xref: /linux/arch/mips/kernel/traps.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 #include <linux/irq.h>
32 #include <linux/perf_event.h>
33 
34 #include <asm/bootinfo.h>
35 #include <asm/branch.h>
36 #include <asm/break.h>
37 #include <asm/cop2.h>
38 #include <asm/cpu.h>
39 #include <asm/dsp.h>
40 #include <asm/fpu.h>
41 #include <asm/fpu_emulator.h>
42 #include <asm/mipsregs.h>
43 #include <asm/mipsmtregs.h>
44 #include <asm/module.h>
45 #include <asm/pgtable.h>
46 #include <asm/ptrace.h>
47 #include <asm/sections.h>
48 #include <asm/system.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
56 #include <asm/uasm.h>
57 
58 extern void check_wait(void);
59 extern asmlinkage void r4k_wait(void);
60 extern asmlinkage void rollback_handle_int(void);
61 extern asmlinkage void handle_int(void);
62 extern asmlinkage void handle_tlbm(void);
63 extern asmlinkage void handle_tlbl(void);
64 extern asmlinkage void handle_tlbs(void);
65 extern asmlinkage void handle_adel(void);
66 extern asmlinkage void handle_ades(void);
67 extern asmlinkage void handle_ibe(void);
68 extern asmlinkage void handle_dbe(void);
69 extern asmlinkage void handle_sys(void);
70 extern asmlinkage void handle_bp(void);
71 extern asmlinkage void handle_ri(void);
72 extern asmlinkage void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage void handle_ri_rdhwr(void);
74 extern asmlinkage void handle_cpu(void);
75 extern asmlinkage void handle_ov(void);
76 extern asmlinkage void handle_tr(void);
77 extern asmlinkage void handle_fpe(void);
78 extern asmlinkage void handle_mdmx(void);
79 extern asmlinkage void handle_watch(void);
80 extern asmlinkage void handle_mt(void);
81 extern asmlinkage void handle_dsp(void);
82 extern asmlinkage void handle_mcheck(void);
83 extern asmlinkage void handle_reserved(void);
84 
85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 				    struct mips_fpu_struct *ctx, int has_fpu,
87 				    void *__user *fault_addr);
88 
89 void (*board_be_init)(void);
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91 void (*board_nmi_handler_setup)(void);
92 void (*board_ejtag_handler_setup)(void);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
94 
95 
96 static void show_raw_backtrace(unsigned long reg29)
97 {
98 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
99 	unsigned long addr;
100 
101 	printk("Call Trace:");
102 #ifdef CONFIG_KALLSYMS
103 	printk("\n");
104 #endif
105 	while (!kstack_end(sp)) {
106 		unsigned long __user *p =
107 			(unsigned long __user *)(unsigned long)sp++;
108 		if (__get_user(addr, p)) {
109 			printk(" (Bad stack address)");
110 			break;
111 		}
112 		if (__kernel_text_address(addr))
113 			print_ip_sym(addr);
114 	}
115 	printk("\n");
116 }
117 
118 #ifdef CONFIG_KALLSYMS
119 int raw_show_trace;
120 static int __init set_raw_show_trace(char *str)
121 {
122 	raw_show_trace = 1;
123 	return 1;
124 }
125 __setup("raw_show_trace", set_raw_show_trace);
126 #endif
127 
128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
129 {
130 	unsigned long sp = regs->regs[29];
131 	unsigned long ra = regs->regs[31];
132 	unsigned long pc = regs->cp0_epc;
133 
134 	if (raw_show_trace || !__kernel_text_address(pc)) {
135 		show_raw_backtrace(sp);
136 		return;
137 	}
138 	printk("Call Trace:\n");
139 	do {
140 		print_ip_sym(pc);
141 		pc = unwind_stack(task, &sp, pc, &ra);
142 	} while (pc);
143 	printk("\n");
144 }
145 
146 /*
147  * This routine abuses get_user()/put_user() to reference pointers
148  * with at least a bit of error checking ...
149  */
150 static void show_stacktrace(struct task_struct *task,
151 	const struct pt_regs *regs)
152 {
153 	const int field = 2 * sizeof(unsigned long);
154 	long stackdata;
155 	int i;
156 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
157 
158 	printk("Stack :");
159 	i = 0;
160 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
161 		if (i && ((i % (64 / field)) == 0))
162 			printk("\n       ");
163 		if (i > 39) {
164 			printk(" ...");
165 			break;
166 		}
167 
168 		if (__get_user(stackdata, sp++)) {
169 			printk(" (Bad stack address)");
170 			break;
171 		}
172 
173 		printk(" %0*lx", field, stackdata);
174 		i++;
175 	}
176 	printk("\n");
177 	show_backtrace(task, regs);
178 }
179 
180 void show_stack(struct task_struct *task, unsigned long *sp)
181 {
182 	struct pt_regs regs;
183 	if (sp) {
184 		regs.regs[29] = (unsigned long)sp;
185 		regs.regs[31] = 0;
186 		regs.cp0_epc = 0;
187 	} else {
188 		if (task && task != current) {
189 			regs.regs[29] = task->thread.reg29;
190 			regs.regs[31] = 0;
191 			regs.cp0_epc = task->thread.reg31;
192 #ifdef CONFIG_KGDB_KDB
193 		} else if (atomic_read(&kgdb_active) != -1 &&
194 			   kdb_current_regs) {
195 			memcpy(&regs, kdb_current_regs, sizeof(regs));
196 #endif /* CONFIG_KGDB_KDB */
197 		} else {
198 			prepare_frametrace(&regs);
199 		}
200 	}
201 	show_stacktrace(task, &regs);
202 }
203 
204 /*
205  * The architecture-independent dump_stack generator
206  */
207 void dump_stack(void)
208 {
209 	struct pt_regs regs;
210 
211 	prepare_frametrace(&regs);
212 	show_backtrace(current, &regs);
213 }
214 
215 EXPORT_SYMBOL(dump_stack);
216 
217 static void show_code(unsigned int __user *pc)
218 {
219 	long i;
220 	unsigned short __user *pc16 = NULL;
221 
222 	printk("\nCode:");
223 
224 	if ((unsigned long)pc & 1)
225 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
226 	for(i = -3 ; i < 6 ; i++) {
227 		unsigned int insn;
228 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
229 			printk(" (Bad address in epc)\n");
230 			break;
231 		}
232 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
233 	}
234 }
235 
236 static void __show_regs(const struct pt_regs *regs)
237 {
238 	const int field = 2 * sizeof(unsigned long);
