 	void *gebase, *p, *handler;
280 	int i;
281 
282 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
283 
284 	if (!vcpu) {
285 		err = -ENOMEM;
286 		goto out;
287 	}
288 
289 	err = kvm_vcpu_init(vcpu, kvm, id);
290 
291 	if (err)
292 		goto out_free_cpu;
293 
294 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
295 
296 	/*
297 	 * Allocate space for host mode exception handlers that handle
298 	 * guest mode exits
299 	 */
300 	if (cpu_has_veic || cpu_has_vint)
301 		size = 0x200 + VECTORSPACING * 64;
302 	else
303 		size = 0x4000;
304 
305 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
306 
307 	if (!gebase) {
308 		err = -ENOMEM;
309 		goto out_uninit_cpu;
310 	}
311 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
312 		  ALIGN(size, PAGE_SIZE), gebase);
313 
314 	/*
315 	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
316 	 * limits us to the low 512MB of physical address space. If the memory
317 	 * we allocate is out of range, just give up now.
318 	 */
319 	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
320 		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
321 			gebase);
322 		err = -ENOMEM;
323 		goto out_free_gebase;
324 	}
325 
326 	/* Save new ebase */
327 	vcpu->arch.guest_ebase = gebase;
328 
329 	/* Build guest exception vectors dynamically in unmapped memory */
330 	handler = gebase + 0x2000;
331 
332 	/* TLB Refill, EXL = 0 */
333 	kvm_mips_build_exception(gebase, handler);
334 
335 	/* General Exception Entry point */
336 	kvm_mips_build_exception(gebase + 0x180, handler);
337 
338 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
339 	for (i = 0; i < 8; i++) {
340 		kvm_debug("L1 Vectored handler @ %p\n",
341 			  gebase + 0x200 + (i * VECTORSPACING));
342 		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
343 					 handler);
344 	}
345 
346 	/* General exit handler */
347 	p = handler;
348 	p = kvm_mips_build_exit(p);
349 
350 	/* Guest entry routine */
351 	vcpu->arch.vcpu_run = p;
352 	p = kvm_mips_build_vcpu_run(p);
353 
354 	/* Dump the generated code */
355 	pr_debug("#include <asm/asm.h>\n");
356 	pr_debug("#include <asm/regdef.h>\n");
357 	pr_debug("\n");
358 	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
359 	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
360 	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
361 
362 	/* Invalidate the icache for these ranges */
363 	local_flush_icache_range((unsigned long)gebase,
364 				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
365 
366 	/*
367 	 * Allocate comm page for guest kernel, a TLB will be reserved for
368 	 * mapping GVA @ 0xFFFF8000 to this page
369 	 */
370 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
371 
372 	if (!vcpu->arch.kseg0_commpage) {
373 		err = -ENOMEM;
374 		goto out_free_gebase;
375 	}
376 
377 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
378 	kvm_mips_commpage_init(vcpu);
379 
380 	/* Init */
381 	vcpu->arch.last_sched_cpu = -1;
382 
383 	/* Start off the timer */
384 	kvm_mips_init_count(vcpu);
385 
386 	return vcpu;
387 
388 out_free_gebase:
389 	kfree(gebase);
390 
391 out_uninit_cpu:
392 	kvm_vcpu_uninit(vcpu);
393 
394 out_free_cpu:
395 	kfree(vcpu);
396 
397 out:
398 	return ERR_PTR(err);
399 }
400 
401 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
402 {
403 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
404 
405 	kvm_vcpu_uninit(vcpu);
406 
407 	kvm_mips_dump_stats(vcpu);
408 
409 	kfree(vcpu->arch.guest_ebase);
410 	kfree(vcpu->arch.kseg0_commpage);
411 	kfree(vcpu);
412 }
413 
414 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
415 {
416 	kvm_arch_vcpu_free(vcpu);
417 }
418 
419 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
420 					struct kvm_guest_debug *dbg)
421 {
422 	return -ENOIOCTLCMD;
423 }
424 
425 /* Must be called with preemption disabled, just before entering guest */
426 static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
427 {
428 	struct mips_coproc *cop0 = vcpu->arch.cop0;
429 	int cpu = smp_processor_id();
430 	unsigned int gasid;
431 
432 	/*
433 	 * Lazy host ASID regeneration for guest user mode.
434 	 * If the guest ASID has changed since the last guest usermode
435 	 * execution, regenerate the host ASID so as to invalidate stale TLB
436 	 * entries.
