xref: /linux/arch/mips/kernel/traps.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
45 #include <asm/cop2.h>
46 #include <asm/cpu.h>
47 #include <asm/cpu-type.h>
48 #include <asm/dsp.h>
49 #include <asm/fpu.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/idle.h>
52 #include <asm/mips-cm.h>
53 #include <asm/mips-r2-to-r6-emul.h>
54 #include <asm/mipsregs.h>
55 #include <asm/mipsmtregs.h>
56 #include <asm/module.h>
57 #include <asm/msa.h>
58 #include <asm/pgtable.h>
59 #include <asm/ptrace.h>
60 #include <asm/sections.h>
61 #include <asm/siginfo.h>
62 #include <asm/tlbdebug.h>
63 #include <asm/traps.h>
64 #include <asm/uaccess.h>
65 #include <asm/watch.h>
66 #include <asm/mmu_context.h>
67 #include <asm/types.h>
68 #include <asm/stacktrace.h>
69 #include <asm/uasm.h>
70 
71 extern void check_wait(void);
72 extern asmlinkage void rollback_handle_int(void);
73 extern asmlinkage void handle_int(void);
74 extern u32 handle_tlbl[];
75 extern u32 handle_tlbs[];
76 extern u32 handle_tlbm[];
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_vivt(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100 
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108 
109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 	unsigned long addr;
113 
114 	printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 	printk("\n");
117 #endif
118 	while (!kstack_end(sp)) {
119 		unsigned long __user *p =
120 			(unsigned long __user *)(unsigned long)sp++;
121 		if (__get_user(addr, p)) {
122 			printk(" (Bad stack address)");
123 			break;
124 		}
125 		if (__kernel_text_address(addr))
126 			print_ip_sym(addr);
127 	}
128 	printk("\n");
129 }
130 
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
134 {
135 	raw_show_trace = 1;
136 	return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140 
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 	unsigned long sp = regs->regs[29];
144 	unsigned long ra = regs->regs[31];
145 	unsigned long pc = regs->cp0_epc;
146 
147 	if (!task)
148 		task = current;
149 
150 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 		show_raw_backtrace(sp);
152 		return;
153 	}
154 	printk("Call Trace:\n");
155 	do {
156 		print_ip_sym(pc);
157 		pc = unwind_stack(task, &sp, pc, &ra);
158 	} while (pc);
159 	printk("\n");
160 }
161 
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
166 static void show_stacktrace(struct task_struct *task,
167 	const struct pt_regs *regs)
168 {
169 	const int field = 2 * sizeof(unsigned long);
170 	long stackdata;
171 	int i;
172 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173 
174 	printk("Stack :");
175 	i = 0;
176 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 		if (i && ((i % (64 / field)) == 0))
178 			printk("\n	 ");
179 		if (i > 39) {
180 			printk(" ...");
181 			break;
182 		}
183 
184 		if (__get_user(stackdata, sp++)) {
185 			printk(" (Bad stack address)");
186 			break;
187 		}
188 
189 		printk(" %0*lx", field, stackdata);
190 		i++;
191 	}
192 	printk("\n");
193 	show_backtrace(task, regs);
194 }
195 
196 void show_stack(struct task_struct *task, unsigned long *sp)
197 {
198 	struct pt_regs regs;
199 	mm_segment_t old_fs = get_fs();
200 	if (sp) {
201 		regs.regs[29] = (unsigned long)sp;
202 		regs.regs[31] = 0;
203 		regs.cp0_epc = 0;
204 	} else {
205 		if (task && task != current) {
206 			regs.regs[29] = task->thread.reg29;
207 			regs.regs[31] = 0;
208 			regs.cp0_epc = task->thread.reg31;
209 #ifdef CONFIG_KGDB_KDB
210 		} else if (atomic_read(&kgdb_active) != -1 &&
211 			   kdb_current_regs) {
212 			memcpy(&regs, kdb_current_regs, sizeof(regs));
213 #endif /* CONFIG_KGDB_KDB */
214 		} else {
215 			prepare_frametrace(&regs);
216 		}
217 	}
218 	/*
219 	 * show_stack() deals exclusively with kernel mode, so be sure to access
220 	 * the stack in the kernel (not user) address space.
221 	 */
222 	set_fs(KERNEL_DS);
223 	show_stacktrace(task, &regs);
224 	set_fs(old_fs);
225 }
226 
227 static void show_code(unsigned int __user *pc)
228 {
229 	long i;
230 	unsigned short __user *pc16 = NULL;
231 
232 	printk("\nCode:");
233 
234 	if ((unsigned long)pc & 1)
235 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
236 	for(i = -3 ; i < 6 ; i++) {
237 		unsigned int insn;
238 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
239 			printk(" (Bad address in epc)\n");
240 			break;
241 		}
242 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
243 	}
244 }
245 
246 static void __show_regs(const struct pt_regs *regs)
247 {
248 	const int field = 2 * sizeof(unsigned long);
249 	unsigned int cause = regs->cp0_cause;
250 	unsigned int exccode;
251 	int i;
252 
253 	show_regs_print_info(KERN_DEFAULT);
254 
255 	/*
256 	 * Saved main processor registers
257 	 */
258 	for (i = 0; i < 32; ) {
259 		if ((i % 4) == 0)
260 			printk("$%2d   :", i);
261 		if (i == 0)
262 			printk(" %0*lx", field, 0UL);
263 		else if (i == 26 || i == 27)
264 			printk(" %*s", field, "");
265 		else
266 			printk(" %0*lx", field, regs->regs[i]);
267 
268 		i++;
269 		if ((i % 4) == 0)
270 			printk("\n");
271 	}
272 
273 #ifdef CONFIG_CPU_HAS_SMARTMIPS
274 	printk("Acx    : %0*lx\n", field, regs->acx);
275 #endif
276 	printk("Hi    : %0*lx\n", field, regs->hi);
277 	printk("Lo    : %0*lx\n", field, regs->lo);
278 
279 	/*
280 	 * Saved cp0 registers
281 	 */
282 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
283 	       (void *) regs->cp0_epc);
284 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
285 	       (void *) regs->regs[31]);
286 
287 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
288 
289 	if (cpu_has_3kex) {
290 		if (regs->cp0_status & ST0_KUO)
291 			printk("KUo ");
292 		if (regs->cp0_status & ST0_IEO)
293 			printk("IEo ");
294 		if (regs->cp0_status & ST0_KUP)
295 			printk("KUp ");
296 		if (regs->cp0_status & ST0_IEP)
297 			printk("IEp ");
298 		if (regs->cp0_status & ST0_KUC)
299 			printk("KUc ");
300 		if (regs->cp0_status & ST0_IEC)
301 			printk("IEc ");
302 	} else if (cpu_has_4kex) {
303 		if (regs->cp0_status & ST0_KX)
304 			printk("KX ");
305 		if (regs->cp0_status & ST0_SX)
306 			printk("SX ");
307 		if (regs->cp0_status & ST0_UX)
308 			printk("UX ");
309 		switch (regs->cp0_status & ST0_KSU) {
310 		case KSU_USER:
311 			printk("USER ");
312 			break;
313 		case KSU_SUPERVISOR:
314 			printk("SUPERVISOR ");
315 			break;
316 		case KSU_KERNEL:
317 			printk("KERNEL ");
318 			break;
319 		default:
320 			printk("BAD_MODE ");
321 			break;
322 		}
323 		if (regs->cp0_status & ST0_ERL)
324 			printk("ERL ");
325 		if (regs->cp0_status & ST0_EXL)
326 			printk("EXL ");
327 		if (regs->cp0_status & ST0_IE)
328 			printk("IE ");
329 	}
330 	printk("\n");
331 
332 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
333 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
334 
335 	if (1 <= exccode && exccode <= 5)
336 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
337 
338 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
339 	       cpu_name_string());
340 }
341 
342 /*
343  * FIXME: really the generic show_regs should take a const pointer argument.
