1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: MIPS specific KVM APIs 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/errno.h> 14 #include <linux/err.h> 15 #include <linux/kdebug.h> 16 #include <linux/module.h> 17 #include <linux/uaccess.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/fs.h> 21 #include <linux/memblock.h> 22 #include <linux/pgtable.h> 23 24 #include <asm/fpu.h> 25 #include <asm/page.h> 26 #include <asm/cacheflush.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgalloc.h> 29 30 #include <linux/kvm_host.h> 31 32 #include "interrupt.h" 33 34 #define CREATE_TRACE_POINTS 35 #include "trace.h" 36 37 #ifndef VECTORSPACING 38 #define VECTORSPACING 0x100 /* for EI/VI mode */ 39 #endif 40 41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 42 KVM_GENERIC_VM_STATS() 43 }; 44 45 const struct kvm_stats_header kvm_vm_stats_header = { 46 .name_size = KVM_STATS_NAME_SIZE, 47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 48 .id_offset = sizeof(struct kvm_stats_header), 49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 51 sizeof(kvm_vm_stats_desc), 52 }; 53 54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 55 KVM_GENERIC_VCPU_STATS(), 56 STATS_DESC_COUNTER(VCPU, wait_exits), 57 STATS_DESC_COUNTER(VCPU, cache_exits), 58 STATS_DESC_COUNTER(VCPU, signal_exits), 59 STATS_DESC_COUNTER(VCPU, int_exits), 60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits), 61 STATS_DESC_COUNTER(VCPU, tlbmod_exits), 62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits), 63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits), 64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits), 65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits), 66 STATS_DESC_COUNTER(VCPU, syscall_exits), 67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits), 68 STATS_DESC_COUNTER(VCPU, break_inst_exits), 69 STATS_DESC_COUNTER(VCPU, trap_inst_exits), 70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits), 71 STATS_DESC_COUNTER(VCPU, fpe_exits), 72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits), 73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits), 74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits), 75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits), 76 STATS_DESC_COUNTER(VCPU, vz_hc_exits), 77 STATS_DESC_COUNTER(VCPU, vz_grr_exits), 78 STATS_DESC_COUNTER(VCPU, vz_gva_exits), 79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits), 80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits), 81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits), 82 #ifdef CONFIG_CPU_LOONGSON64 83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits), 84 #endif 85 }; 86 87 const struct kvm_stats_header kvm_vcpu_stats_header = { 88 .name_size = KVM_STATS_NAME_SIZE, 89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 90 .id_offset = sizeof(struct kvm_stats_header), 91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 93 sizeof(kvm_vcpu_stats_desc), 94 }; 95 96 bool kvm_trace_guest_mode_change; 97 98 int kvm_guest_mode_change_trace_reg(void) 99 { 100 kvm_trace_guest_mode_change = true; 101 return 0; 102 } 103 104 void kvm_guest_mode_change_trace_unreg(void) 105 { 106 kvm_trace_guest_mode_change = false; 107 } 108 109 /* 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in 111 * Config7, so we are "runnable" if interrupts are pending 112 */ 113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 114 { 115 return !!(vcpu->arch.pending_exceptions); 116 } 117 118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 119 { 120 return false; 121 } 122 123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 124 { 125 return 1; 126 } 127 128 int kvm_arch_hardware_enable(void) 129 { 130 return kvm_mips_callbacks->hardware_enable(); 131 } 132 133 void kvm_arch_hardware_disable(void) 134 { 135 kvm_mips_callbacks->hardware_disable(); 136 } 137 138 extern void kvm_init_loongson_ipi(struct kvm *kvm); 139 140 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 141 { 142 switch (type) { 143 case KVM_VM_MIPS_AUTO: 144 break; 145 case KVM_VM_MIPS_VZ: 146 break; 147 default: 148 /* Unsupported KVM type */ 149 return -EINVAL; 150 } 151 152 /* Allocate page table to map GPA -> RPA */ 153 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); 154 if (!kvm->arch.gpa_mm.pgd) 155 return -ENOMEM; 156 157 #ifdef CONFIG_CPU_LOONGSON64 158 kvm_init_loongson_ipi(kvm); 159 #endif 160 161 return 0; 162 } 163 164 static void kvm_mips_free_gpa_pt(struct kvm *kvm) 165 { 166 /* It should always be safe to remove after flushing the whole range */ 167 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); 168 pgd_free(NULL, kvm->arch.gpa_mm.pgd); 169 } 170 171 void kvm_arch_destroy_vm(struct kvm *kvm) 172 { 173 kvm_destroy_vcpus(kvm); 174 kvm_mips_free_gpa_pt(kvm); 175 } 176 177 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, 178 unsigned long arg) 179 { 180 return -ENOIOCTLCMD; 181 } 182 183 void kvm_arch_flush_shadow_all(struct kvm *kvm) 184 { 185 /* Flush whole GPA */ 186 kvm_mips_flush_gpa_pt(kvm, 0, ~0); 187 kvm_flush_remote_tlbs(kvm); 188 } 189 190 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 191 struct kvm_memory_slot *slot) 192 { 193 /* 194 * The slot has been made invalid (ready for moving or deletion), so we 195 * need to ensure that it can no longer be accessed by any guest VCPUs. 