1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/regdef.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73
74 #include <asm/mach-loongson64/cpucfg-emul.h>
75
76 #include "access-helper.h"
77
78 extern void check_wait(void);
79 extern asmlinkage void rollback_handle_int(void);
80 extern asmlinkage void handle_int(void);
81 extern asmlinkage void handle_adel(void);
82 extern asmlinkage void handle_ades(void);
83 extern asmlinkage void handle_ibe(void);
84 extern asmlinkage void handle_dbe(void);
85 extern asmlinkage void handle_sys(void);
86 extern asmlinkage void handle_bp(void);
87 extern asmlinkage void handle_ri(void);
88 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
89 extern asmlinkage void handle_ri_rdhwr(void);
90 extern asmlinkage void handle_cpu(void);
91 extern asmlinkage void handle_ov(void);
92 extern asmlinkage void handle_tr(void);
93 extern asmlinkage void handle_msa_fpe(void);
94 extern asmlinkage void handle_fpe(void);
95 extern asmlinkage void handle_ftlb(void);
96 extern asmlinkage void handle_gsexc(void);
97 extern asmlinkage void handle_msa(void);
98 extern asmlinkage void handle_mdmx(void);
99 extern asmlinkage void handle_watch(void);
100 extern asmlinkage void handle_mt(void);
101 extern asmlinkage void handle_dsp(void);
102 extern asmlinkage void handle_mcheck(void);
103 extern asmlinkage void handle_reserved(void);
104 extern void tlb_do_page_fault_0(void);
105
106 void (*board_be_init)(void);
107 static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
108 void (*board_nmi_handler_setup)(void);
109 void (*board_ejtag_handler_setup)(void);
110 void (*board_bind_eic_interrupt)(int irq, int regset);
111 void (*board_ebase_setup)(void);
112 void(*board_cache_error_setup)(void);
113
mips_set_be_handler(int (* handler)(struct pt_regs * regs,int is_fixup))114 void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
115 {
116 board_be_handler = handler;
117 }
118 EXPORT_SYMBOL_GPL(mips_set_be_handler);
119
show_raw_backtrace(unsigned long reg29,const char * loglvl,bool user)120 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
121 bool user)
122 {
123 unsigned long *sp = (unsigned long *)(reg29 & ~3);
124 unsigned long addr;
125
126 printk("%sCall Trace:", loglvl);
127 #ifdef CONFIG_KALLSYMS
128 printk("%s\n", loglvl);
129 #endif
130 while (!kstack_end(sp)) {
131 if (__get_addr(&addr, sp++, user)) {
132 printk("%s (Bad stack address)", loglvl);
133 break;
134 }
135 if (__kernel_text_address(addr))
136 print_ip_sym(loglvl, addr);
137 }
138 printk("%s\n", loglvl);
139 }
140
141 #ifdef CONFIG_KALLSYMS
142 int raw_show_trace;
set_raw_show_trace(char * str)143 static int __init set_raw_show_trace(char *str)
144 {
145 raw_show_trace = 1;
146 return 1;
147 }
148 __setup("raw_show_trace", set_raw_show_trace);
149 #endif
150
show_backtrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl,bool user)151 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
152 const char *loglvl, bool user)
153 {
154 unsigned long sp = regs->regs[29];
155 unsigned long ra = regs->regs[31];
156 unsigned long pc = regs->cp0_epc;
157
158 if (!task)
159 task = current;
160
161 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
162 show_raw_backtrace(sp, loglvl, user);
163 return;
164 }
165 printk("%sCall Trace:\n", loglvl);
166 do {
167 print_ip_sym(loglvl, pc);
168 pc = unwind_stack(task, &sp, pc, &ra);
169 } while (pc);
170 pr_cont("\n");
171 }
172
173 /*
174 * This routine abuses get_user()/put_user() to reference pointers
175 * with at least a bit of error checking ...
176 */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl,bool user)177 static void show_stacktrace(struct task_struct *task,
178 const struct pt_regs *regs, const char *loglvl, bool user)
179 {
180 const int field = 2 * sizeof(unsigned long);
181 unsigned long stackdata;
182 int i;
183 unsigned long *sp = (unsigned long *)regs->regs[29];
184
185 printk("%sStack :", loglvl);
186 i = 0;
187 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
188 if (i && ((i % (64 / field)) == 0)) {
189 pr_cont("\n");
190 printk("%s ", loglvl);
191 }
192 if (i > 39) {
193 pr_cont(" ...");
194 break;
195 }
196
197 if (__get_addr(&stackdata, sp++, user)) {
198 pr_cont(" (Bad stack address)");
199 break;
200 }
201
202 pr_cont(" %0*lx", field, stackdata);
203 i++;
204 }
205 pr_cont("\n");
206 show_backtrace(task, regs, loglvl, user);
207 }
208
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)209 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
210 {
211 struct pt_regs regs;
212
213 regs.cp0_status = KSU_KERNEL;
214 if (sp) {
215 regs.regs[29] = (unsigned long)sp;
216 regs.regs[31] = 0;
217 regs.cp0_epc = 0;
218 } else {
219 if (task && task != current) {
220 regs.regs[29] = task->thread.reg29;
221 regs.regs[31] = 0;
222 regs.cp0_epc = task->thread.reg31;
223 } else {
224 prepare_frametrace(®s);
225 }
226 }
227 show_stacktrace(task, ®s, loglvl, false);
228 }
229
show_code(void * pc,bool user)230 static void show_code(void *pc, bool user)
231 {
232 long i;
233 unsigned short *pc16 = NULL;
234
235 printk("Code:");
236
237 if ((unsigned long)pc & 1)
238 pc16 = (u16 *)((unsigned long)pc & ~1);
239
240 for(i = -3 ; i < 6 ; i++) {
241 if (pc16) {
242 u16 insn16;
243
244 if (__get_inst16(&insn16, pc16 + i, user))
245 goto bad_address;
246
247 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
248 } else {
249 u32 insn32;
250
251 if (__get_inst32(&insn32, (u32 *)pc + i, user))
252 goto bad_address;
253
254 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
255 }
256 }
257 pr_cont("\n");
258 return;
259
260 bad_address:
261 pr_cont(" (Bad address in epc)\n\n");
262 }
263
__show_regs(const struct pt_regs * regs)264 static void __show_regs(const struct pt_regs *regs)
265 {
266 const int field = 2 * sizeof(unsigned long);
267 unsigned int cause = regs->cp0_cause;
268 unsigned int exccode;
269 int i;
270
271 show_regs_print_info(KERN_DEFAULT);
272
273 /*
274 * Saved main processor registers
275 */
276 for (i = 0; i < 32; ) {
277 if ((i % 4) == 0)
278 printk("$%2d :", i);
279 if (i == 0)
280 pr_cont(" %0*lx", field, 0UL);
281 else if (i == 26 || i == 27)
282 pr_cont(" %*s", field, "");
283 else
284 pr_cont(" %0*lx", field, regs->regs[i]);
285
286 i++;
287 if ((i % 4) == 0)
288 pr_cont("\n");
289 }
290
291 #ifdef CONFIG_CPU_HAS_SMARTMIPS
292 printk("Acx : %0*lx\n", field, regs->acx);
293 #endif
294 if (MIPS_ISA_REV < 6) {
295 printk("Hi : %0*lx\n", field, regs->hi);
296 printk("Lo : %0*lx\n", field, regs->lo);
297 }
298
299 /*
300 * Saved cp0 registers
301 */
302 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
303 (void *) regs->cp0_epc);
304 printk("ra : %0*lx %pS\n", field, regs->regs[31],
305 (void *) regs->regs[31]);
306
307 printk("Status: %08x ", (uint32_t) regs->cp0_status);
308
309 if (cpu_has_3kex) {
310 if (regs->cp0_status & ST0_KUO)
311 pr_cont("KUo ");
312 if (regs->cp0_status & ST0_IEO)
313 pr_cont("IEo ");
314 if (regs->cp0_status & ST0_KUP)
315 pr_cont("KUp ");
316 if (regs->cp0_status & ST0_IEP)
317 pr_cont("IEp ");
318 if (regs->cp0_status & ST0_KUC)
319 pr_cont("KUc ");
320 if (regs->cp0_status & ST0_IEC)
321 pr_cont("IEc ");
322 } else if (cpu_has_4kex) {
323 if (regs->cp0_status & ST0_KX)
324 pr_cont("KX ");
325 if (regs->cp0_status & ST0_SX)
326 pr_cont("SX ");
327 if (regs->cp0_status & ST0_UX)
328 pr_cont("UX ");
329 switch (regs->cp0_status & ST0_KSU) {
330 case KSU_USER:
331 pr_cont("USER ");
332 break;
333 case KSU_SUPERVISOR:
334 pr_cont("SUPERVISOR ");
335 break;
336 case KSU_KERNEL:
337 pr_cont("KERNEL ");
338 break;
339 default:
340 pr_cont("BAD_MODE ");
341 break;
342 }
343 if (regs->cp0_status & ST0_ERL)
344 pr_cont("ERL ");
345 if (regs->cp0_status & ST0_EXL)
346 pr_cont("EXL ");
347 if (regs->cp0_status & ST0_IE)
348 pr_cont("IE ");
349 }
350 pr_cont("\n");
351
352 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
353 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
354
355 if (1 <= exccode && exccode <= 5)
356 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
357
358 printk("PrId : %08x (%s)\n", read_c0_prid(),
359 cpu_name_string());
360 }
361
362 /*
363 * FIXME: really the generic show_regs should take a const pointer argument.