344  */
345 void show_regs(struct pt_regs *regs)
346 {
347 	__show_regs((struct pt_regs *)regs);
348 }
349 
350 void show_registers(struct pt_regs *regs)
351 {
352 	const int field = 2 * sizeof(unsigned long);
353 	mm_segment_t old_fs = get_fs();
354 
355 	__show_regs(regs);
356 	print_modules();
357 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
358 	       current->comm, current->pid, current_thread_info(), current,
359 	      field, current_thread_info()->tp_value);
360 	if (cpu_has_userlocal) {
361 		unsigned long tls;
362 
363 		tls = read_c0_userlocal();
364 		if (tls != current_thread_info()->tp_value)
365 			printk("*HwTLS: %0*lx\n", field, tls);
366 	}
367 
368 	if (!user_mode(regs))
369 		/* Necessary for getting the correct stack content */
370 		set_fs(KERNEL_DS);
371 	show_stacktrace(current, regs);
372 	show_code((unsigned int __user *) regs->cp0_epc);
373 	printk("\n");
374 	set_fs(old_fs);
375 }
376 
377 static DEFINE_RAW_SPINLOCK(die_lock);
378 
379 void __noreturn die(const char *str, struct pt_regs *regs)
380 {
381 	static int die_counter;
382 	int sig = SIGSEGV;
383 
384 	oops_enter();
385 
386 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
387 		       SIGSEGV) == NOTIFY_STOP)
388 		sig = 0;
389 
390 	console_verbose();
391 	raw_spin_lock_irq(&die_lock);
392 	bust_spinlocks(1);
393 
394 	printk("%s[#%d]:\n", str, ++die_counter);
395 	show_registers(regs);
396 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
397 	raw_spin_unlock_irq(&die_lock);
398 
399 	oops_exit();
400 
401 	if (in_interrupt())
402 		panic("Fatal exception in interrupt");
403 
404 	if (panic_on_oops)
405 		panic("Fatal exception");
406 
407 	if (regs && kexec_should_crash(current))
408 		crash_kexec(regs);
409 
410 	do_exit(sig);
411 }
412 
413 extern struct exception_table_entry __start___dbe_table[];
414 extern struct exception_table_entry __stop___dbe_table[];
415 
416 __asm__(
417 "	.section	__dbe_table, \"a\"\n"
418 "	.previous			\n");
419 
420 /* Given an address, look for it in the exception tables. */
421 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
422 {
423 	const struct exception_table_entry *e;
424 
425 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
426 	if (!e)
427 		e = search_module_dbetables(addr);
428 	return e;
429 }
430 
431 asmlinkage void do_be(struct pt_regs *regs)
432 {
433 	const int field = 2 * sizeof(unsigned long);
434 	const struct exception_table_entry *fixup = NULL;
435 	int data = regs->cp0_cause & 4;
436 	int action = MIPS_BE_FATAL;
437 	enum ctx_state prev_state;
438 
439 	prev_state = exception_enter();
440 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
441 	if (data && !user_mode(regs))
442 		fixup = search_dbe_tables(exception_epc(regs));
443 
444 	if (fixup)
445 		action = MIPS_BE_FIXUP;
446 
447 	if (board_be_handler)
448 		action = board_be_handler(regs, fixup != NULL);
449 	else
450 		mips_cm_error_report();
451 
452 	switch (action) {
453 	case MIPS_BE_DISCARD:
454 		goto out;
455 	case MIPS_BE_FIXUP:
456 		if (fixup) {
457 			regs->cp0_epc = fixup->nextinsn;
458 			goto out;
459 		}
460 		break;
461 	default:
462 		break;
463 	}
464 
465 	/*
466 	 * Assume it would be too dangerous to continue ...