196 */ 197 198 spin_lock(&kvm->mmu_lock); 199 /* Flush slot from GPA */ 200 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, 201 slot->base_gfn + slot->npages - 1); 202 kvm_flush_remote_tlbs_memslot(kvm, slot); 203 spin_unlock(&kvm->mmu_lock); 204 } 205 206 int kvm_arch_prepare_memory_region(struct kvm *kvm, 207 const struct kvm_memory_slot *old, 208 struct kvm_memory_slot *new, 209 enum kvm_mr_change change) 210 { 211 return 0; 212 } 213 214 void kvm_arch_commit_memory_region(struct kvm *kvm, 215 struct kvm_memory_slot *old, 216 const struct kvm_memory_slot *new, 217 enum kvm_mr_change change) 218 { 219 int needs_flush; 220 221 /* 222 * If dirty page logging is enabled, write protect all pages in the slot 223 * ready for dirty logging. 224 * 225 * There is no need to do this in any of the following cases: 226 * CREATE: No dirty mappings will already exist. 227 * MOVE/DELETE: The old mappings will already have been cleaned up by 228 * kvm_arch_flush_shadow_memslot() 229 */ 230 if (change == KVM_MR_FLAGS_ONLY && 231 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 232 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { 233 spin_lock(&kvm->mmu_lock); 234 /* Write protect GPA page table entries */ 235 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, 236 new->base_gfn + new->npages - 1); 237 if (needs_flush) 238 kvm_flush_remote_tlbs_memslot(kvm, new); 239 spin_unlock(&kvm->mmu_lock); 240 } 241 } 242 243 static inline void dump_handler(const char *symbol, void *start, void *end) 244 { 245 u32 *p; 246 247 pr_debug("LEAF(%s)\n", symbol); 248 249 pr_debug("\t.set push\n"); 250 pr_debug("\t.set noreorder\n"); 251 252 for (p = start; p < (u32 *)end; ++p) 253 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); 254 255 pr_debug("\t.set\tpop\n"); 256 257 pr_debug("\tEND(%s)\n", symbol); 258 } 259 260 /* low level hrtimer wake routine */ 261 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) 262 { 263 struct kvm_vcpu *vcpu; 264 265 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); 266 267 kvm_mips_callbacks->queue_timer_int(vcpu); 268 269 vcpu->arch.wait = 0; 270 rcuwait_wake_up(&vcpu->wait); 271 272 return kvm_mips_count_timeout(vcpu); 273 } 274 275 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 276 { 277 return 0; 278 } 279 280 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 281 { 282 int err, size; 283 void *gebase, *p, *handler, *refill_start, *refill_end; 284 int i; 285 286 kvm_debug("kvm @ %p: create cpu %d at %p\n", 287 vcpu->kvm, vcpu->vcpu_id, vcpu); 288 289 err = kvm_mips_callbacks->vcpu_init(vcpu); 290 if (err) 291 return err; 292 293 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, 294 HRTIMER_MODE_REL); 295 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; 296 297 /* 298 * Allocate space for host mode exception handlers that handle 299 * guest mode exits 300 */ 301 if (cpu_has_veic || cpu_has_vint) 302 size = 0x200 + VECTORSPACING * 64; 303 else 304 size = 0x4000; 305 306 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); 307 308 if (!gebase) { 309 err = -ENOMEM; 310 goto out_uninit_vcpu; 311 } 312 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", 313 ALIGN(size, PAGE_SIZE), gebase); 314 315 /* 316 * Check new ebase actually fits in CP0_EBase. The lack of a write gate 317 * limits us to the low 512MB of physical address space. If the memory 318 * we allocate is out of range, just give up now. 319 */ 320 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { 321 kvm_err("CP0_EBase.WG required for guest exception base %pK\n", 322 gebase); 323 err = -ENOMEM; 324 goto out_free_gebase; 325 } 326 327 /* Save new ebase */ 328 vcpu->arch.guest_ebase = gebase; 329 330 /* Build guest exception vectors dynamically in unmapped memory */ 331 handler = gebase + 0x2000; 332 333 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ 334 refill_start = gebase; 335 if (IS_ENABLED(CONFIG_64BIT)) 336 refill_start += 0x080; 337 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); 338 339 /* General Exception Entry point */ 340 kvm_mips_build_exception(gebase + 0x180, handler); 341 342 /* For vectored interrupts poke the exception code @ all offsets 0-7 */ 343 for (i = 0; i < 8; i++) { 344 kvm_debug("L1 Vectored handler @ %p\n", 345 gebase + 0x200 + (i * VECTORSPACING)); 346 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, 347 handler); 348 } 349 350 /* General exit handler */ 351 p = handler; 352 p = kvm_mips_build_exit(p); 353 354 /* Guest entry routine */ 355 vcpu->arch.vcpu_run = p; 356 p = kvm_mips_build_vcpu_run(p); 357 358 /* Dump the generated code */ 359 pr_debug("#include <asm/asm.h>\n"); 360 pr_debug("#include <asm/regdef.h>\n"); 361 pr_debug("\n"); 362 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); 363 dump_handler("kvm_tlb_refill", refill_start, refill_end); 364 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); 365 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); 366 367 /* Invalidate the icache for these ranges */ 368 flush_icache_range((unsigned long)gebase, 369 (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); 370 371 /* Init */ 372 vcpu->arch.last_sched_cpu = -1; 373 vcpu->arch.last_exec_cpu = -1; 374 375 /* Initial guest state */ 376 err = kvm_mips_callbacks->vcpu_setup(vcpu); 377 if (err) 378 goto out_free_gebase; 379 380 return 0; 381 382 out_free_gebase: 383 kfree(gebase); 384 out_uninit_vcpu: 385 kvm_mips_callbacks->vcpu_uninit(vcpu); 386 return err; 387 } 388 389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 390 { 391 hrtimer_cancel(&vcpu->arch.comparecount_timer); 392 393 kvm_mips_dump_stats(vcpu); 394 395 kvm_mmu_free_memory_caches(vcpu); 396 kfree(vcpu->arch.guest_ebase); 397 398 kvm_mips_callbacks->vcpu_uninit(vcpu); 399 } 400 401 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 402 struct kvm_guest_debug *dbg) 403 { 404 return -ENOIOCTLCMD; 405 } 406 407 /* 408 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 409 * the vCPU is running. 