364 */
show_regs(struct pt_regs * regs)365 void show_regs(struct pt_regs *regs)
366 {
367 __show_regs(regs);
368 dump_stack();
369 }
370
show_registers(struct pt_regs * regs)371 void show_registers(struct pt_regs *regs)
372 {
373 const int field = 2 * sizeof(unsigned long);
374
375 __show_regs(regs);
376 print_modules();
377 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
378 current->comm, current->pid, current_thread_info(), current,
379 field, current_thread_info()->tp_value);
380 if (cpu_has_userlocal) {
381 unsigned long tls;
382
383 tls = read_c0_userlocal();
384 if (tls != current_thread_info()->tp_value)
385 printk("*HwTLS: %0*lx\n", field, tls);
386 }
387
388 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
389 show_code((void *)regs->cp0_epc, user_mode(regs));
390 printk("\n");
391 }
392
393 static DEFINE_RAW_SPINLOCK(die_lock);
394
die(const char * str,struct pt_regs * regs)395 void __noreturn die(const char *str, struct pt_regs *regs)
396 {
397 static int die_counter;
398 int sig = SIGSEGV;
399
400 oops_enter();
401
402 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
403 SIGSEGV) == NOTIFY_STOP)
404 sig = 0;
405
406 console_verbose();
407 raw_spin_lock_irq(&die_lock);
408 bust_spinlocks(1);
409
410 printk("%s[#%d]:\n", str, ++die_counter);
411 show_registers(regs);
412 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
413 raw_spin_unlock_irq(&die_lock);
414
415 oops_exit();
416
417 if (in_interrupt())
418 panic("Fatal exception in interrupt");
419
420 if (panic_on_oops)
421 panic("Fatal exception");
422
423 if (regs && kexec_should_crash(current))
424 crash_kexec(regs);
425
426 make_task_dead(sig);
427 }
428
429 extern struct exception_table_entry __start___dbe_table[];
430 extern struct exception_table_entry __stop___dbe_table[];
431
432 __asm__(
433 " .section __dbe_table, \"a\"\n"
434 " .previous \n");
435
436 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)437 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
438 {
439 const struct exception_table_entry *e;
440
441 e = search_extable(__start___dbe_table,
442 __stop___dbe_table - __start___dbe_table, addr);
443 if (!e)
444 e = search_module_dbetables(addr);
445 return e;
446 }
447
do_be(struct pt_regs * regs)448 asmlinkage void do_be(struct pt_regs *regs)
449 {
450 const int field = 2 * sizeof(unsigned long);
451 const struct exception_table_entry *fixup = NULL;
452 int data = regs->cp0_cause & 4;
453 int action = MIPS_BE_FATAL;
454 enum ctx_state prev_state;
455
456 prev_state = exception_enter();
457 /* XXX For now. Fixme, this searches the wrong table ... */
458 if (data && !user_mode(regs))
459 fixup = search_dbe_tables(exception_epc(regs));
460
461 if (fixup)
462 action = MIPS_BE_FIXUP;
463
464 if (board_be_handler)
465 action = board_be_handler(regs, fixup != NULL);
466 else
467 mips_cm_error_report();
468
469 switch (action) {
470 case MIPS_BE_DISCARD:
471 goto out;
472 case MIPS_BE_FIXUP:
473 if (fixup) {
474 regs->cp0_epc = fixup->nextinsn;
475 goto out;
476 }
477 break;
478 default:
479 break;
480 }
481
482 /*
483 * Assume it would be too dangerous to continue ...
484 */
485 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
486 data ? "Data" : "Instruction",
487 field, regs->cp0_epc, field, regs->regs[31]);
488 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
489 SIGBUS) == NOTIFY_STOP)
490 goto out;
491
492 die_if_kernel("Oops", regs);
493 force_sig(SIGBUS);
494
495 out:
496 exception_exit(prev_state);
497 }
498
499 /*
500 * ll/sc, rdhwr, sync emulation
501 */
502
503 #define OPCODE 0xfc000000
504 #define BASE 0x03e00000
505 #define RT 0x001f0000
506 #define OFFSET 0x0000ffff
507 #define LL 0xc0000000
508 #define SC 0xe0000000
509 #define SPEC0 0x00000000
510 #define SPEC3 0x7c000000
511 #define RD 0x0000f800
512 #define FUNC 0x0000003f
513 #define SYNC 0x0000000f
514 #define RDHWR 0x0000003b
515
516 /* microMIPS definitions */
517 #define MM_POOL32A_FUNC 0xfc00ffff
518 #define MM_RDHWR 0x00006b3c
519 #define MM_RS 0x001f0000
520 #define MM_RT 0x03e00000
521
522 /*
523 * The ll_bit is cleared by r*_switch.S
524 */
525
526 unsigned int ll_bit;
527 struct task_struct *ll_task;
528
simulate_ll(struct pt_regs * regs,unsigned int opcode)529 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
530 {
531 unsigned long value, __user *vaddr;
532 long offset;
533
534 /*
535 * analyse the ll instruction that just caused a ri exception
536 * and put the referenced address to addr.
537 */
538
539 /* sign extend offset */
540 offset = opcode & OFFSET;
541 offset <<= 16;
542 offset >>= 16;
543
544 vaddr = (unsigned long __user *)
545 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
546
547 if ((unsigned long)vaddr & 3)
548 return SIGBUS;
549 if (get_user(value, vaddr))
550 return SIGSEGV;
551
552 preempt_disable();
553
554 if (ll_task == NULL || ll_task == current) {
555 ll_bit = 1;
556 } else {
557 ll_bit = 0;
558 }
559 ll_task = current;
560
561 preempt_enable();
562
563 regs->regs[(opcode & RT) >> 16] = value;
564
565 return 0;
566 }
567
simulate_sc(struct pt_regs * regs,unsigned int opcode)568 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
569 {
570 unsigned long __user *vaddr;
571 unsigned long reg;
572 long offset;
573
574 /*
575 * analyse the sc instruction that just caused a ri exception
576 * and put the referenced address to addr.
577 */
578
579 /* sign extend offset */
580 offset = opcode & OFFSET;
581 offset <<= 16;
582 offset >>= 16;
583
584 vaddr = (unsigned long __user *)
585 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
586 reg = (opcode & RT) >> 16;
587
588 if ((unsigned long)vaddr & 3)
589 return SIGBUS;
590
591 preempt_disable();
592
593 if (ll_bit == 0 || ll_task != current) {
594 regs->regs[reg] = 0;
595 preempt_enable();
596 return 0;
597 }
598
599 preempt_enable();
600
601 if (put_user(regs->regs[reg], vaddr))
602 return SIGSEGV;
603
604 regs->regs[reg] = 1;
605
606 return 0;
607 }
608
609 /*
610 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
611 * opcodes are supposed to result in coprocessor unusable exceptions if
612 * executed on ll/sc-less processors. That's the theory. In practice a
613 * few processors such as NEC's VR4100 throw reserved instruction exceptions
614 * instead, so we're doing the emulation thing in both exception handlers.
615 */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)616 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
617 {
618 if ((opcode & OPCODE) == LL) {
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 1, regs, 0);
621 return simulate_ll(regs, opcode);
622 }
623 if ((opcode & OPCODE) == SC) {
624 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
625 1, regs, 0);
626 return simulate_sc(regs, opcode);
627 }
628
629 return -1; /* Must be something else ... */
630 }
631
632 /*
633 * Simulate trapping 'rdhwr' instructions to provide user accessible
634 * registers not implemented in hardware.
635 */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)636 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
637 {
638 struct thread_info *ti = task_thread_info(current);
639
640 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
641 1, regs, 0);
642 switch (rd) {
643 case MIPS_HWR_CPUNUM: /* CPU number */
644 regs->regs[rt] = smp_processor_id();
645 return 0;
646 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
647 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
648 current_cpu_data.icache.linesz);
649 return 0;
650 case MIPS_HWR_CC: /* Read count register */
651 regs->regs[rt] = read_c0_count();
652 return 0;
653 case MIPS_HWR_CCRES: /* Count register resolution */
654 switch (current_cpu_type()) {
655 case CPU_20KC:
656 case CPU_25KF:
657 regs->regs[rt] = 1;
658 break;
659 default:
660 regs->regs[rt] = 2;
661 }
662 return 0;
663 case MIPS_HWR_ULR: /* Read UserLocal register */
664 regs->regs[rt] = ti->tp_value;
665 return 0;
666 default:
667 return -1;
668 }
669 }
670
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)671 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
672 {
673 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
674 int rd = (opcode & RD) >> 11;
675 int rt = (opcode & RT) >> 16;
676
677 simulate_rdhwr(regs, rd, rt);
678 return 0;
679 }
680
681 /* Not ours. */
682 return -1;
683 }
684
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)685 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
686 {
687 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
688 int rd = (opcode & MM_RS) >> 16;
689 int rt = (opcode & MM_RT) >> 21;
690 simulate_rdhwr(regs, rd, rt);
691 return 0;
692 }
693
694 /* Not ours. */
695 return -1;
696 }
697
simulate_sync(struct pt_regs * regs,unsigned int opcode)698 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
699 {
700 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
701 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
702 1, regs, 0);
703 return 0;
704 }
705
706 return -1; /* Must be something else ... */
707 }
708
709 /*
710 * Loongson-3 CSR instructions emulation
711 */
712
713 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
714
715 #define LWC2 0xc8000000
716 #define RS BASE
717 #define CSR_OPCODE2 0x00000118
718 #define CSR_OPCODE2_MASK 0x000007ff
719 #define CSR_FUNC_MASK RT
720 #define CSR_FUNC_CPUCFG 0x8
721
simulate_loongson3_cpucfg(struct pt_regs * regs,unsigned int opcode)722 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
723 unsigned int opcode)
724 {
725 int op = opcode & OPCODE;
726 int op2 = opcode & CSR_OPCODE2_MASK;
727 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
728
729 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
730 int rd = (opcode & RD) >> 11;
731 int rs = (opcode & RS) >> 21;
732 __u64 sel = regs->regs[rs];
733
734 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
735
736 /* Do not emulate on unsupported core models. */
737 preempt_disable();
738 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
739 preempt_enable();
740 return -1;
741 }
742 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
743 ¤t_cpu_data, sel);
744 preempt_enable();
745 return 0;
746 }
747
748 /* Not ours. */
749 return -1;
750 }
751 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
752
do_ov(struct pt_regs * regs)753 asmlinkage void do_ov(struct pt_regs *regs)
754 {
755 enum ctx_state prev_state;
756
757 prev_state = exception_enter();
758 die_if_kernel("Integer overflow", regs);
759
760 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
761 exception_exit(prev_state);
762 }
763
764 #ifdef CONFIG_MIPS_FP_SUPPORT
765
766 /*
767 * Send SIGFPE according to FCSR Cause bits, which must have already
768 * been masked against Enable bits. This is impotant as Inexact can
769 * happen together with Overflow or Underflow, and `ptrace' can set
770 * any bits.
