1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #ifndef VECTORSPACING
38 #define VECTORSPACING 0x100 /* for EI/VI mode */
39 #endif
40
41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43 };
44
45 const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52 };
53
54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82 #ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84 #endif
85 };
86
87 const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94 };
95
96 bool kvm_trace_guest_mode_change;
97
kvm_guest_mode_change_trace_reg(void)98 int kvm_guest_mode_change_trace_reg(void)
99 {
100 kvm_trace_guest_mode_change = true;
101 return 0;
102 }
103
kvm_guest_mode_change_trace_unreg(void)104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106 kvm_trace_guest_mode_change = false;
107 }
108
109 /*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115 return !!(vcpu->arch.pending_exceptions);
116 }
117
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120 return false;
121 }
122
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125 return 1;
126 }
127
kvm_arch_enable_virtualization_cpu(void)128 int kvm_arch_enable_virtualization_cpu(void)
129 {
130 return kvm_mips_callbacks->enable_virtualization_cpu();
131 }
132
kvm_arch_disable_virtualization_cpu(void)133 void kvm_arch_disable_virtualization_cpu(void)
134 {
135 kvm_mips_callbacks->disable_virtualization_cpu();
136 }
137
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)138 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
139 {
140 switch (type) {
141 case KVM_VM_MIPS_AUTO:
142 break;
143 case KVM_VM_MIPS_VZ:
144 break;
145 default:
146 /* Unsupported KVM type */
147 return -EINVAL;
148 }
149
150 /* Allocate page table to map GPA -> RPA */
151 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
152 if (!kvm->arch.gpa_mm.pgd)
153 return -ENOMEM;
154
155 #ifdef CONFIG_CPU_LOONGSON64
156 kvm_init_loongson_ipi(kvm);
157 #endif
158
159 return 0;
160 }
161
kvm_mips_free_gpa_pt(struct kvm * kvm)162 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
163 {
164 /* It should always be safe to remove after flushing the whole range */
165 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
166 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
167 }
168
kvm_arch_destroy_vm(struct kvm * kvm)169 void kvm_arch_destroy_vm(struct kvm *kvm)
170 {
171 kvm_destroy_vcpus(kvm);
172 kvm_mips_free_gpa_pt(kvm);
173 }
174
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)175 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
176 unsigned long arg)
177 {
178 return -ENOIOCTLCMD;
179 }
180
kvm_arch_flush_shadow_all(struct kvm * kvm)181 void kvm_arch_flush_shadow_all(struct kvm *kvm)
182 {
183 /* Flush whole GPA */
184 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
185 kvm_flush_remote_tlbs(kvm);
186 }
187
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)188 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
189 struct kvm_memory_slot *slot)
190 {
191 /*
192 * The slot has been made invalid (ready for moving or deletion), so we
193 * need to ensure that it can no longer be accessed by any guest VCPUs.
194 */
195
196 spin_lock(&kvm->mmu_lock);
197 /* Flush slot from GPA */
198 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
199 slot->base_gfn + slot->npages - 1);
200 kvm_flush_remote_tlbs_memslot(kvm, slot);
201 spin_unlock(&kvm->mmu_lock);
202 }
203
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)204 int kvm_arch_prepare_memory_region(struct kvm *kvm,
205 const struct kvm_memory_slot *old,
206 struct kvm_memory_slot *new,
207 enum kvm_mr_change change)
208 {
209 return 0;
210 }
211
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)212 void kvm_arch_commit_memory_region(struct kvm *kvm,
213 struct kvm_memory_slot *old,
214 const struct kvm_memory_slot *new,
215 enum kvm_mr_change change)
216 {
217 int needs_flush;
218
219 /*
220 * If dirty page logging is enabled, write protect all pages in the slot
221 * ready for dirty logging.
222 *
223 * There is no need to do this in any of the following cases:
224 * CREATE: No dirty mappings will already exist.
225 * MOVE/DELETE: The old mappings will already have been cleaned up by
226 * kvm_arch_flush_shadow_memslot()
227 */
228 if (change == KVM_MR_FLAGS_ONLY &&
229 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
230 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
231 spin_lock(&kvm->mmu_lock);
232 /* Write protect GPA page table entries */
233 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
234 new->base_gfn + new->npages - 1);
235 if (needs_flush)
236 kvm_flush_remote_tlbs_memslot(kvm, new);
237 spin_unlock(&kvm->mmu_lock);
238 }
239 }
240
dump_handler(const char * symbol,void * start,void * end)241 static inline void dump_handler(const char *symbol, void *start, void *end)
242 {
243 u32 *p;
244
245 pr_debug("LEAF(%s)\n", symbol);
246
247 pr_debug("\t.set push\n");
248 pr_debug("\t.set noreorder\n");
249
250 for (p = start; p < (u32 *)end; ++p)
251 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
252
253 pr_debug("\t.set\tpop\n");
254
255 pr_debug("\tEND(%s)\n", symbol);
256 }
257
258 /* low level hrtimer wake routine */
kvm_mips_comparecount_wakeup(struct hrtimer * timer)259 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
260 {
261 struct kvm_vcpu *vcpu;
262
263 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
264
265 kvm_mips_callbacks->queue_timer_int(vcpu);
266
267 vcpu->arch.wait = 0;
268 rcuwait_wake_up(&vcpu->wait);
269
270 return kvm_mips_count_timeout(vcpu);
271 }
272
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)273 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
274 {
275 return 0;
276 }
277
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)278 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
279 {
280 int err, size;
281 void *gebase, *p, *handler, *refill_start, *refill_end;
282 int i;
283
284 kvm_debug("kvm @ %p: create cpu %d at %p\n",
285 vcpu->kvm, vcpu->vcpu_id, vcpu);
286
287 err = kvm_mips_callbacks->vcpu_init(vcpu);
288 if (err)
289 return err;
290
291 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
292 HRTIMER_MODE_REL);
293 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
294
295 /*
296 * Allocate space for host mode exception handlers that handle
297 * guest mode exits
298 */
299 if (cpu_has_veic || cpu_has_vint)
300 size = 0x200 + VECTORSPACING * 64;
301 else
302 size = 0x4000;
303
304 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
305
306 if (!gebase) {
307 err = -ENOMEM;
308 goto out_uninit_vcpu;
309 }
310 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
311 ALIGN(size, PAGE_SIZE), gebase);
312
313 /*
314 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
315 * limits us to the low 512MB of physical address space. If the memory
316 * we allocate is out of range, just give up now.