239 	unsigned int cause = regs->cp0_cause;
240 	int i;
241 
242 	printk("Cpu %d\n", smp_processor_id());
243 
244 	/*
245 	 * Saved main processor registers
246 	 */
247 	for (i = 0; i < 32; ) {
248 		if ((i % 4) == 0)
249 			printk("$%2d   :", i);
250 		if (i == 0)
251 			printk(" %0*lx", field, 0UL);
252 		else if (i == 26 || i == 27)
253 			printk(" %*s", field, "");
254 		else
255 			printk(" %0*lx", field, regs->regs[i]);
256 
257 		i++;
258 		if ((i % 4) == 0)
259 			printk("\n");
260 	}
261 
262 #ifdef CONFIG_CPU_HAS_SMARTMIPS
263 	printk("Acx    : %0*lx\n", field, regs->acx);
264 #endif
265 	printk("Hi    : %0*lx\n", field, regs->hi);
266 	printk("Lo    : %0*lx\n", field, regs->lo);
267 
268 	/*
269 	 * Saved cp0 registers
270 	 */
271 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
272 	       (void *) regs->cp0_epc);
273 	printk("    %s\n", print_tainted());
274 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
275 	       (void *) regs->regs[31]);
276 
277 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
278 
279 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
280 		if (regs->cp0_status & ST0_KUO)
281 			printk("KUo ");
282 		if (regs->cp0_status & ST0_IEO)
283 			printk("IEo ");
284 		if (regs->cp0_status & ST0_KUP)
285 			printk("KUp ");
286 		if (regs->cp0_status & ST0_IEP)
287 			printk("IEp ");
288 		if (regs->cp0_status & ST0_KUC)
289 			printk("KUc ");
290 		if (regs->cp0_status & ST0_IEC)
291 			printk("IEc ");
292 	} else {
293 		if (regs->cp0_status & ST0_KX)
294 			printk("KX ");
295 		if (regs->cp0_status & ST0_SX)
296 			printk("SX ");
297 		if (regs->cp0_status & ST0_UX)
298 			printk("UX ");
299 		switch (regs->cp0_status & ST0_KSU) {
300 		case KSU_USER:
301 			printk("USER ");
302 			break;
303 		case KSU_SUPERVISOR:
304 			printk("SUPERVISOR ");
305 			break;
306 		case KSU_KERNEL:
307 			printk("KERNEL ");
308 			break;
309 		default:
310 			printk("BAD_MODE ");
311 			break;
312 		}
313 		if (regs->cp0_status & ST0_ERL)
314 			printk("ERL ");
315 		if (regs->cp0_status & ST0_EXL)
316 			printk("EXL ");
317 		if (regs->cp0_status & ST0_IE)
318 			printk("IE ");
319 	}
320 	printk("\n");
321 
322 	printk("Cause : %08x\n", cause);
323 
324 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
325 	if (1 <= cause && cause <= 5)
326 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
327 
328 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
329 	       cpu_name_string());
330 }
331 
332 /*
333  * FIXME: really the generic show_regs should take a const pointer argument.
334  */
335 void show_regs(struct pt_regs *regs)
336 {
337 	__show_regs((struct pt_regs *)regs);
338 }
339 
340 void show_registers(struct pt_regs *regs)
341 {
342 	const int field = 2 * sizeof(unsigned long);
343 
344 	__show_regs(regs);
345 	print_modules();
346 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
347 	       current->comm, current->pid, current_thread_info(), current,
348 	      field, current_thread_info()->tp_value);
349 	if (cpu_has_userlocal) {
350 		unsigned long tls;
351 
352 		tls = read_c0_userlocal();
353 		if (tls != current_thread_info()->tp_value)
354 			printk("*HwTLS: %0*lx\n", field, tls);
355 	}
356 
357 	show_stacktrace(current, regs);
358 	show_code((unsigned int __user *) regs->cp0_epc);
359 	printk("\n");
360 }
361 
362 static int regs_to_trapnr(struct pt_regs *regs)
363 {
364 	return (regs->cp0_cause >> 2) & 0x1f;
365 }
366 
367 static DEFINE_RAW_SPINLOCK(die_lock);
368 
369 void __noreturn die(const char *str, struct pt_regs *regs)
370 {
371 	static int die_counter;
372 	int sig = SIGSEGV;
373 #ifdef CONFIG_MIPS_MT_SMTC
374 	unsigned long dvpret;
375 #endif /* CONFIG_MIPS_MT_SMTC */
376 
377 	oops_enter();
378 
379 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
380 		sig = 0;
381 
382 	console_verbose();
383 	raw_spin_lock_irq(&die_lock);
384 #ifdef CONFIG_MIPS_MT_SMTC
385 	dvpret = dvpe();
386 #endif /* CONFIG_MIPS_MT_SMTC */
387 	bust_spinlocks(1);
388 #ifdef CONFIG_MIPS_MT_SMTC
389 	mips_mt_regdump(dvpret);
390 #endif /* CONFIG_MIPS_MT_SMTC */
391 
392 	printk("%s[#%d]:\n", str, ++die_counter);
393 	show_registers(regs);
394 	add_taint(TAINT_DIE);
395 	raw_spin_unlock_irq(&die_lock);
396 
397 	oops_exit();
398 
399 	if (in_interrupt())
400 		panic("Fatal exception in interrupt");
401 
402 	if (panic_on_oops) {
403 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
404 		ssleep(5);
405 		panic("Fatal exception");
406 	}
407 
408 	do_exit(sig);
409 }
410 
411 extern struct exception_table_entry __start___dbe_table[];
412 extern struct exception_table_entry __stop___dbe_table[];
413 
414 __asm__(
415 "	.section	__dbe_table, \"a\"\n"
416 "	.previous			\n");
417 
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420 {
421 	const struct exception_table_entry *e;
422 
423 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 	if (!e)
425 		e = search_module_dbetables(addr);
426 	return e;
427 }
428 
429 asmlinkage void do_be(struct pt_regs *regs)
430 {
431 	const int field = 2 * sizeof(unsigned long);
432 	const struct exception_table_entry *fixup = NULL;
433 	int data = regs->cp0_cause & 4;
434 	int action = MIPS_BE_FATAL;
435 
436 	/* XXX For now.  Fixme, this searches the wrong table ...  */
437 	if (data && !user_mode(regs))
438 		fixup = search_dbe_tables(exception_epc(regs));
439 
440 	if (fixup)
441 		action = MIPS_BE_FIXUP;
442 
443 	if (board_be_handler)
444 		action = board_be_handler(regs, fixup != NULL);
445 
446 	switch (action) {
447 	case MIPS_BE_DISCARD:
448 		return;
449 	case MIPS_BE_FIXUP:
450 		if (fixup) {
451 			regs->cp0_epc = fixup->nextinsn;
452 			return;
453 		}
454 		break;
455 	default:
456 		break;
457 	}
458 
459 	/*
460 	 * Assume it would be too dangerous to continue ...