437 	 */
438 	if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
439 		gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
440 		if (gasid != vcpu->arch.last_user_gasid) {
441 			kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
442 						vcpu);
443 			vcpu->arch.guest_user_asid[cpu] =
444 				vcpu->arch.guest_user_mm.context.asid[cpu];
445 			vcpu->arch.last_user_gasid = gasid;
446 		}
447 	}
448 }
449 
450 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
451 {
452 	int r = 0;
453 	sigset_t sigsaved;
454 
455 	if (vcpu->sigset_active)
456 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
457 
458 	if (vcpu->mmio_needed) {
459 		if (!vcpu->mmio_is_write)
460 			kvm_mips_complete_mmio_load(vcpu, run);
461 		vcpu->mmio_needed = 0;
462 	}
463 
464 	lose_fpu(1);
465 
466 	local_irq_disable();
467 	/* Check if we have any exceptions/interrupts pending */
468 	kvm_mips_deliver_interrupts(vcpu,
469 				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
470 
471 	guest_enter_irqoff();
472 
473 	/* Disable hardware page table walking while in guest */
474 	htw_stop();
475 
476 	trace_kvm_enter(vcpu);
477 
478 	kvm_mips_check_asids(vcpu);
479 
480 	r = vcpu->arch.vcpu_run(run, vcpu);
481 	trace_kvm_out(vcpu);
482 
483 	/* Re-enable HTW before enabling interrupts */
484 	htw_start();
485 
486 	guest_exit_irqoff();
487 	local_irq_enable();
488 
489 	if (vcpu->sigset_active)
490 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
491 
492 	return r;
493 }
494 
495 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
496 			     struct kvm_mips_interrupt *irq)
497 {
498 	int intr = (int)irq->irq;
499 	struct kvm_vcpu *dvcpu = NULL;
500 
501 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
502 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
503 			  (int)intr);
504 
505 	if (irq->cpu == -1)
506 		dvcpu = vcpu;
507 	else
508 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
509 
510 	if (intr == 2 || intr == 3 || intr == 4) {
511 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
512 
513 	} else if (intr == -2 || intr == -3 || intr == -4) {
514 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
515 	} else {
516 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
517 			irq->cpu, irq->irq);
518 		return -EINVAL;
519 	}
520 
521 	dvcpu->arch.wait = 0;
522 
523 	if (swait_active(&dvcpu->wq))
524 		swake_up(&dvcpu->wq);
525 
526 	return 0;
527 }
528 
529 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
530 				    struct kvm_mp_state *mp_state)
531 {
532 	return -ENOIOCTLCMD;
533 }
534 
535 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
536 				    struct kvm_mp_state *mp_state)
537 {
538 	return -ENOIOCTLCMD;
539 }
540 
541 static u64 kvm_mips_get_one_regs[] = {
542 	KVM_REG_MIPS_R0,
543 	KVM_REG_MIPS_R1,
544 	KVM_REG_MIPS_R2,
545 	KVM_REG_MIPS_R3,
546 	KVM_REG_MIPS_R4,
547 	KVM_REG_MIPS_R5,
548 	KVM_REG_MIPS_R6,
549 	KVM_REG_MIPS_R7,
550 	KVM_REG_MIPS_R8,
551 	KVM_REG_MIPS_R9,
552 	KVM_REG_MIPS_R10,
553 	KVM_REG_MIPS_R11,
554 	KVM_REG_MIPS_R12,
555 	KVM_REG_MIPS_R13,
556 	KVM_REG_MIPS_R14,
557 	KVM_REG_MIPS_R15,
558 	KVM_REG_MIPS_R16,
559 	KVM_REG_MIPS_R17,
560 	KVM_REG_MIPS_R18,
561 	KVM_REG_MIPS_R19,
562 	KVM_REG_MIPS_R20,
563 	KVM_REG_MIPS_R21,
564 	KVM_REG_MIPS_R22,
565 	KVM_REG_MIPS_R23,
566 	KVM_REG_MIPS_R24,
567 	KVM_REG_MIPS_R25,
568 	KVM_REG_MIPS_R26,
569 	KVM_REG_MIPS_R27,
570 	KVM_REG_MIPS_R28,
571 	KVM_REG_MIPS_R29,
572 	KVM_REG_MIPS_R30,
573 	KVM_REG_MIPS_R31,
574 
575 #ifndef CONFIG_CPU_MIPSR6
576 	KVM_REG_MIPS_HI,
577 	KVM_REG_MIPS_LO,
578 #endif
579 	KVM_REG_MIPS_PC,
580 
581 	KVM_REG_MIPS_CP0_INDEX,
582 	KVM_REG_MIPS_CP0_CONTEXT,
583 	KVM_REG_MIPS_CP0_USERLOCAL,
584 	KVM_REG_MIPS_CP0_PAGEMASK,
585 	KVM_REG_MIPS_CP0_WIRED,
586 	KVM_REG_MIPS_CP0_HWRENA,
587 	KVM_REG_MIPS_CP0_BADVADDR,
588 	KVM_REG_MIPS_CP0_COUNT,
589 	KVM_REG_MIPS_CP0_ENTRYHI,
590 	KVM_REG_MIPS_CP0_COMPARE,
591 	KVM_REG_MIPS_CP0_STATUS,
592 	KVM_REG_MIPS_CP0_CAUSE,
593 	KVM_REG_MIPS_CP0_EPC,
594 	KVM_REG_MIPS_CP0_PRID,
595 	KVM_REG_MIPS_CP0_CONFIG,
596 	KVM_REG_MIPS_CP0_CONFIG1,
597 	KVM_REG_MIPS_CP0_CONFIG2,
598 	KVM_REG_MIPS_CP0_CONFIG3,
599 	KVM_REG_MIPS_CP0_CONFIG4,
600 	KVM_REG_MIPS_CP0_CONFIG5,
601 	KVM_REG_MIPS_CP0_CONFIG7,
602 	KVM_REG_MIPS_CP0_ERROREPC,
603 
604 	KVM_REG_MIPS_COUNT_CTL,
605 	KVM_REG_MIPS_COUNT_RESUME,
606 	KVM_REG_MIPS_COUNT_HZ,
607 };
608 
609 static u64 kvm_mips_get_one_regs_fpu[] = {
610 	KVM_REG_MIPS_FCR_IR,
611 	KVM_REG_MIPS_FCR_CSR,
612 };
613 
614 static u64 kvm_mips_get_one_regs_msa[] = {
615 	KVM_REG_MIPS_MSA_IR,
616 	KVM_REG_MIPS_MSA_CSR,
617 };
618 
619 static u64 kvm_mips_get_one_regs_kscratch[] = {
620 	KVM_REG_MIPS_CP0_KSCRATCH1,
621 	KVM_REG_MIPS_CP0_KSCRATCH2,
622 	KVM_REG_MIPS_CP0_KSCRATCH3,
623 	KVM_REG_MIPS_CP0_KSCRATCH4,
624 	KVM_REG_MIPS_CP0_KSCRATCH5,
625 	KVM_REG_MIPS_CP0_KSCRATCH6,
626 };
627 
628 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
629 {
630 	unsigned long ret;
631 
632 	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
633 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
634 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
635 		/* odd doubles */
636 		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
637 			ret += 16;
638 	}
639 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
640 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
641 	ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
642 	ret += kvm_mips_callbacks->num_regs(vcpu);
643 
644 	return ret;
645 }
646 
647 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
648 {
649 	u64 index;
650 	unsigned int i;
651 
652 	if (copy_to_user(indices, kvm_mips_get_one_regs,
653 			 sizeof(kvm_mips_get_one_regs)))
654 		return -EFAULT;
655 	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
656 