410 * 411 * This must be noinstr as instrumentation may make use of RCU, and this is not 412 * safe during the EQS. 413 */ 414 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu) 415 { 416 int ret; 417 418 guest_state_enter_irqoff(); 419 ret = kvm_mips_callbacks->vcpu_run(vcpu); 420 guest_state_exit_irqoff(); 421 422 return ret; 423 } 424 425 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 426 { 427 int r = -EINTR; 428 429 vcpu_load(vcpu); 430 431 kvm_sigset_activate(vcpu); 432 433 if (vcpu->mmio_needed) { 434 if (!vcpu->mmio_is_write) 435 kvm_mips_complete_mmio_load(vcpu); 436 vcpu->mmio_needed = 0; 437 } 438 439 if (vcpu->run->immediate_exit) 440 goto out; 441 442 lose_fpu(1); 443 444 local_irq_disable(); 445 guest_timing_enter_irqoff(); 446 trace_kvm_enter(vcpu); 447 448 /* 449 * Make sure the read of VCPU requests in vcpu_run() callback is not 450 * reordered ahead of the write to vcpu->mode, or we could miss a TLB 451 * flush request while the requester sees the VCPU as outside of guest 452 * mode and not needing an IPI. 453 */ 454 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 455 456 r = kvm_mips_vcpu_enter_exit(vcpu); 457 458 /* 459 * We must ensure that any pending interrupts are taken before 460 * we exit guest timing so that timer ticks are accounted as 461 * guest time. Transiently unmask interrupts so that any 462 * pending interrupts are taken. 463 * 464 * TODO: is there a barrier which ensures that pending interrupts are 465 * recognised? Currently this just hopes that the CPU takes any pending 466 * interrupts between the enable and disable. 467 */ 468 local_irq_enable(); 469 local_irq_disable(); 470 471 trace_kvm_out(vcpu); 472 guest_timing_exit_irqoff(); 473 local_irq_enable(); 474 475 out: 476 kvm_sigset_deactivate(vcpu); 477 478 vcpu_put(vcpu); 479 return r; 480 } 481 482 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 483 struct kvm_mips_interrupt *irq) 484 { 485 int intr = (int)irq->irq; 486 struct kvm_vcpu *dvcpu = NULL; 487 488 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] || 489 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] || 490 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) || 491 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2])) 492 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, 493 (int)intr); 494 495 if (irq->cpu == -1) 496 dvcpu = vcpu; 497 else 498 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu); 499 500 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) { 501 kvm_mips_callbacks->queue_io_int(dvcpu, irq); 502 503 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) { 504 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); 505 } else { 506 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, 507 irq->cpu, irq->irq); 508 return -EINVAL; 509 } 510 511 dvcpu->arch.wait = 0; 512 513 rcuwait_wake_up(&dvcpu->wait); 514 515 return 0; 516 } 517 518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 519 struct kvm_mp_state *mp_state) 520 { 521 return -ENOIOCTLCMD; 522 } 523 524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 525 struct kvm_mp_state *mp_state) 526 { 527 return -ENOIOCTLCMD; 528 } 529 530 static u64 kvm_mips_get_one_regs[] = { 531 KVM_REG_MIPS_R0, 532 KVM_REG_MIPS_R1, 533 KVM_REG_MIPS_R2, 534 KVM_REG_MIPS_R3, 535 KVM_REG_MIPS_R4, 536 KVM_REG_MIPS_R5, 537 KVM_REG_MIPS_R6, 538 KVM_REG_MIPS_R7, 539 KVM_REG_MIPS_R8, 540 KVM_REG_MIPS_R9, 541 KVM_REG_MIPS_R10, 542 KVM_REG_MIPS_R11, 543 KVM_REG_MIPS_R12, 544 KVM_REG_MIPS_R13, 545 KVM_REG_MIPS_R14, 546 KVM_REG_MIPS_R15, 547 KVM_REG_MIPS_R16, 548 KVM_REG_MIPS_R17, 549 KVM_REG_MIPS_R18, 550 KVM_REG_MIPS_R19, 551 KVM_REG_MIPS_R20, 552 KVM_REG_MIPS_R21, 553 KVM_REG_MIPS_R22, 554 KVM_REG_MIPS_R23, 555 KVM_REG_MIPS_R24, 556 KVM_REG_MIPS_R25, 557 KVM_REG_MIPS_R26, 558 KVM_REG_MIPS_R27, 559 KVM_REG_MIPS_R28, 560 KVM_REG_MIPS_R29, 561 KVM_REG_MIPS_R30, 562 KVM_REG_MIPS_R31, 563 564 #ifndef CONFIG_CPU_MIPSR6 565 KVM_REG_MIPS_HI, 566 KVM_REG_MIPS_LO, 567 #endif 568 KVM_REG_MIPS_PC, 569 }; 570 571 static u64 kvm_mips_get_one_regs_fpu[] = { 572 KVM_REG_MIPS_FCR_IR, 573 KVM_REG_MIPS_FCR_CSR, 574 }; 575 576 static u64 kvm_mips_get_one_regs_msa[] = { 577 KVM_REG_MIPS_MSA_IR, 578 KVM_REG_MIPS_MSA_CSR, 579 }; 580 581 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) 582 { 583 unsigned long ret; 584 585 ret = ARRAY_SIZE(kvm_mips_get_one_regs); 586 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 587 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; 588 /* odd doubles */ 589 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) 590 ret += 16; 591 } 592 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 593 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; 594 ret += kvm_mips_callbacks->num_regs(vcpu); 595 596 return ret; 597 } 598 599 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) 600 { 601 u64 index; 602 unsigned int i; 603 604 if (copy_to_user(indices, kvm_mips_get_one_regs, 605 sizeof(kvm_mips_get_one_regs))) 606 return -EFAULT; 607 indices += ARRAY_SIZE(kvm_mips_get_one_regs); 608 609 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 610 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, 611 sizeof(kvm_mips_get_one_regs_fpu))) 612 return -EFAULT; 613 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); 614 615 for (i = 0; i < 32; ++i) { 616 index = KVM_REG_MIPS_FPR_32(i); 617 if (copy_to_user(indices, &index, sizeof(index))) 618 return -EFAULT; 619 ++indices; 620 621 /* skip odd doubles if no F64 */ 622 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) 623 continue; 624 625 index = KVM_REG_MIPS_FPR_64(i); 626 if (copy_to_user(indices, &index, sizeof(index))) 627 return -EFAULT; 628 ++indices; 629 } 630 } 631 632 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { 633 if (copy_to_user(indices, kvm_mips_get_one_regs_msa, 634 sizeof(kvm_mips_get_one_regs_msa))) 635 return -EFAULT; 636 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); 637 638 for (i = 0; i < 32; ++i) { 639 index = KVM_REG_MIPS_VEC_128(i); 640 if (copy_to_user(indices, &index, sizeof(index))) 641 return -EFAULT; 642 ++indices; 643 } 644 } 645 646 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); 647 } 648 649 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, 650 const struct kvm_one_reg *reg) 651 { 652 struct mips_coproc *cop0 = &vcpu->arch.cop0; 653 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 654 int ret; 655 s64 v; 656 s64 vs[2]; 657 unsigned int idx; 658 659 switch (reg->id) { 660 /* General purpose registers */ 661 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: 662 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; 663 break; 664 #ifndef CONFIG_CPU_MIPSR6 665 case KVM_REG_MIPS_HI: 666 v = (long)vcpu->arch.hi; 667 break; 668 case KVM_REG_MIPS_LO: 669 v = (long)vcpu->arch.lo; 670 break; 671 #endif 672 case KVM_REG_MIPS_PC: 673 v = (long)vcpu->arch.pc; 674 break; 675 676 /* Floating point registers */ 677 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 678 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 679 return -EINVAL; 680 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 681 /* Odd singles in top of even double when FR=0 */ 682 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 683 v = get_fpr32(&fpu->fpr[idx], 0); 684 else 685 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); 686 break; 687 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 688 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 689 return -EINVAL; 690 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 691 /* Can't access odd doubles in FR=0 mode */ 692 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 693 return -EINVAL; 694 v = get_fpr64(&fpu->fpr[idx], 0); 695 break; 696 case KVM_REG_MIPS_FCR_IR: 697 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 698 return -EINVAL; 699 v = boot_cpu_data.fpu_id; 700 break; 701 case KVM_REG_MIPS_FCR_CSR: 702 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 703 return -EINVAL; 704 v = fpu->fcr31; 705 break; 706 707 /* MIPS SIMD Architecture (MSA) registers */ 708 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 709 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 710 return -EINVAL; 711 /* Can't access MSA registers in FR=0 mode */ 712 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) 713 return -EINVAL; 714 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 715 #ifdef CONFIG_CPU_LITTLE_ENDIAN 716 /* least significant byte first */ 717 vs[0] = get_fpr64(&fpu->fpr[idx], 0); 718 vs[1] = get_fpr64(&fpu->fpr[idx], 1); 719 #else 720 /* most significant byte first */ 721 vs[0] = get_fpr64(&fpu->fpr[idx], 1); 722 vs[1] = get_fpr64(&fpu->fpr[idx], 0); 723 #endif 724 break; 725 case KVM_REG_MIPS_MSA_IR: 726 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 727 return -EINVAL; 728 v = boot_cpu_data.msa_id; 729 break; 730 case KVM_REG_MIPS_MSA_CSR: 731 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 732 return -EINVAL; 733 v = fpu->msacsr; 734 break; 735 736 /* registers to be handled specially */ 737 default: 738 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); 739 if (ret) 740 return ret; 741 break; 742 } 743 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 744 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 745 746 return put_user(v, uaddr64); 747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 748 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 749 u32 v32 = (u32)v; 750 751 return put_user(v32, uaddr32); 752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 753 void __user *uaddr = (void __user *)(long)reg->addr; 754 755 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; 756 } else { 757 return -EINVAL; 758 } 759 } 760 761 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, 762 const struct kvm_one_reg *reg) 763 { 764 struct mips_coproc *cop0 = &vcpu->arch.cop0; 765 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 766 s64 v; 767 s64 vs[2]; 768 unsigned int idx; 769 770 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 771 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 772 773 if (get_user(v, uaddr64) != 0) 774 return -EFAULT; 775 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 776 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 777 s32 v32; 778 779 if (get_user(v32, uaddr32) != 0) 780 return -EFAULT; 781 v = (s64)v32; 782 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 783 void __user *uaddr = (void __user *)(long)reg->addr; 784 785 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; 786 } else { 787 return -EINVAL; 788 } 789 790 switch (reg->id) { 791 /* General purpose registers */ 792 case KVM_REG_MIPS_R0: 793 /* Silently ignore requests to set $0 */ 794 break; 795 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: 796 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; 797 break; 798 #ifndef CONFIG_CPU_MIPSR6 799 case KVM_REG_MIPS_HI: 800 vcpu->arch.hi = v; 801 break; 802 case KVM_REG_MIPS_LO: 803 vcpu->arch.lo = v; 804 break; 805 #endif 806 case KVM_REG_MIPS_PC: 807 vcpu->arch.pc = v; 808 break; 809 810 /* Floating point registers */ 811 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 812 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 813 return -EINVAL; 814 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 815 /* Odd singles in top of even double when FR=0 */ 816 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 817 set_fpr32(&fpu->fpr[idx], 0, v); 818 else 819 