317 */
318 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
319 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
320 gebase);
321 err = -ENOMEM;
322 goto out_free_gebase;
323 }
324
325 /* Save new ebase */
326 vcpu->arch.guest_ebase = gebase;
327
328 /* Build guest exception vectors dynamically in unmapped memory */
329 handler = gebase + 0x2000;
330
331 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
332 refill_start = gebase;
333 if (IS_ENABLED(CONFIG_64BIT))
334 refill_start += 0x080;
335 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
336
337 /* General Exception Entry point */
338 kvm_mips_build_exception(gebase + 0x180, handler);
339
340 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
341 for (i = 0; i < 8; i++) {
342 kvm_debug("L1 Vectored handler @ %p\n",
343 gebase + 0x200 + (i * VECTORSPACING));
344 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
345 handler);
346 }
347
348 /* General exit handler */
349 p = handler;
350 p = kvm_mips_build_exit(p);
351
352 /* Guest entry routine */
353 vcpu->arch.vcpu_run = p;
354 p = kvm_mips_build_vcpu_run(p);
355
356 /* Dump the generated code */
357 pr_debug("#include <asm/asm.h>\n");
358 pr_debug("#include <asm/regdef.h>\n");
359 pr_debug("\n");
360 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
361 dump_handler("kvm_tlb_refill", refill_start, refill_end);
362 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
363 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
364
365 /* Invalidate the icache for these ranges */
366 flush_icache_range((unsigned long)gebase,
367 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
368
369 /* Init */
370 vcpu->arch.last_sched_cpu = -1;
371 vcpu->arch.last_exec_cpu = -1;
372
373 /* Initial guest state */
374 err = kvm_mips_callbacks->vcpu_setup(vcpu);
375 if (err)
376 goto out_free_gebase;
377
378 return 0;
379
380 out_free_gebase:
381 kfree(gebase);
382 out_uninit_vcpu:
383 kvm_mips_callbacks->vcpu_uninit(vcpu);
384 return err;
385 }
386
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
388 {
389 hrtimer_cancel(&vcpu->arch.comparecount_timer);
390
391 kvm_mips_dump_stats(vcpu);
392
393 kvm_mmu_free_memory_caches(vcpu);
394 kfree(vcpu->arch.guest_ebase);
395
396 kvm_mips_callbacks->vcpu_uninit(vcpu);
397 }
398
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)399 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
400 struct kvm_guest_debug *dbg)
401 {
402 return -ENOIOCTLCMD;
403 }
404
405 /*
406 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
407 * the vCPU is running.
408 *
409 * This must be noinstr as instrumentation may make use of RCU, and this is not
410 * safe during the EQS.
411 */
kvm_mips_vcpu_enter_exit(struct kvm_vcpu * vcpu)412 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
413 {
414 int ret;
415
416 guest_state_enter_irqoff();
417 ret = kvm_mips_callbacks->vcpu_run(vcpu);
418 guest_state_exit_irqoff();
419
420 return ret;
421 }
422
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)423 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
424 {
425 int r = -EINTR;
426
427 vcpu_load(vcpu);
428
429 kvm_sigset_activate(vcpu);
430
431 if (vcpu->mmio_needed) {
432 if (!vcpu->mmio_is_write)
433 kvm_mips_complete_mmio_load(vcpu);
434 vcpu->mmio_needed = 0;
435 }
436
437 if (!vcpu->wants_to_run)
438 goto out;
439
440 lose_fpu(1);
441
442 local_irq_disable();
443 guest_timing_enter_irqoff();
444 trace_kvm_enter(vcpu);
445
446 /*
447 * Make sure the read of VCPU requests in vcpu_run() callback is not
448 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
449 * flush request while the requester sees the VCPU as outside of guest
450 * mode and not needing an IPI.
451 */
452 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
453
454 r = kvm_mips_vcpu_enter_exit(vcpu);
455
456 /*
457 * We must ensure that any pending interrupts are taken before
458 * we exit guest timing so that timer ticks are accounted as
459 * guest time. Transiently unmask interrupts so that any
460 * pending interrupts are taken.
461 *
462 * TODO: is there a barrier which ensures that pending interrupts are
463 * recognised? Currently this just hopes that the CPU takes any pending
464 * interrupts between the enable and disable.