657 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
658 		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
659 				 sizeof(kvm_mips_get_one_regs_fpu)))
660 			return -EFAULT;
661 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
662 
663 		for (i = 0; i < 32; ++i) {
664 			index = KVM_REG_MIPS_FPR_32(i);
665 			if (copy_to_user(indices, &index, sizeof(index)))
666 				return -EFAULT;
667 			++indices;
668 
669 			/* skip odd doubles if no F64 */
670 			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
671 				continue;
672 
673 			index = KVM_REG_MIPS_FPR_64(i);
674 			if (copy_to_user(indices, &index, sizeof(index)))
675 				return -EFAULT;
676 			++indices;
677 		}
678 	}
679 
680 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
681 		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
682 				 sizeof(kvm_mips_get_one_regs_msa)))
683 			return -EFAULT;
684 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
685 
686 		for (i = 0; i < 32; ++i) {
687 			index = KVM_REG_MIPS_VEC_128(i);
688 			if (copy_to_user(indices, &index, sizeof(index)))
689 				return -EFAULT;
690 			++indices;
691 		}
692 	}
693 
694 	for (i = 0; i < 6; ++i) {
695 		if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
696 			continue;
697 
698 		if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
699 				 sizeof(kvm_mips_get_one_regs_kscratch[i])))
700 			return -EFAULT;
701 		++indices;
702 	}
703 
704 	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
705 }
706 
707 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
708 			    const struct kvm_one_reg *reg)
709 {
710 	struct mips_coproc *cop0 = vcpu->arch.cop0;
711 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
712 	int ret;
713 	s64 v;
714 	s64 vs[2];
715 	unsigned int idx;
716 
717 	switch (reg->id) {
718 	/* General purpose registers */
719 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
720 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
721 		break;
722 #ifndef CONFIG_CPU_MIPSR6
723 	case KVM_REG_MIPS_HI:
724 		v = (long)vcpu->arch.hi;
725 		break;
726 	case KVM_REG_MIPS_LO:
727 		v = (long)vcpu->arch.lo;
728 		break;
729 #endif
730 	case KVM_REG_MIPS_PC:
731 		v = (long)vcpu->arch.pc;
732 		break;
733 
734 	/* Floating point registers */
735 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
736 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
737 			return -EINVAL;
738 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
739 		/* Odd singles in top of even double when FR=0 */
740 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
741 			v = get_fpr32(&fpu->fpr[idx], 0);
742 		else
743 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
744 		break;
745 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
746 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
747 			return -EINVAL;
748 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
749 		/* Can't access odd doubles in FR=0 mode */
750 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
751 			return -EINVAL;
752 		v = get_fpr64(&fpu->fpr[idx], 0);
753 		break;
754 	case KVM_REG_MIPS_FCR_IR:
755 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
756 			return -EINVAL;
757 		v = boot_cpu_data.fpu_id;
758 		break;
759 	case KVM_REG_MIPS_FCR_CSR:
760 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
761 			return -EINVAL;
762 		v = fpu->fcr31;
763 		break;
764 
765 	/* MIPS SIMD Architecture (MSA) registers */
766 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
767 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
768 			return -EINVAL;
769 		/* Can't access MSA registers in FR=0 mode */
770 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
771 			return -EINVAL;
772 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
773 #ifdef CONFIG_CPU_LITTLE_ENDIAN
774 		/* least significant byte first */
775 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
776 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
777 #else
778 		/* most significant byte first */
779 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
780 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
781 #endif
782 		break;
783 	case KVM_REG_MIPS_MSA_IR:
784 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
785 			return -EINVAL;
786 		v = boot_cpu_data.msa_id;
787 		break;
788 	case KVM_REG_MIPS_MSA_CSR:
789 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
790 			return -EINVAL;
791 		v = fpu->msacsr;
792 		break;
793 
794 	/* Co-processor 0 registers */
795 	case KVM_REG_MIPS_CP0_INDEX:
796 		v = (long)kvm_read_c0_guest_index(cop0);
797 		break;
798 	case KVM_REG_MIPS_CP0_CONTEXT:
799 		v = (long)kvm_read_c0_guest_context(cop0);
800 		break;
801 	case KVM_REG_MIPS_CP0_USERLOCAL:
802 		v = (long)kvm_read_c0_guest_userlocal(cop0);
803 		break;
804 	case KVM_REG_MIPS_CP0_PAGEMASK:
805 		v = (long)kvm_read_c0_guest_pagemask(cop0);
806 		break;
807 	case KVM_REG_MIPS_CP0_WIRED:
808 		v = (long)kvm_read_c0_guest_wired(cop0);
809 		break;
810 	case KVM_REG_MIPS_CP0_HWRENA:
811 		v = (long)kvm_read_c0_guest_hwrena(cop0);
812 		break;
813 	case KVM_REG_MIPS_CP0_BADVADDR:
814 		v = (long)kvm_read_c0_guest_badvaddr(cop0);
815 		break;
816 	case KVM_REG_MIPS_CP0_ENTRYHI:
817 		v = (long)kvm_read_c0_guest_entryhi(cop0);
818 		break;
819 	case KVM_REG_MIPS_CP0_COMPARE:
820 		v = (long)kvm_read_c0_guest_compare(cop0);
821 		break;
822 	case KVM_REG_MIPS_CP0_STATUS:
823 		v = (long)kvm_read_c0_guest_status(cop0);
824 		break;
825 	case KVM_REG_MIPS_CP0_CAUSE:
826 		v = (long)kvm_read_c0_guest_cause(cop0);
827 		break;
828 	case KVM_REG_MIPS_CP0_EPC:
829 		v = (long)kvm_read_c0_guest_epc(cop0);
830 		break;
831 	case KVM_REG_MIPS_CP0_PRID:
832 		v = (long)kvm_read_c0_guest_prid(cop0);
833 		break;
834 	case KVM_REG_MIPS_CP0_CONFIG:
835 		v = (long)kvm_read_c0_guest_config(cop0);
836 		break;
837 	case KVM_REG_MIPS_CP0_CONFIG1:
838 		v = (long)kvm_read_c0_guest_config1(cop0);
839 		break;
840 	case KVM_REG_MIPS_CP0_CONFIG2:
841 		v = (long)kvm_read_c0_guest_config2(cop0);
842 		break;
843 	case KVM_REG_MIPS_CP0_CONFIG3:
844 		v = (long)kvm_read_c0_guest_config3(cop0);
845 		break;
846 	case KVM_REG_MIPS_CP0_CONFIG4:
847 		v = (long)kvm_read_c0_guest_config4(cop0);
848 		break;
849 	case KVM_REG_MIPS_CP0_CONFIG5:
850 		v = (long)kvm_read_c0_guest_config5(cop0);
851 		break;
852 	case KVM_REG_MIPS_CP0_CONFIG7:
853 		v = (long)kvm_read_c0_guest_config7(cop0);
854 		break;
855 	case KVM_REG_MIPS_CP0_ERROREPC:
856 		v = (long)kvm_read_c0_guest_errorepc(cop0);
857 		break;
858 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
859 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
860 		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
861 			return -EINVAL;
862 		switch (idx) {
863 		case 2:
864 			v = (long)kvm_read_c0_guest_kscratch1(cop0);
865 			break;
866 		case 3:
867 			v = (long)kvm_read_c0_guest_kscratch2(cop0);
868 			break;
869 		case 4:
870 			v = (long)kvm_read_c0_guest_kscratch3(cop0);
871 			break;
872 		case 5:
873 			v = (long)kvm_read_c0_guest_kscratch4(cop0);
874 			break;
875 		case 6:
876 			v = (long)kvm_read_c0_guest_kscratch5(cop0);
877 			break;
878 		case 7:
879 			v = (long)kvm_read_c0_guest_kscratch6(cop0);
880 			break;
881 		}
882 		break;
883 	/* registers to be handled specially */
884 	default:
885 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
886 		if (ret)
887 			return ret;
888 		break;
889 	}
890 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
891 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
892 
893 		return put_user(v, uaddr64);
894 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
895 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
896 		u32 v32 = (u32)v;
897 
898 		return put_user(v32, uaddr32);
899 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
900 		void __user *uaddr = (void __user *)(long)reg->addr;
901 
902 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
903 	} else {
904 		return -EINVAL;
905 	}
906 }
907 
908 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
909 			    const struct kvm_one_reg *reg)
910 {
911 	struct mips_coproc *cop0 = vcpu->arch.cop0;
912 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
913 	s64 v;
914 	s64 vs[2];
915 	unsigned int idx;
916 
917 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
918 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
919 
920 		if (get_user(v, uaddr64) != 0)
921 			return -EFAULT;
922 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
923 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
924 		s32 v32;
925 
926 		if (get_user(v32, uaddr32) != 0)
927 			return -EFAULT;
928 		v = (s64)v32;
929 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
930 		void __user *uaddr = (void __user *)(long)reg->addr;
931 
932 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
933 	} else {
934 		return -EINVAL;
935 	}
936 
937 	switch (reg->id) {
938 	/* General purpose registers */
939 	case KVM_REG_MIPS_R0:
940 		/* Silently ignore requests to set $0 */
941 		break;
942 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
943 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
944 		break;
945 #ifndef CONFIG_CPU_MIPSR6
946 	case KVM_REG_MIPS_HI:
947 		vcpu->arch.hi = v;
948 		break;
949 	case KVM_REG_MIPS_LO:
950 		vcpu->arch.lo = v;
951 		break;
952 #endif
953 	case KVM_REG_MIPS_PC:
954 		vcpu->arch.pc = v;
955 		break;
956 
957 	/* Floating point registers */
958 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
959 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
960 			return -EINVAL;
961 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
962 		/* Odd singles in top of even double when FR=0 */
963 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
964 			set_fpr32(&fpu->fpr[idx], 0, v);
965 		else
966 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
967 		break;
968 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
969 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
970 			return -EINVAL;
971 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
972 		/* Can't access odd doubles in FR=0 mode */
973 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
974 			return -EINVAL;
975 		set_fpr64(&fpu->fpr[idx], 0, v);
976 		break;
977 	case KVM_REG_MIPS_FCR_IR:
978 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
979 			return -EINVAL;
980 		/* Read-only */
981 		break;
982 	case KVM_REG_MIPS_FCR_CSR:
983 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
984 			return -EINVAL;
985 		fpu->fcr31 = v;
986 		break;
987 
988 	/* MIPS SIMD Architecture (MSA) registers */
989 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
990 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
991 			return -EINVAL;
992 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
993 #ifdef CONFIG_CPU_LITTLE_ENDIAN
994 		/* least significant byte first */
995 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
996 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
997 #else
998 		/* most significant byte first */
999 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1000 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1001 #endif
1002 		break;
1003 	case KVM_REG_MIPS_MSA_IR:
1004 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
1005 			return -EINVAL;
1006 		/* Read-only */
1007 		break;
1008 	case KVM_REG_MIPS_MSA_CSR:
1009 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
1010 			return -EINVAL;
1011 		fpu->msacsr = v;
1012 		break;
1013 
1014 	/* Co-processor 0 registers */