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); 820 break; 821 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 822 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 823 return -EINVAL; 824 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 825 /* Can't access odd doubles in FR=0 mode */ 826 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 827 return -EINVAL; 828 set_fpr64(&fpu->fpr[idx], 0, v); 829 break; 830 case KVM_REG_MIPS_FCR_IR: 831 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 832 return -EINVAL; 833 /* Read-only */ 834 break; 835 case KVM_REG_MIPS_FCR_CSR: 836 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 837 return -EINVAL; 838 fpu->fcr31 = v; 839 break; 840 841 /* MIPS SIMD Architecture (MSA) registers */ 842 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 843 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 844 return -EINVAL; 845 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 846 #ifdef CONFIG_CPU_LITTLE_ENDIAN 847 /* least significant byte first */ 848 set_fpr64(&fpu->fpr[idx], 0, vs[0]); 849 set_fpr64(&fpu->fpr[idx], 1, vs[1]); 850 #else 851 /* most significant byte first */ 852 set_fpr64(&fpu->fpr[idx], 1, vs[0]); 853 set_fpr64(&fpu->fpr[idx], 0, vs[1]); 854 #endif 855 break; 856 case KVM_REG_MIPS_MSA_IR: 857 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 858 return -EINVAL; 859 /* Read-only */ 860 break; 861 case KVM_REG_MIPS_MSA_CSR: 862 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 863 return -EINVAL; 864 fpu->msacsr = v; 865 break; 866 867 /* registers to be handled specially */ 868 default: 869 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); 870 } 871 return 0; 872 } 873 874 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 875 struct kvm_enable_cap *cap) 876 { 877 int r = 0; 878 879 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) 880 return -EINVAL; 881 if (cap->flags) 882 return -EINVAL; 883 if (cap->args[0]) 884 return -EINVAL; 885 886 switch (cap->cap) { 887 case KVM_CAP_MIPS_FPU: 888 vcpu->arch.fpu_enabled = true; 889 break; 890 case KVM_CAP_MIPS_MSA: 891 vcpu->arch.msa_enabled = true; 892 break; 893 default: 894 r = -EINVAL; 895 break; 896 } 897 898 return r; 899 } 900 901 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, 902 unsigned long arg) 903 { 904 struct kvm_vcpu *vcpu = filp->private_data; 905 void __user *argp = (void __user *)arg; 906 907 if (ioctl == KVM_INTERRUPT) { 908 struct kvm_mips_interrupt irq; 909 910 if (copy_from_user(&irq, argp, sizeof(irq))) 911 return -EFAULT; 912 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, 913 irq.irq); 914 915 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 916 } 917 918 return -ENOIOCTLCMD; 919 } 920 921 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, 922 unsigned long arg) 923 { 924 struct kvm_vcpu *vcpu = filp->private_data; 925 void __user *argp = (void __user *)arg; 926 long r; 927 928 vcpu_load(vcpu); 929 930 switch (ioctl) { 931 case KVM_SET_ONE_REG: 932 case KVM_GET_ONE_REG: { 933 struct kvm_one_reg reg; 934 935 r = -EFAULT; 936 if (copy_from_user(®, argp, sizeof(reg))) 937 break; 938 if (ioctl == KVM_SET_ONE_REG) 939 r = kvm_mips_set_reg(vcpu, ®); 940 else 941 r = kvm_mips_get_reg(vcpu, ®); 942 break; 943 } 944 case KVM_GET_REG_LIST: { 945 struct kvm_reg_list __user *user_list = argp; 946 struct kvm_reg_list reg_list; 947 unsigned n; 948 949 r = -EFAULT; 950 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 951 break; 952 n = reg_list.n; 953 reg_list.n = kvm_mips_num_regs(vcpu); 954 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 955 break; 956 r = -E2BIG; 957 if (n < reg_list.n) 958 break; 959 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); 960 break; 961 } 962 case KVM_ENABLE_CAP: { 963 struct kvm_enable_cap cap; 964 965 r = -EFAULT; 966 if (copy_from_user(&cap, argp, sizeof(cap))) 967 break; 968 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 969 break; 970 } 971 default: 972 r = -ENOIOCTLCMD; 973 } 974 975 vcpu_put(vcpu); 976 return r; 977 } 978 979 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 980 { 981 982 } 983 984 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 985 { 986 kvm_mips_callbacks->prepare_flush_shadow(kvm); 987 return 1; 988 } 989 990 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 991 { 992 int r; 993 994 switch (ioctl) { 995 default: 996 r = -ENOIOCTLCMD; 997 } 998 999 return r; 1000 } 1001 1002 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1003 struct kvm_sregs *sregs) 1004 { 1005 return -ENOIOCTLCMD; 1006 } 1007 1008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1009 struct kvm_sregs *sregs) 1010 { 1011 return -ENOIOCTLCMD; 1012 } 1013 1014 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1015 { 1016 } 1017 1018 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1019 { 1020 return -ENOIOCTLCMD; 1021 } 1022 1023 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1024 { 1025 return -ENOIOCTLCMD; 1026 } 1027 1028 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1029 { 1030 return VM_FAULT_SIGBUS; 1031 } 1032 1033 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 1034 { 1035 int r; 1036 1037 switch (ext) { 1038 case KVM_CAP_ONE_REG: 1039 case KVM_CAP_ENABLE_CAP: 1040 case KVM_CAP_READONLY_MEM: 1041 case KVM_CAP_SYNC_MMU: 1042 case KVM_CAP_IMMEDIATE_EXIT: 1043 r = 1; 1044 break; 1045 case KVM_CAP_NR_VCPUS: 1046 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 1047 break; 1048 case KVM_CAP_MAX_VCPUS: 1049 r = KVM_MAX_VCPUS; 1050 break; 1051 case KVM_CAP_MAX_VCPU_ID: 1052 r = KVM_MAX_VCPU_IDS; 1053 break; 1054 case KVM_CAP_MIPS_FPU: 1055 /* We don't handle systems with inconsistent cpu_has_fpu */ 1056 r = !!raw_cpu_has_fpu; 1057 break; 1058 case KVM_CAP_MIPS_MSA: 1059 /* 1060 * We don't support MSA vector partitioning yet: 1061 * 1) It would require explicit support which can't be tested 1062 * yet due to lack of support in current hardware. 