467 	 */
468 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
469 	       data ? "Data" : "Instruction",
470 	       field, regs->cp0_epc, field, regs->regs[31]);
471 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
472 		       SIGBUS) == NOTIFY_STOP)
473 		goto out;
474 
475 	die_if_kernel("Oops", regs);
476 	force_sig(SIGBUS, current);
477 
478 out:
479 	exception_exit(prev_state);
480 }
481 
482 /*
483  * ll/sc, rdhwr, sync emulation
484  */
485 
486 #define OPCODE 0xfc000000
487 #define BASE   0x03e00000
488 #define RT     0x001f0000
489 #define OFFSET 0x0000ffff
490 #define LL     0xc0000000
491 #define SC     0xe0000000
492 #define SPEC0  0x00000000
493 #define SPEC3  0x7c000000
494 #define RD     0x0000f800
495 #define FUNC   0x0000003f
496 #define SYNC   0x0000000f
497 #define RDHWR  0x0000003b
498 
499 /*  microMIPS definitions   */
500 #define MM_POOL32A_FUNC 0xfc00ffff
501 #define MM_RDHWR        0x00006b3c
502 #define MM_RS           0x001f0000
503 #define MM_RT           0x03e00000
504 
505 /*
506  * The ll_bit is cleared by r*_switch.S
507  */
508 
509 unsigned int ll_bit;
510 struct task_struct *ll_task;
511 
512 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
513 {
514 	unsigned long value, __user *vaddr;
515 	long offset;
516 
517 	/*
518 	 * analyse the ll instruction that just caused a ri exception
519 	 * and put the referenced address to addr.
520 	 */
521 
522 	/* sign extend offset */
523 	offset = opcode & OFFSET;
524 	offset <<= 16;
525 	offset >>= 16;
526 
527 	vaddr = (unsigned long __user *)
528 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
529 
530 	if ((unsigned long)vaddr & 3)
531 		return SIGBUS;
532 	if (get_user(value, vaddr))
533 		return SIGSEGV;
534 
535 	preempt_disable();
536 
537 	if (ll_task == NULL || ll_task == current) {
538 		ll_bit = 1;
539 	} else {
540 		ll_bit = 0;
541 	}
542 	ll_task = current;
543 
544 	preempt_enable();
545 
546 	regs->regs[(opcode & RT) >> 16] = value;
547 
548 	return 0;
549 }
550 
551 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
552 {
553 	unsigned long __user *vaddr;
554 	unsigned long reg;
555 	long offset;
556 
557 	/*
558 	 * analyse the sc instruction that just caused a ri exception
559 	 * and put the referenced address to addr.
560 	 */
561 
562 	/* sign extend offset */
563 	offset = opcode & OFFSET;
564 	offset <<= 16;
565 	offset >>= 16;
566 
567 	vaddr = (unsigned long __user *)
568 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
569 	reg = (opcode & RT) >> 16;
570 
571 	if ((unsigned long)vaddr & 3)
572 		return SIGBUS;
573 
574 	preempt_disable();
575 
576 	if (ll_bit == 0 || ll_task != current) {
577 		regs->regs[reg] = 0;
578 		preempt_enable();
579 		return 0;
580 	}
581 
582 	preempt_enable();
583 
584 	if (put_user(regs->regs[reg], vaddr))
585 		return SIGSEGV;
586 
587 	regs->regs[reg] = 1;
588 
589 	return 0;
590 }
591 
592 /*
593  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
594  * opcodes are supposed to result in coprocessor unusable exceptions if
595  * executed on ll/sc-less processors.  That's the theory.  In practice a
596  * few processors such as NEC's VR4100 throw reserved instruction exceptions
597  * instead, so we're doing the emulation thing in both exception handlers.
598  */
599 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
600 {
601 	if ((opcode & OPCODE) == LL) {
602 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 				1, regs, 0);
604 		return simulate_ll(regs, opcode);
605 	}
606 	if ((opcode & OPCODE) == SC) {
607 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
608 				1, regs, 0);
609 		return simulate_sc(regs, opcode);
610 	}
611 
612 	return -1;			/* Must be something else ... */
613 }
614 
615 /*
616  * Simulate trapping 'rdhwr' instructions to provide user accessible
617  * registers not implemented in hardware.
618  */
619 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
620 {
621 	struct thread_info *ti = task_thread_info(current);
622 
623 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624 			1, regs, 0);
625 	switch (rd) {
626 	case MIPS_HWR_CPUNUM:		/* CPU number */
627 		regs->regs[rt] = smp_processor_id();
628 		return 0;
629 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
630 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
631 				     current_cpu_data.icache.linesz);
632 		return 0;
633 	case MIPS_HWR_CC:		/* Read count register */
634 		regs->regs[rt] = read_c0_count();
635 		return 0;
636 	case MIPS_HWR_CCRES:		/* Count register resolution */
637 		switch (current_cpu_type()) {
638 		case CPU_20KC:
639 		case CPU_25KF:
640 			regs->regs[rt] = 1;
641 			break;
642 		default:
643 			regs->regs[rt] = 2;
644 		}
645 		return 0;
646 	case MIPS_HWR_ULR:		/* Read UserLocal register */
647 		regs->regs[rt] = ti->tp_value;
648 		return 0;
649 	default:
650 		return -1;
651 	}
652 }
653 
654 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
655 {
656 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
657 		int rd = (opcode & RD) >> 11;
658 		int rt = (opcode & RT) >> 16;
659 
660 		simulate_rdhwr(regs, rd, rt);
661 		return 0;
662 	}
663 
664 	/* Not ours.  */
665 	return -1;
666 }
667 
668 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
669 {
670 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
671 		int rd = (opcode & MM_RS) >> 16;
672 		int rt = (opcode & MM_RT) >> 21;
673 		simulate_rdhwr(regs, rd, rt);
674 		return 0;
675 	}
676 
677 	/* Not ours.  */
678 	return -1;
679 }
680 
681 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
682 {
683 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
684 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
685 				1, regs, 0);
686 		return 0;
687 	}
688 
689 	return -1;			/* Must be something else ... */
690 }
691 
692 asmlinkage void do_ov(struct pt_regs *regs)
693 {
694 	enum ctx_state prev_state;
695 	siginfo_t info = {
696 		.si_signo = SIGFPE,
697 		.si_code = FPE_INTOVF,
698 		.si_addr = (void __user *)regs->cp0_epc,
699 	};
700 
701 	prev_state = exception_enter();
702 	die_if_kernel("Integer overflow", regs);
703 
704 	force_sig_info(SIGFPE, &info, current);
705 	exception_exit(prev_state);
706 }
707 
708 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
709 {
710 	struct siginfo si = { 0 };
711 	struct vm_area_struct *vma;
712 
713 	switch (sig) {
714 	case 0:
715 		return 0;
716 
717 	case SIGFPE:
718 		si.si_addr = fault_addr;
719 		si.si_signo = sig;
720 		/*
721 		 * Inexact can happen together with Overflow or Underflow.
