1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 #include <linux/interrupt.h> 25 #include <linux/ptrace.h> 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 #include <linux/kprobes.h> 29 #include <linux/notifier.h> 30 #include <linux/kdb.h> 31 #include <linux/irq.h> 32 #include <linux/perf_event.h> 33 34 #include <asm/bootinfo.h> 35 #include <asm/branch.h> 36 #include <asm/break.h> 37 #include <asm/cop2.h> 38 #include <asm/cpu.h> 39 #include <asm/dsp.h> 40 #include <asm/fpu.h> 41 #include <asm/fpu_emulator.h> 42 #include <asm/mipsregs.h> 43 #include <asm/mipsmtregs.h> 44 #include <asm/module.h> 45 #include <asm/pgtable.h> 46 #include <asm/ptrace.h> 47 #include <asm/sections.h> 48 #include <asm/system.h> 49 #include <asm/tlbdebug.h> 50 #include <asm/traps.h> 51 #include <asm/uaccess.h> 52 #include <asm/watch.h> 53 #include <asm/mmu_context.h> 54 #include <asm/types.h> 55 #include <asm/stacktrace.h> 56 #include <asm/uasm.h> 57 58 extern void check_wait(void); 59 extern asmlinkage void r4k_wait(void); 60 extern asmlinkage void rollback_handle_int(void); 61 extern asmlinkage void handle_int(void); 62 extern asmlinkage void handle_tlbm(void); 63 extern asmlinkage void handle_tlbl(void); 64 extern asmlinkage void handle_tlbs(void); 65 extern asmlinkage void handle_adel(void); 66 extern asmlinkage void handle_ades(void); 67 extern asmlinkage void handle_ibe(void); 68 extern asmlinkage void handle_dbe(void); 69 extern asmlinkage void handle_sys(void); 70 extern asmlinkage void handle_bp(void); 71 extern asmlinkage void handle_ri(void); 72 extern asmlinkage void handle_ri_rdhwr_vivt(void); 73 extern asmlinkage void handle_ri_rdhwr(void); 74 extern asmlinkage void handle_cpu(void); 75 extern asmlinkage void handle_ov(void); 76 extern asmlinkage void handle_tr(void); 77 extern asmlinkage void handle_fpe(void); 78 extern asmlinkage void handle_mdmx(void); 79 extern asmlinkage void handle_watch(void); 80 extern asmlinkage void handle_mt(void); 81 extern asmlinkage void handle_dsp(void); 82 extern asmlinkage void handle_mcheck(void); 83 extern asmlinkage void handle_reserved(void); 84 85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 86 struct mips_fpu_struct *ctx, int has_fpu, 87 void *__user *fault_addr); 88 89 void (*board_be_init)(void); 90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 91 void (*board_nmi_handler_setup)(void); 92 void (*board_ejtag_handler_setup)(void); 93 void (*board_bind_eic_interrupt)(int irq, int regset); 94 95 96 static void show_raw_backtrace(unsigned long reg29) 97 { 98 unsigned long *sp = (unsigned long *)(reg29 & ~3); 99 unsigned long addr; 100 101 printk("Call Trace:"); 102 #ifdef CONFIG_KALLSYMS 103 printk("\n"); 104 #endif 105 while (!kstack_end(sp)) { 106 unsigned long __user *p = 107 (unsigned long __user *)(unsigned long)sp++; 108 if (__get_user(addr, p)) { 109 printk(" (Bad stack address)"); 110 break; 111 } 112 if (__kernel_text_address(addr)) 113 print_ip_sym(addr); 114 } 115 printk("\n"); 116 } 117 118 #ifdef CONFIG_KALLSYMS 119 int raw_show_trace; 120 static int __init set_raw_show_trace(char *str) 121 { 122 raw_show_trace = 1; 123 return 1; 124 } 125 __setup("raw_show_trace", set_raw_show_trace); 126 #endif 127 128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 129 { 130 unsigned long sp = regs->regs[29]; 131 unsigned long ra = regs->regs[31]; 132 unsigned long pc = regs->cp0_epc; 133 134 if (raw_show_trace || !__kernel_text_address(pc)) { 135 show_raw_backtrace(sp); 136 return; 137 } 138 printk("Call Trace:\n"); 139 do { 140 print_ip_sym(pc); 141 pc = unwind_stack(task, &sp, pc, &ra); 142 } while (pc); 143 printk("\n"); 144 } 145 146 /* 147 * This routine abuses get_user()/put_user() to reference pointers 148 * with at least a bit of error checking ... 149 */ 150 static void show_stacktrace(struct task_struct *task, 151 const struct pt_regs *regs) 152 { 153 const int field = 2 * sizeof(unsigned long); 154 long stackdata; 155 int i; 156 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 157 158 printk("Stack :"); 159 i = 0; 160 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 161 if (i && ((i % (64 / field)) == 0)) 162 printk("\n "); 163 if (i > 39) { 164 printk(" ..."); 165 break; 166 } 167 168 if (__get_user(stackdata, sp++)) { 169 printk(" (Bad stack address)"); 170 break; 171 } 172 173 printk(" %0*lx", field, stackdata); 174 i++; 175 } 176 printk("\n"); 177 show_backtrace(task, regs); 178 } 179 180 void show_stack(struct task_struct *task, unsigned long *sp) 181 { 182 struct pt_regs regs; 183 if (sp) { 184 regs.regs[29] = (unsigned long)sp; 185 regs.regs[31] = 0; 186 regs.cp0_epc = 0; 187 } else { 188 if (task && task != current) { 189 regs.regs[29] = task->thread.reg29; 190 regs.regs[31] = 0; 191 regs.cp0_epc = task->thread.reg31; 192 #ifdef CONFIG_KGDB_KDB 193 } else if (atomic_read(&kgdb_active) != -1 && 194 kdb_current_regs) { 195 memcpy(®s, kdb_current_regs, sizeof(regs)); 196 #endif /* CONFIG_KGDB_KDB */ 197 } else { 198 prepare_frametrace(®s); 199 } 200 } 201 show_stacktrace(task, ®s); 202 } 203 204 /* 205 * The architecture-independent dump_stack generator 206 */ 207 void dump_stack(void) 208 { 209 struct pt_regs regs; 210 211 prepare_frametrace(®s); 212 show_backtrace(current, ®s); 213 } 214 215 EXPORT_SYMBOL(dump_stack); 216 217 static void show_code(unsigned int __user *pc) 218 { 219 long i; 220 unsigned short __user *pc16 = NULL; 221 222 printk("\nCode:"); 223 224 if ((unsigned long)pc & 1) 225 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 226 for(i = -3 ; i < 6 ; i++) { 227 unsigned int insn; 228 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 229 printk(" (Bad address in epc)\n"); 230 break; 231 } 232 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 233 } 234 } 235 236 static void __show_regs(const struct pt_regs *regs) 237 { 238 const int field = 2 * sizeof(unsigned long); 239 unsigned int cause = regs->cp0_cause; 240 int i; 241 242 printk("Cpu %d\n", smp_processor_id()); 243 244 /* 245 * Saved main processor registers 246 */ 247 for (i = 0; i < 32; ) { 248 if ((i % 4) == 0) 249 printk("$%2d :", i); 250 if (i == 0) 251 printk(" %0*lx", field, 0UL); 252 else if (i == 26 || i == 27) 253 printk(" %*s", field, ""); 254 else 255 printk(" %0*lx", field, regs->regs[i]); 256 257 i++; 258 if ((i % 4) == 0) 259 printk("\n"); 260 } 261 262 #ifdef CONFIG_CPU_HAS_SMARTMIPS 263 printk("Acx : %0*lx\n", field, regs->acx); 264 #endif 265 printk("Hi : %0*lx\n", field, regs->hi); 266 printk("Lo : %0*lx\n", field, regs->lo); 267 268 /* 269 * Saved cp0 registers 270 */ 271 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 272 (void *) regs->cp0_epc); 273 printk(" %s\n", print_tainted()); 274 printk("ra : %0*lx %pS\n", field, regs->regs[31], 275 (void *) regs->regs[31]); 276 277 printk("Status: %08x ", (uint32_t) regs->cp0_status); 278 279 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 280 if (regs->cp0_status & ST0_KUO) 281 printk("KUo "); 282 if (regs->cp0_status & ST0_IEO) 283 printk("IEo "); 284 if (regs->cp0_status & ST0_KUP) 285 printk("KUp "); 286 if (regs->cp0_status & ST0_IEP) 287 printk("IEp "); 288 if (regs->cp0_status & ST0_KUC) 289 printk("KUc "); 290 if (regs->cp0_status & ST0_IEC) 291 printk("IEc "); 292 } else { 293 if (regs->cp0_status & ST0_KX) 294 printk("KX "); 295 if (regs->cp0_status & ST0_SX) 296 printk("SX "); 297 if (regs->cp0_status & ST0_UX) 298 printk("UX "); 299 switch (regs->cp0_status & ST0_KSU) { 300 case KSU_USER: 301 printk("USER "); 302 break; 303 case KSU_SUPERVISOR: 304 printk("SUPERVISOR "); 305 break; 306 case KSU_KERNEL: 307 printk("KERNEL "); 308 break; 309 default: 310 printk("BAD_MODE "); 311 break; 312 } 313 if (regs->cp0_status & ST0_ERL) 314 printk("ERL "); 315 if (regs->cp0_status & ST0_EXL) 316 printk("EXL "); 317 if (regs->cp0_status & ST0_IE) 318 printk("IE "); 319 } 320 printk("\n"); 321 322 printk("Cause : %08x\n", cause); 323 324 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 325 if (1 <= cause && cause <= 5) 326 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 327 328 printk("PrId : %08x (%s)\n", read_c0_prid(), 329 cpu_name_string()); 330 } 331 332 /* 333 * FIXME: really the generic show_regs should take a const pointer argument. 334 */ 335 void show_regs(struct pt_regs *regs) 336 { 337 __show_regs((struct pt_regs *)regs); 338 } 339 340 void show_registers(struct pt_regs *regs) 341 { 342 const int field = 2 * sizeof(unsigned long); 343 344 __show_regs(regs); 345 print_modules(); 346 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 347 current->comm, current->pid, current_thread_info(), current, 348 field, current_thread_info()->tp_value); 349 if (cpu_has_userlocal) { 350 unsigned long tls; 351 352 tls = read_c0_userlocal(); 353 if (tls != current_thread_info()->tp_value) 354 printk("*HwTLS: %0*lx\n", field, tls); 355 } 356 357 show_stacktrace(current, regs); 358 show_code((unsigned int __user *) regs->cp0_epc); 359 printk("\n"); 360 } 361 362 static int regs_to_trapnr(struct pt_regs *regs) 363 { 364 return (regs->cp0_cause >> 2) & 0x1f; 365 } 366 367 static DEFINE_RAW_SPINLOCK(die_lock); 368 369 void __noreturn die(const char *str, struct pt_regs *regs) 370 { 371 static int die_counter; 372 int sig = SIGSEGV; 373 #ifdef CONFIG_MIPS_MT_SMTC 374 unsigned long dvpret; 375 #endif /* CONFIG_MIPS_MT_SMTC */ 376 377 oops_enter(); 378 379 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP) 380 sig = 0; 381 382 console_verbose(); 383 raw_spin_lock_irq(&die_lock); 384 #ifdef CONFIG_MIPS_MT_SMTC 385 dvpret = dvpe(); 386 #endif /* CONFIG_MIPS_MT_SMTC */ 387 bust_spinlocks(1); 388 #ifdef CONFIG_MIPS_MT_SMTC 389 mips_mt_regdump(dvpret); 390 #endif /* CONFIG_MIPS_MT_SMTC */ 391 392 printk("%s[#%d]:\n", str, ++die_counter); 393 show_registers(regs); 394 add_taint(TAINT_DIE); 395 raw_spin_unlock_irq(&die_lock); 396 397 oops_exit(); 398 399 if (in_interrupt()) 400 panic("Fatal exception in interrupt"); 401 402 if (panic_on_oops) { 403 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 404 ssleep(5); 405 panic("Fatal exception"); 406 } 407 408 do_exit(sig); 409 } 410 411 extern struct exception_table_entry __start___dbe_table[]; 412 extern struct exception_table_entry __stop___dbe_table[]; 413 414 __asm__( 415 " .section __dbe_table, \"a\"\n" 416 " .previous \n"); 417 418 /* Given an address, look for it in the exception tables. */ 419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 420 { 421 const struct exception_table_entry *e; 422 423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 424 if (!e) 425 e = search_module_dbetables(addr); 426 return e; 427 } 428 429 asmlinkage void do_be(struct pt_regs *regs) 430 { 431 const int field = 2 * sizeof(unsigned long); 432 const struct exception_table_entry *fixup = NULL; 433 int data = regs->cp0_cause & 4; 434 int action = MIPS_BE_FATAL; 435 436 /* XXX For now. Fixme, this searches the wrong table ... */ 437 if (data && !user_mode(regs)) 438 fixup = search_dbe_tables(exception_epc(regs)); 439 440 if (fixup) 441 action = MIPS_BE_FIXUP; 442 443 if (board_be_handler) 444 action = board_be_handler(regs, fixup != NULL); 445 446 switch (action) { 447 case MIPS_BE_DISCARD: 448 return; 449 case MIPS_BE_FIXUP: 450 if (fixup) { 451 regs->cp0_epc = fixup->nextinsn; 452 return; 453 } 454 break; 455 default: 456 break; 457 } 458 459 /* 460 * Assume it would be too dangerous to continue ... 