1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: MIPS specific KVM APIs 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/errno.h> 14 #include <linux/err.h> 15 #include <linux/kdebug.h> 16 #include <linux/module.h> 17 #include <linux/uaccess.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/fs.h> 21 #include <linux/memblock.h> 22 #include <linux/pgtable.h> 23 24 #include <asm/fpu.h> 25 #include <asm/page.h> 26 #include <asm/cacheflush.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgalloc.h> 29 30 #include <linux/kvm_host.h> 31 32 #include "interrupt.h" 33 34 #define CREATE_TRACE_POINTS 35 #include "trace.h" 36 37 #ifndef VECTORSPACING 38 #define VECTORSPACING 0x100 /* for EI/VI mode */ 39 #endif 40 41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 42 KVM_GENERIC_VM_STATS() 43 }; 44 45 const struct kvm_stats_header kvm_vm_stats_header = { 46 .name_size = KVM_STATS_NAME_SIZE, 47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 48 .id_offset = sizeof(struct kvm_stats_header), 49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 51 sizeof(kvm_vm_stats_desc), 52 }; 53 54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 55 KVM_GENERIC_VCPU_STATS(), 56 STATS_DESC_COUNTER(VCPU, wait_exits), 57 STATS_DESC_COUNTER(VCPU, cache_exits), 58 STATS_DESC_COUNTER(VCPU, signal_exits), 59 STATS_DESC_COUNTER(VCPU, int_exits), 60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits), 61 STATS_DESC_COUNTER(VCPU, tlbmod_exits), 62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits), 63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits), 64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits), 65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits), 66 STATS_DESC_COUNTER(VCPU, syscall_exits), 67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits), 68 STATS_DESC_COUNTER(VCPU, break_inst_exits), 69 STATS_DESC_COUNTER(VCPU, trap_inst_exits), 70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits), 71 STATS_DESC_COUNTER(VCPU, fpe_exits), 72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits), 73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits), 74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits), 75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits), 76 STATS_DESC_COUNTER(VCPU, vz_hc_exits), 77 STATS_DESC_COUNTER(VCPU, vz_grr_exits), 78 STATS_DESC_COUNTER(VCPU, vz_gva_exits), 79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits), 80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits), 81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits), 82 #ifdef CONFIG_CPU_LOONGSON64 83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits), 84 #endif 85 }; 86 87 const struct kvm_stats_header kvm_vcpu_stats_header = { 88 .name_size = KVM_STATS_NAME_SIZE, 89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 90 .id_offset = sizeof(struct kvm_stats_header), 91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 93 sizeof(kvm_vcpu_stats_desc), 94 }; 95 96 bool kvm_trace_guest_mode_change; 97 98 int kvm_guest_mode_change_trace_reg(void) 99 { 100 kvm_trace_guest_mode_change = true; 101 return 0; 102 } 103 104 void kvm_guest_mode_change_trace_unreg(void) 105 { 106 kvm_trace_guest_mode_change = false; 107 } 108 109 /* 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in 111 * Config7, so we are "runnable" if interrupts are pending 112 */ 113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 114 { 115 return !!(vcpu->arch.pending_exceptions); 116 } 117 118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 119 { 120 return false; 121 } 122 123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 124 { 125 return 1; 126 } 127 128 int kvm_arch_enable_virtualization_cpu(void) 129 { 130 return kvm_mips_callbacks->enable_virtualization_cpu(); 131 } 132 133 void kvm_arch_disable_virtualization_cpu(void) 134 { 135 kvm_mips_callbacks->disable_virtualization_cpu(); 136 } 137 138 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 139 { 140 switch (type) { 141 case KVM_VM_MIPS_AUTO: 142 break; 143 case KVM_VM_MIPS_VZ: 144 break; 145 default: 146 /* Unsupported KVM type */ 147 return -EINVAL; 148 } 149 150 /* Allocate page table to map GPA -> RPA */ 151 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); 152 if (!kvm->arch.gpa_mm.pgd) 153 return -ENOMEM; 154 155 #ifdef CONFIG_CPU_LOONGSON64 156 kvm_init_loongson_ipi(kvm); 157 #endif 158 159 return 0; 160 } 161 162 static void kvm_mips_free_gpa_pt(struct kvm *kvm) 163 { 164 /* It should always be safe to remove after flushing the whole range */ 165 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); 166 pgd_free(NULL, kvm->arch.gpa_mm.pgd); 167 } 168 169 void kvm_arch_destroy_vm(struct kvm *kvm) 170 { 171 kvm_destroy_vcpus(kvm); 172 kvm_mips_free_gpa_pt(kvm); 173 } 174 175 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, 176 unsigned long arg) 177 { 178 return -ENOIOCTLCMD; 179 } 180 181 void kvm_arch_flush_shadow_all(struct kvm *kvm) 182 { 183 /* Flush whole GPA */ 184 kvm_mips_flush_gpa_pt(kvm, 0, ~0); 185 kvm_flush_remote_tlbs(kvm); 186 } 187 188 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 189 struct kvm_memory_slot *slot) 190 { 191 /* 192 * The slot has been made invalid (ready for moving or deletion), so we 193 * need to ensure that it can no longer be accessed by any guest VCPUs. 