1015 	case KVM_REG_MIPS_CP0_INDEX:
1016 		kvm_write_c0_guest_index(cop0, v);
1017 		break;
1018 	case KVM_REG_MIPS_CP0_CONTEXT:
1019 		kvm_write_c0_guest_context(cop0, v);
1020 		break;
1021 	case KVM_REG_MIPS_CP0_USERLOCAL:
1022 		kvm_write_c0_guest_userlocal(cop0, v);
1023 		break;
1024 	case KVM_REG_MIPS_CP0_PAGEMASK:
1025 		kvm_write_c0_guest_pagemask(cop0, v);
1026 		break;
1027 	case KVM_REG_MIPS_CP0_WIRED:
1028 		kvm_write_c0_guest_wired(cop0, v);
1029 		break;
1030 	case KVM_REG_MIPS_CP0_HWRENA:
1031 		kvm_write_c0_guest_hwrena(cop0, v);
1032 		break;
1033 	case KVM_REG_MIPS_CP0_BADVADDR:
1034 		kvm_write_c0_guest_badvaddr(cop0, v);
1035 		break;
1036 	case KVM_REG_MIPS_CP0_ENTRYHI:
1037 		kvm_write_c0_guest_entryhi(cop0, v);
1038 		break;
1039 	case KVM_REG_MIPS_CP0_STATUS:
1040 		kvm_write_c0_guest_status(cop0, v);
1041 		break;
1042 	case KVM_REG_MIPS_CP0_EPC:
1043 		kvm_write_c0_guest_epc(cop0, v);
1044 		break;
1045 	case KVM_REG_MIPS_CP0_PRID:
1046 		kvm_write_c0_guest_prid(cop0, v);
1047 		break;
1048 	case KVM_REG_MIPS_CP0_ERROREPC:
1049 		kvm_write_c0_guest_errorepc(cop0, v);
1050 		break;
1051 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1052 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1053 		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1054 			return -EINVAL;
1055 		switch (idx) {
1056 		case 2:
1057 			kvm_write_c0_guest_kscratch1(cop0, v);
1058 			break;
1059 		case 3:
1060 			kvm_write_c0_guest_kscratch2(cop0, v);
1061 			break;
1062 		case 4:
1063 			kvm_write_c0_guest_kscratch3(cop0, v);
1064 			break;
1065 		case 5:
1066 			kvm_write_c0_guest_kscratch4(cop0, v);
1067 			break;
1068 		case 6:
1069 			kvm_write_c0_guest_kscratch5(cop0, v);
1070 			break;
1071 		case 7:
1072 			kvm_write_c0_guest_kscratch6(cop0, v);
1073 			break;
1074 		}
1075 		break;
1076 	/* registers to be handled specially */
1077 	default:
1078 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1079 	}
1080 	return 0;
1081 }
1082 
1083 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1084 				     struct kvm_enable_cap *cap)
1085 {
1086 	int r = 0;
1087 
1088 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1089 		return -EINVAL;
1090 	if (cap->flags)
1091 		return -EINVAL;
1092 	if (cap->args[0])
1093 		return -EINVAL;
1094 
1095 	switch (cap->cap) {
1096 	case KVM_CAP_MIPS_FPU:
1097 		vcpu->arch.fpu_enabled = true;
1098 		break;
1099 	case KVM_CAP_MIPS_MSA:
1100 		vcpu->arch.msa_enabled = true;
1101 		break;
1102 	default:
1103 		r = -EINVAL;
1104 		break;
1105 	}
1106 
1107 	return r;
1108 }
1109 
1110 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1111 			 unsigned long arg)
1112 {
1113 	struct kvm_vcpu *vcpu = filp->private_data;
1114 	void __user *argp = (void __user *)arg;
1115 	long r;
1116 
1117 	switch (ioctl) {
1118 	case KVM_SET_ONE_REG:
1119 	case KVM_GET_ONE_REG: {
1120 		struct kvm_one_reg reg;
1121 
1122 		if (copy_from_user(&reg, argp, sizeof(reg)))
1123 			return -EFAULT;
1124 		if (ioctl == KVM_SET_ONE_REG)
1125 			return kvm_mips_set_reg(vcpu, &reg);
1126 		else
1127 			return kvm_mips_get_reg(vcpu, &reg);
1128 	}
1129 	case KVM_GET_REG_LIST: {
1130 		struct kvm_reg_list __user *user_list = argp;
1131 		struct kvm_reg_list reg_list;
1132 		unsigned n;
1133 
1134 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1135 			return -EFAULT;
1136 		n = reg_list.n;
1137 		reg_list.n = kvm_mips_num_regs(vcpu);
1138 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1139 			return -EFAULT;
1140 		if (n < reg_list.n)
1141 			return -E2BIG;
1142 		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1143 	}
1144 	case KVM_NMI:
1145 		/* Treat the NMI as a CPU reset */
1146 		r = kvm_mips_reset_vcpu(vcpu);
1147 		break;
1148 	case KVM_INTERRUPT:
1149 		{
1150 			struct kvm_mips_interrupt irq;
1151 
1152 			r = -EFAULT;
1153 			if (copy_from_user(&irq, argp, sizeof(irq)))
1154 				goto out;
1155 
1156 			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1157 				  irq.irq);
1158 
1159 			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1160 			break;
1161 		}
1162 	case KVM_ENABLE_CAP: {
1163 		struct kvm_enable_cap cap;
1164 
1165 		r = -EFAULT;
1166 		if (copy_from_user(&cap, argp, sizeof(cap)))
1167 			goto out;
1168 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1169 		break;
1170 	}
1171 	default:
1172 		r = -ENOIOCTLCMD;
1173 	}
1174 
1175 out:
1176 	return r;
1177 }
1178 
1179 /* Get (and clear) the dirty memory log for a memory slot. */
1180 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1181 {
1182 	struct kvm_memslots *slots;
1183 	struct kvm_memory_slot *memslot;
1184 	unsigned long ga, ga_end;
1185 	int is_dirty = 0;
1186 	int r;
1187 	unsigned long n;
1188 
1189 	mutex_lock(&kvm->slots_lock);
1190 
1191 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1192 	if (r)
1193 		goto out;
1194 
1195 	/* If nothing is dirty, don't bother messing with page tables. */
1196 	if (is_dirty) {
1197 		slots = kvm_memslots(kvm);
1198 		memslot = id_to_memslot(slots, log->slot);
1199 
1200 		ga = memslot->base_gfn << PAGE_SHIFT;
1201 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1202 
1203 		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1204 			 ga_end);
1205 
1206 		n = kvm_dirty_bitmap_bytes(memslot);
1207 		memset(memslot->dirty_bitmap, 0, n);
1208 	}
1209 
1210 	r = 0;
1211 out:
1212 	mutex_unlock(&kvm->slots_lock);
1213 	return r;
1214 
1215 }
1216 
1217 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1218 {
1219 	long r;
1220 
1221 	switch (ioctl) {
1222 	default:
1223 		r = -ENOIOCTLCMD;
1224 	}
1225 
1226 	return r;
1227 }
1228 
1229 int kvm_arch_init(void *opaque)
1230 {
1231 	if (kvm_mips_callbacks) {
1232 		kvm_err("kvm: module already exists\n");
1233 		return -EEXIST;
1234 	}
1235 