461 */ 462 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 463 data ? "Data" : "Instruction", 464 field, regs->cp0_epc, field, regs->regs[31]); 465 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS) 466 == NOTIFY_STOP) 467 return; 468 469 die_if_kernel("Oops", regs); 470 force_sig(SIGBUS, current); 471 } 472 473 /* 474 * ll/sc, rdhwr, sync emulation 475 */ 476 477 #define OPCODE 0xfc000000 478 #define BASE 0x03e00000 479 #define RT 0x001f0000 480 #define OFFSET 0x0000ffff 481 #define LL 0xc0000000 482 #define SC 0xe0000000 483 #define SPEC0 0x00000000 484 #define SPEC3 0x7c000000 485 #define RD 0x0000f800 486 #define FUNC 0x0000003f 487 #define SYNC 0x0000000f 488 #define RDHWR 0x0000003b 489 490 /* 491 * The ll_bit is cleared by r*_switch.S 492 */ 493 494 unsigned int ll_bit; 495 struct task_struct *ll_task; 496 497 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 498 { 499 unsigned long value, __user *vaddr; 500 long offset; 501 502 /* 503 * analyse the ll instruction that just caused a ri exception 504 * and put the referenced address to addr. 505 */ 506 507 /* sign extend offset */ 508 offset = opcode & OFFSET; 509 offset <<= 16; 510 offset >>= 16; 511 512 vaddr = (unsigned long __user *) 513 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 514 515 if ((unsigned long)vaddr & 3) 516 return SIGBUS; 517 if (get_user(value, vaddr)) 518 return SIGSEGV; 519 520 preempt_disable(); 521 522 if (ll_task == NULL || ll_task == current) { 523 ll_bit = 1; 524 } else { 525 ll_bit = 0; 526 } 527 ll_task = current; 528 529 preempt_enable(); 530 531 regs->regs[(opcode & RT) >> 16] = value; 532 533 return 0; 534 } 535 536 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 537 { 538 unsigned long __user *vaddr; 539 unsigned long reg; 540 long offset; 541 542 /* 543 * analyse the sc instruction that just caused a ri exception 544 * and put the referenced address to addr. 545 */ 546 547 /* sign extend offset */ 548 offset = opcode & OFFSET; 549 offset <<= 16; 550 offset >>= 16; 551 552 vaddr = (unsigned long __user *) 553 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 554 reg = (opcode & RT) >> 16; 555 556 if ((unsigned long)vaddr & 3) 557 return SIGBUS; 558 559 preempt_disable(); 560 561 if (ll_bit == 0 || ll_task != current) { 562 regs->regs[reg] = 0; 563 preempt_enable(); 564 return 0; 565 } 566 567 preempt_enable(); 568 569 if (put_user(regs->regs[reg], vaddr)) 570 return SIGSEGV; 571 572 regs->regs[reg] = 1; 573 574 return 0; 575 } 576 577 /* 578 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 579 * opcodes are supposed to result in coprocessor unusable exceptions if 580 * executed on ll/sc-less processors. That's the theory. In practice a 581 * few processors such as NEC's VR4100 throw reserved instruction exceptions 582 * instead, so we're doing the emulation thing in both exception handlers. 583 */ 584 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 585 { 586 if ((opcode & OPCODE) == LL) { 587 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 588 1, regs, 0); 589 return simulate_ll(regs, opcode); 590 } 591 if ((opcode & OPCODE) == SC) { 592 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 593 1, regs, 0); 594 return simulate_sc(regs, opcode); 595 } 596 597 return -1; /* Must be something else ... */ 598 } 599 600 /* 601 * Simulate trapping 'rdhwr' instructions to provide user accessible 602 * registers not implemented in hardware. 603 */ 604 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 605 { 606 struct thread_info *ti = task_thread_info(current); 607 608 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 609 int rd = (opcode & RD) >> 11; 610 int rt = (opcode & RT) >> 16; 611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 612 1, regs, 0); 613 switch (rd) { 614 case 0: /* CPU number */ 615 regs->regs[rt] = smp_processor_id(); 616 return 0; 617 case 1: /* SYNCI length */ 618 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 619 current_cpu_data.icache.linesz); 620 return 0; 621 case 2: /* Read count register */ 622 regs->regs[rt] = read_c0_count(); 623 return 0; 624 case 3: /* Count register resolution */ 625 switch (current_cpu_data.cputype) { 626 case CPU_20KC: 627 case CPU_25KF: 628 regs->regs[rt] = 1; 629 break; 630 default: 631 regs->regs[rt] = 2; 632 } 633 return 0; 634 case 29: 635 regs->regs[rt] = ti->tp_value; 636 return 0; 637 default: 638 return -1; 639 } 640 } 641 642 /* Not ours. */ 643 return -1; 644 } 645 646 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 647 { 648 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 649 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 650 1, regs, 0); 651 return 0; 652 } 653 654 return -1; /* Must be something else ... */ 655 } 656 657 asmlinkage void do_ov(struct pt_regs *regs) 658 { 659 siginfo_t info; 660 661 die_if_kernel("Integer overflow", regs); 662 663 info.si_code = FPE_INTOVF; 664 info.si_signo = SIGFPE; 665 info.si_errno = 0; 666 info.si_addr = (void __user *) regs->cp0_epc; 667 force_sig_info(SIGFPE, &info, current); 668 } 669 670 static int process_fpemu_return(int sig, void __user *fault_addr) 671 { 672 if (sig == SIGSEGV || sig == SIGBUS) { 673 struct siginfo si = {0}; 674 si.si_addr = fault_addr; 675 si.si_signo = sig; 676 if (sig == SIGSEGV) { 677 if (find_vma(current->mm, (unsigned long)fault_addr)) 678 si.si_code = SEGV_ACCERR; 679 else 680 si.si_code = SEGV_MAPERR; 681 } else { 682 si.si_code = BUS_ADRERR; 683 } 684 force_sig_info(sig, &si, current); 685 return 1; 686 } else if (sig) { 687 force_sig(sig, current); 688 return 1; 689 } else { 690 return 0; 691 } 692 } 693 694 /* 695 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 696 */ 697 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 698 { 699 siginfo_t info = {0}; 700 701 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE) 702 == NOTIFY_STOP) 703 return; 704 die_if_kernel("FP exception in kernel code", regs); 705 706 if (fcr31 & FPU_CSR_UNI_X) { 707 int sig; 708 void __user *fault_addr = NULL; 709 710 /* 711 * Unimplemented operation exception. If we've got the full 712 * software emulator on-board, let's use it... 713 * 714 * Force FPU to dump state into task/thread context. We're 715 * moving a lot of data here for what is probably a single 716 * instruction, but the alternative is to pre-decode the FP 717 * register operands before invoking the emulator, which seems 718 * a bit extreme for what should be an infrequent event. 