1063 * 2) It extends the state that would need to be saved/restored 1064 * by e.g. QEMU for migration. 1065 * 1066 * When vector partitioning hardware becomes available, support 1067 * could be added by requiring a flag when enabling 1068 * KVM_CAP_MIPS_MSA capability to indicate that userland knows 1069 * to save/restore the appropriate extra state. 1070 */ 1071 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); 1072 break; 1073 default: 1074 r = kvm_mips_callbacks->check_extension(kvm, ext); 1075 break; 1076 } 1077 return r; 1078 } 1079 1080 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1081 { 1082 return kvm_mips_pending_timer(vcpu) || 1083 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI; 1084 } 1085 1086 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) 1087 { 1088 int i; 1089 struct mips_coproc *cop0; 1090 1091 if (!vcpu) 1092 return -1; 1093 1094 kvm_debug("VCPU Register Dump:\n"); 1095 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); 1096 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); 1097 1098 for (i = 0; i < 32; i += 4) { 1099 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, 1100 vcpu->arch.gprs[i], 1101 vcpu->arch.gprs[i + 1], 1102 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); 1103 } 1104 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); 1105 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); 1106 1107 cop0 = &vcpu->arch.cop0; 1108 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", 1109 kvm_read_c0_guest_status(cop0), 1110 kvm_read_c0_guest_cause(cop0)); 1111 1112 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); 1113 1114 return 0; 1115 } 1116 1117 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1118 { 1119 int i; 1120 1121 vcpu_load(vcpu); 1122 1123 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1124 vcpu->arch.gprs[i] = regs->gpr[i]; 1125 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ 1126 vcpu->arch.hi = regs->hi; 1127 vcpu->arch.lo = regs->lo; 1128 vcpu->arch.pc = regs->pc; 1129 1130 vcpu_put(vcpu); 1131 return 0; 1132 } 1133 1134 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1135 { 1136 int i; 1137 1138 vcpu_load(vcpu); 1139 1140 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1141 regs->gpr[i] = vcpu->arch.gprs[i]; 1142 1143 regs->hi = vcpu->arch.hi; 1144 regs->lo = vcpu->arch.lo; 1145 regs->pc = vcpu->arch.pc; 1146 1147 vcpu_put(vcpu); 1148 return 0; 1149 } 1150 1151 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1152 struct kvm_translation *tr) 1153 { 1154 return 0; 1155 } 1156 1157 static void kvm_mips_set_c0_status(void) 1158 { 1159 u32 status = read_c0_status(); 1160 1161 if (cpu_has_dsp) 1162 status |= (ST0_MX); 1163 1164 write_c0_status(status); 1165 ehb(); 1166 } 1167 1168 /* 1169 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) 1170 */ 1171 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu) 1172 { 1173 struct kvm_run *run = vcpu->run; 1174 u32 cause = vcpu->arch.host_cp0_cause; 1175 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 1176 u32 __user *opc = (u32 __user *) vcpu->arch.pc; 1177 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 1178 enum emulation_result er = EMULATE_DONE; 1179 u32 inst; 1180 int ret = RESUME_GUEST; 1181 1182 vcpu->mode = OUTSIDE_GUEST_MODE; 1183 1184 /* Set a default exit reason */ 1185 run->exit_reason = KVM_EXIT_UNKNOWN; 1186 run->ready_for_interrupt_injection = 1; 1187 1188 /* 1189 * Set the appropriate status bits based on host CPU features, 1190 * before we hit the scheduler 1191 */ 1192 kvm_mips_set_c0_status(); 1193 1194 local_irq_enable(); 1195 1196 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", 1197 cause, opc, run, vcpu); 1198 trace_kvm_exit(vcpu, exccode); 1199 1200 switch (exccode) { 1201 case EXCCODE_INT: 1202 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); 1203 1204 ++vcpu->stat.int_exits; 1205 1206 if (need_resched()) 1207 cond_resched(); 1208 1209 ret = RESUME_GUEST; 1210 break; 1211 1212 case EXCCODE_CPU: 1213 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); 1214 1215 ++vcpu->stat.cop_unusable_exits; 1216 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); 1217 /* XXXKYMA: Might need to return to user space */ 1218 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) 1219 ret = RESUME_HOST; 1220 break; 1221 1222 case EXCCODE_MOD: 1223 ++vcpu->stat.tlbmod_exits; 1224 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); 1225 break; 1226 1227 case EXCCODE_TLBS: 1228 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", 1229 cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc, 1230 badvaddr); 1231 1232 ++vcpu->stat.tlbmiss_st_exits; 1233 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); 1234 break; 1235 1236 case EXCCODE_TLBL: 1237 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", 1238 cause, opc, badvaddr); 1239 1240 ++vcpu->stat.tlbmiss_ld_exits; 1241 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); 1242 break; 1243 1244 case EXCCODE_ADES: 1245 ++vcpu->stat.addrerr_st_exits; 1246 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); 1247 break; 1248 1249 case EXCCODE_ADEL: 1250 ++vcpu->stat.addrerr_ld_exits; 1251 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); 1252 break; 1253 1254 case EXCCODE_SYS: 1255 ++vcpu->stat.syscall_exits; 1256 ret = kvm_mips_callbacks->handle_syscall(vcpu); 1257 break; 1258 1259 case EXCCODE_RI: 1260 ++vcpu->stat.resvd_inst_exits; 1261 ret = kvm_mips_callbacks->handle_res_inst(vcpu); 1262 break; 1263 1264 case EXCCODE_BP: 1265 ++vcpu->stat.break_inst_exits; 1266 ret = kvm_mips_callbacks->handle_break(vcpu); 1267 break; 1268 1269 case EXCCODE_TR: 1270 ++vcpu->stat.trap_inst_exits; 1271 ret = kvm_mips_callbacks->handle_trap(vcpu); 1272 break; 1273 1274 case EXCCODE_MSAFPE: 1275 ++vcpu->stat.msa_fpe_exits; 1276 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); 1277 break; 1278 1279 case EXCCODE_FPE: 1280 ++vcpu->stat.fpe_exits; 1281 ret = kvm_mips_callbacks->handle_fpe(vcpu); 1282 break; 1283 1284 case EXCCODE_MSADIS: 1285 ++vcpu->stat.msa_disabled_exits; 1286 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); 1287 break; 1288 1289 case EXCCODE_GE: 1290 /* defer exit accounting to handler */ 1291 ret = kvm_mips_callbacks->handle_guest_exit(vcpu); 1292 break; 1293 1294 default: 1295 if (cause & CAUSEF_BD) 1296 opc += 1; 1297 inst = 0; 1298 kvm_get_badinstr(opc, vcpu, &inst); 1299 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", 1300 exccode, opc, inst, badvaddr, 1301 kvm_read_c0_guest_status(&vcpu->arch.cop0)); 1302 kvm_arch_vcpu_dump_regs(vcpu); 1303 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1304 ret = RESUME_HOST; 1305 break; 1306 1307 } 1308 1309 local_irq_disable(); 1310 1311 if (ret == RESUME_GUEST) 1312 kvm_vz_acquire_htimer(vcpu); 1313 1314 if (er == EMULATE_DONE && !(ret & RESUME_HOST)) 1315 kvm_mips_deliver_interrupts(vcpu, cause); 1316 1317 if (!(ret & RESUME_HOST)) { 1318 /* Only check for signals if not already exiting to userspace */ 1319 if (signal_pending(current)) { 1320 run->exit_reason = KVM_EXIT_INTR; 1321 ret = (-EINTR << 2) | RESUME_HOST; 1322 ++vcpu->stat.signal_exits; 1323 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); 1324 } 1325 } 1326 1327 if (ret == RESUME_GUEST) { 1328 trace_kvm_reenter(vcpu); 1329 1330 /* 1331 * Make sure the read of VCPU requests in vcpu_reenter() 1332 * callback is not reordered ahead of the write to vcpu->mode, 1333 * or we could miss a TLB flush request while the requester sees 1334 * the VCPU as outside of guest mode and not needing an IPI. 1335 */ 1336 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1337 1338 kvm_mips_callbacks->vcpu_reenter(vcpu); 1339 1340 /* 1341 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context 1342 * is live), restore FCR31 / MSACSR. 1343 * 1344 * This should be before returning to the guest exception 1345 * vector, as it may well cause an [MSA] FP exception if there 1346 * are pending exception bits unmasked. (see 1347 * kvm_mips_csr_die_notifier() for how that is handled). 1348 */ 1349 if (kvm_mips_guest_has_fpu(&vcpu->arch) && 1350 read_c0_status() & ST0_CU1) 1351 __kvm_restore_fcsr(&vcpu->arch); 1352 1353 if (kvm_mips_guest_has_msa(&vcpu->arch) && 1354 read_c0_config5() & MIPS_CONF5_MSAEN) 1355 __kvm_restore_msacsr(&vcpu->arch); 1356 } 1357 return ret; 1358 } 1359 1360 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu) 1361 { 1362 int ret; 1363 1364 guest_state_exit_irqoff(); 1365 ret = __kvm_mips_handle_exit(vcpu); 1366 guest_state_enter_irqoff(); 1367 1368 return ret; 1369 } 1370 1371 /* Enable FPU for guest and restore context */ 1372 void kvm_own_fpu(struct kvm_vcpu *vcpu) 1373 { 1374 struct mips_coproc *cop0 = &vcpu->arch.cop0; 1375 unsigned int sr, cfg5; 1376 1377 preempt_disable(); 1378 1379 sr = kvm_read_c0_guest_status(cop0); 1380 1381 /* 1382 * If MSA state is already live, it is undefined how it interacts with 1383 * FR=0 FPU state, and we don't want to hit reserved instruction 1384 * exceptions trying to save the MSA state later when CU=1 && FR=1, so 1385 * play it safe and save it first. 1386 */ 1387 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && 1388 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1389 kvm_lose_fpu(vcpu); 1390 1391 /* 1392 * Enable FPU for guest 1393 * We set FR and FRE according to guest context 1394 */ 1395 change_c0_status(ST0_CU1 | ST0_FR, sr); 1396 if (cpu_has_fre) { 1397 cfg5 = kvm_read_c0_guest_config5(cop0); 1398 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1399 } 1400 enable_fpu_hazard(); 1401 1402 /* If guest FPU state not active, restore it now */ 1403 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { 1404 __kvm_restore_fpu(&vcpu->arch); 1405 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1406 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); 1407 } else { 1408 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); 1409 } 1410 1411 preempt_enable(); 1412 } 1413 1414 #ifdef CONFIG_CPU_HAS_MSA 1415 /* Enable MSA for guest and restore context */ 1416 void kvm_own_msa(struct kvm_vcpu *vcpu) 1417 { 1418 struct mips_coproc *cop0 = &vcpu->arch.cop0; 1419 unsigned int sr, cfg5; 1420 1421 preempt_disable(); 1422 1423 /* 1424 * Enable FPU if enabled in guest, since we're restoring FPU context 1425 * anyway. We set FR and FRE according to guest context. 1426 */ 1427 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1428 sr = kvm_read_c0_guest_status(cop0); 1429 1430 /* 1431 * If FR=0 FPU state is already live, it is undefined how it 1432 * interacts with MSA state, so play it safe and save it first. 1433 */ 1434 if (!