771 */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)772 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
773 struct task_struct *tsk)
774 {
775 int si_code = FPE_FLTUNK;
776
777 if (fcr31 & FPU_CSR_INV_X)
778 si_code = FPE_FLTINV;
779 else if (fcr31 & FPU_CSR_DIV_X)
780 si_code = FPE_FLTDIV;
781 else if (fcr31 & FPU_CSR_OVF_X)
782 si_code = FPE_FLTOVF;
783 else if (fcr31 & FPU_CSR_UDF_X)
784 si_code = FPE_FLTUND;
785 else if (fcr31 & FPU_CSR_INE_X)
786 si_code = FPE_FLTRES;
787
788 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
789 }
790
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)791 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
792 {
793 int si_code;
794
795 switch (sig) {
796 case 0:
797 return 0;
798
799 case SIGFPE:
800 force_fcr31_sig(fcr31, fault_addr, current);
801 return 1;
802
803 case SIGBUS:
804 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
805 return 1;
806
807 case SIGSEGV:
808 mmap_read_lock(current->mm);
809 if (vma_lookup(current->mm, (unsigned long)fault_addr))
810 si_code = SEGV_ACCERR;
811 else
812 si_code = SEGV_MAPERR;
813 mmap_read_unlock(current->mm);
814 force_sig_fault(SIGSEGV, si_code, fault_addr);
815 return 1;
816
817 default:
818 force_sig(sig);
819 return 1;
820 }
821 }
822
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)823 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
824 unsigned long old_epc, unsigned long old_ra)
825 {
826 union mips_instruction inst = { .word = opcode };
827 void __user *fault_addr;
828 unsigned long fcr31;
829 int sig;
830
831 /* If it's obviously not an FP instruction, skip it */
832 switch (inst.i_format.opcode) {
833 case cop1_op:
834 case cop1x_op:
835 case lwc1_op:
836 case ldc1_op:
837 case swc1_op:
838 case sdc1_op:
839 break;
840
841 default:
842 return -1;
843 }
844
845 /*
846 * do_ri skipped over the instruction via compute_return_epc, undo
847 * that for the FPU emulator.
848 */
849 regs->cp0_epc = old_epc;
850 regs->regs[31] = old_ra;
851
852 /* Run the emulator */
853 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
854 &fault_addr);
855
856 /*
857 * We can't allow the emulated instruction to leave any
858 * enabled Cause bits set in $fcr31.
859 */
860 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
861 current->thread.fpu.fcr31 &= ~fcr31;
862
863 /* Restore the hardware register state */
864 own_fpu(1);
865
866 /* Send a signal if required. */
867 process_fpemu_return(sig, fault_addr, fcr31);
868
869 return 0;
870 }
871
872 /*
873 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
874 */
do_fpe(struct pt_regs * regs,unsigned long fcr31)875 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
876 {
877 enum ctx_state prev_state;
878 void __user *fault_addr;
879 int sig;
880
881 prev_state = exception_enter();
882 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
883 SIGFPE) == NOTIFY_STOP)
884 goto out;
885
886 /* Clear FCSR.Cause before enabling interrupts */
887 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
888 local_irq_enable();
889
890 die_if_kernel("FP exception in kernel code", regs);
891
892 if (fcr31 & FPU_CSR_UNI_X) {
893 /*
894 * Unimplemented operation exception. If we've got the full
895 * software emulator on-board, let's use it...
896 *
897 * Force FPU to dump state into task/thread context. We're
898 * moving a lot of data here for what is probably a single
899 * instruction, but the alternative is to pre-decode the FP
900 * register operands before invoking the emulator, which seems
901 * a bit extreme for what should be an infrequent event.
902 */
903
904 /* Run the emulator */
905 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
906 &fault_addr);
907
908 /*
909 * We can't allow the emulated instruction to leave any
910 * enabled Cause bits set in $fcr31.
911 */
912 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
913 current->thread.fpu.fcr31 &= ~fcr31;
914
915 /* Restore the hardware register state */
916 own_fpu(1); /* Using the FPU again. */
917 } else {
918 sig = SIGFPE;
919 fault_addr = (void __user *) regs->cp0_epc;
920 }
921
922 /* Send a signal if required. */
923 process_fpemu_return(sig, fault_addr, fcr31);
924
925 out:
926 exception_exit(prev_state);
927 }
928
929 /*
930 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
931 * emulated more than some threshold number of instructions, force migration to
932 * a "CPU" that has FP support.
933 */
mt_ase_fp_affinity(void)934 static void mt_ase_fp_affinity(void)
935 {
936 #ifdef CONFIG_MIPS_MT_FPAFF
937 if (mt_fpemul_threshold > 0 &&
938 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
939 /*
940 * If there's no FPU present, or if the application has already
941 * restricted the allowed set to exclude any CPUs with FPUs,
942 * we'll skip the procedure.
943 */
944 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
945 cpumask_t tmask;
946
947 current->thread.user_cpus_allowed
948 = current->cpus_mask;
949 cpumask_and(&tmask, ¤t->cpus_mask,
950 &mt_fpu_cpumask);
951 set_cpus_allowed_ptr(current, &tmask);
952 set_thread_flag(TIF_FPUBOUND);
953 }
954 }
955 #endif /* CONFIG_MIPS_MT_FPAFF */
956 }
957
958 #else /* !CONFIG_MIPS_FP_SUPPORT */
959
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)960 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
961 unsigned long old_epc, unsigned long old_ra)
962 {
963 return -1;
964 }
965
966 #endif /* !CONFIG_MIPS_FP_SUPPORT */
967
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)968 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
969 const char *str)
970 {
971 char b[40];
972
973 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
974 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
975 SIGTRAP) == NOTIFY_STOP)
976 return;
977 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
978
979 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
980 SIGTRAP) == NOTIFY_STOP)
981 return;
982
983 /*
984 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
985 * insns, even for trap and break codes that indicate arithmetic
986 * failures. Weird ...
987 * But should we continue the brokenness??? --macro
988 */
989 switch (code) {
990 case BRK_OVERFLOW:
991 case BRK_DIVZERO:
992 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
993 die_if_kernel(b, regs);
994 force_sig_fault(SIGFPE,
995 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
996 (void __user *) regs->cp0_epc);
997 break;
998 case BRK_BUG:
999 die_if_kernel("Kernel bug detected", regs);
1000 force_sig(SIGTRAP);
1001 break;
1002 case BRK_MEMU:
1003 /*
1004 * This breakpoint code is used by the FPU emulator to retake
1005 * control of the CPU after executing the instruction from the
1006 * delay slot of an emulated branch.
1007 *
1008 * Terminate if exception was recognized as a delay slot return
1009 * otherwise handle as normal.
1010 */
1011 if (do_dsemulret(regs))
1012 return;
1013
1014 die_if_kernel("Math emu break/trap", regs);
1015 force_sig(SIGTRAP);
1016 break;
1017 default:
1018 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1019 die_if_kernel(b, regs);
1020 if (si_code) {
1021 force_sig_fault(SIGTRAP, si_code, NULL);
1022 } else {
1023 force_sig(SIGTRAP);
1024 }
1025 }
1026 }
1027
do_bp(struct pt_regs * regs)1028 asmlinkage void do_bp(struct pt_regs *regs)
1029 {
1030 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1031 unsigned int opcode, bcode;
1032 enum ctx_state prev_state;
1033 bool user = user_mode(regs);
1034
1035 prev_state = exception_enter();
1036 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1037 if (get_isa16_mode(regs->cp0_epc)) {
1038 u16 instr[2];
1039
1040 if (__get_inst16(&instr[0], (u16 *)epc, user))
1041 goto out_sigsegv;
1042
1043 if (!cpu_has_mmips) {
1044 /* MIPS16e mode */
1045 bcode = (instr[0] >> 5) & 0x3f;
1046 } else if (mm_insn_16bit(instr[0])) {
1047 /* 16-bit microMIPS BREAK */
1048 bcode = instr[0] & 0xf;
1049 } else {
1050 /* 32-bit microMIPS BREAK */
1051 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1052 goto out_sigsegv;
1053 opcode = (instr[0] << 16) | instr[1];
1054 bcode = (opcode >> 6) & ((1 << 20) - 1);
1055 }
1056 } else {
1057 if (__get_inst32(&opcode, (u32 *)epc, user))
1058 goto out_sigsegv;
1059 bcode = (opcode >> 6) & ((1 << 20) - 1);
1060 }
1061
1062 /*
1063 * There is the ancient bug in the MIPS assemblers that the break
1064 * code starts left to bit 16 instead to bit 6 in the opcode.