1236 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1237 }
1238 
1239 void kvm_arch_exit(void)
1240 {
1241 	kvm_mips_callbacks = NULL;
1242 }
1243 
1244 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1245 				  struct kvm_sregs *sregs)
1246 {
1247 	return -ENOIOCTLCMD;
1248 }
1249 
1250 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1251 				  struct kvm_sregs *sregs)
1252 {
1253 	return -ENOIOCTLCMD;
1254 }
1255 
1256 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1257 {
1258 }
1259 
1260 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1261 {
1262 	return -ENOIOCTLCMD;
1263 }
1264 
1265 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1266 {
1267 	return -ENOIOCTLCMD;
1268 }
1269 
1270 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1271 {
1272 	return VM_FAULT_SIGBUS;
1273 }
1274 
1275 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1276 {
1277 	int r;
1278 
1279 	switch (ext) {
1280 	case KVM_CAP_ONE_REG:
1281 	case KVM_CAP_ENABLE_CAP:
1282 		r = 1;
1283 		break;
1284 	case KVM_CAP_COALESCED_MMIO:
1285 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1286 		break;
1287 	case KVM_CAP_MIPS_FPU:
1288 		/* We don't handle systems with inconsistent cpu_has_fpu */
1289 		r = !!raw_cpu_has_fpu;
1290 		break;
1291 	case KVM_CAP_MIPS_MSA:
1292 		/*
1293 		 * We don't support MSA vector partitioning yet:
1294 		 * 1) It would require explicit support which can't be tested
1295 		 *    yet due to lack of support in current hardware.
1296 		 * 2) It extends the state that would need to be saved/restored
1297 		 *    by e.g. QEMU for migration.
1298 		 *
1299 		 * When vector partitioning hardware becomes available, support
1300 		 * could be added by requiring a flag when enabling
1301 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1302 		 * to save/restore the appropriate extra state.
1303 		 */
1304 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1305 		break;
1306 	default:
1307 		r = 0;
1308 		break;
1309 	}
1310 	return r;
1311 }
1312 
1313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1314 {
1315 	return kvm_mips_pending_timer(vcpu);
1316 }
1317 
1318 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1319 {
1320 	int i;
1321 	struct mips_coproc *cop0;
1322 
1323 	if (!vcpu)
1324 		return -1;
1325 
1326 	kvm_debug("VCPU Register Dump:\n");
1327 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1328 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1329 
1330 	for (i = 0; i < 32; i += 4) {
1331 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1332 		       vcpu->arch.gprs[i],
1333 		       vcpu->arch.gprs[i + 1],
1334 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1335 	}
1336 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1337 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1338 
1339 	cop0 = vcpu->arch.cop0;
1340 	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1341 		  kvm_read_c0_guest_status(cop0),
1342 		  kvm_read_c0_guest_cause(cop0));
1343 
1344 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1345 
1346 	return 0;
1347 }
1348 
1349 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1350 {
1351 	int i;
1352 
1353 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1354 		vcpu->arch.gprs[i] = regs->gpr[i];
1355 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1356 	vcpu->arch.hi = regs->hi;
1357 	vcpu->arch.lo = regs->lo;
1358 	vcpu->arch.pc = regs->pc;
1359 
1360 	return 0;
1361 }
1362 
1363 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1368 		regs->gpr[i] = vcpu->arch.gprs[i];
1369 
1370 	regs->hi = vcpu->arch.hi;
1371 	regs->lo = vcpu->arch.lo;
1372 	regs->pc = vcpu->arch.pc;
1373 
1374 	return 0;
1375 }
1376 
1377 static void kvm_mips_comparecount_func(unsigned long data)
1378 {
1379 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1380 
1381 	kvm_mips_callbacks->queue_timer_int(vcpu);
1382 
1383 	vcpu->arch.wait = 0;
1384 	if (swait_active(&vcpu->wq))
1385 		swake_up(&vcpu->wq);
1386 }
1387 
1388 /* low level hrtimer wake routine */
1389 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1390 {
1391 	struct kvm_vcpu *vcpu;
1392 
1393 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1394 	kvm_mips_comparecount_func((unsigned long) vcpu);
1395 	return kvm_mips_count_timeout(vcpu);
1396 }
1397 
1398 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1399 {
1400 	kvm_mips_callbacks->vcpu_init(vcpu);
1401 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1402 		     HRTIMER_MODE_REL);
1403 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1404 	return 0;
1405 }
1406 
1407 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1408 				  struct kvm_translation *tr)
1409 {
1410 	return 0;
1411 }
1412 
1413 /* Initial guest state */
1414 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1415 {
1416 	return kvm_mips_callbacks->vcpu_setup(vcpu);
1417 }
1418 
1419 static void kvm_mips_set_c0_status(void)
1420 {
1421 	u32 status = read_c0_status();
1422 
1423 	if (cpu_has_dsp)
1424 		status |= (ST0_MX);
1425 
1426 	write_c0_status(status);
1427 	ehb();
1428 }
1429 
1430 /*
1431  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1432  */
1433 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1434 {
1435 	u32 cause = vcpu->arch.host_cp0_cause;
1436 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1437 	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1438 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1439 	enum emulation_result er = EMULATE_DONE;
1440 	int ret = RESUME_GUEST;
1441 
1442 	/* re-enable HTW before enabling interrupts */
1443 	htw_start();
1444 
1445 	/* Set a default exit reason */
1446 	run->exit_reason = KVM_EXIT_UNKNOWN;
1447 	run->ready_for_interrupt_injection = 1;
1448 
1449 	/*