(sr & ST0_FR) && 1435 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | 1436 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) 1437 kvm_lose_fpu(vcpu); 1438 1439 change_c0_status(ST0_CU1 | ST0_FR, sr); 1440 if (sr & ST0_CU1 && cpu_has_fre) { 1441 cfg5 = kvm_read_c0_guest_config5(cop0); 1442 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1443 } 1444 } 1445 1446 /* Enable MSA for guest */ 1447 set_c0_config5(MIPS_CONF5_MSAEN); 1448 enable_fpu_hazard(); 1449 1450 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { 1451 case KVM_MIPS_AUX_FPU: 1452 /* 1453 * Guest FPU state already loaded, only restore upper MSA state 1454 */ 1455 __kvm_restore_msa_upper(&vcpu->arch); 1456 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1457 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); 1458 break; 1459 case 0: 1460 /* Neither FPU or MSA already active, restore full MSA state */ 1461 __kvm_restore_msa(&vcpu->arch); 1462 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1463 if (kvm_mips_guest_has_fpu(&vcpu->arch)) 1464 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1465 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, 1466 KVM_TRACE_AUX_FPU_MSA); 1467 break; 1468 default: 1469 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); 1470 break; 1471 } 1472 1473 preempt_enable(); 1474 } 1475 #endif 1476 1477 /* Drop FPU & MSA without saving it */ 1478 void kvm_drop_fpu(struct kvm_vcpu *vcpu) 1479 { 1480 preempt_disable(); 1481 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1482 disable_msa(); 1483 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); 1484 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; 1485 } 1486 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1487 clear_c0_status(ST0_CU1 | ST0_FR); 1488 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); 1489 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1490 } 1491 preempt_enable(); 1492 } 1493 1494 /* Save and disable FPU & MSA */ 1495 void kvm_lose_fpu(struct kvm_vcpu *vcpu) 1496 { 1497 /* 1498 * With T&E, FPU & MSA get disabled in root context (hardware) when it 1499 * is disabled in guest context (software), but the register state in 1500 * the hardware may still be in use. 1501 * This is why we explicitly re-enable the hardware before saving. 1502 */ 1503 1504 preempt_disable(); 1505 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1506 __kvm_save_msa(&vcpu->arch); 1507 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); 1508 1509 /* Disable MSA & FPU */ 1510 disable_msa(); 1511 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1512 clear_c0_status(ST0_CU1 | ST0_FR); 1513 disable_fpu_hazard(); 1514 } 1515 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); 1516 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1517 __kvm_save_fpu(&vcpu->arch); 1518 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); 1520 1521 /* Disable FPU */ 1522 clear_c0_status(ST0_CU1 | ST0_FR); 1523 disable_fpu_hazard(); 1524 } 1525 preempt_enable(); 1526 } 1527 1528 /* 1529 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are 1530 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP 1531 * exception if cause bits are set in the value being written. 1532 */ 1533 static int kvm_mips_csr_die_notify(struct notifier_block *self, 1534 unsigned long cmd, void *ptr) 1535 { 1536 struct die_args *args = (struct die_args *)ptr; 1537 struct pt_regs *regs = args->regs; 1538 unsigned long pc; 1539 1540 /* Only interested in FPE and MSAFPE */ 1541 if (cmd != DIE_FP && cmd != DIE_MSAFP) 1542 return NOTIFY_DONE; 1543 1544 /* Return immediately if guest context isn't active */ 1545 if (!(current->flags & PF_VCPU)) 1546 return NOTIFY_DONE; 1547 1548 /* Should never get here from user mode */ 1549 BUG_ON(user_mode(regs)); 1550 1551 pc = instruction_pointer(regs); 1552 switch (cmd) { 1553 case DIE_FP: 1554 /* match 2nd instruction in __kvm_restore_fcsr */ 1555 if (pc != (unsigned long)&__kvm_restore_fcsr + 4) 1556 return NOTIFY_DONE; 1557 break; 1558 case DIE_MSAFP: 1559 /* match 2nd/3rd instruction in __kvm_restore_msacsr */ 1560 if (!cpu_has_msa || 1561 pc < (unsigned long)&__kvm_restore_msacsr + 4 || 1562 pc > (unsigned long)&__kvm_restore_msacsr + 8) 1563 return NOTIFY_DONE; 1564 break; 1565 } 1566 1567 /* Move PC forward a little and continue executing */ 1568 instruction_pointer(regs) += 4; 1569 1570 return NOTIFY_STOP; 1571 } 1572 1573 static struct notifier_block kvm_mips_csr_die_notifier = { 1574 .notifier_call = kvm_mips_csr_die_notify, 1575 }; 1576 1577 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = { 1578 [MIPS_EXC_INT_TIMER] = C_IRQ5, 1579 [MIPS_EXC_INT_IO_1] = C_IRQ0, 1580 [MIPS_EXC_INT_IPI_1] = C_IRQ1, 1581 [MIPS_EXC_INT_IPI_2] = C_IRQ2, 1582 }; 1583 1584 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = { 1585 [MIPS_EXC_INT_TIMER] = C_IRQ5, 1586 [MIPS_EXC_INT_IO_1] = C_IRQ0, 1587 [MIPS_EXC_INT_IO_2] = C_IRQ1, 1588 [MIPS_EXC_INT_IPI_1] = C_IRQ4, 1589 }; 1590 1591 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq; 1592 1593 u32 kvm_irq_to_priority(u32 irq) 1594 { 1595 int i; 1596 1597 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) { 1598 if (kvm_priority_to_irq[i] == (1 << (irq + 8))) 1599 return i; 1600 } 1601 1602 return MIPS_EXC_MAX; 1603 } 1604 1605 static int __init kvm_mips_init(void) 1606 { 1607 int ret; 1608 1609 if (cpu_has_mmid) { 1610 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n"); 1611 return -EOPNOTSUPP; 1612 } 1613 1614 ret = kvm_mips_entry_setup(); 1615 if (ret) 1616 return ret; 1617 1618 ret = kvm_mips_emulation_init(); 1619 if (ret) 1620 return ret; 1621 1622 1623 if (boot_cpu_type() == CPU_LOONGSON64) 1624 kvm_priority_to_irq = kvm_loongson3_priority_to_irq; 1625 1626 register_die_notifier(&kvm_mips_csr_die_notifier); 1627 1628 ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1629 if (ret) { 1630 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1631 return ret; 1632 } 1633 return 0; 1634 } 1635 1636 static void __exit kvm_mips_exit(void) 1637 { 1638 kvm_exit(); 1639 1640 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1641 } 1642 1643 module_init(kvm_mips_init); 1644 module_exit(kvm_mips_exit); 1645 1646 EXPORT_TRACEPOINT_SYMBOL(kvm_exit); 1647