719 */ 720 /* Ensure 'resume' not overwrite saved fp context again. */ 721 lose_fpu(1); 722 723 /* Run the emulator */ 724 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 725 &fault_addr); 726 727 /* 728 * We can't allow the emulated instruction to leave any of 729 * the cause bit set in $fcr31. 730 */ 731 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 732 733 /* Restore the hardware register state */ 734 own_fpu(1); /* Using the FPU again. */ 735 736 /* If something went wrong, signal */ 737 process_fpemu_return(sig, fault_addr); 738 739 return; 740 } else if (fcr31 & FPU_CSR_INV_X) 741 info.si_code = FPE_FLTINV; 742 else if (fcr31 & FPU_CSR_DIV_X) 743 info.si_code = FPE_FLTDIV; 744 else if (fcr31 & FPU_CSR_OVF_X) 745 info.si_code = FPE_FLTOVF; 746 else if (fcr31 & FPU_CSR_UDF_X) 747 info.si_code = FPE_FLTUND; 748 else if (fcr31 & FPU_CSR_INE_X) 749 info.si_code = FPE_FLTRES; 750 else 751 info.si_code = __SI_FAULT; 752 info.si_signo = SIGFPE; 753 info.si_errno = 0; 754 info.si_addr = (void __user *) regs->cp0_epc; 755 force_sig_info(SIGFPE, &info, current); 756 } 757 758 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 759 const char *str) 760 { 761 siginfo_t info; 762 char b[40]; 763 764 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 765 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 766 return; 767 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 768 769 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 770 return; 771 772 /* 773 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 774 * insns, even for trap and break codes that indicate arithmetic 775 * failures. Weird ... 776 * But should we continue the brokenness??? --macro 777 */ 778 switch (code) { 779 case BRK_OVERFLOW: 780 case BRK_DIVZERO: 781 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 782 die_if_kernel(b, regs); 783 if (code == BRK_DIVZERO) 784 info.si_code = FPE_INTDIV; 785 else 786 info.si_code = FPE_INTOVF; 787 info.si_signo = SIGFPE; 788 info.si_errno = 0; 789 info.si_addr = (void __user *) regs->cp0_epc; 790 force_sig_info(SIGFPE, &info, current); 791 break; 792 case BRK_BUG: 793 die_if_kernel("Kernel bug detected", regs); 794 force_sig(SIGTRAP, current); 795 break; 796 case BRK_MEMU: 797 /* 798 * Address errors may be deliberately induced by the FPU 799 * emulator to retake control of the CPU after executing the 800 * instruction in the delay slot of an emulated branch. 801 * 802 * Terminate if exception was recognized as a delay slot return 803 * otherwise handle as normal. 804 */ 805 if (do_dsemulret(regs)) 806 return; 807 808 die_if_kernel("Math emu break/trap", regs); 809 force_sig(SIGTRAP, current); 810 break; 811 default: 812 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 813 die_if_kernel(b, regs); 814 force_sig(SIGTRAP, current); 815 } 816 } 817 818 asmlinkage void do_bp(struct pt_regs *regs) 819 { 820 unsigned int opcode, bcode; 821 822 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 823 goto out_sigsegv; 824 825 /* 826 * There is the ancient bug in the MIPS assemblers that the break 827 * code starts left to bit 16 instead to bit 6 in the opcode. 828 * Gas is bug-compatible, but not always, grrr... 829 * We handle both cases with a simple heuristics. --macro 830 */ 831 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 832 if (bcode >= (1 << 10)) 833 bcode >>= 10; 834 835 /* 836 * notify the kprobe handlers, if instruction is likely to 837 * pertain to them. 838 */ 839 switch (bcode) { 840 case BRK_KPROBE_BP: 841 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 842 return; 843 else 844 break; 845 case BRK_KPROBE_SSTEPBP: 846 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 847 return; 848 else 849 break; 850 default: 851 break; 852 } 853 854 do_trap_or_bp(regs, bcode, "Break"); 855 return; 856 857 out_sigsegv: 858 force_sig(SIGSEGV, current); 859 } 860 861 asmlinkage void do_tr(struct pt_regs *regs) 862 { 863 unsigned int opcode, tcode = 0; 864 865 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 866 goto out_sigsegv; 867 868 /* Immediate versions don't provide a code. */ 869 if (!(opcode & OPCODE)) 870 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 871 872 do_trap_or_bp(regs, tcode, "Trap"); 873 return; 874 875 out_sigsegv: 876 force_sig(SIGSEGV, current); 877 } 878 879 asmlinkage void do_ri(struct pt_regs *regs) 880 { 881 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 882 unsigned long old_epc = regs->cp0_epc; 883 unsigned int opcode = 0; 884 int status = -1; 885 886 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL) 887 == NOTIFY_STOP) 888 return; 889 890 die_if_kernel("Reserved instruction in kernel code", regs); 891 892 if (unlikely(compute_return_epc(regs) < 0)) 893 return; 894 895 if (unlikely(get_user(opcode, epc) < 0)) 896 status = SIGSEGV; 897 898 if (!cpu_has_llsc && status < 0) 899 status = simulate_llsc(regs, opcode); 900 901 if (status < 0) 902 status = simulate_rdhwr(regs, opcode); 903 904 if (status < 0) 905 status = simulate_sync(regs, opcode); 906 907 if (status < 0) 908 status = SIGILL; 909 910 if (unlikely(status > 0)) { 911 regs->cp0_epc = old_epc; /* Undo skip-over. */ 912 force_sig(status, current); 913 } 914 } 915 916 /* 917 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 918 * emulated more than some threshold number of instructions, force migration to 919 * a "CPU" that has FP support. 920 */ 921 static void mt_ase_fp_affinity(void) 922 { 923 #ifdef CONFIG_MIPS_MT_FPAFF 924 if (mt_fpemul_threshold > 0 && 925 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 926 /* 927 * If there's no FPU present, or if the application has already 928 * restricted the allowed set to exclude any CPUs with FPUs, 929 * we'll skip the procedure. 930 */ 931 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 932 cpumask_t tmask; 933 934 current->thread.user_cpus_allowed 935 = current->cpus_allowed; 936 cpus_and(tmask, current->cpus_allowed, 937 mt_fpu_cpumask); 938 set_cpus_allowed_ptr(current, &tmask); 939 set_thread_flag(TIF_FPUBOUND); 940 } 941 } 942 #endif /* CONFIG_MIPS_MT_FPAFF */ 943 } 944 945 /* 946 * No lock; only written during early bootup by CPU 0. 