465 */
466 local_irq_enable();
467 local_irq_disable();
468
469 trace_kvm_out(vcpu);
470 guest_timing_exit_irqoff();
471 local_irq_enable();
472
473 out:
474 kvm_sigset_deactivate(vcpu);
475
476 vcpu_put(vcpu);
477 return r;
478 }
479
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)480 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
481 struct kvm_mips_interrupt *irq)
482 {
483 int intr = (int)irq->irq;
484 struct kvm_vcpu *dvcpu = NULL;
485
486 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
487 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
488 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
489 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
490 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
491 (int)intr);
492
493 if (irq->cpu == -1)
494 dvcpu = vcpu;
495 else
496 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
497
498 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
499 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
500
501 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
502 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
503 } else {
504 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
505 irq->cpu, irq->irq);
506 return -EINVAL;
507 }
508
509 dvcpu->arch.wait = 0;
510
511 rcuwait_wake_up(&dvcpu->wait);
512
513 return 0;
514 }
515
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)516 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
517 struct kvm_mp_state *mp_state)
518 {
519 return -ENOIOCTLCMD;
520 }
521
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)522 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
523 struct kvm_mp_state *mp_state)
524 {
525 return -ENOIOCTLCMD;
526 }
527
528 static u64 kvm_mips_get_one_regs[] = {
529 KVM_REG_MIPS_R0,
530 KVM_REG_MIPS_R1,
531 KVM_REG_MIPS_R2,
532 KVM_REG_MIPS_R3,
533 KVM_REG_MIPS_R4,
534 KVM_REG_MIPS_R5,
535 KVM_REG_MIPS_R6,
536 KVM_REG_MIPS_R7,
537 KVM_REG_MIPS_R8,
538 KVM_REG_MIPS_R9,
539 KVM_REG_MIPS_R10,
540 KVM_REG_MIPS_R11,
541 KVM_REG_MIPS_R12,
542 KVM_REG_MIPS_R13,
543 KVM_REG_MIPS_R14,
544 KVM_REG_MIPS_R15,
545 KVM_REG_MIPS_R16,
546 KVM_REG_MIPS_R17,
547 KVM_REG_MIPS_R18,
548 KVM_REG_MIPS_R19,
549 KVM_REG_MIPS_R20,
550 KVM_REG_MIPS_R21,
551 KVM_REG_MIPS_R22,
552 KVM_REG_MIPS_R23,
553 KVM_REG_MIPS_R24,
554 KVM_REG_MIPS_R25,
555 KVM_REG_MIPS_R26,
556 KVM_REG_MIPS_R27,
557 KVM_REG_MIPS_R28,
558 KVM_REG_MIPS_R29,
559 KVM_REG_MIPS_R30,
560 KVM_REG_MIPS_R31,
561
562 #ifndef CONFIG_CPU_MIPSR6
563 KVM_REG_MIPS_HI,
564 KVM_REG_MIPS_LO,
565 #endif
566 KVM_REG_MIPS_PC,
567 };
568
569 static u64 kvm_mips_get_one_regs_fpu[] = {
570 KVM_REG_MIPS_FCR_IR,
571 KVM_REG_MIPS_FCR_CSR,
572 };
573
574 static u64 kvm_mips_get_one_regs_msa[] = {
575 KVM_REG_MIPS_MSA_IR,
576 KVM_REG_MIPS_MSA_CSR,
577 };
578
kvm_mips_num_regs(struct kvm_vcpu * vcpu)579 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
580 {
581 unsigned long ret;
582
583 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
584 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
585 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
586 /* odd doubles */
587 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
588 ret += 16;
589 }
590 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
591 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
592 ret += kvm_mips_callbacks->num_regs(vcpu);
593
594 return ret;
595 }
596
kvm_mips_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * indices)597 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
598 {
599 u64 index;
600 unsigned int i;
601
602 if (copy_to_user(indices, kvm_mips_get_one_regs,
603 sizeof(kvm_mips_get_one_regs)))
604 return -EFAULT;
605 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
606
607 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
608 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
609 sizeof(kvm_mips_get_one_regs_fpu)))
610 return -EFAULT;
611 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
612
613 for (i = 0; i < 32; ++i) {
614 index = KVM_REG_MIPS_FPR_32(i);
615 if (copy_to_user(indices, &index, sizeof(index)))
616 return -EFAULT;
617 ++indices;
618
619 /* skip odd doubles if no F64 */
620 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
621 continue;
622
623 index = KVM_REG_MIPS_FPR_64(i);
624 if (copy_to_user(indices, &index, sizeof(index)))
625 return -EFAULT;
626 ++indices;
627 }
628 }
629
630 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
631 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
632 sizeof(kvm_mips_get_one_regs_msa)))
633 return -EFAULT;
634 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
635
636 for (i = 0; i < 32; ++i) {
637 index = KVM_REG_MIPS_VEC_128(i);
638 if (copy_to_user(indices, &index, sizeof(index)))
639 return -EFAULT;
640 ++indices;
641 }
642 }
643
644 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
645 }
646
kvm_mips_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)647 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
648 const struct kvm_one_reg *reg)
649 {
650 struct mips_coproc *cop0 = &vcpu->arch.cop0;
651 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
652 int ret;
653 s64 v;
654 s64 vs[2];
655 unsigned int idx;
656
657 switch (reg->id) {
658 /* General purpose registers */
659 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
660 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
661 break;
662 #ifndef CONFIG_CPU_MIPSR6
663 case KVM_REG_MIPS_HI:
664 v = (long)vcpu->arch.hi;
665 break;
666 case KVM_REG_MIPS_LO:
667 v = (long)vcpu->arch.lo;
668 break;
669 #endif
670 case KVM_REG_MIPS_PC:
671 v = (long)vcpu->arch.pc;
672 break;
673
674 /* Floating point registers */