194 */ 195 196 spin_lock(&kvm->mmu_lock); 197 /* Flush slot from GPA */ 198 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, 199 slot->base_gfn + slot->npages - 1); 200 kvm_flush_remote_tlbs_memslot(kvm, slot); 201 spin_unlock(&kvm->mmu_lock); 202 } 203 204 int kvm_arch_prepare_memory_region(struct kvm *kvm, 205 const struct kvm_memory_slot *old, 206 struct kvm_memory_slot *new, 207 enum kvm_mr_change change) 208 { 209 return 0; 210 } 211 212 void kvm_arch_commit_memory_region(struct kvm *kvm, 213 struct kvm_memory_slot *old, 214 const struct kvm_memory_slot *new, 215 enum kvm_mr_change change) 216 { 217 int needs_flush; 218 219 /* 220 * If dirty page logging is enabled, write protect all pages in the slot 221 * ready for dirty logging. 222 * 223 * There is no need to do this in any of the following cases: 224 * CREATE: No dirty mappings will already exist. 225 * MOVE/DELETE: The old mappings will already have been cleaned up by 226 * kvm_arch_flush_shadow_memslot() 227 */ 228 if (change == KVM_MR_FLAGS_ONLY && 229 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 230 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { 231 spin_lock(&kvm->mmu_lock); 232 /* Write protect GPA page table entries */ 233 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, 234 new->base_gfn + new->npages - 1); 235 if (needs_flush) 236 kvm_flush_remote_tlbs_memslot(kvm, new); 237 spin_unlock(&kvm->mmu_lock); 238 } 239 } 240 241 static inline void dump_handler(const char *symbol, void *start, void *end) 242 { 243 u32 *p; 244 245 pr_debug("LEAF(%s)\n", symbol); 246 247 pr_debug("\t.set push\n"); 248 pr_debug("\t.set noreorder\n"); 249 250 for (p = start; p < (u32 *)end; ++p) 251 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); 252 253 pr_debug("\t.set\tpop\n"); 254 255 pr_debug("\tEND(%s)\n", symbol); 256 } 257 258 /* low level hrtimer wake routine */ 259 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) 260 { 261 struct kvm_vcpu *vcpu; 262 263 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); 264 265 kvm_mips_callbacks->queue_timer_int(vcpu); 266 267 vcpu->arch.wait = 0; 268 rcuwait_wake_up(&vcpu->wait); 269 270 return kvm_mips_count_timeout(vcpu); 271 } 272 273 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 274 { 275 return 0; 276 } 277 278 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 279 { 280 int err, size; 281 void *gebase, *p, *handler, *refill_start, *refill_end; 282 int i; 283 284 kvm_debug("kvm @ %p: create cpu %d at %p\n", 285 vcpu->kvm, vcpu->vcpu_id, vcpu); 286 287 err = kvm_mips_callbacks->vcpu_init(vcpu); 288 if (err) 289 return err; 290 291 hrtimer_setup(&vcpu->arch.comparecount_timer, kvm_mips_comparecount_wakeup, CLOCK_MONOTONIC, 292 HRTIMER_MODE_REL); 293 294 /* 295 * Allocate space for host mode exception handlers that handle 296 * guest mode exits 297 */ 298 if (cpu_has_veic || cpu_has_vint) 299 size = 0x200 + VECTORSPACING * 64; 300 else 301 size = 0x4000; 302 303 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); 304 305 if (!gebase) { 306 err = -ENOMEM; 307 goto out_uninit_vcpu; 308 } 309 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", 310 ALIGN(size, PAGE_SIZE), gebase); 311 312 /* 313 * Check new ebase actually fits in CP0_EBase. The lack of a write gate 314 * limits us to the low 512MB of physical address space. If the memory 315 * we allocate is out of range, just give up now. 316 */ 317 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { 318 kvm_err("CP0_EBase.WG required for guest exception base %pK\n", 319 gebase); 320 err = -ENOMEM; 321 goto out_free_gebase; 322 } 323 324 /* Save new ebase */ 325 vcpu->arch.guest_ebase = gebase; 326 327 /* Build guest exception vectors dynamically in unmapped memory */ 328 handler = gebase + 0x2000; 329 330 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ 331 refill_start = gebase; 332 if (IS_ENABLED(CONFIG_64BIT)) 333 refill_start += 0x080; 334 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); 335 336 /* General Exception Entry point */ 337 kvm_mips_build_exception(gebase + 0x180, handler); 338 339 /* For vectored interrupts poke the exception code @ all offsets 0-7 */ 340 for (i = 0; i < 8; i++) { 341 kvm_debug("L1 Vectored handler @ %p\n", 342 gebase + 0x200 + (i * VECTORSPACING)); 343 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, 344 handler); 345 } 346 347 /* General exit handler */ 348 p = handler; 349 p = kvm_mips_build_exit(p); 350 351 /* Guest entry routine */ 352 vcpu->arch.vcpu_run = p; 353 p = kvm_mips_build_vcpu_run(p); 354 355 /* Dump the generated code */ 356 pr_debug("#include <asm/asm.h>\n"); 357 pr_debug("#include <asm/regdef.h>\n"); 358 pr_debug("\n"); 359 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); 360 dump_handler("kvm_tlb_refill", refill_start, refill_end); 361 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); 362 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); 363 364 /* Invalidate the icache for these ranges */ 365 flush_icache_range((unsigned long)gebase, 366 (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); 367 368 /* Init */ 369 vcpu->arch.last_sched_cpu = -1; 370 vcpu->arch.last_exec_cpu = -1; 371 372 /* Initial guest state */ 373 err = kvm_mips_callbacks->vcpu_setup(vcpu); 374 if (err) 375 goto out_free_gebase; 376 377 return 0; 378 379 out_free_gebase: 380 kfree(gebase); 381 out_uninit_vcpu: 382 kvm_mips_callbacks->vcpu_uninit(vcpu); 383 return err; 384 } 385 386 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 387 { 388 hrtimer_cancel(&vcpu->arch.comparecount_timer); 389 390 kvm_mips_dump_stats(vcpu); 391 392 kvm_mmu_free_memory_caches(vcpu); 393 kfree(vcpu->arch.guest_ebase); 394 395 kvm_mips_callbacks->vcpu_uninit(vcpu); 396 } 397 398 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 399 struct kvm_guest_debug *dbg) 400 { 401 return -ENOIOCTLCMD; 402 } 403 404 /* 405 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 406 * the vCPU is running. 