722 		 * Respect the mask to deliver the correct exception.
723 		 */
724 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
725 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
726 		if (fcr31 & FPU_CSR_INV_X)
727 			si.si_code = FPE_FLTINV;
728 		else if (fcr31 & FPU_CSR_DIV_X)
729 			si.si_code = FPE_FLTDIV;
730 		else if (fcr31 & FPU_CSR_OVF_X)
731 			si.si_code = FPE_FLTOVF;
732 		else if (fcr31 & FPU_CSR_UDF_X)
733 			si.si_code = FPE_FLTUND;
734 		else if (fcr31 & FPU_CSR_INE_X)
735 			si.si_code = FPE_FLTRES;
736 		else
737 			si.si_code = __SI_FAULT;
738 		force_sig_info(sig, &si, current);
739 		return 1;
740 
741 	case SIGBUS:
742 		si.si_addr = fault_addr;
743 		si.si_signo = sig;
744 		si.si_code = BUS_ADRERR;
745 		force_sig_info(sig, &si, current);
746 		return 1;
747 
748 	case SIGSEGV:
749 		si.si_addr = fault_addr;
750 		si.si_signo = sig;
751 		down_read(&current->mm->mmap_sem);
752 		vma = find_vma(current->mm, (unsigned long)fault_addr);
753 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
754 			si.si_code = SEGV_ACCERR;
755 		else
756 			si.si_code = SEGV_MAPERR;
757 		up_read(&current->mm->mmap_sem);
758 		force_sig_info(sig, &si, current);
759 		return 1;
760 
761 	default:
762 		force_sig(sig, current);
763 		return 1;
764 	}
765 }
766 
767 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
768 		       unsigned long old_epc, unsigned long old_ra)
769 {
770 	union mips_instruction inst = { .word = opcode };
771 	void __user *fault_addr;
772 	unsigned long fcr31;
773 	int sig;
774 
775 	/* If it's obviously not an FP instruction, skip it */
776 	switch (inst.i_format.opcode) {
777 	case cop1_op:
778 	case cop1x_op:
779 	case lwc1_op:
780 	case ldc1_op:
781 	case swc1_op:
782 	case sdc1_op:
783 		break;
784 
785 	default:
786 		return -1;
787 	}
788 
789 	/*
790 	 * do_ri skipped over the instruction via compute_return_epc, undo
791 	 * that for the FPU emulator.
792 	 */
793 	regs->cp0_epc = old_epc;
794 	regs->regs[31] = old_ra;
795 
796 	/* Save the FP context to struct thread_struct */
797 	lose_fpu(1);
798 
799 	/* Run the emulator */
800 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
801 				       &fault_addr);
802 	fcr31 = current->thread.fpu.fcr31;
803 
804 	/*
805 	 * We can't allow the emulated instruction to leave any of
806 	 * the cause bits set in $fcr31.
807 	 */
808 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
809 
810 	/* Restore the hardware register state */
811 	own_fpu(1);
812 
813 	/* Send a signal if required.  */
814 	process_fpemu_return(sig, fault_addr, fcr31);
815 
816 	return 0;
817 }
818 
819 /*
820  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
821  */
822 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
823 {
824 	enum ctx_state prev_state;
825 	void __user *fault_addr;
826 	int sig;
827 
828 	prev_state = exception_enter();
829 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
830 		       SIGFPE) == NOTIFY_STOP)
831 		goto out;
832 
833 	/* Clear FCSR.Cause before enabling interrupts */
834 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
835 	local_irq_enable();
836 
837 	die_if_kernel("FP exception in kernel code", regs);
838 
839 	if (fcr31 & FPU_CSR_UNI_X) {
840 		/*
841 		 * Unimplemented operation exception.  If we've got the full
842 		 * software emulator on-board, let's use it...
843 		 *
844 		 * Force FPU to dump state into task/thread context.  We're
845 		 * moving a lot of data here for what is probably a single
846 		 * instruction, but the alternative is to pre-decode the FP
847 		 * register operands before invoking the emulator, which seems
848 		 * a bit extreme for what should be an infrequent event.
849 		 */
850 		/* Ensure 'resume' not overwrite saved fp context again. */
851 		lose_fpu(1);
852 
853 		/* Run the emulator */
854 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
855 					       &fault_addr);
856 		fcr31 = current->thread.fpu.fcr31;
857 
858 		/*
859 		 * We can't allow the emulated instruction to leave any of
860 		 * the cause bits set in $fcr31.
861 		 */
862 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
863 
864 		/* Restore the hardware register state */
865 		own_fpu(1);	/* Using the FPU again.	 */
866 	} else {
867 		sig = SIGFPE;
868 		fault_addr = (void __user *) regs->cp0_epc;
869 	}
870 
871 	/* Send a signal if required.  */
872 	process_fpemu_return(sig, fault_addr, fcr31);
873 
874 out:
875 	exception_exit(prev_state);
876 }
877 
878 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
879 	const char *str)
880 {
881 	siginfo_t info = { 0 };
882 	char b[40];
883 
884 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
885 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
886 			 SIGTRAP) == NOTIFY_STOP)
887 		return;
888 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
889 
890 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
891 		       SIGTRAP) == NOTIFY_STOP)
892 		return;
893 
894 	/*
895 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
896 	 * insns, even for trap and break codes that indicate arithmetic
897 	 * failures.  Weird ...
898 	 * But should we continue the brokenness???  --macro
899 	 */
900 	switch (code) {
901 	case BRK_OVERFLOW:
902 	case BRK_DIVZERO:
903 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
904 		die_if_kernel(b, regs);
905 		if (code == BRK_DIVZERO)
906 			info.si_code = FPE_INTDIV;
907 		else
908 			info.si_code = FPE_INTOVF;
909 		info.si_signo = SIGFPE;
910 		info.si_addr = (void __user *) regs->cp0_epc;
911 		force_sig_info(SIGFPE, &info, current);
912 		break;
913 	case BRK_BUG:
914 		die_if_kernel("Kernel bug detected", regs);
915 		force_sig(SIGTRAP, current);
916 		break;
917 	case BRK_MEMU:
918 		/*
919 		 * This breakpoint code is used by the FPU emulator to retake
920 		 * control of the CPU after executing the instruction from the
921 		 * delay slot of an emulated branch.