461 	 */
462 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
463 	       data ? "Data" : "Instruction",
464 	       field, regs->cp0_epc, field, regs->regs[31]);
465 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
466 	    == NOTIFY_STOP)
467 		return;
468 
469 	die_if_kernel("Oops", regs);
470 	force_sig(SIGBUS, current);
471 }
472 
473 /*
474  * ll/sc, rdhwr, sync emulation
475  */
476 
477 #define OPCODE 0xfc000000
478 #define BASE   0x03e00000
479 #define RT     0x001f0000
480 #define OFFSET 0x0000ffff
481 #define LL     0xc0000000
482 #define SC     0xe0000000
483 #define SPEC0  0x00000000
484 #define SPEC3  0x7c000000
485 #define RD     0x0000f800
486 #define FUNC   0x0000003f
487 #define SYNC   0x0000000f
488 #define RDHWR  0x0000003b
489 
490 /*
491  * The ll_bit is cleared by r*_switch.S
492  */
493 
494 unsigned int ll_bit;
495 struct task_struct *ll_task;
496 
497 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
498 {
499 	unsigned long value, __user *vaddr;
500 	long offset;
501 
502 	/*
503 	 * analyse the ll instruction that just caused a ri exception
504 	 * and put the referenced address to addr.
505 	 */
506 
507 	/* sign extend offset */
508 	offset = opcode & OFFSET;
509 	offset <<= 16;
510 	offset >>= 16;
511 
512 	vaddr = (unsigned long __user *)
513 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
514 
515 	if ((unsigned long)vaddr & 3)
516 		return SIGBUS;
517 	if (get_user(value, vaddr))
518 		return SIGSEGV;
519 
520 	preempt_disable();
521 
522 	if (ll_task == NULL || ll_task == current) {
523 		ll_bit = 1;
524 	} else {
525 		ll_bit = 0;
526 	}
527 	ll_task = current;
528 
529 	preempt_enable();
530 
531 	regs->regs[(opcode & RT) >> 16] = value;
532 
533 	return 0;
534 }
535 
536 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
537 {
538 	unsigned long __user *vaddr;
539 	unsigned long reg;
540 	long offset;
541 
542 	/*
543 	 * analyse the sc instruction that just caused a ri exception
544 	 * and put the referenced address to addr.
545 	 */
546 
547 	/* sign extend offset */
548 	offset = opcode & OFFSET;
549 	offset <<= 16;
550 	offset >>= 16;
551 
552 	vaddr = (unsigned long __user *)
553 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
554 	reg = (opcode & RT) >> 16;
555 
556 	if ((unsigned long)vaddr & 3)
557 		return SIGBUS;
558 
559 	preempt_disable();
560 
561 	if (ll_bit == 0 || ll_task != current) {
562 		regs->regs[reg] = 0;
563 		preempt_enable();
564 		return 0;
565 	}
566 
567 	preempt_enable();
568 
569 	if (put_user(regs->regs[reg], vaddr))
570 		return SIGSEGV;
571 
572 	regs->regs[reg] = 1;
573 
574 	return 0;
575 }
576 
577 /*
578  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
579  * opcodes are supposed to result in coprocessor unusable exceptions if
580  * executed on ll/sc-less processors.  That's the theory.  In practice a
581  * few processors such as NEC's VR4100 throw reserved instruction exceptions
582  * instead, so we're doing the emulation thing in both exception handlers.
583  */
584 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
585 {
586 	if ((opcode & OPCODE) == LL) {
587 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
588 				1, regs, 0);
589 		return simulate_ll(regs, opcode);
590 	}
591 	if ((opcode & OPCODE) == SC) {
592 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
593 				1, regs, 0);
594 		return simulate_sc(regs, opcode);
595 	}
596 
597 	return -1;			/* Must be something else ... */
598 }
599 
600 /*
601  * Simulate trapping 'rdhwr' instructions to provide user accessible
602  * registers not implemented in hardware.
603  */
604 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
605 {
606 	struct thread_info *ti = task_thread_info(current);
607 
608 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
609 		int rd = (opcode & RD) >> 11;
610 		int rt = (opcode & RT) >> 16;
611 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 				1, regs, 0);
613 		switch (rd) {
614 		case 0:		/* CPU number */
615 			regs->regs[rt] = smp_processor_id();
616 			return 0;
617 		case 1:		/* SYNCI length */
618 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
619 					     current_cpu_data.icache.linesz);
620 			return 0;
621 		case 2:		/* Read count register */
622 			regs->regs[rt] = read_c0_count();
623 			return 0;
624 		case 3:		/* Count register resolution */
625 			switch (current_cpu_data.cputype) {
626 			case CPU_20KC:
627 			case CPU_25KF:
628 				regs->regs[rt] = 1;
629 				break;
630 			default:
631 				regs->regs[rt] = 2;
632 			}
633 			return 0;
634 		case 29:
635 			regs->regs[rt] = ti->tp_value;
636 			return 0;
637 		default:
638 			return -1;
639 		}
640 	}
641 
642 	/* Not ours.  */
643 	return -1;
644 }
645 
646 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
647 {
648 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
649 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
650 				1, regs, 0);
651 		return 0;
652 	}
653 
654 	return -1;			/* Must be something else ... */
655 }
656 
657 asmlinkage void do_ov(struct pt_regs *regs)
658 {
659 	siginfo_t info;
660 
661 	die_if_kernel("Integer overflow", regs);
662 
663 	info.si_code = FPE_INTOVF;
664 	info.si_signo = SIGFPE;
665 	info.si_errno = 0;
666 	info.si_addr = (void __user *) regs->cp0_epc;
667 	force_sig_info(SIGFPE, &info, current);
668 }
669 
670 static int process_fpemu_return(int sig, void __user *fault_addr)
671 {
672 	if (sig == SIGSEGV || sig == SIGBUS) {
673 		struct siginfo si = {0};
674 		si.si_addr = fault_addr;
675 		si.si_signo = sig;
676 		if (sig == SIGSEGV) {
677 			if (find_vma(current->mm, (unsigned long)fault_addr))
678 				si.si_code = SEGV_ACCERR;
679 			else
680 				si.si_code = SEGV_MAPERR;
681 		} else {
682 			si.si_code = BUS_ADRERR;
683 		}
684 		force_sig_info(sig, &si, current);
685 		return 1;
686 	} else if (sig) {
687 		force_sig(sig, current);
688 		return 1;
689 	} else {
690 		return 0;
691 	}
692 }
693 
694 /*
695  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
696  */
697 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
698 {
699 	siginfo_t info = {0};
700 
701 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
702 	    == NOTIFY_STOP)
703 		return;
704 	die_if_kernel("FP exception in kernel code", regs);
705 
706 	if (fcr31 & FPU_CSR_UNI_X) {
707 		int sig;
708 		void __user *fault_addr = NULL;
709 
710 		/*
711 		 * Unimplemented operation exception.  If we've got the full
712 		 * software emulator on-board, let's use it...
713 		 *
714 		 * Force FPU to dump state into task/thread context.  We're
715 		 * moving a lot of data here for what is probably a single
716 		 * instruction, but the alternative is to pre-decode the FP
717 		 * register operands before invoking the emulator, which seems
718 		 * a bit extreme for what should be an infrequent event.
719 		 */
720 		/* Ensure 'resume' not overwrite saved fp context again. */
721 		lose_fpu(1);
722 
723 		/* Run the emulator */
724 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
725 					       &fault_addr);
726 
727 		/*
728 		 * We can't allow the emulated instruction to leave any of
729 		 * the cause bit set in $fcr31.