407 * 408 * This must be noinstr as instrumentation may make use of RCU, and this is not 409 * safe during the EQS. 410 */ 411 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu) 412 { 413 int ret; 414 415 guest_state_enter_irqoff(); 416 ret = kvm_mips_callbacks->vcpu_run(vcpu); 417 guest_state_exit_irqoff(); 418 419 return ret; 420 } 421 422 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 423 { 424 int r = -EINTR; 425 426 vcpu_load(vcpu); 427 428 kvm_sigset_activate(vcpu); 429 430 if (vcpu->mmio_needed) { 431 if (!vcpu->mmio_is_write) 432 kvm_mips_complete_mmio_load(vcpu); 433 vcpu->mmio_needed = 0; 434 } 435 436 if (!vcpu->wants_to_run) 437 goto out; 438 439 lose_fpu(1); 440 441 local_irq_disable(); 442 guest_timing_enter_irqoff(); 443 trace_kvm_enter(vcpu); 444 445 /* 446 * Make sure the read of VCPU requests in vcpu_run() callback is not 447 * reordered ahead of the write to vcpu->mode, or we could miss a TLB 448 * flush request while the requester sees the VCPU as outside of guest 449 * mode and not needing an IPI. 450 */ 451 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 452 453 r = kvm_mips_vcpu_enter_exit(vcpu); 454 455 /* 456 * We must ensure that any pending interrupts are taken before 457 * we exit guest timing so that timer ticks are accounted as 458 * guest time. Transiently unmask interrupts so that any 459 * pending interrupts are taken. 460 * 461 * TODO: is there a barrier which ensures that pending interrupts are 462 * recognised? Currently this just hopes that the CPU takes any pending 463 * interrupts between the enable and disable. 464 */ 465 local_irq_enable(); 466 local_irq_disable(); 467 468 trace_kvm_out(vcpu); 469 guest_timing_exit_irqoff(); 470 local_irq_enable(); 471 472 out: 473 kvm_sigset_deactivate(vcpu); 474 475 vcpu_put(vcpu); 476 return r; 477 } 478 479 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 480 struct kvm_mips_interrupt *irq) 481 { 482 int intr = (int)irq->irq; 483 struct kvm_vcpu *dvcpu = NULL; 484 485 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] || 486 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] || 487 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) || 488 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2])) 489 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, 490 (int)intr); 491 492 if (irq->cpu == -1) 493 dvcpu = vcpu; 494 else 495 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu); 496 497 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) { 498 kvm_mips_callbacks->queue_io_int(dvcpu, irq); 499 500 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) { 501 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); 502 } else { 503 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, 504 irq->cpu, irq->irq); 505 return -EINVAL; 506 } 507 508 dvcpu->arch.wait = 0; 509 510 rcuwait_wake_up(&dvcpu->wait); 511 512 return 0; 513 } 514 515 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 516 struct kvm_mp_state *mp_state) 517 { 518 return -ENOIOCTLCMD; 519 } 520 521 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 522 struct kvm_mp_state *mp_state) 523 { 524 return -ENOIOCTLCMD; 525 } 526 527 static u64 kvm_mips_get_one_regs[] = { 528 KVM_REG_MIPS_R0, 529 KVM_REG_MIPS_R1, 530 KVM_REG_MIPS_R2, 531 KVM_REG_MIPS_R3, 532 KVM_REG_MIPS_R4, 533 KVM_REG_MIPS_R5, 534 KVM_REG_MIPS_R6, 535 KVM_REG_MIPS_R7, 536 KVM_REG_MIPS_R8, 537 KVM_REG_MIPS_R9, 538 KVM_REG_MIPS_R10, 539 KVM_REG_MIPS_R11, 540 KVM_REG_MIPS_R12, 541 KVM_REG_MIPS_R13, 542 KVM_REG_MIPS_R14, 543 KVM_REG_MIPS_R15, 544 KVM_REG_MIPS_R16, 545 KVM_REG_MIPS_R17, 546 KVM_REG_MIPS_R18, 547 KVM_REG_MIPS_R19, 548 KVM_REG_MIPS_R20, 549 KVM_REG_MIPS_R21, 550 KVM_REG_MIPS_R22, 551 KVM_REG_MIPS_R23, 552 KVM_REG_MIPS_R24, 553 KVM_REG_MIPS_R25, 554 KVM_REG_MIPS_R26, 555 KVM_REG_MIPS_R27, 556 KVM_REG_MIPS_R28, 557 KVM_REG_MIPS_R29, 558 KVM_REG_MIPS_R30, 559 KVM_REG_MIPS_R31, 560 561 #ifndef CONFIG_CPU_MIPSR6 562 KVM_REG_MIPS_HI, 563 KVM_REG_MIPS_LO, 564 #endif 565 KVM_REG_MIPS_PC, 566 }; 567 568 static u64 kvm_mips_get_one_regs_fpu[] = { 569 KVM_REG_MIPS_FCR_IR, 570 KVM_REG_MIPS_FCR_CSR, 571 }; 572 573 static u64 kvm_mips_get_one_regs_msa[] = { 574 KVM_REG_MIPS_MSA_IR, 575 KVM_REG_MIPS_MSA_CSR, 576 }; 577 578 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) 579 { 580 unsigned long ret; 581 582 ret = ARRAY_SIZE(kvm_mips_get_one_regs); 583 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 584 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; 585 /* odd doubles */ 586 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) 587 ret += 16; 588 } 589 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 590 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; 591 ret += kvm_mips_callbacks->num_regs(vcpu); 592 593 return ret; 594 } 595 596 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) 597 { 598 u64 index; 599 unsigned int i; 600 601 if (copy_to_user(indices, kvm_mips_get_one_regs, 602 sizeof(kvm_mips_get_one_regs))) 603 return -EFAULT; 604 indices += ARRAY_SIZE(kvm_mips_get_one_regs); 605 606 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 607 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, 608 sizeof(kvm_mips_get_one_regs_fpu))) 609 return -EFAULT; 610 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); 611 612 for (i = 0; i < 32; ++i) { 613 index = KVM_REG_MIPS_FPR_32(i); 614 if (copy_to_user(indices, &index, sizeof(index))) 615 return -EFAULT; 616 ++indices; 617 618 /* skip odd doubles if no F64 */ 619 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) 620 continue; 621 622 index = KVM_REG_MIPS_FPR_64(i); 623 if (copy_to_user(indices, &index, sizeof(index))) 624 return -EFAULT; 625 ++indices; 626 } 627 } 628 629 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { 630 if (copy_to_user(indices, kvm_mips_get_one_regs_msa, 