922 		 *
923 		 * Terminate if exception was recognized as a delay slot return
924 		 * otherwise handle as normal.
925 		 */
926 		if (do_dsemulret(regs))
927 			return;
928 
929 		die_if_kernel("Math emu break/trap", regs);
930 		force_sig(SIGTRAP, current);
931 		break;
932 	default:
933 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
934 		die_if_kernel(b, regs);
935 		if (si_code) {
936 			info.si_signo = SIGTRAP;
937 			info.si_code = si_code;
938 			force_sig_info(SIGTRAP, &info, current);
939 		} else {
940 			force_sig(SIGTRAP, current);
941 		}
942 	}
943 }
944 
945 asmlinkage void do_bp(struct pt_regs *regs)
946 {
947 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
948 	unsigned int opcode, bcode;
949 	enum ctx_state prev_state;
950 	mm_segment_t seg;
951 
952 	seg = get_fs();
953 	if (!user_mode(regs))
954 		set_fs(KERNEL_DS);
955 
956 	prev_state = exception_enter();
957 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
958 	if (get_isa16_mode(regs->cp0_epc)) {
959 		u16 instr[2];
960 
961 		if (__get_user(instr[0], (u16 __user *)epc))
962 			goto out_sigsegv;
963 
964 		if (!cpu_has_mmips) {
965 			/* MIPS16e mode */
966 			bcode = (instr[0] >> 5) & 0x3f;
967 		} else if (mm_insn_16bit(instr[0])) {
968 			/* 16-bit microMIPS BREAK */
969 			bcode = instr[0] & 0xf;
970 		} else {
971 			/* 32-bit microMIPS BREAK */
972 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
973 				goto out_sigsegv;
974 			opcode = (instr[0] << 16) | instr[1];
975 			bcode = (opcode >> 6) & ((1 << 20) - 1);
976 		}
977 	} else {
978 		if (__get_user(opcode, (unsigned int __user *)epc))
979 			goto out_sigsegv;
980 		bcode = (opcode >> 6) & ((1 << 20) - 1);
981 	}
982 
983 	/*
984 	 * There is the ancient bug in the MIPS assemblers that the break
985 	 * code starts left to bit 16 instead to bit 6 in the opcode.
986 	 * Gas is bug-compatible, but not always, grrr...
987 	 * We handle both cases with a simple heuristics.  --macro
988 	 */
989 	if (bcode >= (1 << 10))
990 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
991 
992 	/*
993 	 * notify the kprobe handlers, if instruction is likely to
994 	 * pertain to them.
995 	 */
996 	switch (bcode) {
997 	case BRK_UPROBE:
998 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
999 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1000 			goto out;
1001 		else
1002 			break;
1003 	case BRK_UPROBE_XOL:
1004 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1005 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1006 			goto out;
1007 		else
1008 			break;
1009 	case BRK_KPROBE_BP:
1010 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1011 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 			goto out;
1013 		else
1014 			break;
1015 	case BRK_KPROBE_SSTEPBP:
1016 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1017 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1018 			goto out;
1019 		else
1020 			break;
1021 	default:
1022 		break;
1023 	}
1024 
1025 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1026 
1027 out:
1028 	set_fs(seg);
1029 	exception_exit(prev_state);
1030 	return;
1031 
1032 out_sigsegv:
1033 	force_sig(SIGSEGV, current);
1034 	goto out;
1035 }
1036 
1037 asmlinkage void do_tr(struct pt_regs *regs)
1038 {
1039 	u32 opcode, tcode = 0;
1040 	enum ctx_state prev_state;
1041 	u16 instr[2];
1042 	mm_segment_t seg;
1043 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1044 
1045 	seg = get_fs();
1046 	if (!user_mode(regs))
1047 		set_fs(get_ds());
1048 
1049 	prev_state = exception_enter();
1050 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1051 	if (get_isa16_mode(regs->cp0_epc)) {
1052 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1053 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1054 			goto out_sigsegv;
1055 		opcode = (instr[0] << 16) | instr[1];
1056 		/* Immediate versions don't provide a code.  */
1057 		if (!(opcode & OPCODE))
1058 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1059 	} else {
1060 		if (__get_user(opcode, (u32 __user *)epc))
1061 			goto out_sigsegv;
1062 		/* Immediate versions don't provide a code.  */
1063 		if (!(opcode & OPCODE))
1064 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1065 	}
1066 
1067 	do_trap_or_bp(regs, tcode, 0, "Trap");
1068 
1069 out:
1070 	set_fs(seg);
1071 	exception_exit(prev_state);
1072 	return;
1073 
1074 out_sigsegv:
1075 	force_sig(SIGSEGV, current);
1076 	goto out;
1077 }
1078 
1079 asmlinkage void do_ri(struct pt_regs *regs)
1080 {
1081 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1082 	unsigned long old_epc = regs->cp0_epc;
1083 	unsigned long old31 = regs->regs[31];
1084 	enum ctx_state prev_state;
1085 	unsigned int opcode = 0;
1086 	int status = -1;
1087 
1088 	/*
1089 	 * Avoid any kernel code. Just emulate the R2 instruction
1090 	 * as quickly as possible.