730 		 */
731 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
732 
733 		/* Restore the hardware register state */
734 		own_fpu(1);	/* Using the FPU again.  */
735 
736 		/* If something went wrong, signal */
737 		process_fpemu_return(sig, fault_addr);
738 
739 		return;
740 	} else if (fcr31 & FPU_CSR_INV_X)
741 		info.si_code = FPE_FLTINV;
742 	else if (fcr31 & FPU_CSR_DIV_X)
743 		info.si_code = FPE_FLTDIV;
744 	else if (fcr31 & FPU_CSR_OVF_X)
745 		info.si_code = FPE_FLTOVF;
746 	else if (fcr31 & FPU_CSR_UDF_X)
747 		info.si_code = FPE_FLTUND;
748 	else if (fcr31 & FPU_CSR_INE_X)
749 		info.si_code = FPE_FLTRES;
750 	else
751 		info.si_code = __SI_FAULT;
752 	info.si_signo = SIGFPE;
753 	info.si_errno = 0;
754 	info.si_addr = (void __user *) regs->cp0_epc;
755 	force_sig_info(SIGFPE, &info, current);
756 }
757 
758 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
759 	const char *str)
760 {
761 	siginfo_t info;
762 	char b[40];
763 
764 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
765 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
766 		return;
767 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
768 
769 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770 		return;
771 
772 	/*
773 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
774 	 * insns, even for trap and break codes that indicate arithmetic
775 	 * failures.  Weird ...
776 	 * But should we continue the brokenness???  --macro
777 	 */
778 	switch (code) {
779 	case BRK_OVERFLOW:
780 	case BRK_DIVZERO:
781 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
782 		die_if_kernel(b, regs);
783 		if (code == BRK_DIVZERO)
784 			info.si_code = FPE_INTDIV;
785 		else
786 			info.si_code = FPE_INTOVF;
787 		info.si_signo = SIGFPE;
788 		info.si_errno = 0;
789 		info.si_addr = (void __user *) regs->cp0_epc;
790 		force_sig_info(SIGFPE, &info, current);
791 		break;
792 	case BRK_BUG:
793 		die_if_kernel("Kernel bug detected", regs);
794 		force_sig(SIGTRAP, current);
795 		break;
796 	case BRK_MEMU:
797 		/*
798 		 * Address errors may be deliberately induced by the FPU
799 		 * emulator to retake control of the CPU after executing the
800 		 * instruction in the delay slot of an emulated branch.
801 		 *
802 		 * Terminate if exception was recognized as a delay slot return
803 		 * otherwise handle as normal.
804 		 */
805 		if (do_dsemulret(regs))
806 			return;
807 
808 		die_if_kernel("Math emu break/trap", regs);
809 		force_sig(SIGTRAP, current);
810 		break;
811 	default:
812 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
813 		die_if_kernel(b, regs);
814 		force_sig(SIGTRAP, current);
815 	}
816 }
817 
818 asmlinkage void do_bp(struct pt_regs *regs)
819 {
820 	unsigned int opcode, bcode;
821 
822 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
823 		goto out_sigsegv;
824 
825 	/*
826 	 * There is the ancient bug in the MIPS assemblers that the break
827 	 * code starts left to bit 16 instead to bit 6 in the opcode.
828 	 * Gas is bug-compatible, but not always, grrr...
829 	 * We handle both cases with a simple heuristics.  --macro
830 	 */
831 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
832 	if (bcode >= (1 << 10))
833 		bcode >>= 10;
834 
835 	/*
836 	 * notify the kprobe handlers, if instruction is likely to
837 	 * pertain to them.
838 	 */
839 	switch (bcode) {
840 	case BRK_KPROBE_BP:
841 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
842 			return;
843 		else
844 			break;
845 	case BRK_KPROBE_SSTEPBP:
846 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
847 			return;
848 		else
849 			break;
850 	default:
851 		break;
852 	}
853 
854 	do_trap_or_bp(regs, bcode, "Break");
855 	return;
856 
857 out_sigsegv:
858 	force_sig(SIGSEGV, current);
859 }
860 
861 asmlinkage void do_tr(struct pt_regs *regs)
862 {
863 	unsigned int opcode, tcode = 0;
864 
865 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
866 		goto out_sigsegv;
867 
868 	/* Immediate versions don't provide a code.  */
869 	if (!(opcode & OPCODE))
870 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
871 
872 	do_trap_or_bp(regs, tcode, "Trap");
873 	return;
874 
875 out_sigsegv:
876 	force_sig(SIGSEGV, current);
877 }
878 
879 asmlinkage void do_ri(struct pt_regs *regs)
880 {
881 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
882 	unsigned long old_epc = regs->cp0_epc;
883 	unsigned int opcode = 0;
884 	int status = -1;
885 
886 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
887 	    == NOTIFY_STOP)
888 		return;
889 
890 	die_if_kernel("Reserved instruction in kernel code", regs);
891 
892 	if (unlikely(compute_return_epc(regs) < 0))
893 		return;
894 
895 	if (unlikely(get_user(opcode, epc) < 0))
896 		status = SIGSEGV;
897 
898 	if (!cpu_has_llsc && status < 0)
899 		status = simulate_llsc(regs, opcode);
900 
901 	if (status < 0)
902 		status = simulate_rdhwr(regs, opcode);
903 
904 	if (status < 0)
905 		status = simulate_sync(regs, opcode);
906 
907 	if (status < 0)
908 		status = SIGILL;
909 
910 	if (unlikely(status > 0)) {
911 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
912 		force_sig(status, current);
913 	}
914 }
915 
916 /*
917  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
918  * emulated more than some threshold number of instructions, force migration to
919  * a "CPU" that has FP support.
920  */
921 static void mt_ase_fp_affinity(void)
922 {
923 #ifdef CONFIG_MIPS_MT_FPAFF
924 	if (mt_fpemul_threshold > 0 &&
925 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
926 		/*
927 		 * If there's no FPU present, or if the application has already
928 		 * restricted the allowed set to exclude any CPUs with FPUs,
929 		 * we'll skip the procedure.
930 		 */
931 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
932 			cpumask_t tmask;
933 
934 			current->thread.user_cpus_allowed
935 				= current->cpus_allowed;
936 			cpus_and(tmask, current->cpus_allowed,
937 				mt_fpu_cpumask);
938 			set_cpus_allowed_ptr(current, &tmask);
939 			set_thread_flag(TIF_FPUBOUND);
940 		}
941 	}
942 #endif /* CONFIG_MIPS_MT_FPAFF */
943 }
944 
945 /*
946  * No lock; only written during early bootup by CPU 0.