631 sizeof(kvm_mips_get_one_regs_msa))) 632 return -EFAULT; 633 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); 634 635 for (i = 0; i < 32; ++i) { 636 index = KVM_REG_MIPS_VEC_128(i); 637 if (copy_to_user(indices, &index, sizeof(index))) 638 return -EFAULT; 639 ++indices; 640 } 641 } 642 643 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); 644 } 645 646 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, 647 const struct kvm_one_reg *reg) 648 { 649 struct mips_coproc *cop0 = &vcpu->arch.cop0; 650 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 651 int ret; 652 s64 v; 653 s64 vs[2]; 654 unsigned int idx; 655 656 switch (reg->id) { 657 /* General purpose registers */ 658 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: 659 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; 660 break; 661 #ifndef CONFIG_CPU_MIPSR6 662 case KVM_REG_MIPS_HI: 663 v = (long)vcpu->arch.hi; 664 break; 665 case KVM_REG_MIPS_LO: 666 v = (long)vcpu->arch.lo; 667 break; 668 #endif 669 case KVM_REG_MIPS_PC: 670 v = (long)vcpu->arch.pc; 671 break; 672 673 /* Floating point registers */ 674 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 675 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 676 return -EINVAL; 677 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 678 /* Odd singles in top of even double when FR=0 */ 679 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 680 v = get_fpr32(&fpu->fpr[idx], 0); 681 else 682 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); 683 break; 684 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 685 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 686 return -EINVAL; 687 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 688 /* Can't access odd doubles in FR=0 mode */ 689 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 690 return -EINVAL; 691 v = get_fpr64(&fpu->fpr[idx], 0); 692 break; 693 case KVM_REG_MIPS_FCR_IR: 694 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 695 return -EINVAL; 696 v = boot_cpu_data.fpu_id; 697 break; 698 case KVM_REG_MIPS_FCR_CSR: 699 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 700 return -EINVAL; 701 v = fpu->fcr31; 702 break; 703 704 /* MIPS SIMD Architecture (MSA) registers */ 705 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 706 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 707 return -EINVAL; 708 /* Can't access MSA registers in FR=0 mode */ 709 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) 710 return -EINVAL; 711 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 712 #ifdef CONFIG_CPU_LITTLE_ENDIAN 713 /* least significant byte first */ 714 vs[0] = get_fpr64(&fpu->fpr[idx], 0); 715 vs[1] = get_fpr64(&fpu->fpr[idx], 1); 716 #else 717 /* most significant byte first */ 718 vs[0] = get_fpr64(&fpu->fpr[idx], 1); 719 vs[1] = get_fpr64(&fpu->fpr[idx], 0); 720 #endif 721 break; 722 case KVM_REG_MIPS_MSA_IR: 723 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 724 return -EINVAL; 725 v = boot_cpu_data.msa_id; 726 break; 727 case KVM_REG_MIPS_MSA_CSR: 728 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 729 return -EINVAL; 730 v = fpu->msacsr; 731 break; 732 733 /* registers to be handled specially */ 734 default: 735 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); 736 if (ret) 737 return ret; 738 break; 739 } 740 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 741 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 742 743 return put_user(v, uaddr64); 744 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 745 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 746 u32 v32 = (u32)v; 747 748 return put_user(v32, uaddr32); 749 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 750 void __user *uaddr = (void __user *)(long)reg->addr; 751 752 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; 753 } else { 754 return -EINVAL; 755 } 756 } 757 758 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, 759 const struct kvm_one_reg *reg) 760 { 761 struct mips_coproc *cop0 = &vcpu->arch.cop0; 762 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 763 s64 v; 764 s64 vs[2]; 765 unsigned int idx; 766 767 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 768 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 769 770 if (get_user(v, uaddr64) != 0) 771 return -EFAULT; 772 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 773 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 774 s32 v32; 775 776 if (get_user(v32, uaddr32) != 0) 777 return -EFAULT; 778 v = (s64)v32; 779 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 780 void __user *uaddr = (void __user *)(long)reg->addr; 781 782 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; 783 } else { 784 return -EINVAL; 785 } 786 787 switch (reg->id) { 788 /* General purpose registers */ 789 case KVM_REG_MIPS_R0: 790 /* Silently ignore requests to set $0 */ 791 break; 792 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: 793 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; 794 break; 795 #ifndef CONFIG_CPU_MIPSR6 796 case KVM_REG_MIPS_HI: 797 vcpu->arch.hi = v; 798 break; 799 case KVM_REG_MIPS_LO: 800 vcpu->arch.lo = v; 801 break; 802 #endif 803 case KVM_REG_MIPS_PC: 804 vcpu->arch.pc = v; 805 break; 806 807 /* Floating point registers */ 808 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 809 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 810 return -EINVAL; 811 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 812 /* Odd singles in top of even double when FR=0 */ 813 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 814 set_fpr32(&fpu->fpr[idx], 0, v); 815 else 816 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); 