1065 * Gas is bug-compatible, but not always, grrr...
1066 * We handle both cases with a simple heuristics. --macro
1067 */
1068 if (bcode >= (1 << 10))
1069 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1070
1071 /*
1072 * notify the kprobe handlers, if instruction is likely to
1073 * pertain to them.
1074 */
1075 switch (bcode) {
1076 case BRK_UPROBE:
1077 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1078 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1079 goto out;
1080 else
1081 break;
1082 case BRK_UPROBE_XOL:
1083 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1084 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1085 goto out;
1086 else
1087 break;
1088 case BRK_KPROBE_BP:
1089 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1090 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1091 goto out;
1092 else
1093 break;
1094 case BRK_KPROBE_SSTEPBP:
1095 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1096 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1097 goto out;
1098 else
1099 break;
1100 default:
1101 break;
1102 }
1103
1104 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1105
1106 out:
1107 exception_exit(prev_state);
1108 return;
1109
1110 out_sigsegv:
1111 force_sig(SIGSEGV);
1112 goto out;
1113 }
1114
do_tr(struct pt_regs * regs)1115 asmlinkage void do_tr(struct pt_regs *regs)
1116 {
1117 u32 opcode, tcode = 0;
1118 enum ctx_state prev_state;
1119 u16 instr[2];
1120 bool user = user_mode(regs);
1121 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1122
1123 prev_state = exception_enter();
1124 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1125 if (get_isa16_mode(regs->cp0_epc)) {
1126 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1127 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1128 goto out_sigsegv;
1129 opcode = (instr[0] << 16) | instr[1];
1130 /* Immediate versions don't provide a code. */
1131 if (!(opcode & OPCODE))
1132 tcode = (opcode >> 12) & ((1 << 4) - 1);
1133 } else {
1134 if (__get_inst32(&opcode, (u32 *)epc, user))
1135 goto out_sigsegv;
1136 /* Immediate versions don't provide a code. */
1137 if (!(opcode & OPCODE))
1138 tcode = (opcode >> 6) & ((1 << 10) - 1);
1139 }
1140
1141 do_trap_or_bp(regs, tcode, 0, "Trap");
1142
1143 out:
1144 exception_exit(prev_state);
1145 return;
1146
1147 out_sigsegv:
1148 force_sig(SIGSEGV);
1149 goto out;
1150 }
1151
do_ri(struct pt_regs * regs)1152 asmlinkage void do_ri(struct pt_regs *regs)
1153 {
1154 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1155 unsigned long old_epc = regs->cp0_epc;
1156 unsigned long old31 = regs->regs[31];
1157 enum ctx_state prev_state;
1158 unsigned int opcode = 0;
1159 int status = -1;
1160
1161 /*
1162 * Avoid any kernel code. Just emulate the R2 instruction
1163 * as quickly as possible.
1164 */
1165 if (mipsr2_emulation && cpu_has_mips_r6 &&
1166 likely(user_mode(regs)) &&
1167 likely(get_user(opcode, epc) >= 0)) {
1168 unsigned long fcr31 = 0;
1169
1170 status = mipsr2_decoder(regs, opcode, &fcr31);
1171 switch (status) {
1172 case 0:
1173 case SIGEMT:
1174 return;
1175 case SIGILL:
1176 goto no_r2_instr;
1177 default:
1178 process_fpemu_return(status,
1179 ¤t->thread.cp0_baduaddr,
1180 fcr31);
1181 return;
1182 }
1183 }
1184
1185 no_r2_instr:
1186
1187 prev_state = exception_enter();
1188 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1189
1190 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1191 SIGILL) == NOTIFY_STOP)
1192 goto out;
1193
1194 die_if_kernel("Reserved instruction in kernel code", regs);
1195
1196 if (unlikely(compute_return_epc(regs) < 0))
1197 goto out;
1198
1199 if (!get_isa16_mode(regs->cp0_epc)) {
1200 if (unlikely(get_user(opcode, epc) < 0))
1201 status = SIGSEGV;
1202
1203 if (!cpu_has_llsc && status < 0)
1204 status = simulate_llsc(regs, opcode);
1205
1206 if (status < 0)
1207 status = simulate_rdhwr_normal(regs, opcode);
1208
1209 if (status < 0)
1210 status = simulate_sync(regs, opcode);
1211
1212 if (status < 0)
1213 status = simulate_fp(regs, opcode, old_epc, old31);
1214
1215 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1216 if (status < 0)
1217 status = simulate_loongson3_cpucfg(regs, opcode);
1218 #endif
1219 } else if (cpu_has_mmips) {
1220 unsigned short mmop[2] = { 0 };
1221
1222 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1223 status = SIGSEGV;
1224 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1225 status = SIGSEGV;
1226 opcode = mmop[0];
1227 opcode = (opcode << 16) | mmop[1];
1228
1229 if (status < 0)
1230 status = simulate_rdhwr_mm(regs, opcode);
1231 }
1232
1233 if (status < 0)
1234 status = SIGILL;
1235
1236 if (unlikely(status > 0)) {
1237 regs->cp0_epc = old_epc; /* Undo skip-over. */
1238 regs->regs[31] = old31;
1239 force_sig(status);
1240 }
1241
1242 out:
1243 exception_exit(prev_state);
1244 }
1245
1246 /*
1247 * No lock; only written during early bootup by CPU 0.
1248 */
1249 static RAW_NOTIFIER_HEAD(cu2_chain);
1250
register_cu2_notifier(struct notifier_block * nb)1251 int __ref register_cu2_notifier(struct notifier_block *nb)
1252 {
1253 return raw_notifier_chain_register(&cu2_chain, nb);
1254 }
1255
cu2_notifier_call_chain(unsigned long val,void * v)1256 int cu2_notifier_call_chain(unsigned long val, void *v)
1257 {
1258 return raw_notifier_call_chain(&cu2_chain, val, v);
1259 }
1260
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1261 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1262 void *data)
1263 {
1264 struct pt_regs *regs = data;
1265
1266 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1267 "instruction", regs);
1268 force_sig(SIGILL);
1269
1270 return NOTIFY_OK;
1271 }
1272
1273 #ifdef CONFIG_MIPS_FP_SUPPORT
1274
enable_restore_fp_context(int msa)1275 static int enable_restore_fp_context(int msa)
1276 {
1277 int err, was_fpu_owner, prior_msa;
1278 bool first_fp;
1279
1280 /* Initialize context if it hasn't been used already */
1281 first_fp = init_fp_ctx(current);
1282
1283 if (first_fp) {
1284 preempt_disable();
1285 err = own_fpu_inatomic(1);
1286 if (msa && !err) {
1287 enable_msa();
1288 /*
1289 * with MSA enabled, userspace can see MSACSR
1290 * and MSA regs, but the values in them are from
1291 * other task before current task, restore them
1292 * from saved fp/msa context
1293 */
1294 write_msa_csr(current->thread.fpu.msacsr);
1295 /*
1296 * own_fpu_inatomic(1) just restore low 64bit,
1297 * fix the high 64bit
1298 */
1299 init_msa_upper();
1300 set_thread_flag(TIF_USEDMSA);
1301 set_thread_flag(TIF_MSA_CTX_LIVE);
1302 }
1303 preempt_enable();
1304 return err;
1305 }
1306
1307 /*
1308 * This task has formerly used the FP context.
1309 *
1310 * If this thread has no live MSA vector context then we can simply
1311 * restore the scalar FP context. If it has live MSA vector context
1312 * (that is, it has or may have used MSA since last performing a
1313 * function call) then we'll need to restore the vector context. This
1314 * applies even if we're currently only executing a scalar FP
1315 * instruction. This is because if we were to later execute an MSA
1316 * instruction then we'd either have to:
1317 *
1318 * - Restore the vector context & clobber any registers modified by
1319 * scalar FP instructions between now & then.
1320 *
1321 * or
1322 *
1323 * - Not restore the vector context & lose the most significant bits
1324 * of all vector registers.
1325 *
1326 * Neither of those options is acceptable. We cannot restore the least
1327 * significant bits of the registers now & only restore the most
1328 * significant bits later because the most significant bits of any
1329 * vector registers whose aliased FP register is modified now will have
1330 * been zeroed. We'd have no way to know that when restoring the vector
1331 * context & thus may load an outdated value for the most significant
1332 * bits of a vector register.
1333 */
1334 if (!msa && !thread_msa_context_live())
1335 return own_fpu(1);
1336
1337 /*
1338 * This task is using or has previously used MSA. Thus we require
1339 * that Status.FR == 1.