947  */
948 static RAW_NOTIFIER_HEAD(cu2_chain);
949 
950 int __ref register_cu2_notifier(struct notifier_block *nb)
951 {
952 	return raw_notifier_chain_register(&cu2_chain, nb);
953 }
954 
955 int cu2_notifier_call_chain(unsigned long val, void *v)
956 {
957 	return raw_notifier_call_chain(&cu2_chain, val, v);
958 }
959 
960 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
961         void *data)
962 {
963 	struct pt_regs *regs = data;
964 
965 	switch (action) {
966 	default:
967 		die_if_kernel("Unhandled kernel unaligned access or invalid "
968 			      "instruction", regs);
969 		/* Fall through  */
970 
971 	case CU2_EXCEPTION:
972 		force_sig(SIGILL, current);
973 	}
974 
975 	return NOTIFY_OK;
976 }
977 
978 asmlinkage void do_cpu(struct pt_regs *regs)
979 {
980 	unsigned int __user *epc;
981 	unsigned long old_epc;
982 	unsigned int opcode;
983 	unsigned int cpid;
984 	int status;
985 	unsigned long __maybe_unused flags;
986 
987 	die_if_kernel("do_cpu invoked from kernel context!", regs);
988 
989 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
990 
991 	switch (cpid) {
992 	case 0:
993 		epc = (unsigned int __user *)exception_epc(regs);
994 		old_epc = regs->cp0_epc;
995 		opcode = 0;
996 		status = -1;
997 
998 		if (unlikely(compute_return_epc(regs) < 0))
999 			return;
1000 
1001 		if (unlikely(get_user(opcode, epc) < 0))
1002 			status = SIGSEGV;
1003 
1004 		if (!cpu_has_llsc && status < 0)
1005 			status = simulate_llsc(regs, opcode);
1006 
1007 		if (status < 0)
1008 			status = simulate_rdhwr(regs, opcode);
1009 
1010 		if (status < 0)
1011 			status = SIGILL;
1012 
1013 		if (unlikely(status > 0)) {
1014 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1015 			force_sig(status, current);
1016 		}
1017 
1018 		return;
1019 
1020 	case 1:
1021 		if (used_math())	/* Using the FPU again.  */
1022 			own_fpu(1);
1023 		else {			/* First time FPU user.  */
1024 			init_fpu();
1025 			set_used_math();
1026 		}
1027 
1028 		if (!raw_cpu_has_fpu) {
1029 			int sig;
1030 			void __user *fault_addr = NULL;
1031 			sig = fpu_emulator_cop1Handler(regs,
1032 						       &current->thread.fpu,
1033 						       0, &fault_addr);
1034 			if (!process_fpemu_return(sig, fault_addr))
1035 				mt_ase_fp_affinity();
1036 		}
1037 
1038 		return;
1039 
1040 	case 2:
1041 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1042 		return;
1043 
1044 	case 3:
1045 		break;
1046 	}
1047 
1048 	force_sig(SIGILL, current);
1049 }
1050 
1051 asmlinkage void do_mdmx(struct pt_regs *regs)
1052 {
1053 	force_sig(SIGILL, current);
1054 }
1055 
1056 /*
1057  * Called with interrupts disabled.
1058  */
1059 asmlinkage void do_watch(struct pt_regs *regs)
1060 {
1061 	u32 cause;
1062 
1063 	/*
1064 	 * Clear WP (bit 22) bit of cause register so we don't loop
1065 	 * forever.
1066 	 */
1067 	cause = read_c0_cause();
1068 	cause &= ~(1 << 22);
1069 	write_c0_cause(cause);
1070 
1071 	/*
1072 	 * If the current thread has the watch registers loaded, save
1073 	 * their values and send SIGTRAP.  Otherwise another thread
1074 	 * left the registers set, clear them and continue.
1075 	 */
1076 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1077 		mips_read_watch_registers();
1078 		local_irq_enable();
1079 		force_sig(SIGTRAP, current);
1080 	} else {
1081 		mips_clear_watch_registers();
1082 		local_irq_enable();
1083 	}
1084 }
1085 
1086 asmlinkage void do_mcheck(struct pt_regs *regs)
1087 {
1088 	const int field = 2 * sizeof(unsigned long);
1089 	int multi_match = regs->cp0_status & ST0_TS;
1090 
1091 	show_regs(regs);
1092 
1093 	if (multi_match) {
1094 		printk("Index   : %0x\n", read_c0_index());
1095 		printk("Pagemask: %0x\n", read_c0_pagemask());
1096 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1097 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1098 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1099 		printk("\n");
1100 		dump_tlb_all();
1101 	}
1102 
1103 	show_code((unsigned int __user *) regs->cp0_epc);
1104 
1105 	/*
1106 	 * Some chips may have other causes of machine check (e.g. SB1
1107 	 * graduation timer)
1108 	 */
1109 	panic("Caught Machine Check exception - %scaused by multiple "
1110 	      "matching entries in the TLB.",
1111 	      (multi_match) ? "" : "not ");
1112 }
1113 
1114 asmlinkage void do_mt(struct pt_regs *regs)
1115 {
1116 	int subcode;
1117 
1118 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1119 			>> VPECONTROL_EXCPT_SHIFT;
1120 	switch (subcode) {
1121 	case 0:
1122 		printk(KERN_DEBUG "Thread Underflow\n");
1123 		break;
1124 	case 1:
1125 		printk(KERN_DEBUG "Thread Overflow\n");
1126 		break;
1127 	case 2:
1128 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1129 		break;
1130 	case 3:
1131 		printk(KERN_DEBUG "Gating Storage Exception\n");
1132 		break;
1133 	case 4:
1134 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1135 		break;
1136 	case 5:
1137 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1138 		break;
1139 	default:
1140 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1141 			subcode);
1142 		break;
1143 	}
1144 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1145 
1146 	force_sig(SIGILL, current);
1147 }
1148 
1149 
1150 asmlinkage void do_dsp(struct pt_regs *regs)
1151 {
1152 	if (cpu_has_dsp)
1153 		panic("Unexpected DSP exception\n");
1154 
1155 	force_sig(SIGILL, current);
1156 }
1157 
1158 asmlinkage void do_reserved(struct pt_regs *regs)
1159 {
1160 	/*
1161 	 * Game over - no way to handle this if it ever occurs.  Most probably
1162 	 * caused by a new unknown cpu type or after another deadly
1163 	 * hard/software error.
1164 	 */
1165 	show_regs(regs);
1166 	panic("Caught reserved exception %ld - should not happen.",
1167 	      (regs->cp0_cause & 0x7f) >> 2);
1168 }
1169 
1170 static int __initdata l1parity = 1;
1171 static int __init nol1parity(char *s)
1172 {
1173 	l1parity = 0;
1174 	return 1;
1175 }
1176 __setup("nol1par", nol1parity);
1177 static int __initdata l2parity = 1;
1178 static int __init nol2parity(char *s)
1179 {
1180 	l2parity = 0;
1181 	return 1;
1182 }
1183 __setup("nol2par", nol2parity);
1184 
1185 /*
1186  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1187  * it different ways.