675 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
676 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
677 return -EINVAL;
678 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
679 /* Odd singles in top of even double when FR=0 */
680 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
681 v = get_fpr32(&fpu->fpr[idx], 0);
682 else
683 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
684 break;
685 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
686 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
687 return -EINVAL;
688 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
689 /* Can't access odd doubles in FR=0 mode */
690 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
691 return -EINVAL;
692 v = get_fpr64(&fpu->fpr[idx], 0);
693 break;
694 case KVM_REG_MIPS_FCR_IR:
695 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
696 return -EINVAL;
697 v = boot_cpu_data.fpu_id;
698 break;
699 case KVM_REG_MIPS_FCR_CSR:
700 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
701 return -EINVAL;
702 v = fpu->fcr31;
703 break;
704
705 /* MIPS SIMD Architecture (MSA) registers */
706 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
707 if (!kvm_mips_guest_has_msa(&vcpu->arch))
708 return -EINVAL;
709 /* Can't access MSA registers in FR=0 mode */
710 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
711 return -EINVAL;
712 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
713 #ifdef CONFIG_CPU_LITTLE_ENDIAN
714 /* least significant byte first */
715 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
716 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
717 #else
718 /* most significant byte first */
719 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
720 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
721 #endif
722 break;
723 case KVM_REG_MIPS_MSA_IR:
724 if (!kvm_mips_guest_has_msa(&vcpu->arch))
725 return -EINVAL;
726 v = boot_cpu_data.msa_id;
727 break;
728 case KVM_REG_MIPS_MSA_CSR:
729 if (!kvm_mips_guest_has_msa(&vcpu->arch))
730 return -EINVAL;
731 v = fpu->msacsr;
732 break;
733
734 /* registers to be handled specially */
735 default:
736 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
737 if (ret)
738 return ret;
739 break;
740 }
741 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
742 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
743
744 return put_user(v, uaddr64);
745 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
746 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
747 u32 v32 = (u32)v;
748
749 return put_user(v32, uaddr32);
750 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
751 void __user *uaddr = (void __user *)(long)reg->addr;
752
753 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
754 } else {
755 return -EINVAL;
756 }
757 }
758
kvm_mips_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)759 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
760 const struct kvm_one_reg *reg)
761 {
762 struct mips_coproc *cop0 = &vcpu->arch.cop0;
763 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
764 s64 v;
765 s64 vs[2];
766 unsigned int idx;
767
768 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
769 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
770
771 if (get_user(v, uaddr64) != 0)
772 return -EFAULT;
773 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
774 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
775 s32 v32;
776
777 if (get_user(v32, uaddr32) != 0)
778 return -EFAULT;
779 v = (s64)v32;
780 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
781 void __user *uaddr = (void __user *)(long)reg->addr;
782
783 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
784 } else {
785 return -EINVAL;
786 }
787
788 switch (reg->id) {
789 /* General purpose registers */
790 case KVM_REG_MIPS_R0:
791 /* Silently ignore requests to set $0 */
792 break;
793 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
794 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
795 break;
796 #ifndef CONFIG_CPU_MIPSR6
797 case KVM_REG_MIPS_HI:
798 vcpu->arch.hi = v;
799 break;
800 case KVM_REG_MIPS_LO:
801 vcpu->arch.lo = v;
802 break;
803 #endif
804 case KVM_REG_MIPS_PC:
805 vcpu->arch.pc = v;
806 break;
807
808 /* Floating point registers */
809 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
810 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
811 return -EINVAL;
812 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
813 /* Odd singles in top of even double when FR=0 */
814 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
815 set_fpr32(&fpu->fpr[idx], 0, v);
816 else
817 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
818 break;
819 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
820 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
821 return -EINVAL;
822 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
823 /* Can't access odd doubles in FR=0 mode */
824 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
825 return -EINVAL;
826 set_fpr64(&fpu->fpr[idx], 0, v);
827 break;
828 case KVM_REG_MIPS_FCR_IR:
829 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
830 return -EINVAL;
831 /* Read-only */
832 break;
833 case KVM_REG_MIPS_FCR_CSR:
834 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
835 return -EINVAL;
836 fpu->fcr31 = v;
837 break;
838
839 /* MIPS SIMD Architecture (MSA) registers */
840 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
841 if (!kvm_mips_guest_has_msa(&vcpu->arch))
842 return -EINVAL;
843 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
844 #ifdef CONFIG_CPU_LITTLE_ENDIAN
845 /* least significant byte first */