817 break; 818 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 819 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 820 return -EINVAL; 821 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 822 /* Can't access odd doubles in FR=0 mode */ 823 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 824 return -EINVAL; 825 set_fpr64(&fpu->fpr[idx], 0, v); 826 break; 827 case KVM_REG_MIPS_FCR_IR: 828 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 829 return -EINVAL; 830 /* Read-only */ 831 break; 832 case KVM_REG_MIPS_FCR_CSR: 833 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 834 return -EINVAL; 835 fpu->fcr31 = v; 836 break; 837 838 /* MIPS SIMD Architecture (MSA) registers */ 839 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 840 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 841 return -EINVAL; 842 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 843 #ifdef CONFIG_CPU_LITTLE_ENDIAN 844 /* least significant byte first */ 845 set_fpr64(&fpu->fpr[idx], 0, vs[0]); 846 set_fpr64(&fpu->fpr[idx], 1, vs[1]); 847 #else 848 /* most significant byte first */ 849 set_fpr64(&fpu->fpr[idx], 1, vs[0]); 850 set_fpr64(&fpu->fpr[idx], 0, vs[1]); 851 #endif 852 break; 853 case KVM_REG_MIPS_MSA_IR: 854 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 855 return -EINVAL; 856 /* Read-only */ 857 break; 858 case KVM_REG_MIPS_MSA_CSR: 859 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 860 return -EINVAL; 861 fpu->msacsr = v; 862 break; 863 864 /* registers to be handled specially */ 865 default: 866 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); 867 } 868 return 0; 869 } 870 871 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 872 struct kvm_enable_cap *cap) 873 { 874 int r = 0; 875 876 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) 877 return -EINVAL; 878 if (cap->flags) 879 return -EINVAL; 880 if (cap->args[0]) 881 return -EINVAL; 882 883 switch (cap->cap) { 884 case KVM_CAP_MIPS_FPU: 885 vcpu->arch.fpu_enabled = true; 886 break; 887 case KVM_CAP_MIPS_MSA: 888 vcpu->arch.msa_enabled = true; 889 break; 890 default: 891 r = -EINVAL; 892 break; 893 } 894 895 return r; 896 } 897 898 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, 899 unsigned long arg) 900 { 901 struct kvm_vcpu *vcpu = filp->private_data; 902 void __user *argp = (void __user *)arg; 903 904 if (ioctl == KVM_INTERRUPT) { 905 struct kvm_mips_interrupt irq; 906 907 if (copy_from_user(&irq, argp, sizeof(irq))) 908 return -EFAULT; 909 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, 910 irq.irq); 911 912 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 913 } 914 915 return -ENOIOCTLCMD; 916 } 917 918 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, 919 unsigned long arg) 920 { 921 struct kvm_vcpu *vcpu = filp->private_data; 922 void __user *argp = (void __user *)arg; 923 long r; 924 925 vcpu_load(vcpu); 926 927 switch (ioctl) { 928 case KVM_SET_ONE_REG: 929 case KVM_GET_ONE_REG: { 930 struct kvm_one_reg reg; 931 932 r = -EFAULT; 933 if (copy_from_user(®, argp, sizeof(reg))) 934 break; 935 if (ioctl == KVM_SET_ONE_REG) 936 r = kvm_mips_set_reg(vcpu, ®); 937 else 938 r = kvm_mips_get_reg(vcpu, ®); 939 break; 940 } 941 case KVM_GET_REG_LIST: { 942 struct kvm_reg_list __user *user_list = argp; 943 struct kvm_reg_list reg_list; 944 unsigned n; 945 946 r = -EFAULT; 947 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 948 break; 949 n = reg_list.n; 950 reg_list.n = kvm_mips_num_regs(vcpu); 951 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 952 break; 953 r = -E2BIG; 954 if (n < reg_list.n) 955 break; 956 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); 957 break; 958 } 959 case KVM_ENABLE_CAP: { 960 struct kvm_enable_cap cap; 961 962 r = -EFAULT; 963 if (copy_from_user(&cap, argp, sizeof(cap))) 964 break; 965 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 966 break; 967 } 968 default: 969 r = -ENOIOCTLCMD; 970 } 971 972 vcpu_put(vcpu); 973 return r; 974 } 975 976 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 977 { 978 979 } 980 981 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 982 { 983 kvm_mips_callbacks->prepare_flush_shadow(kvm); 984 return 1; 985 } 986 987 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 988 { 989 int r; 990 991 switch (ioctl) { 992 default: 993 r = -ENOIOCTLCMD; 994 } 995 996 return r; 997 } 998 999 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1000 struct kvm_sregs *sregs) 1001 { 1002 return -ENOIOCTLCMD; 1003 } 1004 1005 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1006 struct kvm_sregs *sregs) 1007 { 1008 return -ENOIOCTLCMD; 1009 } 1010 1011 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1012 { 1013 } 1014 1015 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1016 { 1017 return -ENOIOCTLCMD; 1018 } 1019 1020 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1021 { 1022 return -ENOIOCTLCMD; 1023 } 1024 1025 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1026 { 1027 return VM_FAULT_SIGBUS; 1028 } 1029 1030 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 1031 { 1032 int r; 1033 1034 switch (ext) { 1035 case KVM_CAP_ONE_REG: 1036 case KVM_CAP_ENABLE_CAP: 1037 case KVM_CAP_READONLY_MEM: 1038 case KVM_CAP_SYNC_MMU: 1039 case KVM_CAP_IMMEDIATE_EXIT: 1040 r = 1; 1041 break; 1042 case KVM_CAP_NR_VCPUS: 1043 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 1044 break; 1045 case KVM_CAP_MAX_VCPUS: 1046 r = KVM_MAX_VCPUS; 1047 break; 1048 case KVM_CAP_MAX_VCPU_ID: 1049 r = KVM_MAX_VCPU_IDS; 1050 break; 1051 case KVM_CAP_MIPS_FPU: 1052 /* We don't handle systems with inconsistent cpu_has_fpu */ 1053 r = !!raw_cpu_has_fpu; 1054 break; 1055 case KVM_CAP_MIPS_MSA: 1056 /* 1057 * We don't support MSA vector partitioning yet: 1058 * 1) It would require explicit support which can't be tested 1059 * yet due to lack of support in current hardware. 