1188  */
1189 static inline void parity_protection_init(void)
1190 {
1191 	switch (current_cpu_type()) {
1192 	case CPU_24K:
1193 	case CPU_34K:
1194 	case CPU_74K:
1195 	case CPU_1004K:
1196 		{
1197 #define ERRCTL_PE	0x80000000
1198 #define ERRCTL_L2P	0x00800000
1199 			unsigned long errctl;
1200 			unsigned int l1parity_present, l2parity_present;
1201 
1202 			errctl = read_c0_ecc();
1203 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1204 
1205 			/* probe L1 parity support */
1206 			write_c0_ecc(errctl | ERRCTL_PE);
1207 			back_to_back_c0_hazard();
1208 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1209 
1210 			/* probe L2 parity support */
1211 			write_c0_ecc(errctl|ERRCTL_L2P);
1212 			back_to_back_c0_hazard();
1213 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1214 
1215 			if (l1parity_present && l2parity_present) {
1216 				if (l1parity)
1217 					errctl |= ERRCTL_PE;
1218 				if (l1parity ^ l2parity)
1219 					errctl |= ERRCTL_L2P;
1220 			} else if (l1parity_present) {
1221 				if (l1parity)
1222 					errctl |= ERRCTL_PE;
1223 			} else if (l2parity_present) {
1224 				if (l2parity)
1225 					errctl |= ERRCTL_L2P;
1226 			} else {
1227 				/* No parity available */
1228 			}
1229 
1230 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1231 
1232 			write_c0_ecc(errctl);
1233 			back_to_back_c0_hazard();
1234 			errctl = read_c0_ecc();
1235 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1236 
1237 			if (l1parity_present)
1238 				printk(KERN_INFO "Cache parity protection %sabled\n",
1239 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1240 
1241 			if (l2parity_present) {
1242 				if (l1parity_present && l1parity)
1243 					errctl ^= ERRCTL_L2P;
1244 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1245 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1246 			}
1247 		}
1248 		break;
1249 
1250 	case CPU_5KC:
1251 		write_c0_ecc(0x80000000);
1252 		back_to_back_c0_hazard();
1253 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1254 		printk(KERN_INFO "Cache parity protection %sabled\n",
1255 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1256 		break;
1257 	case CPU_20KC:
1258 	case CPU_25KF:
1259 		/* Clear the DE bit (bit 16) in the c0_status register. */
1260 		printk(KERN_INFO "Enable cache parity protection for "
1261 		       "MIPS 20KC/25KF CPUs.\n");
1262 		clear_c0_status(ST0_DE);
1263 		break;
1264 	default:
1265 		break;
1266 	}
1267 }
1268 
1269 asmlinkage void cache_parity_error(void)
1270 {
1271 	const int field = 2 * sizeof(unsigned long);
1272 	unsigned int reg_val;
1273 
1274 	/* For the moment, report the problem and hang. */
1275 	printk("Cache error exception:\n");
1276 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1277 	reg_val = read_c0_cacheerr();
1278 	printk("c0_cacheerr == %08x\n", reg_val);
1279 
1280 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1281 	       reg_val & (1<<30) ? "secondary" : "primary",
1282 	       reg_val & (1<<31) ? "data" : "insn");
1283 	printk("Error bits: %s%s%s%s%s%s%s\n",
1284 	       reg_val & (1<<29) ? "ED " : "",
1285 	       reg_val & (1<<28) ? "ET " : "",
1286 	       reg_val & (1<<26) ? "EE " : "",
1287 	       reg_val & (1<<25) ? "EB " : "",
1288 	       reg_val & (1<<24) ? "EI " : "",
1289 	       reg_val & (1<<23) ? "E1 " : "",
1290 	       reg_val & (1<<22) ? "E0 " : "");
1291 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1292 
1293 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1294 	if (reg_val & (1<<22))
1295 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1296 
1297 	if (reg_val & (1<<23))
1298 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1299 #endif
1300 
1301 	panic("Can't handle the cache error!");
1302 }
1303 
1304 /*
1305  * SDBBP EJTAG debug exception handler.
1306  * We skip the instruction and return to the next instruction.
1307  */
1308 void ejtag_exception_handler(struct pt_regs *regs)
1309 {
1310 	const int field = 2 * sizeof(unsigned long);
1311 	unsigned long depc, old_epc;
1312 	unsigned int debug;
1313 
1314 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1315 	depc = read_c0_depc();
1316 	debug = read_c0_debug();
1317 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1318 	if (debug & 0x80000000) {
1319 		/*
1320 		 * In branch delay slot.
1321 		 * We cheat a little bit here and use EPC to calculate the
1322 		 * debug return address (DEPC). EPC is restored after the
1323 		 * calculation.
1324 		 */
1325 		old_epc = regs->cp0_epc;
1326 		regs->cp0_epc = depc;
1327 		__compute_return_epc(regs);
1328 		depc = regs->cp0_epc;
1329 		regs->cp0_epc = old_epc;
1330 	} else
1331 		depc += 4;
1332 	write_c0_depc(depc);
1333 
1334 #if 0
1335 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1336 	write_c0_debug(debug | 0x100);
1337 #endif
1338 }
1339 
1340 /*
1341  * NMI exception handler.
1342  */
1343 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1344 {
1345 	bust_spinlocks(1);
1346 	printk("NMI taken!!!!\n");
1347 	die("NMI", regs);
1348 }
1349 
1350 #define VECTORSPACING 0x100	/* for EI/VI mode */
1351 
1352 unsigned long ebase;
1353 unsigned long exception_handlers[32];
1354 unsigned long vi_handlers[64];
1355 
1356 void __init *set_except_vector(int n, void *addr)
1357 {
1358 	unsigned long handler = (unsigned long) addr;
1359 	unsigned long old_handler = exception_handlers[n];
1360 
1361 	exception_handlers[n] = handler;
1362 	if (n == 0 && cpu_has_divec) {
1363 		unsigned long jump_mask = ~((1 << 28) - 1);
1364 		u32 *buf = (u32 *)(ebase + 0x200);
1365 		unsigned int k0 = 26;
1366 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1367 			uasm_i_j(&buf, handler & ~jump_mask);
1368 			uasm_i_nop(&buf);
1369 		} else {
1370 			UASM_i_LA(&buf, k0, handler);
1371 			uasm_i_jr(&buf, k0);
1372 			uasm_i_nop(&buf);
1373 		}
1374 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1375 	}
1376 	return (void *)old_handler;
1377 }
1378 
1379 static asmlinkage void do_default_vi(void)
1380 {
1381 	show_regs(get_irq_regs());
1382 	panic("Caught unexpected vectored interrupt.");
1383 }
1384 
1385 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1386 {
1387 	unsigned long handler;
1388 	unsigned long old_handler = vi_handlers[n];
1389 	int srssets = current_cpu_data.srsets;
1390 	u32 *w;
1391 	unsigned char *b;
1392 
1393 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1394 
1395 	if (addr == NULL) {
1396 		handler = (unsigned long) do_default_vi;
1397 		srs = 0;
1398 	} else
1399 		handler = (unsigned long) addr;
1400 	vi_handlers[n] = (unsigned long) addr;
1401 
1402 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1403 
1404 	if (srs >= srssets)
1405 		panic("Shadow register set %d not supported", srs);
1406 
1407 	if (cpu_has_veic) {
1408 		if (board_bind_eic_interrupt)
1409 			board_bind_eic_interrupt(n, srs);
1410 	} else if (cpu_has_vint) {
1411 		/* SRSMap is only defined if shadow sets are implemented */
1412 		if (srssets > 1)
1413 			change_c0_srsmap(0xf << n*4, srs << n*4);
1414 	}
1415 
1416 	if (srs == 0) {
1417 		/*
1418 		 * If no shadow set is selected then use the default handler
1419 		 * that does normal register saving and a standard interrupt exit
1420 		 */
1421 
1422 		extern char except_vec_vi, except_vec_vi_lui;
1423 		extern char except_vec_vi_ori, except_vec_vi_end;
1424 		extern char rollback_except_vec_vi;
1425 		char *vec_start = (cpu_wait == r4k_wait) ?