947 */ 948 static RAW_NOTIFIER_HEAD(cu2_chain); 949 950 int __ref register_cu2_notifier(struct notifier_block *nb) 951 { 952 return raw_notifier_chain_register(&cu2_chain, nb); 953 } 954 955 int cu2_notifier_call_chain(unsigned long val, void *v) 956 { 957 return raw_notifier_call_chain(&cu2_chain, val, v); 958 } 959 960 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 961 void *data) 962 { 963 struct pt_regs *regs = data; 964 965 switch (action) { 966 default: 967 die_if_kernel("Unhandled kernel unaligned access or invalid " 968 "instruction", regs); 969 /* Fall through */ 970 971 case CU2_EXCEPTION: 972 force_sig(SIGILL, current); 973 } 974 975 return NOTIFY_OK; 976 } 977 978 asmlinkage void do_cpu(struct pt_regs *regs) 979 { 980 unsigned int __user *epc; 981 unsigned long old_epc; 982 unsigned int opcode; 983 unsigned int cpid; 984 int status; 985 unsigned long __maybe_unused flags; 986 987 die_if_kernel("do_cpu invoked from kernel context!", regs); 988 989 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 990 991 switch (cpid) { 992 case 0: 993 epc = (unsigned int __user *)exception_epc(regs); 994 old_epc = regs->cp0_epc; 995 opcode = 0; 996 status = -1; 997 998 if (unlikely(compute_return_epc(regs) < 0)) 999 return; 1000 1001 if (unlikely(get_user(opcode, epc) < 0)) 1002 status = SIGSEGV; 1003 1004 if (!cpu_has_llsc && status < 0) 1005 status = simulate_llsc(regs, opcode); 1006 1007 if (status < 0) 1008 status = simulate_rdhwr(regs, opcode); 1009 1010 if (status < 0) 1011 status = SIGILL; 1012 1013 if (unlikely(status > 0)) { 1014 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1015 force_sig(status, current); 1016 } 1017 1018 return; 1019 1020 case 1: 1021 if (used_math()) /* Using the FPU again. */ 1022 own_fpu(1); 1023 else { /* First time FPU user. */ 1024 init_fpu(); 1025 set_used_math(); 1026 } 1027 1028 if (!raw_cpu_has_fpu) { 1029 int sig; 1030 void __user *fault_addr = NULL; 1031 sig = fpu_emulator_cop1Handler(regs, 1032 ¤t->thread.fpu, 1033 0, &fault_addr); 1034 if (!process_fpemu_return(sig, fault_addr)) 1035 mt_ase_fp_affinity(); 1036 } 1037 1038 return; 1039 1040 case 2: 1041 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1042 return; 1043 1044 case 3: 1045 break; 1046 } 1047 1048 force_sig(SIGILL, current); 1049 } 1050 1051 asmlinkage void do_mdmx(struct pt_regs *regs) 1052 { 1053 force_sig(SIGILL, current); 1054 } 1055 1056 /* 1057 * Called with interrupts disabled. 1058 */ 1059 asmlinkage void do_watch(struct pt_regs *regs) 1060 { 1061 u32 cause; 1062 1063 /* 1064 * Clear WP (bit 22) bit of cause register so we don't loop 1065 * forever. 1066 */ 1067 cause = read_c0_cause(); 1068 cause &= ~(1 << 22); 1069 write_c0_cause(cause); 1070 1071 /* 1072 * If the current thread has the watch registers loaded, save 1073 * their values and send SIGTRAP. Otherwise another thread 1074 * left the registers set, clear them and continue. 1075 */ 1076 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1077 mips_read_watch_registers(); 1078 local_irq_enable(); 1079 force_sig(SIGTRAP, current); 1080 } else { 1081 mips_clear_watch_registers(); 1082 local_irq_enable(); 1083 } 1084 } 1085 1086 asmlinkage void do_mcheck(struct pt_regs *regs) 1087 { 1088 const int field = 2 * sizeof(unsigned long); 1089 int multi_match = regs->cp0_status & ST0_TS; 1090 1091 show_regs(regs); 1092 1093 if (multi_match) { 1094 printk("Index : %0x\n", read_c0_index()); 1095 printk("Pagemask: %0x\n", read_c0_pagemask()); 1096 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1097 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1098 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1099 printk("\n"); 1100 dump_tlb_all(); 1101 } 1102 1103 show_code((unsigned int __user *) regs->cp0_epc); 1104 1105 /* 1106 * Some chips may have other causes of machine check (e.g. SB1 1107 * graduation timer) 1108 */ 1109 panic("Caught Machine Check exception - %scaused by multiple " 1110 "matching entries in the TLB.", 1111 (multi_match) ? "" : "not "); 1112 } 1113 1114 asmlinkage void do_mt(struct pt_regs *regs) 1115 { 1116 int subcode; 1117 1118 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1119 >> VPECONTROL_EXCPT_SHIFT; 1120 switch (subcode) { 1121 case 0: 1122 printk(KERN_DEBUG "Thread Underflow\n"); 1123 break; 1124 case 1: 1125 printk(KERN_DEBUG "Thread Overflow\n"); 1126 break; 1127 case 2: 1128 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1129 break; 1130 case 3: 1131 printk(KERN_DEBUG "Gating Storage Exception\n"); 1132 break; 1133 case 4: 1134 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1135 break; 1136 case 5: 1137 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n"); 1138 break; 1139 default: 1140 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1141 subcode); 1142 break; 1143 } 1144 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1145 1146 force_sig(SIGILL, current); 1147 } 1148 1149 1150 asmlinkage void do_dsp(struct pt_regs *regs) 1151 { 1152 if (cpu_has_dsp) 1153 panic("Unexpected DSP exception\n"); 1154 1155 force_sig(SIGILL, current); 1156 } 1157 1158 asmlinkage void do_reserved(struct pt_regs *regs) 1159 { 1160 /* 1161 * Game over - no way to handle this if it ever occurs. Most probably 1162 * caused by a new unknown cpu type or after another deadly 1163 * hard/software error. 