846 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
847 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
848 #else
849 /* most significant byte first */
850 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
851 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
852 #endif
853 break;
854 case KVM_REG_MIPS_MSA_IR:
855 if (!kvm_mips_guest_has_msa(&vcpu->arch))
856 return -EINVAL;
857 /* Read-only */
858 break;
859 case KVM_REG_MIPS_MSA_CSR:
860 if (!kvm_mips_guest_has_msa(&vcpu->arch))
861 return -EINVAL;
862 fpu->msacsr = v;
863 break;
864
865 /* registers to be handled specially */
866 default:
867 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
868 }
869 return 0;
870 }
871
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
873 struct kvm_enable_cap *cap)
874 {
875 int r = 0;
876
877 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
878 return -EINVAL;
879 if (cap->flags)
880 return -EINVAL;
881 if (cap->args[0])
882 return -EINVAL;
883
884 switch (cap->cap) {
885 case KVM_CAP_MIPS_FPU:
886 vcpu->arch.fpu_enabled = true;
887 break;
888 case KVM_CAP_MIPS_MSA:
889 vcpu->arch.msa_enabled = true;
890 break;
891 default:
892 r = -EINVAL;
893 break;
894 }
895
896 return r;
897 }
898
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)899 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
900 unsigned long arg)
901 {
902 struct kvm_vcpu *vcpu = filp->private_data;
903 void __user *argp = (void __user *)arg;
904
905 if (ioctl == KVM_INTERRUPT) {
906 struct kvm_mips_interrupt irq;
907
908 if (copy_from_user(&irq, argp, sizeof(irq)))
909 return -EFAULT;
910 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
911 irq.irq);
912
913 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
914 }
915
916 return -ENOIOCTLCMD;
917 }
918
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)919 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
920 unsigned long arg)
921 {
922 struct kvm_vcpu *vcpu = filp->private_data;
923 void __user *argp = (void __user *)arg;
924 long r;
925
926 vcpu_load(vcpu);
927
928 switch (ioctl) {
929 case KVM_SET_ONE_REG:
930 case KVM_GET_ONE_REG: {
931 struct kvm_one_reg reg;
932
933 r = -EFAULT;
934 if (copy_from_user(®, argp, sizeof(reg)))
935 break;
936 if (ioctl == KVM_SET_ONE_REG)
937 r = kvm_mips_set_reg(vcpu, ®);
938 else
939 r = kvm_mips_get_reg(vcpu, ®);
940 break;
941 }
942 case KVM_GET_REG_LIST: {
943 struct kvm_reg_list __user *user_list = argp;
944 struct kvm_reg_list reg_list;
945 unsigned n;
946
947 r = -EFAULT;
948 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
949 break;
950 n = reg_list.n;
951 reg_list.n = kvm_mips_num_regs(vcpu);
952 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
953 break;
954 r = -E2BIG;
955 if (n < reg_list.n)
956 break;
957 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
958 break;
959 }
960 case KVM_ENABLE_CAP: {
961 struct kvm_enable_cap cap;
962
963 r = -EFAULT;
964 if (copy_from_user(&cap, argp, sizeof(cap)))
965 break;
966 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
967 break;
968 }
969 default:
970 r = -ENOIOCTLCMD;
971 }
972
973 vcpu_put(vcpu);
974 return r;
975 }
976
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)977 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
978 {
979
980 }
981
kvm_arch_flush_remote_tlbs(struct kvm * kvm)982 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
983 {
984 kvm_mips_callbacks->prepare_flush_shadow(kvm);
985 return 1;
986 }
987
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)988 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
989 {
990 int r;
991
992 switch (ioctl) {
993 default:
994 r = -ENOIOCTLCMD;
995 }
996
997 return r;
998 }
999
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1000 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1001 struct kvm_sregs *sregs)
1002 {
1003 return -ENOIOCTLCMD;
1004 }
1005
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1006 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1007 struct kvm_sregs *sregs)
1008 {
1009 return -ENOIOCTLCMD;
1010 }
1011
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)1012 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1013 {
1014 }
1015
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1016 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1017 {
1018 return -ENOIOCTLCMD;
1019 }
1020
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1021 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1022 {
1023 return -ENOIOCTLCMD;
1024 }
1025
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1026 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1027 {
1028 return VM_FAULT_SIGBUS;
1029 }
1030
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)1031 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1032 {
1033 int r;
1034
1035 switch (ext) {
1036 case KVM_CAP_ONE_REG:
1037 case KVM_CAP_ENABLE_CAP:
1038 case KVM_CAP_READONLY_MEM:
1039 case KVM_CAP_SYNC_MMU:
1040 case KVM_CAP_IMMEDIATE_EXIT:
1041 r = 1;
1042 break;
1043 case KVM_CAP_NR_VCPUS:
1044 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1045 break;
1046 case KVM_CAP_MAX_VCPUS:
1047 r = KVM_MAX_VCPUS;
1048 break;
1049 case KVM_CAP_MAX_VCPU_ID:
1050 r = KVM_MAX_VCPU_IDS;
1051 break;
1052 case KVM_CAP_MIPS_FPU:
1053 /* We don't handle systems with inconsistent cpu_has_fpu */
1054 r = !!raw_cpu_has_fpu;
1055 break;
1056 case KVM_CAP_MIPS_MSA:
1057 /*
1058 * We don't support MSA vector partitioning yet:
1059 * 1) It would require explicit support which can't be tested
1060 * yet due to lack of support in current hardware.
1061 * 2) It extends the state that would need to be saved/restored
1062 * by e.g. QEMU for migration.