1426 			&rollback_except_vec_vi : &except_vec_vi;
1427 #ifdef CONFIG_MIPS_MT_SMTC
1428 		/*
1429 		 * We need to provide the SMTC vectored interrupt handler
1430 		 * not only with the address of the handler, but with the
1431 		 * Status.IM bit to be masked before going there.
1432 		 */
1433 		extern char except_vec_vi_mori;
1434 		const int mori_offset = &except_vec_vi_mori - vec_start;
1435 #endif /* CONFIG_MIPS_MT_SMTC */
1436 		const int handler_len = &except_vec_vi_end - vec_start;
1437 		const int lui_offset = &except_vec_vi_lui - vec_start;
1438 		const int ori_offset = &except_vec_vi_ori - vec_start;
1439 
1440 		if (handler_len > VECTORSPACING) {
1441 			/*
1442 			 * Sigh... panicing won't help as the console
1443 			 * is probably not configured :(
1444 			 */
1445 			panic("VECTORSPACING too small");
1446 		}
1447 
1448 		memcpy(b, vec_start, handler_len);
1449 #ifdef CONFIG_MIPS_MT_SMTC
1450 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1451 
1452 		w = (u32 *)(b + mori_offset);
1453 		*w = (*w & 0xffff0000) | (0x100 << n);
1454 #endif /* CONFIG_MIPS_MT_SMTC */
1455 		w = (u32 *)(b + lui_offset);
1456 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1457 		w = (u32 *)(b + ori_offset);
1458 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1459 		local_flush_icache_range((unsigned long)b,
1460 					 (unsigned long)(b+handler_len));
1461 	}
1462 	else {
1463 		/*
1464 		 * In other cases jump directly to the interrupt handler
1465 		 *
1466 		 * It is the handlers responsibility to save registers if required
1467 		 * (eg hi/lo) and return from the exception using "eret"
1468 		 */
1469 		w = (u32 *)b;
1470 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1471 		*w = 0;
1472 		local_flush_icache_range((unsigned long)b,
1473 					 (unsigned long)(b+8));
1474 	}
1475 
1476 	return (void *)old_handler;
1477 }
1478 
1479 void *set_vi_handler(int n, vi_handler_t addr)
1480 {
1481 	return set_vi_srs_handler(n, addr, 0);
1482 }
1483 
1484 extern void cpu_cache_init(void);
1485 extern void tlb_init(void);
1486 extern void flush_tlb_handlers(void);
1487 
1488 /*
1489  * Timer interrupt
1490  */
1491 int cp0_compare_irq;
1492 int cp0_compare_irq_shift;
1493 
1494 /*
1495  * Performance counter IRQ or -1 if shared with timer
1496  */
1497 int cp0_perfcount_irq;
1498 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1499 
1500 static int __cpuinitdata noulri;
1501 
1502 static int __init ulri_disable(char *s)
1503 {
1504 	pr_info("Disabling ulri\n");
1505 	noulri = 1;
1506 
1507 	return 1;
1508 }
1509 __setup("noulri", ulri_disable);
1510 
1511 void __cpuinit per_cpu_trap_init(void)
1512 {
1513 	unsigned int cpu = smp_processor_id();
1514 	unsigned int status_set = ST0_CU0;
1515 	unsigned int hwrena = cpu_hwrena_impl_bits;
1516 #ifdef CONFIG_MIPS_MT_SMTC
1517 	int secondaryTC = 0;
1518 	int bootTC = (cpu == 0);
1519 
1520 	/*
1521 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1522 	 * Note that this hack assumes that the SMTC init code
1523 	 * assigns TCs consecutively and in ascending order.
1524 	 */
1525 
1526 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1527 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1528 		secondaryTC = 1;
1529 #endif /* CONFIG_MIPS_MT_SMTC */
1530 
1531 	/*
1532 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1533 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1534 	 * flag that some firmware may have left set and the TS bit (for
1535 	 * IP27).  Set XX for ISA IV code to work.
1536 	 */
1537 #ifdef CONFIG_64BIT
1538 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1539 #endif
1540 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1541 		status_set |= ST0_XX;
1542 	if (cpu_has_dsp)
1543 		status_set |= ST0_MX;
1544 
1545 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1546 			 status_set);
1547 
1548 	if (cpu_has_mips_r2)
1549 		hwrena |= 0x0000000f;
1550 
1551 	if (!noulri && cpu_has_userlocal)
1552 		hwrena |= (1 << 29);
1553 
1554 	if (hwrena)
1555 		write_c0_hwrena(hwrena);
1556 
1557 #ifdef CONFIG_MIPS_MT_SMTC
1558 	if (!secondaryTC) {
1559 #endif /* CONFIG_MIPS_MT_SMTC */
1560 
1561 	if (cpu_has_veic || cpu_has_vint) {
1562 		unsigned long sr = set_c0_status(ST0_BEV);
1563 		write_c0_ebase(ebase);
1564 		write_c0_status(sr);
1565 		/* Setting vector spacing enables EI/VI mode  */
1566 		change_c0_intctl(0x3e0, VECTORSPACING);
1567 	}
1568 	if (cpu_has_divec) {
1569 		if (cpu_has_mipsmt) {
1570 			unsigned int vpflags = dvpe();
1571 			set_c0_cause(CAUSEF_IV);
1572 			evpe(vpflags);
1573 		} else
1574 			set_c0_cause(CAUSEF_IV);
1575 	}
1576 
1577 	/*
1578 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1579 	 *
1580 	 *  o read IntCtl.IPTI to determine the timer interrupt
1581 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1582 	 */
1583 	if (cpu_has_mips_r2) {
1584 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1585 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1586 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1587 		if (cp0_perfcount_irq == cp0_compare_irq)
1588 			cp0_perfcount_irq = -1;
1589 	} else {
1590 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1591 		cp0_compare_irq_shift = cp0_compare_irq;
1592 		cp0_perfcount_irq = -1;
1593 	}
1594 
1595 #ifdef CONFIG_MIPS_MT_SMTC
1596 	}
1597 #endif /* CONFIG_MIPS_MT_SMTC */
1598 
1599 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1600 
1601 	atomic_inc(&init_mm.mm_count);
1602 	current->active_mm = &init_mm;
1603 	BUG_ON(current->mm);
1604 	enter_lazy_tlb(&init_mm, current);
1605 
1606 #ifdef CONFIG_MIPS_MT_SMTC
1607 	if (bootTC) {
1608 #endif /* CONFIG_MIPS_MT_SMTC */
1609 		cpu_cache_init();
1610 		tlb_init();
1611 #ifdef CONFIG_MIPS_MT_SMTC
1612 	} else if (!secondaryTC) {
1613 		/*
1614 		 * First TC in non-boot VPE must do subset of tlb_init()
1615 		 * for MMU countrol registers.