1340 */
1341 preempt_disable();
1342 was_fpu_owner = is_fpu_owner();
1343 err = own_fpu_inatomic(0);
1344 if (err)
1345 goto out;
1346
1347 enable_msa();
1348 write_msa_csr(current->thread.fpu.msacsr);
1349 set_thread_flag(TIF_USEDMSA);
1350
1351 /*
1352 * If this is the first time that the task is using MSA and it has
1353 * previously used scalar FP in this time slice then we already nave
1354 * FP context which we shouldn't clobber. We do however need to clear
1355 * the upper 64b of each vector register so that this task has no
1356 * opportunity to see data left behind by another.
1357 */
1358 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1359 if (!prior_msa && was_fpu_owner) {
1360 init_msa_upper();
1361
1362 goto out;
1363 }
1364
1365 if (!prior_msa) {
1366 /*
1367 * Restore the least significant 64b of each vector register
1368 * from the existing scalar FP context.
1369 */
1370 _restore_fp(current);
1371
1372 /*
1373 * The task has not formerly used MSA, so clear the upper 64b
1374 * of each vector register such that it cannot see data left
1375 * behind by another task.
1376 */
1377 init_msa_upper();
1378 } else {
1379 /* We need to restore the vector context. */
1380 restore_msa(current);
1381
1382 /* Restore the scalar FP control & status register */
1383 if (!was_fpu_owner)
1384 write_32bit_cp1_register(CP1_STATUS,
1385 current->thread.fpu.fcr31);
1386 }
1387
1388 out:
1389 preempt_enable();
1390
1391 return 0;
1392 }
1393
1394 #else /* !CONFIG_MIPS_FP_SUPPORT */
1395
enable_restore_fp_context(int msa)1396 static int enable_restore_fp_context(int msa)
1397 {
1398 return SIGILL;
1399 }
1400
1401 #endif /* CONFIG_MIPS_FP_SUPPORT */
1402
do_cpu(struct pt_regs * regs)1403 asmlinkage void do_cpu(struct pt_regs *regs)
1404 {
1405 enum ctx_state prev_state;
1406 unsigned int __user *epc;
1407 unsigned long old_epc, old31;
1408 unsigned int opcode;
1409 unsigned int cpid;
1410 int status;
1411
1412 prev_state = exception_enter();
1413 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1414
1415 if (cpid != 2)
1416 die_if_kernel("do_cpu invoked from kernel context!", regs);
1417
1418 switch (cpid) {
1419 case 0:
1420 epc = (unsigned int __user *)exception_epc(regs);
1421 old_epc = regs->cp0_epc;
1422 old31 = regs->regs[31];
1423 opcode = 0;
1424 status = -1;
1425
1426 if (unlikely(compute_return_epc(regs) < 0))
1427 break;
1428
1429 if (!get_isa16_mode(regs->cp0_epc)) {
1430 if (unlikely(get_user(opcode, epc) < 0))
1431 status = SIGSEGV;
1432
1433 if (!cpu_has_llsc && status < 0)
1434 status = simulate_llsc(regs, opcode);
1435 }
1436
1437 if (status < 0)
1438 status = SIGILL;
1439
1440 if (unlikely(status > 0)) {
1441 regs->cp0_epc = old_epc; /* Undo skip-over. */
1442 regs->regs[31] = old31;
1443 force_sig(status);
1444 }
1445
1446 break;
1447
1448 #ifdef CONFIG_MIPS_FP_SUPPORT
1449 case 3:
1450 /*
1451 * The COP3 opcode space and consequently the CP0.Status.CU3
1452 * bit and the CP0.Cause.CE=3 encoding have been removed as
1453 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1454 * up the space has been reused for COP1X instructions, that
1455 * are enabled by the CP0.Status.CU1 bit and consequently
1456 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1457 * exceptions. Some FPU-less processors that implement one
1458 * of these ISAs however use this code erroneously for COP1X
1459 * instructions. Therefore we redirect this trap to the FP
1460 * emulator too.
1461 */
1462 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1463 force_sig(SIGILL);
1464 break;
1465 }
1466 fallthrough;
1467 case 1: {
1468 void __user *fault_addr;
1469 unsigned long fcr31;
1470 int err, sig;
1471
1472 err = enable_restore_fp_context(0);
1473
1474 if (raw_cpu_has_fpu && !err)
1475 break;
1476
1477 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1478 &fault_addr);
1479
1480 /*
1481 * We can't allow the emulated instruction to leave
1482 * any enabled Cause bits set in $fcr31.
1483 */
1484 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1485 current->thread.fpu.fcr31 &= ~fcr31;
1486
1487 /* Send a signal if required. */
1488 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1489 mt_ase_fp_affinity();
1490
1491 break;
1492 }
1493 #else /* CONFIG_MIPS_FP_SUPPORT */
1494 case 1:
1495 case 3:
1496 force_sig(SIGILL);
1497 break;
1498 #endif /* CONFIG_MIPS_FP_SUPPORT */
1499
1500 case 2:
1501 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1502 break;
1503 }
1504
1505 exception_exit(prev_state);
1506 }
1507
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1508 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1509 {
1510 enum ctx_state prev_state;
1511
1512 prev_state = exception_enter();
1513 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1514 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1515 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1516 goto out;
1517
1518 /* Clear MSACSR.Cause before enabling interrupts */
1519 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1520 local_irq_enable();
1521
1522 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1523 force_sig(SIGFPE);
1524 out:
1525 exception_exit(prev_state);
1526 }
1527
do_msa(struct pt_regs * regs)1528 asmlinkage void do_msa(struct pt_regs *regs)
1529 {
1530 enum ctx_state prev_state;
1531 int err;
1532
1533 prev_state = exception_enter();
1534
1535 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1536 force_sig(SIGILL);
1537 goto out;
1538 }
1539
1540 die_if_kernel("do_msa invoked from kernel context!", regs);
1541
1542 err = enable_restore_fp_context(1);
1543 if (err)
1544 force_sig(SIGILL);
1545 out:
1546 exception_exit(prev_state);
1547 }
1548
do_mdmx(struct pt_regs * regs)1549 asmlinkage void do_mdmx(struct pt_regs *regs)
1550 {
1551 enum ctx_state prev_state;
1552
1553 prev_state = exception_enter();
1554 force_sig(SIGILL);
1555 exception_exit(prev_state);
1556 }
1557
1558 /*
1559 * Called with interrupts disabled.
1560 */
do_watch(struct pt_regs * regs)1561 asmlinkage void do_watch(struct pt_regs *regs)
1562 {
1563 enum ctx_state prev_state;
1564
1565 prev_state = exception_enter();
1566 /*
1567 * Clear WP (bit 22) bit of cause register so we don't loop
1568 * forever.
1569 */
1570 clear_c0_cause(CAUSEF_WP);
1571
1572 /*
1573 * If the current thread has the watch registers loaded, save
1574 * their values and send SIGTRAP. Otherwise another thread
1575 * left the registers set, clear them and continue.
1576 */
1577 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1578 mips_read_watch_registers();
1579 local_irq_enable();
1580 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1581 } else {
1582 mips_clear_watch_registers();
1583 local_irq_enable();
1584 }
1585 exception_exit(prev_state);
1586 }
1587
do_mcheck(struct pt_regs * regs)1588 asmlinkage void do_mcheck(struct pt_regs *regs)
1589 {
1590 int multi_match = regs->cp0_status & ST0_TS;
1591 enum ctx_state prev_state;
1592
1593 prev_state = exception_enter();
1594 show_regs(regs);
1595
1596 if (multi_match) {
1597 dump_tlb_regs();
1598 pr_info("\n");
1599 dump_tlb_all();
1600 }
1601
1602 show_code((void *)regs->cp0_epc, user_mode(regs));
1603
1604 /*
1605 * Some chips may have other causes of machine check (e.g. SB1
1606 * graduation timer)
1607 */
1608 panic("Caught Machine Check exception - %scaused by multiple "
1609 "matching entries in the TLB.",
1610 (multi_match) ? "" : "not ");
1611 }
1612
do_mt(struct pt_regs * regs)1613 asmlinkage void do_mt(struct pt_regs *regs)
1614 {
1615 int subcode;
1616
1617 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1618 >> VPECONTROL_EXCPT_SHIFT;
1619 switch (subcode) {
1620 case 0:
1621 printk(KERN_DEBUG "Thread Underflow\n");
1622 break;
1623 case 1:
1624 printk(KERN_DEBUG "Thread Overflow\n");
1625 break;
1626 case 2:
1627 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1628 break;
1629 case 3:
1630 printk(KERN_DEBUG "Gating Storage Exception\n");
1631 break;
1632 case 4:
1633 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1634 break;
1635 case 5:
1636 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1637 break;
1638 default:
1639 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1640 subcode);
1641 break;
1642 }
1643 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1644
1645 force_sig(SIGILL);
1646 }
1647
1648
do_dsp(struct pt_regs * regs)1649 asmlinkage void do_dsp(struct pt_regs *regs)
1650 {
1651 if (cpu_has_dsp)
1652 panic("Unexpected DSP exception");
1653
1654 force_sig(SIGILL);
1655 }
1656
do_reserved(struct pt_regs * regs)1657 asmlinkage void do_reserved(struct pt_regs *regs)
1658 {
1659 /*
1660 * Game over - no way to handle this if it ever occurs. Most probably
1661 * caused by a new unknown cpu type or after another deadly
1662 * hard/software error.