1060 * 2) It extends the state that would need to be saved/restored 1061 * by e.g. QEMU for migration. 1062 * 1063 * When vector partitioning hardware becomes available, support 1064 * could be added by requiring a flag when enabling 1065 * KVM_CAP_MIPS_MSA capability to indicate that userland knows 1066 * to save/restore the appropriate extra state. 1067 */ 1068 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); 1069 break; 1070 default: 1071 r = kvm_mips_callbacks->check_extension(kvm, ext); 1072 break; 1073 } 1074 return r; 1075 } 1076 1077 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1078 { 1079 return kvm_mips_pending_timer(vcpu) || 1080 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI; 1081 } 1082 1083 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) 1084 { 1085 int i; 1086 struct mips_coproc *cop0; 1087 1088 if (!vcpu) 1089 return -1; 1090 1091 kvm_debug("VCPU Register Dump:\n"); 1092 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); 1093 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); 1094 1095 for (i = 0; i < 32; i += 4) { 1096 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, 1097 vcpu->arch.gprs[i], 1098 vcpu->arch.gprs[i + 1], 1099 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); 1100 } 1101 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); 1102 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); 1103 1104 cop0 = &vcpu->arch.cop0; 1105 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", 1106 kvm_read_c0_guest_status(cop0), 1107 kvm_read_c0_guest_cause(cop0)); 1108 1109 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); 1110 1111 return 0; 1112 } 1113 1114 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1115 { 1116 int i; 1117 1118 vcpu_load(vcpu); 1119 1120 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1121 vcpu->arch.gprs[i] = regs->gpr[i]; 1122 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ 1123 vcpu->arch.hi = regs->hi; 1124 vcpu->arch.lo = regs->lo; 1125 vcpu->arch.pc = regs->pc; 1126 1127 vcpu_put(vcpu); 1128 return 0; 1129 } 1130 1131 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1132 { 1133 int i; 1134 1135 vcpu_load(vcpu); 1136 1137 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1138 regs->gpr[i] = vcpu->arch.gprs[i]; 1139 1140 regs->hi = vcpu->arch.hi; 1141 regs->lo = vcpu->arch.lo; 1142 regs->pc = vcpu->arch.pc; 1143 1144 vcpu_put(vcpu); 1145 return 0; 1146 } 1147 1148 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1149 struct kvm_translation *tr) 1150 { 1151 return 0; 1152 } 1153 1154 static void kvm_mips_set_c0_status(void) 1155 { 1156 u32 status = read_c0_status(); 1157 1158 if (cpu_has_dsp) 1159 status |= (ST0_MX); 1160 1161 write_c0_status(status); 1162 ehb(); 1163 } 1164 1165 /* 1166 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) 1167 */ 1168 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu) 1169 { 1170 struct kvm_run *run = vcpu->run; 1171 u32 cause = vcpu->arch.host_cp0_cause; 1172 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 1173 u32 __user *opc = (u32 __user *) vcpu->arch.pc; 1174 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 1175 enum emulation_result er = EMULATE_DONE; 1176 u32 inst; 1177 int ret = RESUME_GUEST; 1178 1179 vcpu->mode = OUTSIDE_GUEST_MODE; 1180 1181 /* Set a default exit reason */ 1182 run->exit_reason = KVM_EXIT_UNKNOWN; 1183 run->ready_for_interrupt_injection = 1; 1184 1185 /* 1186 * Set the appropriate status bits based on host CPU features, 1187 * before we hit the scheduler 1188 */ 1189 kvm_mips_set_c0_status(); 1190 1191 local_irq_enable(); 1192 1193 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", 1194 cause, opc, run, vcpu); 1195 trace_kvm_exit(vcpu, exccode); 1196 1197 switch (exccode) { 1198 case EXCCODE_INT: 1199 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); 1200 1201 ++vcpu->stat.int_exits; 1202 1203 if (need_resched()) 1204 cond_resched(); 1205 1206 ret = RESUME_GUEST; 1207 break; 1208 1209 case EXCCODE_CPU: 1210 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); 1211 1212 ++vcpu->stat.cop_unusable_exits; 1213 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); 1214 /* XXXKYMA: Might need to return to user space */ 1215 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) 1216 ret = RESUME_HOST; 1217 break; 1218 1219 case EXCCODE_MOD: 1220 ++vcpu->stat.tlbmod_exits; 1221 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); 1222 break; 1223 1224 case EXCCODE_TLBS: 1225 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", 1226 cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc, 1227 badvaddr); 1228 1229 ++vcpu->stat.tlbmiss_st_exits; 1230 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); 1231 break; 1232 1233 case EXCCODE_TLBL: 1234 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", 1235 cause, opc, badvaddr); 1236 1237 ++vcpu->stat.tlbmiss_ld_exits; 1238 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); 1239 break; 1240 1241 case EXCCODE_ADES: 1242 ++vcpu->stat.addrerr_st_exits; 1243 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); 1244 break; 1245 1246 case EXCCODE_ADEL: 1247 ++vcpu->stat.addrerr_ld_exits; 1248 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); 1249 break; 1250 1251 case EXCCODE_SYS: 1252 ++vcpu->stat.syscall_exits; 1253 ret = kvm_mips_callbacks->handle_syscall(vcpu); 1254 break; 1255 1256 case EXCCODE_RI: 1257 ++vcpu->stat.resvd_inst_exits; 1258 ret = kvm_mips_callbacks->handle_res_inst(vcpu); 1259 break; 1260 1261 case