1616 		 */
1617 		write_c0_pagemask(PM_DEFAULT_MASK);
1618 		write_c0_wired(0);
1619 	}
1620 #endif /* CONFIG_MIPS_MT_SMTC */
1621 	TLBMISS_HANDLER_SETUP();
1622 }
1623 
1624 /* Install CPU exception handler */
1625 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1626 {
1627 	memcpy((void *)(ebase + offset), addr, size);
1628 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1629 }
1630 
1631 static char panic_null_cerr[] __cpuinitdata =
1632 	"Trying to set NULL cache error exception handler";
1633 
1634 /*
1635  * Install uncached CPU exception handler.
1636  * This is suitable only for the cache error exception which is the only
1637  * exception handler that is being run uncached.
1638  */
1639 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1640 	unsigned long size)
1641 {
1642 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1643 
1644 	if (!addr)
1645 		panic(panic_null_cerr);
1646 
1647 	memcpy((void *)(uncached_ebase + offset), addr, size);
1648 }
1649 
1650 static int __initdata rdhwr_noopt;
1651 static int __init set_rdhwr_noopt(char *str)
1652 {
1653 	rdhwr_noopt = 1;
1654 	return 1;
1655 }
1656 
1657 __setup("rdhwr_noopt", set_rdhwr_noopt);
1658 
1659 void __init trap_init(void)
1660 {
1661 	extern char except_vec3_generic, except_vec3_r4000;
1662 	extern char except_vec4;
1663 	unsigned long i;
1664 	int rollback;
1665 
1666 	check_wait();
1667 	rollback = (cpu_wait == r4k_wait);
1668 
1669 #if defined(CONFIG_KGDB)
1670 	if (kgdb_early_setup)
1671 		return;	/* Already done */
1672 #endif
1673 
1674 	if (cpu_has_veic || cpu_has_vint) {
1675 		unsigned long size = 0x200 + VECTORSPACING*64;
1676 		ebase = (unsigned long)
1677 			__alloc_bootmem(size, 1 << fls(size), 0);
1678 	} else {
1679 		ebase = CKSEG0;
1680 		if (cpu_has_mips_r2)
1681 			ebase += (read_c0_ebase() & 0x3ffff000);
1682 	}
1683 
1684 	per_cpu_trap_init();
1685 
1686 	/*
1687 	 * Copy the generic exception handlers to their final destination.
1688 	 * This will be overriden later as suitable for a particular
1689 	 * configuration.
1690 	 */
1691 	set_handler(0x180, &except_vec3_generic, 0x80);
1692 
1693 	/*
1694 	 * Setup default vectors
1695 	 */
1696 	for (i = 0; i <= 31; i++)
1697 		set_except_vector(i, handle_reserved);
1698 
1699 	/*
1700 	 * Copy the EJTAG debug exception vector handler code to it's final
1701 	 * destination.
1702 	 */
1703 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1704 		board_ejtag_handler_setup();
1705 
1706 	/*
1707 	 * Only some CPUs have the watch exceptions.
1708 	 */
1709 	if (cpu_has_watch)
1710 		set_except_vector(23, handle_watch);
1711 
1712 	/*
1713 	 * Initialise interrupt handlers
1714 	 */
1715 	if (cpu_has_veic || cpu_has_vint) {
1716 		int nvec = cpu_has_veic ? 64 : 8;
1717 		for (i = 0; i < nvec; i++)
1718 			set_vi_handler(i, NULL);
1719 	}
1720 	else if (cpu_has_divec)
1721 		set_handler(0x200, &except_vec4, 0x8);
1722 
1723 	/*
1724 	 * Some CPUs can enable/disable for cache parity detection, but does
1725 	 * it different ways.
1726 	 */
1727 	parity_protection_init();
1728 
1729 	/*
1730 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1731 	 * by external hardware.  Therefore these two exceptions
1732 	 * may have board specific handlers.
1733 	 */
1734 	if (board_be_init)
1735 		board_be_init();
1736 
1737 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1738 	set_except_vector(1, handle_tlbm);
1739 	set_except_vector(2, handle_tlbl);
1740 	set_except_vector(3, handle_tlbs);
1741 
1742 	set_except_vector(4, handle_adel);
1743 	set_except_vector(5, handle_ades);
1744 
1745 	set_except_vector(6, handle_ibe);
1746 	set_except_vector(7, handle_dbe);
1747 
1748 	set_except_vector(8, handle_sys);
1749 	set_except_vector(9, handle_bp);
1750 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1751 			  (cpu_has_vtag_icache ?
1752 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1753 	set_except_vector(11, handle_cpu);
1754 	set_except_vector(12, handle_ov);
1755 	set_except_vector(13, handle_tr);
1756 
1757 	if (current_cpu_type() == CPU_R6000 ||
1758 	    current_cpu_type() == CPU_R6000A) {
1759 		/*
1760 		 * The R6000 is the only R-series CPU that features a machine
1761 		 * check exception (similar to the R4000 cache error) and
1762 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1763 		 * written yet.  Well, anyway there is no R6000 machine on the
1764 		 * current list of targets for Linux/MIPS.
1765 		 * (Duh, crap, there is someone with a triple R6k machine)
1766 		 */
1767 		//set_except_vector(14, handle_mc);
1768 		//set_except_vector(15, handle_ndc);
1769 	}
1770 
1771 
1772 	if (board_nmi_handler_setup)
1773 		board_nmi_handler_setup();
1774 
1775 	if (cpu_has_fpu && !cpu_has_nofpuex)
1776 		set_except_vector(15, handle_fpe);
1777 
1778 	set_except_vector(22, handle_mdmx);
1779 
1780 	if (cpu_has_mcheck)
1781 		set_except_vector(24, handle_mcheck);
1782 
1783 	if (cpu_has_mipsmt)
1784 		set_except_vector(25, handle_mt);
1785 
1786 	set_except_vector(26, handle_dsp);
1787 
1788 	if (cpu_has_vce)
1789 		/* Special exception: R4[04]00 uses also the divec space. */
1790 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1791 	else if (cpu_has_4kex)
1792 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1793 	else
1794 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1795 
1796 	local_flush_icache_range(ebase, ebase + 0x400);
1797 	flush_tlb_handlers();
1798 
1799 	sort_extable(__start___dbe_table, __stop___dbe_table);
1800 
1801 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1802 }
1803