1663 */
1664 show_regs(regs);
1665 panic("Caught reserved exception %ld - should not happen.",
1666 (regs->cp0_cause & 0x7f) >> 2);
1667 }
1668
1669 static int __initdata l1parity = 1;
nol1parity(char * s)1670 static int __init nol1parity(char *s)
1671 {
1672 l1parity = 0;
1673 return 1;
1674 }
1675 __setup("nol1par", nol1parity);
1676 static int __initdata l2parity = 1;
nol2parity(char * s)1677 static int __init nol2parity(char *s)
1678 {
1679 l2parity = 0;
1680 return 1;
1681 }
1682 __setup("nol2par", nol2parity);
1683
1684 /*
1685 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1686 * it different ways.
1687 */
parity_protection_init(void)1688 static inline __init void parity_protection_init(void)
1689 {
1690 #define ERRCTL_PE 0x80000000
1691 #define ERRCTL_L2P 0x00800000
1692
1693 if (mips_cm_revision() >= CM_REV_CM3) {
1694 ulong gcr_ectl, cp0_ectl;
1695
1696 /*
1697 * With CM3 systems we need to ensure that the L1 & L2
1698 * parity enables are set to the same value, since this
1699 * is presumed by the hardware engineers.
1700 *
1701 * If the user disabled either of L1 or L2 ECC checking,
1702 * disable both.
1703 */
1704 l1parity &= l2parity;
1705 l2parity &= l1parity;
1706
1707 /* Probe L1 ECC support */
1708 cp0_ectl = read_c0_ecc();
1709 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1710 back_to_back_c0_hazard();
1711 cp0_ectl = read_c0_ecc();
1712
1713 /* Probe L2 ECC support */
1714 gcr_ectl = read_gcr_err_control();
1715
1716 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1717 !(cp0_ectl & ERRCTL_PE)) {
1718 /*
1719 * One of L1 or L2 ECC checking isn't supported,
1720 * so we cannot enable either.
1721 */
1722 l1parity = l2parity = 0;
1723 }
1724
1725 /* Configure L1 ECC checking */
1726 if (l1parity)
1727 cp0_ectl |= ERRCTL_PE;
1728 else
1729 cp0_ectl &= ~ERRCTL_PE;
1730 write_c0_ecc(cp0_ectl);
1731 back_to_back_c0_hazard();
1732 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1733
1734 /* Configure L2 ECC checking */
1735 if (l2parity)
1736 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1737 else
1738 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1739 write_gcr_err_control(gcr_ectl);
1740 gcr_ectl = read_gcr_err_control();
1741 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1742 WARN_ON(!!gcr_ectl != l2parity);
1743
1744 pr_info("Cache parity protection %sabled\n",
1745 l1parity ? "en" : "dis");
1746 return;
1747 }
1748
1749 switch (current_cpu_type()) {
1750 case CPU_24K:
1751 case CPU_34K:
1752 case CPU_74K:
1753 case CPU_1004K:
1754 case CPU_1074K:
1755 case CPU_INTERAPTIV:
1756 case CPU_PROAPTIV:
1757 case CPU_P5600:
1758 case CPU_QEMU_GENERIC:
1759 case CPU_P6600:
1760 {
1761 unsigned long errctl;
1762 unsigned int l1parity_present, l2parity_present;
1763
1764 errctl = read_c0_ecc();
1765 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1766
1767 /* probe L1 parity support */
1768 write_c0_ecc(errctl | ERRCTL_PE);
1769 back_to_back_c0_hazard();
1770 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1771
1772 /* probe L2 parity support */
1773 write_c0_ecc(errctl|ERRCTL_L2P);
1774 back_to_back_c0_hazard();
1775 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1776
1777 if (l1parity_present && l2parity_present) {
1778 if (l1parity)
1779 errctl |= ERRCTL_PE;
1780 if (l1parity ^ l2parity)
1781 errctl |= ERRCTL_L2P;
1782 } else if (l1parity_present) {
1783 if (l1parity)
1784 errctl |= ERRCTL_PE;
1785 } else if (l2parity_present) {
1786 if (l2parity)
1787 errctl |= ERRCTL_L2P;
1788 } else {
1789 /* No parity available */
1790 }
1791
1792 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1793
1794 write_c0_ecc(errctl);
1795 back_to_back_c0_hazard();
1796 errctl = read_c0_ecc();
1797 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1798
1799 if (l1parity_present)
1800 printk(KERN_INFO "Cache parity protection %sabled\n",
1801 (errctl & ERRCTL_PE) ? "en" : "dis");
1802
1803 if (l2parity_present) {
1804 if (l1parity_present && l1parity)
1805 errctl ^= ERRCTL_L2P;
1806 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1807 (errctl & ERRCTL_L2P) ? "en" : "dis");
1808 }
1809 }
1810 break;
1811
1812 case CPU_5KC:
1813 case CPU_5KE:
1814 case CPU_LOONGSON32:
1815 write_c0_ecc(0x80000000);
1816 back_to_back_c0_hazard();
1817 /* Set the PE bit (bit 31) in the c0_errctl register. */
1818 printk(KERN_INFO "Cache parity protection %sabled\n",
1819 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1820 break;
1821 case CPU_20KC:
1822 case CPU_25KF:
1823 /* Clear the DE bit (bit 16) in the c0_status register. */
1824 printk(KERN_INFO "Enable cache parity protection for "
1825 "MIPS 20KC/25KF CPUs.\n");
1826 clear_c0_status(ST0_DE);
1827 break;
1828 default:
1829 break;
1830 }
1831 }
1832
cache_parity_error(void)1833 asmlinkage void cache_parity_error(void)
1834 {
1835 const int field = 2 * sizeof(unsigned long);
1836 unsigned int reg_val;
1837
1838 /* For the moment, report the problem and hang. */
1839 printk("Cache error exception:\n");
1840 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1841 reg_val = read_c0_cacheerr();
1842 printk("c0_cacheerr == %08x\n", reg_val);
1843
1844 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845 reg_val & (1<<30) ? "secondary" : "primary",
1846 reg_val & (1<<31) ? "data" : "insn");
1847 if ((cpu_has_mips_r2_r6) &&
1848 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1849 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1850 reg_val & (1<<29) ? "ED " : "",
1851 reg_val & (1<<28) ? "ET " : "",
1852 reg_val & (1<<27) ? "ES " : "",
1853 reg_val & (1<<26) ? "EE " : "",
1854 reg_val & (1<<25) ? "EB " : "",
1855 reg_val & (1<<24) ? "EI " : "",
1856 reg_val & (1<<23) ? "E1 " : "",
1857 reg_val & (1<<22) ? "E0 " : "");
1858 } else {
1859 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1860 reg_val & (1<<29) ? "ED " : "",
1861 reg_val & (1<<28) ? "ET " : "",
1862 reg_val & (1<<26) ? "EE " : "",
1863 reg_val & (1<<25) ? "EB " : "",
1864 reg_val & (1<<24) ? "EI " : "",
1865 reg_val & (1<<23) ? "E1 " : "",
1866 reg_val & (1<<22) ? "E0 " : "");
1867 }
1868 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1869
1870 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1871 if (reg_val & (1<<22))
1872 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1873
1874 if (reg_val & (1<<23))
1875 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1876 #endif
1877
1878 panic("Can't handle the cache error!");
1879 }
1880
do_ftlb(void)1881 asmlinkage void do_ftlb(void)
1882 {
1883 const int field = 2 * sizeof(unsigned long);
1884 unsigned int reg_val;
1885
1886 /* For the moment, report the problem and hang. */
1887 if ((cpu_has_mips_r2_r6) &&
1888 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1889 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1890 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1891 read_c0_ecc());
1892 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1893 reg_val = read_c0_cacheerr();
1894 pr_err("c0_cacheerr == %08x\n", reg_val);
1895
1896 if ((reg_val & 0xc0000000) == 0xc0000000) {
1897 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1898 } else {
1899 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1900 reg_val & (1<<30) ? "secondary" : "primary",
1901 reg_val & (1<<31) ? "data" : "insn");
1902 }
1903 } else {
1904 pr_err("FTLB error exception\n");
1905 }
1906 /* Just print the cacheerr bits for now */
1907 cache_parity_error();
1908 }
1909
do_gsexc(struct pt_regs * regs,u32 diag1)1910 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1911 {
1912 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1913 LOONGSON_DIAG1_EXCCODE_SHIFT;
1914 enum ctx_state prev_state;
1915
1916 prev_state = exception_enter();
1917
1918 switch (exccode) {
1919 case 0x08:
1920 /* Undocumented exception, will trigger on certain
1921 * also-undocumented instructions accessible from userspace.
1922 * Processor state is not otherwise corrupted, but currently
1923 * we don't know how to proceed. Maybe there is some
1924 * undocumented control flag to enable the instructions?
1925 */
1926 force_sig(SIGILL);
1927 break;
1928
1929 default:
1930 /* None of the other exceptions, documented or not, have
1931 * further details given; none are encountered in the wild
1932 * either. Panic in case some of them turn out to be fatal.
1933 */
1934 show_regs(regs);
1935 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1936 }
1937
1938 exception_exit(prev_state);
1939 }
1940
1941 /*
1942 * SDBBP EJTAG debug exception handler.
1943 * We skip the instruction and return to the next instruction.
1944 */
ejtag_exception_handler(struct pt_regs * regs)1945 void ejtag_exception_handler(struct pt_regs *regs)
1946 {
1947 const int field = 2 * sizeof(unsigned long);
1948 unsigned long depc, old_epc, old_ra;
1949 unsigned int debug;
1950
1951 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1952 depc = read_c0_depc();
1953 debug = read_c0_debug();
1954 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1955 if (debug & 0x80000000) {
1956 /*
1957 * In branch delay slot.