EXCCODE_BP: 1262 ++vcpu->stat.break_inst_exits; 1263 ret = kvm_mips_callbacks->handle_break(vcpu); 1264 break; 1265 1266 case EXCCODE_TR: 1267 ++vcpu->stat.trap_inst_exits; 1268 ret = kvm_mips_callbacks->handle_trap(vcpu); 1269 break; 1270 1271 case EXCCODE_MSAFPE: 1272 ++vcpu->stat.msa_fpe_exits; 1273 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); 1274 break; 1275 1276 case EXCCODE_FPE: 1277 ++vcpu->stat.fpe_exits; 1278 ret = kvm_mips_callbacks->handle_fpe(vcpu); 1279 break; 1280 1281 case EXCCODE_MSADIS: 1282 ++vcpu->stat.msa_disabled_exits; 1283 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); 1284 break; 1285 1286 case EXCCODE_GE: 1287 /* defer exit accounting to handler */ 1288 ret = kvm_mips_callbacks->handle_guest_exit(vcpu); 1289 break; 1290 1291 default: 1292 if (cause & CAUSEF_BD) 1293 opc += 1; 1294 inst = 0; 1295 kvm_get_badinstr(opc, vcpu, &inst); 1296 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", 1297 exccode, opc, inst, badvaddr, 1298 kvm_read_c0_guest_status(&vcpu->arch.cop0)); 1299 kvm_arch_vcpu_dump_regs(vcpu); 1300 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1301 ret = RESUME_HOST; 1302 break; 1303 1304 } 1305 1306 local_irq_disable(); 1307 1308 if (ret == RESUME_GUEST) 1309 kvm_vz_acquire_htimer(vcpu); 1310 1311 if (er == EMULATE_DONE && !(ret & RESUME_HOST)) 1312 kvm_mips_deliver_interrupts(vcpu, cause); 1313 1314 if (!(ret & RESUME_HOST)) { 1315 /* Only check for signals if not already exiting to userspace */ 1316 if (signal_pending(current)) { 1317 run->exit_reason = KVM_EXIT_INTR; 1318 ret = (-EINTR << 2) | RESUME_HOST; 1319 ++vcpu->stat.signal_exits; 1320 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); 1321 } 1322 } 1323 1324 if (ret == RESUME_GUEST) { 1325 trace_kvm_reenter(vcpu); 1326 1327 /* 1328 * Make sure the read of VCPU requests in vcpu_reenter() 1329 * callback is not reordered ahead of the write to vcpu->mode, 1330 * or we could miss a TLB flush request while the requester sees 1331 * the VCPU as outside of guest mode and not needing an IPI. 1332 */ 1333 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1334 1335 kvm_mips_callbacks->vcpu_reenter(vcpu); 1336 1337 /* 1338 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context 1339 * is live), restore FCR31 / MSACSR. 1340 * 1341 * This should be before returning to the guest exception 1342 * vector, as it may well cause an [MSA] FP exception if there 1343 * are pending exception bits unmasked. (see 1344 * kvm_mips_csr_die_notifier() for how that is handled). 1345 */ 1346 if (kvm_mips_guest_has_fpu(&vcpu->arch) && 1347 read_c0_status() & ST0_CU1) 1348 __kvm_restore_fcsr(&vcpu->arch); 1349 1350 if (kvm_mips_guest_has_msa(&vcpu->arch) && 1351 read_c0_config5() & MIPS_CONF5_MSAEN) 1352 __kvm_restore_msacsr(&vcpu->arch); 1353 } 1354 return ret; 1355 } 1356 1357 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu) 1358 { 1359 int ret; 1360 1361 guest_state_exit_irqoff(); 1362 ret = __kvm_mips_handle_exit(vcpu); 1363 guest_state_enter_irqoff(); 1364 1365 return ret; 1366 } 1367 1368 /* Enable FPU for guest and restore context */ 1369 void kvm_own_fpu(struct kvm_vcpu *vcpu) 1370 { 1371 struct mips_coproc *cop0 = &vcpu->arch.cop0; 1372 unsigned int sr, cfg5; 1373 1374 preempt_disable(); 1375 1376 sr = kvm_read_c0_guest_status(cop0); 1377 1378 /* 1379 * If MSA state is already live, it is undefined how it interacts with 1380 * FR=0 FPU state, and we don't want to hit reserved instruction 1381 * exceptions trying to save the MSA state later when CU=1 && FR=1, so 1382 * play it safe and save it first. 1383 */ 1384 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && 1385 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1386 kvm_lose_fpu(vcpu); 1387 1388 /* 1389 * Enable FPU for guest 1390 * We set FR and FRE according to guest context 1391 */ 1392 change_c0_status(ST0_CU1 | ST0_FR, sr); 1393 if (cpu_has_fre) { 1394 cfg5 = kvm_read_c0_guest_config5(cop0); 1395 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1396 } 1397 enable_fpu_hazard(); 1398 1399 /* If guest FPU state not active, restore it now */ 1400 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { 1401 __kvm_restore_fpu(&vcpu->arch); 1402 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1403 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); 1404 } else { 1405 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); 1406 } 1407 1408 preempt_enable(); 1409 } 1410 1411 #ifdef CONFIG_CPU_HAS_MSA 1412 /* Enable MSA for guest and restore context */ 1413 void kvm_own_msa(struct kvm_vcpu *vcpu) 1414 { 1415 struct mips_coproc *cop0 = &vcpu->arch.cop0; 1416 unsigned int sr, cfg5; 1417 1418 preempt_disable(); 1419 1420 /* 1421 * Enable FPU if enabled in guest, since we're restoring FPU context 1422 * anyway. We set FR and FRE according to guest context. 1423 */ 1424 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1425 sr = kvm_read_c0_guest_status(cop0); 1426 1427 /* 1428 * If FR=0 FPU state is already live, it is undefined how it 1429 * interacts with MSA state, so play it safe and save it first. 1430 */ 1431 if (!