1091 	 */
1092 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1093 	    likely(user_mode(regs)) &&
1094 	    likely(get_user(opcode, epc) >= 0)) {
1095 		unsigned long fcr31 = 0;
1096 
1097 		status = mipsr2_decoder(regs, opcode, &fcr31);
1098 		switch (status) {
1099 		case 0:
1100 		case SIGEMT:
1101 			task_thread_info(current)->r2_emul_return = 1;
1102 			return;
1103 		case SIGILL:
1104 			goto no_r2_instr;
1105 		default:
1106 			process_fpemu_return(status,
1107 					     &current->thread.cp0_baduaddr,
1108 					     fcr31);
1109 			task_thread_info(current)->r2_emul_return = 1;
1110 			return;
1111 		}
1112 	}
1113 
1114 no_r2_instr:
1115 
1116 	prev_state = exception_enter();
1117 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1118 
1119 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1120 		       SIGILL) == NOTIFY_STOP)
1121 		goto out;
1122 
1123 	die_if_kernel("Reserved instruction in kernel code", regs);
1124 
1125 	if (unlikely(compute_return_epc(regs) < 0))
1126 		goto out;
1127 
1128 	if (!get_isa16_mode(regs->cp0_epc)) {
1129 		if (unlikely(get_user(opcode, epc) < 0))
1130 			status = SIGSEGV;
1131 
1132 		if (!cpu_has_llsc && status < 0)
1133 			status = simulate_llsc(regs, opcode);
1134 
1135 		if (status < 0)
1136 			status = simulate_rdhwr_normal(regs, opcode);
1137 
1138 		if (status < 0)
1139 			status = simulate_sync(regs, opcode);
1140 
1141 		if (status < 0)
1142 			status = simulate_fp(regs, opcode, old_epc, old31);
1143 	} else if (cpu_has_mmips) {
1144 		unsigned short mmop[2] = { 0 };
1145 
1146 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1147 			status = SIGSEGV;
1148 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1149 			status = SIGSEGV;
1150 		opcode = mmop[0];
1151 		opcode = (opcode << 16) | mmop[1];
1152 
1153 		if (status < 0)
1154 			status = simulate_rdhwr_mm(regs, opcode);
1155 	}
1156 
1157 	if (status < 0)
1158 		status = SIGILL;
1159 
1160 	if (unlikely(status > 0)) {
1161 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1162 		regs->regs[31] = old31;
1163 		force_sig(status, current);
1164 	}
1165 
1166 out:
1167 	exception_exit(prev_state);
1168 }
1169 
1170 /*
1171  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1172  * emulated more than some threshold number of instructions, force migration to
1173  * a "CPU" that has FP support.
1174  */
1175 static void mt_ase_fp_affinity(void)
1176 {
1177 #ifdef CONFIG_MIPS_MT_FPAFF
1178 	if (mt_fpemul_threshold > 0 &&
1179 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1180 		/*
1181 		 * If there's no FPU present, or if the application has already
1182 		 * restricted the allowed set to exclude any CPUs with FPUs,
1183 		 * we'll skip the procedure.
1184 		 */
1185 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1186 			cpumask_t tmask;
1187 
1188 			current->thread.user_cpus_allowed
1189 				= current->cpus_allowed;
1190 			cpumask_and(&tmask, &current->cpus_allowed,
1191 				    &mt_fpu_cpumask);
1192 			set_cpus_allowed_ptr(current, &tmask);
1193 			set_thread_flag(TIF_FPUBOUND);
1194 		}
1195 	}
1196 #endif /* CONFIG_MIPS_MT_FPAFF */
1197 }
1198 
1199 /*
1200  * No lock; only written during early bootup by CPU 0.
1201  */
1202 static RAW_NOTIFIER_HEAD(cu2_chain);
1203 
1204 int __ref register_cu2_notifier(struct notifier_block *nb)
1205 {
1206 	return raw_notifier_chain_register(&cu2_chain, nb);
1207 }
1208 
1209 int cu2_notifier_call_chain(unsigned long val, void *v)
1210 {
1211 	return raw_notifier_call_chain(&cu2_chain, val, v);
1212 }
1213 
1214 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1215 	void *data)
1216 {
1217 	struct pt_regs *regs = data;
1218 
1219 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1220 			      "instruction", regs);
1221 	force_sig(SIGILL, current);
1222 
1223 	return NOTIFY_OK;
1224 }
1225 
1226 static int wait_on_fp_mode_switch(atomic_t *p)
1227 {
1228 	/*
1229 	 * The FP mode for this task is currently being switched. That may
1230 	 * involve modifications to the format of this tasks FP context which
1231 	 * make it unsafe to proceed with execution for the moment. Instead,
1232 	 * schedule some other task.
1233 	 */
1234 	schedule();
1235 	return 0;
1236 }
1237 
1238 static int enable_restore_fp_context(int msa)
1239 {
1240 	int err, was_fpu_owner, prior_msa;
1241 
1242 	/*
1243 	 * If an FP mode switch is currently underway, wait for it to
1244 	 * complete before proceeding.
1245 	 */
1246 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1247 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1248 
1249 	if (!used_math()) {
1250 		/* First time FP context user. */
1251 		preempt_disable();
1252 		err = init_fpu();
1253 		if (msa && !err) {
1254 			enable_msa();
1255 			init_msa_upper();
1256 			set_thread_flag(TIF_USEDMSA);
1257 			set_thread_flag(TIF_MSA_CTX_LIVE);
1258 		}
1259 		preempt_enable();
1260 		if (!err)
1261 			set_used_math();
1262 		return err;
1263 	}
1264 
1265 	/*
1266 	 * This task has formerly used the FP context.
1267 	 *
1268 	 * If this thread has no live MSA vector context then we can simply
1269 	 * restore the scalar FP context. If it has live MSA vector context
1270 	 * (that is, it has or may have used MSA since last performing a
1271 	 * function call) then we'll need to restore the vector context. This
1272 	 * applies even if we're currently only executing a scalar FP
1273 	 * instruction. This is because if we were to later execute an MSA
1274 	 * instruction then we'd either have to:
1275 	 *
1276 	 *  - Restore the vector context & clobber any registers modified by
1277 	 *    scalar FP instructions between now & then.
1278 	 *
1279 	 * or
1280 	 *
1281 	 *  - Not restore the vector context & lose the most significant bits
1282 	 *    of all vector registers.
1283 	 *
1284 	 * Neither of those options is acceptable. We cannot restore the least
1285 	 * significant bits of the registers now & only restore the most
1286 	 * significant bits later because the most significant bits of any
1287 	 * vector registers whose aliased FP register is modified now will have
1288 	 * been zeroed. We'd have no way to know that when restoring the vector
1289 	 * context & thus may load an outdated value for the most significant
1290 	 * bits of a vector register.