1164 */ 1165 show_regs(regs); 1166 panic("Caught reserved exception %ld - should not happen.", 1167 (regs->cp0_cause & 0x7f) >> 2); 1168 } 1169 1170 static int __initdata l1parity = 1; 1171 static int __init nol1parity(char *s) 1172 { 1173 l1parity = 0; 1174 return 1; 1175 } 1176 __setup("nol1par", nol1parity); 1177 static int __initdata l2parity = 1; 1178 static int __init nol2parity(char *s) 1179 { 1180 l2parity = 0; 1181 return 1; 1182 } 1183 __setup("nol2par", nol2parity); 1184 1185 /* 1186 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1187 * it different ways. 1188 */ 1189 static inline void parity_protection_init(void) 1190 { 1191 switch (current_cpu_type()) { 1192 case CPU_24K: 1193 case CPU_34K: 1194 case CPU_74K: 1195 case CPU_1004K: 1196 { 1197 #define ERRCTL_PE 0x80000000 1198 #define ERRCTL_L2P 0x00800000 1199 unsigned long errctl; 1200 unsigned int l1parity_present, l2parity_present; 1201 1202 errctl = read_c0_ecc(); 1203 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1204 1205 /* probe L1 parity support */ 1206 write_c0_ecc(errctl | ERRCTL_PE); 1207 back_to_back_c0_hazard(); 1208 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1209 1210 /* probe L2 parity support */ 1211 write_c0_ecc(errctl|ERRCTL_L2P); 1212 back_to_back_c0_hazard(); 1213 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1214 1215 if (l1parity_present && l2parity_present) { 1216 if (l1parity) 1217 errctl |= ERRCTL_PE; 1218 if (l1parity ^ l2parity) 1219 errctl |= ERRCTL_L2P; 1220 } else if (l1parity_present) { 1221 if (l1parity) 1222 errctl |= ERRCTL_PE; 1223 } else if (l2parity_present) { 1224 if (l2parity) 1225 errctl |= ERRCTL_L2P; 1226 } else { 1227 /* No parity available */ 1228 } 1229 1230 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1231 1232 write_c0_ecc(errctl); 1233 back_to_back_c0_hazard(); 1234 errctl = read_c0_ecc(); 1235 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1236 1237 if (l1parity_present) 1238 printk(KERN_INFO "Cache parity protection %sabled\n", 1239 (errctl & ERRCTL_PE) ? "en" : "dis"); 1240 1241 if (l2parity_present) { 1242 if (l1parity_present && l1parity) 1243 errctl ^= ERRCTL_L2P; 1244 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1245 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1246 } 1247 } 1248 break; 1249 1250 case CPU_5KC: 1251 write_c0_ecc(0x80000000); 1252 back_to_back_c0_hazard(); 1253 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1254 printk(KERN_INFO "Cache parity protection %sabled\n", 1255 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1256 break; 1257 case CPU_20KC: 1258 case CPU_25KF: 1259 /* Clear the DE bit (bit 16) in the c0_status register. */ 1260 printk(KERN_INFO "Enable cache parity protection for " 1261 "MIPS 20KC/25KF CPUs.\n"); 1262 clear_c0_status(ST0_DE); 1263 break; 1264 default: 1265 break; 1266 } 1267 } 1268 1269 asmlinkage void cache_parity_error(void) 1270 { 1271 const int field = 2 * sizeof(unsigned long); 1272 unsigned int reg_val; 1273 1274 /* For the moment, report the problem and hang. */ 1275 printk("Cache error exception:\n"); 1276 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1277 reg_val = read_c0_cacheerr(); 1278 printk("c0_cacheerr == %08x\n", reg_val); 1279 1280 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1281 reg_val & (1<<30) ? "secondary" : "primary", 1282 reg_val & (1<<31) ? "data" : "insn"); 1283 printk("Error bits: %s%s%s%s%s%s%s\n", 1284 reg_val & (1<<29) ? "ED " : "", 1285 reg_val & (1<<28) ? "ET " : "", 1286 reg_val & (1<<26) ? "EE " : "", 1287 reg_val & (1<<25) ? "EB " : "", 1288 reg_val & (1<<24) ? "EI " : "", 1289 reg_val & (1<<23) ? "E1 " : "", 1290 reg_val & (1<<22) ? "E0 " : ""); 1291 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1292 1293 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1294 if (reg_val & (1<<22)) 1295 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1296 1297 if (reg_val & (1<<23)) 1298 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1299 #endif 1300 1301 panic("Can't handle the cache error!"); 1302 } 1303 1304 /* 1305 * SDBBP EJTAG debug exception handler. 1306 * We skip the instruction and return to the next instruction. 1307 */ 1308 void ejtag_exception_handler(struct pt_regs *regs) 1309 { 1310 const int field = 2 * sizeof(unsigned long); 1311 unsigned long depc, old_epc; 1312 unsigned int debug; 1313 1314 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1315 depc = read_c0_depc(); 1316 debug = read_c0_debug(); 1317 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1318 if (debug & 0x80000000) { 1319 /* 1320 * In branch delay slot. 1321 * We cheat a little bit here and use EPC to calculate the 1322 * debug return address (DEPC). EPC is restored after the 1323 * calculation. 1324 */ 1325 old_epc = regs->cp0_epc; 1326 regs->cp0_epc = depc; 1327 __compute_return_epc(regs); 1328 depc = regs->cp0_epc; 1329 regs->cp0_epc = old_epc; 1330 } else 1331 depc += 4; 1332 write_c0_depc(depc); 1333 1334 #if 0 1335 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1336 write_c0_debug(debug | 0x100); 1337 #endif 1338 } 1339 1340 /* 1341 * NMI exception handler. 1342 */ 1343 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs) 1344 { 1345 bust_spinlocks(1); 1346 printk("NMI taken!!!!\n"); 1347 die("NMI", regs); 1348 } 1349 1350 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1351 1352 unsigned long ebase; 1353 unsigned long exception_handlers[32]; 1354 unsigned long vi_handlers[64]; 1355 1356 void __init *set_except_vector(int n, void *addr) 1357 { 1358 unsigned long handler = (unsigned long) addr; 1359 unsigned long old_handler = exception_handlers[n]; 1360 1361 exception_handlers[n] = handler; 1362 if (n == 0 && cpu_has_divec) { 1363 unsigned long jump_mask = ~((1 << 28) - 1); 1364 u32 *buf = (u32 *)(ebase + 0x200); 1365 unsigned int k0 = 26; 1366 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1367 uasm_i_j(&buf, handler & ~jump_mask); 1368 uasm_i_nop(&buf); 1369 } else { 1370 UASM_i_LA(&buf, k0, handler); 1371 uasm_i_jr(&buf, k0); 1372 uasm_i_nop(&buf); 1373 } 1374 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1375 } 1376 return (void *)old_handler; 1377 } 1378 1379 static asmlinkage void do_default_vi(void) 1380 { 1381 show_regs(get_irq_regs()); 1382 panic("Caught unexpected vectored interrupt."); 1383 } 1384 1385 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1386 { 1387 unsigned long handler; 1388 unsigned long old_handler = vi_handlers[n]; 1389 int srssets = current_cpu_data.srsets; 1390 u32 *w; 1391 unsigned char *b; 1392 1393 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1394 1395 if (addr == NULL) { 1396 handler = (unsigned