1958 * We cheat a little bit here and use EPC to calculate the
1959 * debug return address (DEPC). EPC is restored after the
1960 * calculation.
1961 */
1962 old_epc = regs->cp0_epc;
1963 old_ra = regs->regs[31];
1964 regs->cp0_epc = depc;
1965 compute_return_epc(regs);
1966 depc = regs->cp0_epc;
1967 regs->cp0_epc = old_epc;
1968 regs->regs[31] = old_ra;
1969 } else
1970 depc += 4;
1971 write_c0_depc(depc);
1972
1973 #if 0
1974 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1975 write_c0_debug(debug | 0x100);
1976 #endif
1977 }
1978
1979 /*
1980 * NMI exception handler.
1981 * No lock; only written during early bootup by CPU 0.
1982 */
1983 static RAW_NOTIFIER_HEAD(nmi_chain);
1984
register_nmi_notifier(struct notifier_block * nb)1985 int register_nmi_notifier(struct notifier_block *nb)
1986 {
1987 return raw_notifier_chain_register(&nmi_chain, nb);
1988 }
1989
nmi_exception_handler(struct pt_regs * regs)1990 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1991 {
1992 char str[100];
1993
1994 nmi_enter();
1995 raw_notifier_call_chain(&nmi_chain, 0, regs);
1996 bust_spinlocks(1);
1997 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1998 smp_processor_id(), regs->cp0_epc);
1999 regs->cp0_epc = read_c0_errorepc();
2000 die(str, regs);
2001 nmi_exit();
2002 }
2003
2004 unsigned long ebase;
2005 EXPORT_SYMBOL_GPL(ebase);
2006 unsigned long exception_handlers[32];
2007 unsigned long vi_handlers[64];
2008
reserve_exception_space(phys_addr_t addr,unsigned long size)2009 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2010 {
2011 /*
2012 * reserve exception space on CPUs other than CPU0
2013 * is too late, since memblock is unavailable when APs
2014 * up
2015 */
2016 if (smp_processor_id() == 0)
2017 memblock_reserve(addr, size);
2018 }
2019
set_except_vector(int n,void * addr)2020 void __init *set_except_vector(int n, void *addr)
2021 {
2022 unsigned long handler = (unsigned long) addr;
2023 unsigned long old_handler;
2024
2025 #ifdef CONFIG_CPU_MICROMIPS
2026 /*
2027 * Only the TLB handlers are cache aligned with an even
2028 * address. All other handlers are on an odd address and
2029 * require no modification. Otherwise, MIPS32 mode will
2030 * be entered when handling any TLB exceptions. That
2031 * would be bad...since we must stay in microMIPS mode.
2032 */
2033 if (!(handler & 0x1))
2034 handler |= 1;
2035 #endif
2036 old_handler = xchg(&exception_handlers[n], handler);
2037
2038 if (n == 0 && cpu_has_divec) {
2039 #ifdef CONFIG_CPU_MICROMIPS
2040 unsigned long jump_mask = ~((1 << 27) - 1);
2041 #else
2042 unsigned long jump_mask = ~((1 << 28) - 1);
2043 #endif
2044 u32 *buf = (u32 *)(ebase + 0x200);
2045 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046 uasm_i_j(&buf, handler & ~jump_mask);
2047 uasm_i_nop(&buf);
2048 } else {
2049 UASM_i_LA(&buf, GPR_K0, handler);
2050 uasm_i_jr(&buf, GPR_K0);
2051 uasm_i_nop(&buf);
2052 }
2053 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054 }
2055 return (void *)old_handler;
2056 }
2057
do_default_vi(void)2058 static void do_default_vi(void)
2059 {
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2062 }
2063
set_vi_handler(int n,vi_handler_t addr)2064 void *set_vi_handler(int n, vi_handler_t addr)
2065 {
2066 extern const u8 except_vec_vi[];
2067 extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2068 extern const u8 rollback_except_vec_vi[];
2069 unsigned long handler;
2070 unsigned long old_handler = vi_handlers[n];
2071 int srssets = current_cpu_data.srsets;
2072 u16 *h;
2073 unsigned char *b;
2074 const u8 *vec_start;
2075 int ori_offset;
2076 int handler_len;
2077
2078 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2079
2080 if (addr == NULL) {
2081 handler = (unsigned long) do_default_vi;
2082 } else
2083 handler = (unsigned long) addr;
2084 vi_handlers[n] = handler;
2085
2086 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2087
2088 if (cpu_has_veic) {
2089 if (board_bind_eic_interrupt)
2090 board_bind_eic_interrupt(n, 0);
2091 } else if (cpu_has_vint) {
2092 /* SRSMap is only defined if shadow sets are implemented */
2093 if (srssets > 1)
2094 change_c0_srsmap(0xf << n*4, 0 << n*4);
2095 }
2096
2097 vec_start = using_rollback_handler() ? rollback_except_vec_vi :
2098 except_vec_vi;
2099 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100 ori_offset = except_vec_vi_ori - vec_start + 2;
2101 #else
2102 ori_offset = except_vec_vi_ori - vec_start;
2103 #endif
2104 handler_len = except_vec_vi_end - vec_start;
2105
2106 if (handler_len > VECTORSPACING) {
2107 /*
2108 * Sigh... panicing won't help as the console
2109 * is probably not configured :(
2110 */
2111 panic("VECTORSPACING too small");
2112 }
2113
2114 set_handler(((unsigned long)b - ebase), vec_start,
2115 #ifdef CONFIG_CPU_MICROMIPS
2116 (handler_len - 1));
2117 #else
2118 handler_len);
2119 #endif
2120 /* insert offset into vi_handlers[] */
2121 h = (u16 *)(b + ori_offset);
2122 *h = n * sizeof(handler);
2123 local_flush_icache_range((unsigned long)b,
2124 (unsigned long)(b+handler_len));
2125
2126 return (void *)old_handler;
2127 }
2128
2129 /*
2130 * Timer interrupt
2131 */
2132 int cp0_compare_irq;
2133 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2134 int cp0_compare_irq_shift;
2135
2136 /*
2137 * Performance counter IRQ or -1 if shared with timer
2138 */
2139 int cp0_perfcount_irq;
2140 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2141
2142 /*
2143 * Fast debug channel IRQ or -1 if not present
2144 */
2145 int cp0_fdc_irq;
2146 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2147
2148 static int noulri;
2149
ulri_disable(char * s)2150 static int __init ulri_disable(char *s)
2151 {
2152 pr_info("Disabling ulri\n");
2153 noulri = 1;
2154
2155 return 1;
2156 }
2157 __setup("noulri", ulri_disable);
2158
2159 /* configure STATUS register */
configure_status(void)2160 static void configure_status(void)
2161 {
2162 /*
2163 * Disable coprocessors and select 32-bit or 64-bit addressing
2164 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2165 * flag that some firmware may have left set and the TS bit (for
2166 * IP27). Set XX for ISA IV code to work.
2167 */
2168 unsigned int status_set = ST0_KERNEL_CUMASK;
2169 #ifdef CONFIG_64BIT
2170 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2171 #endif
2172 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2173 status_set |= ST0_XX;
2174 if (cpu_has_dsp)
2175 status_set |= ST0_MX;
2176
2177 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2178 status_set);
2179 back_to_back_c0_hazard();
2180 }
2181
2182 unsigned int hwrena;
2183 EXPORT_SYMBOL_GPL(hwrena);
2184
2185 /* configure HWRENA register */
configure_hwrena(void)2186 static void configure_hwrena(void)
2187 {
2188 hwrena = cpu_hwrena_impl_bits;
2189
2190 if (cpu_has_mips_r2_r6)
2191 hwrena |= MIPS_HWRENA_CPUNUM |
2192 MIPS_HWRENA_SYNCISTEP |
2193 MIPS_HWRENA_CC |
2194 MIPS_HWRENA_CCRES;
2195
2196 if (!noulri && cpu_has_userlocal)
2197 hwrena |= MIPS_HWRENA_ULR;
2198
2199 if (hwrena)
2200 write_c0_hwrena(hwrena);
2201 }
2202
configure_exception_vector(void)2203 static void configure_exception_vector(void)
2204 {
2205 if (cpu_has_mips_r2_r6) {
2206 unsigned long sr = set_c0_status(ST0_BEV);
2207 /* If available, use WG to set top bits of EBASE */
2208 if (cpu_has_ebase_wg) {
2209 #ifdef CONFIG_64BIT
2210 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2211 #else
2212 write_c0_ebase(ebase | MIPS_EBASE_WG);
2213 #endif
2214 }
2215 write_c0_ebase(ebase);
2216 write_c0_status(sr);
2217 }
2218 if (cpu_has_veic || cpu_has_vint) {
2219 /* Setting vector spacing enables EI/VI mode */
2220 change_c0_intctl(0x3e0, VECTORSPACING);
2221 }
2222 if (cpu_has_divec) {
2223 if (cpu_has_mipsmt) {
2224 unsigned int vpflags = dvpe();
2225 set_c0_cause(CAUSEF_IV);
2226 evpe(vpflags);
2227 } else
2228 set_c0_cause(CAUSEF_IV);
2229 }
2230 }
2231
per_cpu_trap_init(bool is_boot_cpu)2232 void per_cpu_trap_init(bool is_boot_cpu)
2233 {
2234 unsigned int cpu = smp_processor_id();
2235
2236 configure_status();
2237 configure_hwrena();
2238
2239 configure_exception_vector();
2240
2241 /*
2242 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2243 *
2244 * o read IntCtl.IPTI to determine the timer interrupt
2245 * o read IntCtl.IPPCI to determine the performance counter interrupt
2246 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2247 */
2248 if (cpu_has_mips_r2_r6) {
2249 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2250 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2251 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2252 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2253 if (!cp0_fdc_irq)
2254 cp0_fdc_irq = -1;
2255
2256 } else {
2257 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2258 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2259 cp0_perfcount_irq = -1;
2260 cp0_fdc_irq = -1;
2261 }
2262
2263 if (cpu_has_mmid)
2264 cpu_data[cpu].asid_cache = 0;
2265 else if (!cpu_data[cpu].asid_cache)
2266 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2267
2268 mmgrab(&init_mm);
2269 current->active_mm = &init_mm;
2270 BUG_ON(current->mm);
2271 enter_lazy_tlb(&init_mm, current);
2272
2273 /* Boot CPU's cache setup in setup_arch(). */
2274 if (!is_boot_cpu)
2275 cpu_cache_init();
2276 tlb_init();
2277 TLBMISS_HANDLER_SETUP();
2278 }
2279
2280 /* Install CPU exception handler */
set_handler(unsigned long offset,const void * addr,unsigned long size)2281 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2282 {
2283 #ifdef CONFIG_CPU_MICROMIPS
2284 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2285 #else
2286 memcpy((void *)(ebase + offset), addr, size);
2287 #endif
2288 local_flush_icache_range(ebase + offset, ebase + offset + size);
2289 }
2290
2291 static const char panic_null_cerr[] =
2292 "Trying to set NULL cache error exception handler\n";
2293
2294 /*
2295 * Install uncached CPU exception handler.