1291 	 */
1292 	if (!msa && !thread_msa_context_live())
1293 		return own_fpu(1);
1294 
1295 	/*
1296 	 * This task is using or has previously used MSA. Thus we require
1297 	 * that Status.FR == 1.
1298 	 */
1299 	preempt_disable();
1300 	was_fpu_owner = is_fpu_owner();
1301 	err = own_fpu_inatomic(0);
1302 	if (err)
1303 		goto out;
1304 
1305 	enable_msa();
1306 	write_msa_csr(current->thread.fpu.msacsr);
1307 	set_thread_flag(TIF_USEDMSA);
1308 
1309 	/*
1310 	 * If this is the first time that the task is using MSA and it has
1311 	 * previously used scalar FP in this time slice then we already nave
1312 	 * FP context which we shouldn't clobber. We do however need to clear
1313 	 * the upper 64b of each vector register so that this task has no
1314 	 * opportunity to see data left behind by another.
1315 	 */
1316 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1317 	if (!prior_msa && was_fpu_owner) {
1318 		init_msa_upper();
1319 
1320 		goto out;
1321 	}
1322 
1323 	if (!prior_msa) {
1324 		/*
1325 		 * Restore the least significant 64b of each vector register
1326 		 * from the existing scalar FP context.
1327 		 */
1328 		_restore_fp(current);
1329 
1330 		/*
1331 		 * The task has not formerly used MSA, so clear the upper 64b
1332 		 * of each vector register such that it cannot see data left
1333 		 * behind by another task.
1334 		 */
1335 		init_msa_upper();
1336 	} else {
1337 		/* We need to restore the vector context. */
1338 		restore_msa(current);
1339 
1340 		/* Restore the scalar FP control & status register */
1341 		if (!was_fpu_owner)
1342 			write_32bit_cp1_register(CP1_STATUS,
1343 						 current->thread.fpu.fcr31);
1344 	}
1345 
1346 out:
1347 	preempt_enable();
1348 
1349 	return 0;
1350 }
1351 
1352 asmlinkage void do_cpu(struct pt_regs *regs)
1353 {
1354 	enum ctx_state prev_state;
1355 	unsigned int __user *epc;
1356 	unsigned long old_epc, old31;
1357 	void __user *fault_addr;
1358 	unsigned int opcode;
1359 	unsigned long fcr31;
1360 	unsigned int cpid;
1361 	int status, err;
1362 	int sig;
1363 
1364 	prev_state = exception_enter();
1365 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1366 
1367 	if (cpid != 2)
1368 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1369 
1370 	switch (cpid) {
1371 	case 0:
1372 		epc = (unsigned int __user *)exception_epc(regs);
1373 		old_epc = regs->cp0_epc;
1374 		old31 = regs->regs[31];
1375 		opcode = 0;
1376 		status = -1;
1377 
1378 		if (unlikely(compute_return_epc(regs) < 0))
1379 			break;
1380 
1381 		if (!get_isa16_mode(regs->cp0_epc)) {
1382 			if (unlikely(get_user(opcode, epc) < 0))
1383 				status = SIGSEGV;
1384 
1385 			if (!cpu_has_llsc && status < 0)
1386 				status = simulate_llsc(regs, opcode);
1387 		}
1388 
1389 		if (status < 0)
1390 			status = SIGILL;
1391 
1392 		if (unlikely(status > 0)) {
1393 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1394 			regs->regs[31] = old31;
1395 			force_sig(status, current);
1396 		}
1397 
1398 		break;
1399 
1400 	case 3:
1401 		/*
1402 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1403 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1404 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1405 		 * up the space has been reused for COP1X instructions, that
1406 		 * are enabled by the CP0.Status.CU1 bit and consequently
1407 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1408 		 * exceptions.  Some FPU-less processors that implement one
1409 		 * of these ISAs however use this code erroneously for COP1X
1410 		 * instructions.  Therefore we redirect this trap to the FP
1411 		 * emulator too.
1412 		 */
1413 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1414 			force_sig(SIGILL, current);
1415 			break;
1416 		}
1417 		/* Fall through.  */
1418 
1419 	case 1:
1420 		err = enable_restore_fp_context(0);
1421 
1422 		if (raw_cpu_has_fpu && !err)
1423 			break;
1424 
1425 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1426 					       &fault_addr);
1427 		fcr31 = current->thread.fpu.fcr31;
1428 
1429 		/*
1430 		 * We can't allow the emulated instruction to leave
1431 		 * any of the cause bits set in $fcr31.
1432 		 */
1433 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1434 
1435 		/* Send a signal if required.  */
1436 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1437 			mt_ase_fp_affinity();
1438 
1439 		break;
1440 
1441 	case 2:
1442 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1443 		break;
1444 	}
1445 
1446 	exception_exit(prev_state);
1447 }
1448 
1449 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1450 {
1451 	enum ctx_state prev_state;
1452 
1453 	prev_state = exception_enter();
1454 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1455 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1456 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1457 		goto out;
1458 
1459 	/* Clear MSACSR.Cause before enabling interrupts */
1460 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1461 	local_irq_enable();
1462 
1463 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1464 	force_sig(SIGFPE, current);
1465 out:
1466 	exception_exit(prev_state);
1467 }
1468 
1469 asmlinkage void do_msa(struct pt_regs *regs)
1470 {
1471 	enum ctx_state prev_state;
1472 	int err;
1473 
1474 	prev_state = exception_enter();
1475 
1476 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1477 		force_sig(SIGILL, current);
1478 		goto out;
1479 	}
1480 
1481 	die_if_kernel("do_msa invoked from kernel context!", regs);
1482 
1483 	err = enable_restore_fp_context(1);
1484 	if (err)
1485 		force_sig(SIGILL, current);
1486 out:
1487 	exception_exit(prev_state);
1488 }
1489 
1490 asmlinkage void do_mdmx(struct pt_regs *regs)
1491 {
1492 	enum ctx_state prev_state;
1493 
1494 	prev_state = exception_enter();
1495 	force_sig(SIGILL, current);
1496 	exception_exit(prev_state);
1497 }
1498 
1499 /*
1500  * Called with interrupts disabled.