1450 	 * Set the appropriate status bits based on host CPU features,
1451 	 * before we hit the scheduler
1452 	 */
1453 	kvm_mips_set_c0_status();
1454 
1455 	local_irq_enable();
1456 
1457 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1458 			cause, opc, run, vcpu);
1459 	trace_kvm_exit(vcpu, exccode);
1460 
1461 	/*
1462 	 * Do a privilege check, if in UM most of these exit conditions end up
1463 	 * causing an exception to be delivered to the Guest Kernel
1464 	 */
1465 	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1466 	if (er == EMULATE_PRIV_FAIL) {
1467 		goto skip_emul;
1468 	} else if (er == EMULATE_FAIL) {
1469 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1470 		ret = RESUME_HOST;
1471 		goto skip_emul;
1472 	}
1473 
1474 	switch (exccode) {
1475 	case EXCCODE_INT:
1476 		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1477 
1478 		++vcpu->stat.int_exits;
1479 
1480 		if (need_resched())
1481 			cond_resched();
1482 
1483 		ret = RESUME_GUEST;
1484 		break;
1485 
1486 	case EXCCODE_CPU:
1487 		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1488 
1489 		++vcpu->stat.cop_unusable_exits;
1490 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1491 		/* XXXKYMA: Might need to return to user space */
1492 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1493 			ret = RESUME_HOST;
1494 		break;
1495 
1496 	case EXCCODE_MOD:
1497 		++vcpu->stat.tlbmod_exits;
1498 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1499 		break;
1500 
1501 	case EXCCODE_TLBS:
1502 		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1503 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1504 			  badvaddr);
1505 
1506 		++vcpu->stat.tlbmiss_st_exits;
1507 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1508 		break;
1509 
1510 	case EXCCODE_TLBL:
1511 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1512 			  cause, opc, badvaddr);
1513 
1514 		++vcpu->stat.tlbmiss_ld_exits;
1515 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1516 		break;
1517 
1518 	case EXCCODE_ADES:
1519 		++vcpu->stat.addrerr_st_exits;
1520 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1521 		break;
1522 
1523 	case EXCCODE_ADEL:
1524 		++vcpu->stat.addrerr_ld_exits;
1525 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1526 		break;
1527 
1528 	case EXCCODE_SYS:
1529 		++vcpu->stat.syscall_exits;
1530 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1531 		break;
1532 
1533 	case EXCCODE_RI:
1534 		++vcpu->stat.resvd_inst_exits;
1535 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1536 		break;
1537 
1538 	case EXCCODE_BP:
1539 		++vcpu->stat.break_inst_exits;
1540 		ret = kvm_mips_callbacks->handle_break(vcpu);
1541 		break;
1542 
1543 	case EXCCODE_TR:
1544 		++vcpu->stat.trap_inst_exits;
1545 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1546 		break;
1547 
1548 	case EXCCODE_MSAFPE:
1549 		++vcpu->stat.msa_fpe_exits;
1550 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1551 		break;
1552 
1553 	case EXCCODE_FPE:
1554 		++vcpu->stat.fpe_exits;
1555 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1556 		break;
1557 
1558 	case EXCCODE_MSADIS:
1559 		++vcpu->stat.msa_disabled_exits;
1560 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1561 		break;
1562 
1563 	default:
1564 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1565 			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1566 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1567 		kvm_arch_vcpu_dump_regs(vcpu);
1568 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1569 		ret = RESUME_HOST;
1570 		break;
1571 
1572 	}
1573 
1574 skip_emul:
1575 	local_irq_disable();
1576 
1577 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1578 		kvm_mips_deliver_interrupts(vcpu, cause);
1579 
1580 	if (!(ret & RESUME_HOST)) {
1581 		/* Only check for signals if not already exiting to userspace */
1582 		if (signal_pending(current)) {
1583 			run->exit_reason = KVM_EXIT_INTR;
1584 			ret = (-EINTR << 2) | RESUME_HOST;
1585 			++vcpu->stat.signal_exits;
1586 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1587 		}
1588 	}
1589 
1590 	if (ret == RESUME_GUEST) {
1591 		trace_kvm_reenter(vcpu);
1592 
1593 		kvm_mips_check_asids(vcpu);
1594 
1595 		/*
1596 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1597 		 * is live), restore FCR31 / MSACSR.
1598 		 *
1599 		 * This should be before returning to the guest exception
1600 		 * vector, as it may well cause an [MSA] FP exception if there
1601 		 * are pending exception bits unmasked. (see
1602 		 * kvm_mips_csr_die_notifier() for how that is handled).
1603 		 */
1604 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1605 		    read_c0_status() & ST0_CU1)
1606 			__kvm_restore_fcsr(&vcpu->arch);
1607 
1608 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1609 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1610 			__kvm_restore_msacsr(&vcpu->arch);
1611 	}
1612 
1613 	/* Disable HTW before returning to guest or host */
1614 	htw_stop();
1615 
1616 	return ret;
1617 }
1618 
1619 /* Enable FPU for guest and restore context */
1620 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1621 {
1622 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1623 	unsigned int sr, cfg5;
1624 
1625 	preempt_disable();
1626 
1627 	sr = kvm_read_c0_guest_status(cop0);
1628 
1629 	/*
1630 	 * If MSA state is already live, it is undefined how it interacts with
1631 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1632 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1633 	 * play it safe and save it first.
1634 	 *
1635 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1636 	 * get called when guest CU1 is set, however we can't trust the guest
1637 	 * not to clobber the status register directly via the commpage.