1063 *
1064 * When vector partitioning hardware becomes available, support
1065 * could be added by requiring a flag when enabling
1066 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1067 * to save/restore the appropriate extra state.
1068 */
1069 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1070 break;
1071 default:
1072 r = kvm_mips_callbacks->check_extension(kvm, ext);
1073 break;
1074 }
1075 return r;
1076 }
1077
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1078 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1079 {
1080 return kvm_mips_pending_timer(vcpu) ||
1081 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1082 }
1083
kvm_arch_vcpu_dump_regs(struct kvm_vcpu * vcpu)1084 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1085 {
1086 int i;
1087 struct mips_coproc *cop0;
1088
1089 if (!vcpu)
1090 return -1;
1091
1092 kvm_debug("VCPU Register Dump:\n");
1093 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1094 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1095
1096 for (i = 0; i < 32; i += 4) {
1097 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1098 vcpu->arch.gprs[i],
1099 vcpu->arch.gprs[i + 1],
1100 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1101 }
1102 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1103 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1104
1105 cop0 = &vcpu->arch.cop0;
1106 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1107 kvm_read_c0_guest_status(cop0),
1108 kvm_read_c0_guest_cause(cop0));
1109
1110 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1111
1112 return 0;
1113 }
1114
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1115 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1116 {
1117 int i;
1118
1119 vcpu_load(vcpu);
1120
1121 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1122 vcpu->arch.gprs[i] = regs->gpr[i];
1123 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1124 vcpu->arch.hi = regs->hi;
1125 vcpu->arch.lo = regs->lo;
1126 vcpu->arch.pc = regs->pc;
1127
1128 vcpu_put(vcpu);
1129 return 0;
1130 }
1131
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1133 {
1134 int i;
1135
1136 vcpu_load(vcpu);
1137
1138 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1139 regs->gpr[i] = vcpu->arch.gprs[i];
1140
1141 regs->hi = vcpu->arch.hi;
1142 regs->lo = vcpu->arch.lo;
1143 regs->pc = vcpu->arch.pc;
1144
1145 vcpu_put(vcpu);
1146 return 0;
1147 }
1148
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)1149 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1150 struct kvm_translation *tr)
1151 {
1152 return 0;
1153 }
1154
kvm_mips_set_c0_status(void)1155 static void kvm_mips_set_c0_status(void)
1156 {
1157 u32 status = read_c0_status();
1158
1159 if (cpu_has_dsp)
1160 status |= (ST0_MX);
1161
1162 write_c0_status(status);
1163 ehb();
1164 }
1165
1166 /*
1167 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1168 */
__kvm_mips_handle_exit(struct kvm_vcpu * vcpu)1169 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1170 {
1171 struct kvm_run *run = vcpu->run;
1172 u32 cause = vcpu->arch.host_cp0_cause;
1173 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1174 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1175 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1176 enum emulation_result er = EMULATE_DONE;
1177 u32 inst;
1178 int ret = RESUME_GUEST;
1179
1180 vcpu->mode = OUTSIDE_GUEST_MODE;
1181
1182 /* Set a default exit reason */
1183 run->exit_reason = KVM_EXIT_UNKNOWN;
1184 run->ready_for_interrupt_injection = 1;
1185
1186 /*
1187 * Set the appropriate status bits based on host CPU features,
1188 * before we hit the scheduler
1189 */
1190 kvm_mips_set_c0_status();
1191
1192 local_irq_enable();
1193
1194 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1195 cause, opc, run, vcpu);
1196 trace_kvm_exit(vcpu, exccode);
1197
1198 switch (exccode) {
1199 case EXCCODE_INT:
1200 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1201
1202 ++vcpu->stat.int_exits;
1203
1204 if (need_resched())
1205 cond_resched();
1206
1207 ret = RESUME_GUEST;
1208 break;
1209
1210 case EXCCODE_CPU:
1211 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1212
1213 ++vcpu->stat.cop_unusable_exits;
1214 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1215 /* XXXKYMA: Might need to return to user space */
1216 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1217 ret = RESUME_HOST;
1218 break;
1219
1220 case EXCCODE_MOD:
1221 ++vcpu->stat.tlbmod_exits;
1222 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1223 break;
1224
1225 case EXCCODE_TLBS:
1226 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1227 cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1228 badvaddr);
1229
1230 ++vcpu->stat.tlbmiss_st_exits;
1231 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1232 break;
1233
1234 case EXCCODE_TLBL:
1235 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1236 cause, opc, badvaddr);
1237
1238 ++vcpu->stat.tlbmiss_ld_exits;
1239 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1240 break;
1241
1242 case EXCCODE_ADES:
1243 ++vcpu->stat.addrerr_st_exits;
1244 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1245 break;
1246
1247 case EXCCODE_ADEL:
1248 ++vcpu->stat.addrerr_ld_exits;
1249 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1250 break;
1251
1252 case EXCCODE_SYS:
1253 ++vcpu->stat.syscall_exits;