long) do_default_vi; 1397 srs = 0; 1398 } else 1399 handler = (unsigned long) addr; 1400 vi_handlers[n] = (unsigned long) addr; 1401 1402 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1403 1404 if (srs >= srssets) 1405 panic("Shadow register set %d not supported", srs); 1406 1407 if (cpu_has_veic) { 1408 if (board_bind_eic_interrupt) 1409 board_bind_eic_interrupt(n, srs); 1410 } else if (cpu_has_vint) { 1411 /* SRSMap is only defined if shadow sets are implemented */ 1412 if (srssets > 1) 1413 change_c0_srsmap(0xf << n*4, srs << n*4); 1414 } 1415 1416 if (srs == 0) { 1417 /* 1418 * If no shadow set is selected then use the default handler 1419 * that does normal register saving and a standard interrupt exit 1420 */ 1421 1422 extern char except_vec_vi, except_vec_vi_lui; 1423 extern char except_vec_vi_ori, except_vec_vi_end; 1424 extern char rollback_except_vec_vi; 1425 char *vec_start = (cpu_wait == r4k_wait) ? 1426 &rollback_except_vec_vi : &except_vec_vi; 1427 #ifdef CONFIG_MIPS_MT_SMTC 1428 /* 1429 * We need to provide the SMTC vectored interrupt handler 1430 * not only with the address of the handler, but with the 1431 * Status.IM bit to be masked before going there. 1432 */ 1433 extern char except_vec_vi_mori; 1434 const int mori_offset = &except_vec_vi_mori - vec_start; 1435 #endif /* CONFIG_MIPS_MT_SMTC */ 1436 const int handler_len = &except_vec_vi_end - vec_start; 1437 const int lui_offset = &except_vec_vi_lui - vec_start; 1438 const int ori_offset = &except_vec_vi_ori - vec_start; 1439 1440 if (handler_len > VECTORSPACING) { 1441 /* 1442 * Sigh... panicing won't help as the console 1443 * is probably not configured :( 1444 */ 1445 panic("VECTORSPACING too small"); 1446 } 1447 1448 memcpy(b, vec_start, handler_len); 1449 #ifdef CONFIG_MIPS_MT_SMTC 1450 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1451 1452 w = (u32 *)(b + mori_offset); 1453 *w = (*w & 0xffff0000) | (0x100 << n); 1454 #endif /* CONFIG_MIPS_MT_SMTC */ 1455 w = (u32 *)(b + lui_offset); 1456 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1457 w = (u32 *)(b + ori_offset); 1458 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1459 local_flush_icache_range((unsigned long)b, 1460 (unsigned long)(b+handler_len)); 1461 } 1462 else { 1463 /* 1464 * In other cases jump directly to the interrupt handler 1465 * 1466 * It is the handlers responsibility to save registers if required 1467 * (eg hi/lo) and return from the exception using "eret" 1468 */ 1469 w = (u32 *)b; 1470 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1471 *w = 0; 1472 local_flush_icache_range((unsigned long)b, 1473 (unsigned long)(b+8)); 1474 } 1475 1476 return (void *)old_handler; 1477 } 1478 1479 void *set_vi_handler(int n, vi_handler_t addr) 1480 { 1481 return set_vi_srs_handler(n, addr, 0); 1482 } 1483 1484 extern void cpu_cache_init(void); 1485 extern void tlb_init(void); 1486 extern void flush_tlb_handlers(void); 1487 1488 /* 1489 * Timer interrupt 1490 */ 1491 int cp0_compare_irq; 1492 int cp0_compare_irq_shift; 1493 1494 /* 1495 * Performance counter IRQ or -1 if shared with timer 1496 */ 1497 int cp0_perfcount_irq; 1498 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1499 1500 static int __cpuinitdata noulri; 1501 1502 static int __init ulri_disable(char *s) 1503 { 1504 pr_info("Disabling ulri\n"); 1505 noulri = 1; 1506 1507 return 1; 1508 } 1509 __setup("noulri", ulri_disable); 1510 1511 void __cpuinit per_cpu_trap_init(void) 1512 { 1513 unsigned int cpu = smp_processor_id(); 1514 unsigned int status_set = ST0_CU0; 1515 unsigned int hwrena = cpu_hwrena_impl_bits; 1516 #ifdef CONFIG_MIPS_MT_SMTC 1517 int secondaryTC = 0; 1518 int bootTC = (cpu == 0); 1519 1520 /* 1521 * Only do per_cpu_trap_init() for first TC of Each VPE. 1522 * Note that this hack assumes that the SMTC init code 1523 * assigns TCs consecutively and in ascending order. 1524 */ 1525 1526 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1527 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1528 secondaryTC = 1; 1529 #endif /* CONFIG_MIPS_MT_SMTC */ 1530 1531 /* 1532 * Disable coprocessors and select 32-bit or 64-bit addressing 1533 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1534 * flag that some firmware may have left set and the TS bit (for 1535 * IP27). Set XX for ISA IV code to work. 1536 */ 1537 #ifdef CONFIG_64BIT 1538 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1539 #endif 1540 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1541 status_set |= ST0_XX; 1542 if (cpu_has_dsp) 1543 status_set |= ST0_MX; 1544 1545 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1546 status_set); 1547 1548 if (cpu_has_mips_r2) 1549 hwrena |= 0x0000000f; 1550 1551 if (!noulri && cpu_has_userlocal) 1552 hwrena |= (1 << 29); 1553 1554 if (hwrena) 1555 write_c0_hwrena(hwrena); 1556 1557 #ifdef CONFIG_MIPS_MT_SMTC 1558 if (!secondaryTC) { 1559 #endif /* CONFIG_MIPS_MT_SMTC */ 1560 1561 if (cpu_has_veic || cpu_has_vint) { 1562 unsigned long sr = set_c0_status(ST0_BEV); 1563 write_c0_ebase(ebase); 1564 write_c0_status(sr); 1565 /* Setting vector spacing enables EI/VI mode */ 1566 change_c0_intctl(0x3e0, VECTORSPACING); 1567 } 1568 if (cpu_has_divec) { 1569 if (cpu_has_mipsmt) { 1570 unsigned int vpflags = dvpe(); 1571 set_c0_cause(CAUSEF_IV); 1572 evpe(vpflags); 1573 } else 1574 set_c0_cause(CAUSEF_IV); 1575 } 1576 1577 /* 1578 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1579 * 1580 * o read IntCtl.IPTI to determine the timer interrupt 1581 * o read IntCtl.IPPCI to determine the performance counter interrupt 1582 */ 1583 if (cpu_has_mips_r2) { 1584 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1585 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1586 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1587 if (cp0_perfcount_irq == cp0_compare_irq) 1588 cp0_perfcount_irq = -1; 1589 } else { 1590 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1591 cp0_compare_irq_shift = cp0_compare_irq; 1592 cp0_perfcount_irq = -1; 1593 } 1594 1595 #ifdef CONFIG_MIPS_MT_SMTC 1596 } 1597 #endif /* CONFIG_MIPS_MT_SMTC */ 1598 1599 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1600 1601 atomic_inc(&init_mm.mm_count); 1602 current->active_mm = &init_mm; 1603 BUG_ON(current->mm); 1604 enter_lazy_tlb(&init_mm, current); 1605 1606 #ifdef CONFIG_MIPS_MT_SMTC 1607 if (bootTC) { 1608 #endif /* CONFIG_MIPS_MT_SMTC */ 1609 cpu_cache_init(); 1610 tlb_init(); 1611 #ifdef CONFIG_MIPS_MT_SMTC 1612 } else if (!secondaryTC) { 1613 /* 1614 * First TC in non-boot VPE must do subset of tlb_init() 1615 * for MMU countrol registers. 