1638 	 */
1639 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1640 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1641 		kvm_lose_fpu(vcpu);
1642 
1643 	/*
1644 	 * Enable FPU for guest
1645 	 * We set FR and FRE according to guest context
1646 	 */
1647 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1648 	if (cpu_has_fre) {
1649 		cfg5 = kvm_read_c0_guest_config5(cop0);
1650 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1651 	}
1652 	enable_fpu_hazard();
1653 
1654 	/* If guest FPU state not active, restore it now */
1655 	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1656 		__kvm_restore_fpu(&vcpu->arch);
1657 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1658 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1659 	} else {
1660 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1661 	}
1662 
1663 	preempt_enable();
1664 }
1665 
1666 #ifdef CONFIG_CPU_HAS_MSA
1667 /* Enable MSA for guest and restore context */
1668 void kvm_own_msa(struct kvm_vcpu *vcpu)
1669 {
1670 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1671 	unsigned int sr, cfg5;
1672 
1673 	preempt_disable();
1674 
1675 	/*
1676 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1677 	 * anyway. We set FR and FRE according to guest context.
1678 	 */
1679 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1680 		sr = kvm_read_c0_guest_status(cop0);
1681 
1682 		/*
1683 		 * If FR=0 FPU state is already live, it is undefined how it
1684 		 * interacts with MSA state, so play it safe and save it first.
1685 		 */
1686 		if (!(sr & ST0_FR) &&
1687 		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1688 				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1689 			kvm_lose_fpu(vcpu);
1690 
1691 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1692 		if (sr & ST0_CU1 && cpu_has_fre) {
1693 			cfg5 = kvm_read_c0_guest_config5(cop0);
1694 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1695 		}
1696 	}
1697 
1698 	/* Enable MSA for guest */
1699 	set_c0_config5(MIPS_CONF5_MSAEN);
1700 	enable_fpu_hazard();
1701 
1702 	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1703 	case KVM_MIPS_AUX_FPU:
1704 		/*
1705 		 * Guest FPU state already loaded, only restore upper MSA state
1706 		 */
1707 		__kvm_restore_msa_upper(&vcpu->arch);
1708 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1709 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1710 		break;
1711 	case 0:
1712 		/* Neither FPU or MSA already active, restore full MSA state */
1713 		__kvm_restore_msa(&vcpu->arch);
1714 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1715 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1716 			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1717 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1718 			      KVM_TRACE_AUX_FPU_MSA);
1719 		break;
1720 	default:
1721 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1722 		break;
1723 	}
1724 
1725 	preempt_enable();
1726 }
1727 #endif
1728 
1729 /* Drop FPU & MSA without saving it */
1730 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1731 {
1732 	preempt_disable();
1733 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1734 		disable_msa();
1735 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1736 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1737 	}
1738 	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1739 		clear_c0_status(ST0_CU1 | ST0_FR);
1740 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1741 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1742 	}
1743 	preempt_enable();
1744 }
1745 
1746 /* Save and disable FPU & MSA */
1747 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1748 {
1749 	/*
1750 	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1751 	 * in guest context (software), but the register state in the hardware
1752 	 * may still be in use. This is why we explicitly re-enable the hardware
1753 	 * before saving.
1754 	 */
1755 
1756 	preempt_disable();
1757 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1758 		set_c0_config5(MIPS_CONF5_MSAEN);
1759 		enable_fpu_hazard();
1760 
1761 		__kvm_save_msa(&vcpu->arch);
1762 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1763 
1764 		/* Disable MSA & FPU */
1765 		disable_msa();
1766 		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1767 			clear_c0_status(ST0_CU1 | ST0_FR);
1768 			disable_fpu_hazard();
1769 		}
1770 		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1771 	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1772 		set_c0_status(ST0_CU1);
1773 		enable_fpu_hazard();
1774 
1775 		__kvm_save_fpu(&vcpu->arch);
1776 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1777 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1778 
1779 		/* Disable FPU */
1780 		clear_c0_status(ST0_CU1 | ST0_FR);
1781 		disable_fpu_hazard();
1782 	}
1783 	preempt_enable();
1784 }
1785 
1786 /*
1787  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1788  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1789  * exception if cause bits are set in the value being written.
1790  */
1791 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1792 				   unsigned long cmd, void *ptr)
1793 {
1794 	struct die_args *args = (struct die_args *)ptr;
1795 	struct pt_regs *regs = args->regs;
1796 	unsigned long pc;
1797 
1798 	/* Only interested in FPE and MSAFPE */
1799 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1800 		return NOTIFY_DONE;
1801 
1802 	/* Return immediately if guest context isn't active */
1803 	if (!(current->flags & PF_VCPU))
1804 		return NOTIFY_DONE;
1805 
1806 	/* Should never get here from user mode */
1807 	BUG_ON(user_mode(regs));
1808 
1809 	pc = instruction_pointer(regs);
1810 	switch (cmd) {
1811 	case DIE_FP:
1812 		/* match 2nd instruction in __kvm_restore_fcsr */
1813 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1814 			return NOTIFY_DONE;
1815 		break;
1816 	case DIE_MSAFP:
1817 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1818 		if (!cpu_has_msa ||
1819 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1820 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1821 			return NOTIFY_DONE;
1822 		break;
1823 	}
1824 
1825 	/* Move PC forward a little and continue executing */
1826 	instruction_pointer(regs) += 4;
1827 
1828 	return NOTIFY_STOP;
1829 }
1830 
1831 static struct notifier_block kvm_mips_csr_die_notifier = {
1832 	.notifier_call = kvm_mips_csr_die_notify,
1833 };
1834 
1835 static int __init kvm_mips_init(void)
1836 {
1837 	int ret;
1838 
1839 	ret = kvm_mips_entry_setup();
1840 	if (ret)
1841 		return ret;
1842 
1843 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1844 
1845 	if (ret)
1846 		return ret;
1847 
1848 	register_die_notifier(&kvm_mips_csr_die_notifier);
1849 
1850 	return 0;
1851 }
1852 
1853 static void __exit kvm_mips_exit(void)
1854 {
1855 	kvm_exit();
1856 
1857 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1858 }
1859 
1860 module_init(kvm_mips_init);
1861 module_exit(kvm_mips_exit);
1862 
1863 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1864