1254 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1255 break;
1256
1257 case EXCCODE_RI:
1258 ++vcpu->stat.resvd_inst_exits;
1259 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1260 break;
1261
1262 case EXCCODE_BP:
1263 ++vcpu->stat.break_inst_exits;
1264 ret = kvm_mips_callbacks->handle_break(vcpu);
1265 break;
1266
1267 case EXCCODE_TR:
1268 ++vcpu->stat.trap_inst_exits;
1269 ret = kvm_mips_callbacks->handle_trap(vcpu);
1270 break;
1271
1272 case EXCCODE_MSAFPE:
1273 ++vcpu->stat.msa_fpe_exits;
1274 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1275 break;
1276
1277 case EXCCODE_FPE:
1278 ++vcpu->stat.fpe_exits;
1279 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1280 break;
1281
1282 case EXCCODE_MSADIS:
1283 ++vcpu->stat.msa_disabled_exits;
1284 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1285 break;
1286
1287 case EXCCODE_GE:
1288 /* defer exit accounting to handler */
1289 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1290 break;
1291
1292 default:
1293 if (cause & CAUSEF_BD)
1294 opc += 1;
1295 inst = 0;
1296 kvm_get_badinstr(opc, vcpu, &inst);
1297 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1298 exccode, opc, inst, badvaddr,
1299 kvm_read_c0_guest_status(&vcpu->arch.cop0));
1300 kvm_arch_vcpu_dump_regs(vcpu);
1301 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1302 ret = RESUME_HOST;
1303 break;
1304
1305 }
1306
1307 local_irq_disable();
1308
1309 if (ret == RESUME_GUEST)
1310 kvm_vz_acquire_htimer(vcpu);
1311
1312 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1313 kvm_mips_deliver_interrupts(vcpu, cause);
1314
1315 if (!(ret & RESUME_HOST)) {
1316 /* Only check for signals if not already exiting to userspace */
1317 if (signal_pending(current)) {
1318 run->exit_reason = KVM_EXIT_INTR;
1319 ret = (-EINTR << 2) | RESUME_HOST;
1320 ++vcpu->stat.signal_exits;
1321 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1322 }
1323 }
1324
1325 if (ret == RESUME_GUEST) {
1326 trace_kvm_reenter(vcpu);
1327
1328 /*
1329 * Make sure the read of VCPU requests in vcpu_reenter()
1330 * callback is not reordered ahead of the write to vcpu->mode,
1331 * or we could miss a TLB flush request while the requester sees
1332 * the VCPU as outside of guest mode and not needing an IPI.
1333 */
1334 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1335
1336 kvm_mips_callbacks->vcpu_reenter(vcpu);
1337
1338 /*
1339 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1340 * is live), restore FCR31 / MSACSR.
1341 *
1342 * This should be before returning to the guest exception
1343 * vector, as it may well cause an [MSA] FP exception if there
1344 * are pending exception bits unmasked. (see
1345 * kvm_mips_csr_die_notifier() for how that is handled).
1346 */
1347 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1348 read_c0_status() & ST0_CU1)
1349 __kvm_restore_fcsr(&vcpu->arch);
1350
1351 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1352 read_c0_config5() & MIPS_CONF5_MSAEN)
1353 __kvm_restore_msacsr(&vcpu->arch);
1354 }
1355 return ret;
1356 }
1357
kvm_mips_handle_exit(struct kvm_vcpu * vcpu)1358 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1359 {
1360 int ret;
1361
1362 guest_state_exit_irqoff();
1363 ret = __kvm_mips_handle_exit(vcpu);
1364 guest_state_enter_irqoff();
1365
1366 return ret;
1367 }
1368
1369 /* Enable FPU for guest and restore context */
kvm_own_fpu(struct kvm_vcpu * vcpu)1370 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1371 {
1372 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1373 unsigned int sr, cfg5;
1374
1375 preempt_disable();
1376
1377 sr = kvm_read_c0_guest_status(cop0);
1378
1379 /*
1380 * If MSA state is already live, it is undefined how it interacts with
1381 * FR=0 FPU state, and we don't want to hit reserved instruction
1382 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1383 * play it safe and save it first.
1384 */
1385 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1386 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1387 kvm_lose_fpu(vcpu);
1388
1389 /*
1390 * Enable FPU for guest
1391 * We set FR and FRE according to guest context
1392 */
1393 change_c0_status(ST0_CU1 | ST0_FR, sr);
1394 if (cpu_has_fre) {
1395 cfg5 = kvm_read_c0_guest_config5(cop0);
1396 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1397 }
1398 enable_fpu_hazard();
1399
1400 /* If guest FPU state not active, restore it now */
1401 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1402 __kvm_restore_fpu(&vcpu->arch);
1403 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1404 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1405 } else {
1406 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1407 }
1408
1409 preempt_enable();
1410 }
1411
1412 #ifdef CONFIG_CPU_HAS_MSA
1413 /* Enable MSA for guest and restore context */
kvm_own_msa(struct kvm_vcpu * vcpu)1414 void kvm_own_msa(struct kvm_vcpu *vcpu)
1415 {
1416 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1417 unsigned int sr, cfg5;
1418
1419 preempt_disable();
1420
1421 /*
1422 * Enable FPU if enabled in guest, since we're restoring FPU context
1423 * anyway. We set FR and FRE according to guest context.
1424 */
1425 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1426 sr = kvm_read_c0_guest_status(cop0);
1427
1428 /*
1429 * If FR=0 FPU state is already live, it is undefined how it
1430 * interacts with MSA state, so play it safe and save it first.