(sr & ST0_FR) && 1432 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | 1433 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) 1434 kvm_lose_fpu(vcpu); 1435 1436 change_c0_status(ST0_CU1 | ST0_FR, sr); 1437 if (sr & ST0_CU1 && cpu_has_fre) { 1438 cfg5 = kvm_read_c0_guest_config5(cop0); 1439 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1440 } 1441 } 1442 1443 /* Enable MSA for guest */ 1444 set_c0_config5(MIPS_CONF5_MSAEN); 1445 enable_fpu_hazard(); 1446 1447 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { 1448 case KVM_MIPS_AUX_FPU: 1449 /* 1450 * Guest FPU state already loaded, only restore upper MSA state 1451 */ 1452 __kvm_restore_msa_upper(&vcpu->arch); 1453 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1454 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); 1455 break; 1456 case 0: 1457 /* Neither FPU or MSA already active, restore full MSA state */ 1458 __kvm_restore_msa(&vcpu->arch); 1459 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1460 if (kvm_mips_guest_has_fpu(&vcpu->arch)) 1461 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1462 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, 1463 KVM_TRACE_AUX_FPU_MSA); 1464 break; 1465 default: 1466 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); 1467 break; 1468 } 1469 1470 preempt_enable(); 1471 } 1472 #endif 1473 1474 /* Drop FPU & MSA without saving it */ 1475 void kvm_drop_fpu(struct kvm_vcpu *vcpu) 1476 { 1477 preempt_disable(); 1478 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1479 disable_msa(); 1480 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); 1481 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; 1482 } 1483 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1484 clear_c0_status(ST0_CU1 | ST0_FR); 1485 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); 1486 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1487 } 1488 preempt_enable(); 1489 } 1490 1491 /* Save and disable FPU & MSA */ 1492 void kvm_lose_fpu(struct kvm_vcpu *vcpu) 1493 { 1494 /* 1495 * With T&E, FPU & MSA get disabled in root context (hardware) when it 1496 * is disabled in guest context (software), but the register state in 1497 * the hardware may still be in use. 1498 * This is why we explicitly re-enable the hardware before saving. 1499 */ 1500 1501 preempt_disable(); 1502 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1503 __kvm_save_msa(&vcpu->arch); 1504 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); 1505 1506 /* Disable MSA & FPU */ 1507 disable_msa(); 1508 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1509 clear_c0_status(ST0_CU1 | ST0_FR); 1510 disable_fpu_hazard(); 1511 } 1512 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); 1513 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1514 __kvm_save_fpu(&vcpu->arch); 1515 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1516 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); 1517 1518 /* Disable FPU */ 1519 clear_c0_status(ST0_CU1 | ST0_FR); 1520 disable_fpu_hazard(); 1521 } 1522 preempt_enable(); 1523 } 1524 1525 /* 1526 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are 1527 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP 1528 * exception if cause bits are set in the value being written. 1529 */ 1530 static int kvm_mips_csr_die_notify(struct notifier_block *self, 1531 unsigned long cmd, void *ptr) 1532 { 1533 struct die_args *args = (struct die_args *)ptr; 1534 struct pt_regs *regs = args->regs; 1535 unsigned long pc; 1536 1537 /* Only interested in FPE and MSAFPE */ 1538 if (cmd != DIE_FP && cmd != DIE_MSAFP) 1539 return NOTIFY_DONE; 1540 1541 /* Return immediately if guest context isn't active */ 1542 if (!(current->flags & PF_VCPU)) 1543 return NOTIFY_DONE; 1544 1545 /* Should never get here from user mode */ 1546 BUG_ON(user_mode(regs)); 1547 1548 pc = instruction_pointer(regs); 1549 switch (cmd) { 1550 case DIE_FP: 1551 /* match 2nd instruction in __kvm_restore_fcsr */ 1552 if (pc != (unsigned long)&__kvm_restore_fcsr + 4) 1553 return NOTIFY_DONE; 1554 break; 1555 case DIE_MSAFP: 1556 /* match 2nd/3rd instruction in __kvm_restore_msacsr */ 1557 if (!cpu_has_msa || 1558 pc < (unsigned long)&__kvm_restore_msacsr + 4 || 1559 pc > (unsigned long)&__kvm_restore_msacsr + 8) 1560 return NOTIFY_DONE; 1561 break; 1562 } 1563 1564 /* Move PC forward a little and continue executing */ 1565 instruction_pointer(regs) += 4; 1566 1567 return NOTIFY_STOP; 1568 } 1569 1570 static struct notifier_block kvm_mips_csr_die_notifier = { 1571 .notifier_call = kvm_mips_csr_die_notify, 1572 }; 1573 1574 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = { 1575 [MIPS_EXC_INT_TIMER] = C_IRQ5, 1576 [MIPS_EXC_INT_IO_1] = C_IRQ0, 1577 [MIPS_EXC_INT_IPI_1] = C_IRQ1, 1578 [MIPS_EXC_INT_IPI_2] = C_IRQ2, 1579 }; 1580 1581 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = { 1582 [MIPS_EXC_INT_TIMER] = C_IRQ5, 1583 [MIPS_EXC_INT_IO_1] = C_IRQ0, 1584 [MIPS_EXC_INT_IO_2] = C_IRQ1, 1585 [MIPS_EXC_INT_IPI_1] = C_IRQ4, 1586 }; 1587 1588 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq; 1589 1590 u32 kvm_irq_to_priority(u32 irq) 1591 { 1592 int i; 1593 1594 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) { 1595 if (kvm_priority_to_irq[i] == (1 << (irq + 8))) 1596 return i; 1597 } 1598 1599 return MIPS_EXC_MAX; 1600 } 1601 1602 static int __init kvm_mips_init(void) 1603 { 1604 int ret; 1605 1606 if (cpu_has_mmid) { 1607 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n"); 1608 return -EOPNOTSUPP; 1609 } 1610 1611 ret = kvm_mips_entry_setup(); 1612 if (ret) 1613 return ret; 1614 1615 ret = kvm_mips_emulation_init(); 1616 if (ret) 1617 return ret; 1618 1619 1620 if (boot_cpu_type() == CPU_LOONGSON64) 1621 kvm_priority_to_irq = kvm_loongson3_priority_to_irq; 1622 1623 register_die_notifier(&kvm_mips_csr_die_notifier); 1624 1625 ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1626 if (ret) { 1627 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1628 return ret; 1629 } 1630 return 0; 1631 } 1632 1633 static void __exit kvm_mips_exit(void) 1634 { 1635 kvm_exit(); 1636 1637 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1638 } 1639 1640 module_init(kvm_mips_init); 1641 module_exit(kvm_mips_exit); 1642 1643 EXPORT_TRACEPOINT_SYMBOL(kvm_exit); 1644