1616 */ 1617 write_c0_pagemask(PM_DEFAULT_MASK); 1618 write_c0_wired(0); 1619 } 1620 #endif /* CONFIG_MIPS_MT_SMTC */ 1621 TLBMISS_HANDLER_SETUP(); 1622 } 1623 1624 /* Install CPU exception handler */ 1625 void __init set_handler(unsigned long offset, void *addr, unsigned long size) 1626 { 1627 memcpy((void *)(ebase + offset), addr, size); 1628 local_flush_icache_range(ebase + offset, ebase + offset + size); 1629 } 1630 1631 static char panic_null_cerr[] __cpuinitdata = 1632 "Trying to set NULL cache error exception handler"; 1633 1634 /* 1635 * Install uncached CPU exception handler. 1636 * This is suitable only for the cache error exception which is the only 1637 * exception handler that is being run uncached. 1638 */ 1639 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1640 unsigned long size) 1641 { 1642 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1643 1644 if (!addr) 1645 panic(panic_null_cerr); 1646 1647 memcpy((void *)(uncached_ebase + offset), addr, size); 1648 } 1649 1650 static int __initdata rdhwr_noopt; 1651 static int __init set_rdhwr_noopt(char *str) 1652 { 1653 rdhwr_noopt = 1; 1654 return 1; 1655 } 1656 1657 __setup("rdhwr_noopt", set_rdhwr_noopt); 1658 1659 void __init trap_init(void) 1660 { 1661 extern char except_vec3_generic, except_vec3_r4000; 1662 extern char except_vec4; 1663 unsigned long i; 1664 int rollback; 1665 1666 check_wait(); 1667 rollback = (cpu_wait == r4k_wait); 1668 1669 #if defined(CONFIG_KGDB) 1670 if (kgdb_early_setup) 1671 return; /* Already done */ 1672 #endif 1673 1674 if (cpu_has_veic || cpu_has_vint) { 1675 unsigned long size = 0x200 + VECTORSPACING*64; 1676 ebase = (unsigned long) 1677 __alloc_bootmem(size, 1 << fls(size), 0); 1678 } else { 1679 ebase = CKSEG0; 1680 if (cpu_has_mips_r2) 1681 ebase += (read_c0_ebase() & 0x3ffff000); 1682 } 1683 1684 per_cpu_trap_init(); 1685 1686 /* 1687 * Copy the generic exception handlers to their final destination. 1688 * This will be overriden later as suitable for a particular 1689 * configuration. 1690 */ 1691 set_handler(0x180, &except_vec3_generic, 0x80); 1692 1693 /* 1694 * Setup default vectors 1695 */ 1696 for (i = 0; i <= 31; i++) 1697 set_except_vector(i, handle_reserved); 1698 1699 /* 1700 * Copy the EJTAG debug exception vector handler code to it's final 1701 * destination. 1702 */ 1703 if (cpu_has_ejtag && board_ejtag_handler_setup) 1704 board_ejtag_handler_setup(); 1705 1706 /* 1707 * Only some CPUs have the watch exceptions. 1708 */ 1709 if (cpu_has_watch) 1710 set_except_vector(23, handle_watch); 1711 1712 /* 1713 * Initialise interrupt handlers 1714 */ 1715 if (cpu_has_veic || cpu_has_vint) { 1716 int nvec = cpu_has_veic ? 64 : 8; 1717 for (i = 0; i < nvec; i++) 1718 set_vi_handler(i, NULL); 1719 } 1720 else if (cpu_has_divec) 1721 set_handler(0x200, &except_vec4, 0x8); 1722 1723 /* 1724 * Some CPUs can enable/disable for cache parity detection, but does 1725 * it different ways. 1726 */ 1727 parity_protection_init(); 1728 1729 /* 1730 * The Data Bus Errors / Instruction Bus Errors are signaled 1731 * by external hardware. Therefore these two exceptions 1732 * may have board specific handlers. 1733 */ 1734 if (board_be_init) 1735 board_be_init(); 1736 1737 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1738 set_except_vector(1, handle_tlbm); 1739 set_except_vector(2, handle_tlbl); 1740 set_except_vector(3, handle_tlbs); 1741 1742 set_except_vector(4, handle_adel); 1743 set_except_vector(5, handle_ades); 1744 1745 set_except_vector(6, handle_ibe); 1746 set_except_vector(7, handle_dbe); 1747 1748 set_except_vector(8, handle_sys); 1749 set_except_vector(9, handle_bp); 1750 set_except_vector(10, rdhwr_noopt ? handle_ri : 1751 (cpu_has_vtag_icache ? 1752 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1753 set_except_vector(11, handle_cpu); 1754 set_except_vector(12, handle_ov); 1755 set_except_vector(13, handle_tr); 1756 1757 if (current_cpu_type() == CPU_R6000 || 1758 current_cpu_type() == CPU_R6000A) { 1759 /* 1760 * The R6000 is the only R-series CPU that features a machine 1761 * check exception (similar to the R4000 cache error) and 1762 * unaligned ldc1/sdc1 exception. The handlers have not been 1763 * written yet. Well, anyway there is no R6000 machine on the 1764 * current list of targets for Linux/MIPS. 1765 * (Duh, crap, there is someone with a triple R6k machine) 1766 */ 1767 //set_except_vector(14, handle_mc); 1768 //set_except_vector(15, handle_ndc); 1769 } 1770 1771 1772 if (board_nmi_handler_setup) 1773 board_nmi_handler_setup(); 1774 1775 if (cpu_has_fpu && !cpu_has_nofpuex) 1776 set_except_vector(15, handle_fpe); 1777 1778 set_except_vector(22, handle_mdmx); 1779 1780 if (cpu_has_mcheck) 1781 set_except_vector(24, handle_mcheck); 1782 1783 if (cpu_has_mipsmt) 1784 set_except_vector(25, handle_mt); 1785 1786 set_except_vector(26, handle_dsp); 1787 1788 if (cpu_has_vce) 1789 /* Special exception: R4[04]00 uses also the divec space. */ 1790 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1791 else if (cpu_has_4kex) 1792 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1793 else 1794 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1795 1796 local_flush_icache_range(ebase, ebase + 0x400); 1797 flush_tlb_handlers(); 1798 1799 sort_extable(__start___dbe_table, __stop___dbe_table); 1800 1801 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 1802 } 1803