1431 */
1432 if (!(sr & ST0_FR) &&
1433 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1434 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1435 kvm_lose_fpu(vcpu);
1436
1437 change_c0_status(ST0_CU1 | ST0_FR, sr);
1438 if (sr & ST0_CU1 && cpu_has_fre) {
1439 cfg5 = kvm_read_c0_guest_config5(cop0);
1440 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1441 }
1442 }
1443
1444 /* Enable MSA for guest */
1445 set_c0_config5(MIPS_CONF5_MSAEN);
1446 enable_fpu_hazard();
1447
1448 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1449 case KVM_MIPS_AUX_FPU:
1450 /*
1451 * Guest FPU state already loaded, only restore upper MSA state
1452 */
1453 __kvm_restore_msa_upper(&vcpu->arch);
1454 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1455 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1456 break;
1457 case 0:
1458 /* Neither FPU or MSA already active, restore full MSA state */
1459 __kvm_restore_msa(&vcpu->arch);
1460 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1461 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1462 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1463 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1464 KVM_TRACE_AUX_FPU_MSA);
1465 break;
1466 default:
1467 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1468 break;
1469 }
1470
1471 preempt_enable();
1472 }
1473 #endif
1474
1475 /* Drop FPU & MSA without saving it */
kvm_drop_fpu(struct kvm_vcpu * vcpu)1476 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1477 {
1478 preempt_disable();
1479 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1480 disable_msa();
1481 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1482 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1483 }
1484 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1485 clear_c0_status(ST0_CU1 | ST0_FR);
1486 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1487 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1488 }
1489 preempt_enable();
1490 }
1491
1492 /* Save and disable FPU & MSA */
kvm_lose_fpu(struct kvm_vcpu * vcpu)1493 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1494 {
1495 /*
1496 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1497 * is disabled in guest context (software), but the register state in
1498 * the hardware may still be in use.
1499 * This is why we explicitly re-enable the hardware before saving.
1500 */
1501
1502 preempt_disable();
1503 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1504 __kvm_save_msa(&vcpu->arch);
1505 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1506
1507 /* Disable MSA & FPU */
1508 disable_msa();
1509 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1510 clear_c0_status(ST0_CU1 | ST0_FR);
1511 disable_fpu_hazard();
1512 }
1513 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1514 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1515 __kvm_save_fpu(&vcpu->arch);
1516 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1517 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1518
1519 /* Disable FPU */
1520 clear_c0_status(ST0_CU1 | ST0_FR);
1521 disable_fpu_hazard();
1522 }
1523 preempt_enable();
1524 }
1525
1526 /*
1527 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1528 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1529 * exception if cause bits are set in the value being written.
1530 */
kvm_mips_csr_die_notify(struct notifier_block * self,unsigned long cmd,void * ptr)1531 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1532 unsigned long cmd, void *ptr)
1533 {
1534 struct die_args *args = (struct die_args *)ptr;
1535 struct pt_regs *regs = args->regs;
1536 unsigned long pc;
1537
1538 /* Only interested in FPE and MSAFPE */
1539 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1540 return NOTIFY_DONE;
1541
1542 /* Return immediately if guest context isn't active */
1543 if (!(current->flags & PF_VCPU))
1544 return NOTIFY_DONE;
1545
1546 /* Should never get here from user mode */
1547 BUG_ON(user_mode(regs));
1548
1549 pc = instruction_pointer(regs);
1550 switch (cmd) {
1551 case DIE_FP:
1552 /* match 2nd instruction in __kvm_restore_fcsr */
1553 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1554 return NOTIFY_DONE;
1555 break;
1556 case DIE_MSAFP:
1557 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1558 if (!cpu_has_msa ||
1559 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1560 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1561 return NOTIFY_DONE;
1562 break;
1563 }
1564
1565 /* Move PC forward a little and continue executing */
1566 instruction_pointer(regs) += 4;
1567
1568 return NOTIFY_STOP;
1569 }
1570
1571 static struct notifier_block kvm_mips_csr_die_notifier = {
1572 .notifier_call = kvm_mips_csr_die_notify,
1573 };
1574
1575 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1576 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1577 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1578 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1579 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1580 };
1581
1582 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1583 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1584 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1585 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1586 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1587 };
1588
1589 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1590
kvm_irq_to_priority(u32 irq)1591 u32 kvm_irq_to_priority(u32 irq)
1592 {
1593 int i;
1594
1595 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1596 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1597 return i;
1598 }
1599
1600 return MIPS_EXC_MAX;
1601 }
1602
kvm_mips_init(void)1603 static int __init kvm_mips_init(void)
1604 {
1605 int ret;
1606
1607 if (cpu_has_mmid) {
1608 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1609 return -EOPNOTSUPP;
1610 }
1611
1612 ret = kvm_mips_entry_setup();
1613 if (ret)
1614 return ret;
1615
1616 ret = kvm_mips_emulation_init();
1617 if (ret)
1618 return ret;
1619
1620
1621 if (boot_cpu_type() == CPU_LOONGSON64)
1622 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1623
1624 register_die_notifier(&kvm_mips_csr_die_notifier);
1625
1626 ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1627 if (ret) {
1628 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1629 return ret;
1630 }
1631 return 0;
1632 }
1633
kvm_mips_exit(void)1634 static void __exit kvm_mips_exit(void)
1635 {
1636 kvm_exit();
1637
1638 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1639 }
1640
1641 module_init(kvm_mips_init);
1642 module_exit(kvm_mips_exit);
1643
1644 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1645