2296 * This is suitable only for the cache error exception which is the only
2297 * exception handler that is being run uncached.
2298 */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2299 void set_uncached_handler(unsigned long offset, void *addr,
2300 unsigned long size)
2301 {
2302 unsigned long uncached_ebase = CKSEG1ADDR_OR_64BIT(__pa(ebase));
2303
2304 if (!addr)
2305 panic(panic_null_cerr);
2306
2307 memcpy((void *)(uncached_ebase + offset), addr, size);
2308 }
2309
2310 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2311 static int __init set_rdhwr_noopt(char *str)
2312 {
2313 rdhwr_noopt = 1;
2314 return 1;
2315 }
2316
2317 __setup("rdhwr_noopt", set_rdhwr_noopt);
2318
trap_init(void)2319 void __init trap_init(void)
2320 {
2321 extern char except_vec3_generic;
2322 extern char except_vec4;
2323 extern char except_vec3_r4000;
2324 unsigned long i, vec_size;
2325 phys_addr_t ebase_pa;
2326
2327 check_wait();
2328
2329 if (!cpu_has_mips_r2_r6) {
2330 ebase = CAC_BASE;
2331 vec_size = 0x400;
2332 } else {
2333 if (cpu_has_veic || cpu_has_vint)
2334 vec_size = 0x200 + VECTORSPACING*64;
2335 else
2336 vec_size = PAGE_SIZE;
2337
2338 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2339 if (!ebase_pa)
2340 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2341 __func__, vec_size, 1 << fls(vec_size));
2342
2343 /*
2344 * Try to ensure ebase resides in KSeg0 if possible.
2345 *
2346 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2347 * hitting a poorly defined exception base for Cache Errors.
2348 * The allocation is likely to be in the low 512MB of physical,
2349 * in which case we should be able to convert to KSeg0.
2350 *
2351 * EVA is special though as it allows segments to be rearranged
2352 * and to become uncached during cache error handling.
2353 */
2354 if (!IS_ENABLED(CONFIG_EVA) && ebase_pa < 0x20000000)
2355 ebase = CKSEG0ADDR(ebase_pa);
2356 else
2357 ebase = (unsigned long)phys_to_virt(ebase_pa);
2358 if (ebase_pa >= 0x20000000)
2359 pr_warn("ebase(%pa) should better be in KSeg0",
2360 &ebase_pa);
2361 }
2362
2363 if (cpu_has_mmips) {
2364 unsigned int config3 = read_c0_config3();
2365
2366 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2367 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2368 else
2369 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2370 }
2371
2372 if (board_ebase_setup)
2373 board_ebase_setup();
2374 per_cpu_trap_init(true);
2375 memblock_set_bottom_up(false);
2376
2377 /*
2378 * Copy the generic exception handlers to their final destination.
2379 * This will be overridden later as suitable for a particular
2380 * configuration.
2381 */
2382 set_handler(0x180, &except_vec3_generic, 0x80);
2383
2384 /*
2385 * Setup default vectors
2386 */
2387 for (i = 0; i <= 31; i++)
2388 set_except_vector(i, handle_reserved);
2389
2390 /*
2391 * Copy the EJTAG debug exception vector handler code to its final
2392 * destination.
2393 */
2394 if (cpu_has_ejtag && board_ejtag_handler_setup)
2395 board_ejtag_handler_setup();
2396
2397 /*
2398 * Only some CPUs have the watch exceptions.
2399 */
2400 if (cpu_has_watch)
2401 set_except_vector(EXCCODE_WATCH, handle_watch);
2402
2403 /*
2404 * Initialise interrupt handlers
2405 */
2406 if (cpu_has_veic || cpu_has_vint) {
2407 int nvec = cpu_has_veic ? 64 : 8;
2408 for (i = 0; i < nvec; i++)
2409 set_vi_handler(i, NULL);
2410 }
2411 else if (cpu_has_divec)
2412 set_handler(0x200, &except_vec4, 0x8);
2413
2414 /*
2415 * Some CPUs can enable/disable for cache parity detection, but does
2416 * it different ways.
2417 */
2418 parity_protection_init();
2419
2420 /*
2421 * The Data Bus Errors / Instruction Bus Errors are signaled
2422 * by external hardware. Therefore these two exceptions
2423 * may have board specific handlers.
2424 */
2425 if (board_be_init)
2426 board_be_init();
2427
2428 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2429 rollback_handle_int : handle_int);
2430 set_except_vector(EXCCODE_MOD, handle_tlbm);
2431 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2432 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2433
2434 set_except_vector(EXCCODE_ADEL, handle_adel);
2435 set_except_vector(EXCCODE_ADES, handle_ades);
2436
2437 set_except_vector(EXCCODE_IBE, handle_ibe);
2438 set_except_vector(EXCCODE_DBE, handle_dbe);
2439
2440 set_except_vector(EXCCODE_SYS, handle_sys);
2441 set_except_vector(EXCCODE_BP, handle_bp);
2442
2443 if (rdhwr_noopt)
2444 set_except_vector(EXCCODE_RI, handle_ri);
2445 else {
2446 if (cpu_has_vtag_icache)
2447 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2448 else if (current_cpu_type() == CPU_LOONGSON64)
2449 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2450 else
2451 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2452 }
2453
2454 set_except_vector(EXCCODE_CPU, handle_cpu);
2455 set_except_vector(EXCCODE_OV, handle_ov);
2456 set_except_vector(EXCCODE_TR, handle_tr);
2457 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2458
2459 if (board_nmi_handler_setup)
2460 board_nmi_handler_setup();
2461
2462 if (cpu_has_fpu && !cpu_has_nofpuex)
2463 set_except_vector(EXCCODE_FPE, handle_fpe);
2464
2465 if (cpu_has_ftlbparex)
2466 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2467
2468 if (cpu_has_gsexcex)
2469 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2470
2471 if (cpu_has_rixiex) {
2472 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2473 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2474 }
2475
2476 set_except_vector(EXCCODE_MSADIS, handle_msa);
2477 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2478
2479 if (cpu_has_mcheck)
2480 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2481
2482 if (cpu_has_mipsmt)
2483 set_except_vector(EXCCODE_THREAD, handle_mt);
2484
2485 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2486
2487 if (board_cache_error_setup)
2488 board_cache_error_setup();
2489
2490 if (cpu_has_vce)
2491 /* Special exception: R4[04]00 uses also the divec space. */
2492 set_handler(0x180, &except_vec3_r4000, 0x100);
2493 else if (cpu_has_4kex)
2494 set_handler(0x180, &except_vec3_generic, 0x80);
2495 else
2496 set_handler(0x080, &except_vec3_generic, 0x80);
2497
2498 local_flush_icache_range(ebase, ebase + vec_size);
2499
2500 sort_extable(__start___dbe_table, __stop___dbe_table);
2501
2502 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2503 }
2504
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2505 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2506 void *v)
2507 {
2508 switch (cmd) {
2509 case CPU_PM_ENTER_FAILED:
2510 case CPU_PM_EXIT:
2511 configure_status();
2512 configure_hwrena();
2513 configure_exception_vector();
2514
2515 /* Restore register with CPU number for TLB handlers */
2516 TLBMISS_HANDLER_RESTORE();
2517
2518 break;
2519 }
2520
2521 return NOTIFY_OK;
2522 }
2523
2524 static struct notifier_block trap_pm_notifier_block = {
2525 .notifier_call = trap_pm_notifier,
2526 };
2527
trap_pm_init(void)2528 static int __init trap_pm_init(void)
2529 {
2530 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2531 }
2532 arch_initcall(trap_pm_init);
2533