1501  */
1502 asmlinkage void do_watch(struct pt_regs *regs)
1503 {
1504 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1505 	enum ctx_state prev_state;
1506 
1507 	prev_state = exception_enter();
1508 	/*
1509 	 * Clear WP (bit 22) bit of cause register so we don't loop
1510 	 * forever.
1511 	 */
1512 	clear_c0_cause(CAUSEF_WP);
1513 
1514 	/*
1515 	 * If the current thread has the watch registers loaded, save
1516 	 * their values and send SIGTRAP.  Otherwise another thread
1517 	 * left the registers set, clear them and continue.
1518 	 */
1519 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1520 		mips_read_watch_registers();
1521 		local_irq_enable();
1522 		force_sig_info(SIGTRAP, &info, current);
1523 	} else {
1524 		mips_clear_watch_registers();
1525 		local_irq_enable();
1526 	}
1527 	exception_exit(prev_state);
1528 }
1529 
1530 asmlinkage void do_mcheck(struct pt_regs *regs)
1531 {
1532 	int multi_match = regs->cp0_status & ST0_TS;
1533 	enum ctx_state prev_state;
1534 	mm_segment_t old_fs = get_fs();
1535 
1536 	prev_state = exception_enter();
1537 	show_regs(regs);
1538 
1539 	if (multi_match) {
1540 		dump_tlb_regs();
1541 		pr_info("\n");
1542 		dump_tlb_all();
1543 	}
1544 
1545 	if (!user_mode(regs))
1546 		set_fs(KERNEL_DS);
1547 
1548 	show_code((unsigned int __user *) regs->cp0_epc);
1549 
1550 	set_fs(old_fs);
1551 
1552 	/*
1553 	 * Some chips may have other causes of machine check (e.g. SB1
1554 	 * graduation timer)
1555 	 */
1556 	panic("Caught Machine Check exception - %scaused by multiple "
1557 	      "matching entries in the TLB.",
1558 	      (multi_match) ? "" : "not ");
1559 }
1560 
1561 asmlinkage void do_mt(struct pt_regs *regs)
1562 {
1563 	int subcode;
1564 
1565 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1566 			>> VPECONTROL_EXCPT_SHIFT;
1567 	switch (subcode) {
1568 	case 0:
1569 		printk(KERN_DEBUG "Thread Underflow\n");
1570 		break;
1571 	case 1:
1572 		printk(KERN_DEBUG "Thread Overflow\n");
1573 		break;
1574 	case 2:
1575 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1576 		break;
1577 	case 3:
1578 		printk(KERN_DEBUG "Gating Storage Exception\n");
1579 		break;
1580 	case 4:
1581 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1582 		break;
1583 	case 5:
1584 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1585 		break;
1586 	default:
1587 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1588 			subcode);
1589 		break;
1590 	}
1591 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1592 
1593 	force_sig(SIGILL, current);
1594 }
1595 
1596 
1597 asmlinkage void do_dsp(struct pt_regs *regs)
1598 {
1599 	if (cpu_has_dsp)
1600 		panic("Unexpected DSP exception");
1601 
1602 	force_sig(SIGILL, current);
1603 }
1604 
1605 asmlinkage void do_reserved(struct pt_regs *regs)
1606 {
1607 	/*
1608 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1609 	 * caused by a new unknown cpu type or after another deadly
1610 	 * hard/software error.
1611 	 */
1612 	show_regs(regs);
1613 	panic("Caught reserved exception %ld - should not happen.",
1614 	      (regs->cp0_cause & 0x7f) >> 2);
1615 }
1616 
1617 static int __initdata l1parity = 1;
1618 static int __init nol1parity(char *s)
1619 {
1620 	l1parity = 0;
1621 	return 1;
1622 }
1623 __setup("nol1par", nol1parity);
1624 static int __initdata l2parity = 1;
1625 static int __init nol2parity(char *s)
1626 {
1627 	l2parity = 0;
1628 	return 1;
1629 }
1630 __setup("nol2par", nol2parity);
1631 
1632 /*
1633  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1634  * it different ways.
1635  */
1636 static inline void parity_protection_init(void)
1637 {
1638 	switch (current_cpu_type()) {
1639 	case CPU_24K:
1640 	case CPU_34K:
1641 	case CPU_74K:
1642 	case CPU_1004K:
1643 	case CPU_1074K:
1644 	case CPU_INTERAPTIV:
1645 	case CPU_PROAPTIV:
1646 	case CPU_P5600:
1647 	case CPU_QEMU_GENERIC:
1648 	case CPU_I6400:
1649 	case CPU_P6600:
1650 		{
1651 #define ERRCTL_PE	0x80000000
1652 #define ERRCTL_L2P	0x00800000
1653 			unsigned long errctl;
1654 			unsigned int l1parity_present, l2parity_present;
1655 
1656 			errctl = read_c0_ecc();
1657 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1658 
1659 			/* probe L1 parity support */
1660 			write_c0_ecc(errctl | ERRCTL_PE);
1661 			back_to_back_c0_hazard();
1662 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1663 
1664 			/* probe L2 parity support */
1665 			write_c0_ecc(errctl|ERRCTL_L2P);
1666 			back_to_back_c0_hazard();
1667 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1668 
1669 			if (l1parity_present && l2parity_present) {
1670 				if (l1parity)
1671 					errctl |= ERRCTL_PE;
1672 				if (l1parity ^ l2parity)
1673 					errctl |= ERRCTL_L2P;
1674 			} else if (l1parity_present) {
1675 				if (l1parity)
1676 					errctl |= ERRCTL_PE;
1677 			} else if (l2parity_present) {
1678 				if (l2parity)
1679 					errctl |= ERRCTL_L2P;
1680 			} else {
1681 				/* No parity available */
1682 			}
1683 
1684 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1685 
1686 			write_c0_ecc(errctl);
1687 			back_to_back_c0_hazard();
1688 			errctl = read_c0_ecc();
1689 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1690 
1691 			if (l1parity_present)
1692 				printk(KERN_INFO "Cache parity protection %sabled\n",
1693 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1694 
1695 			if (l2parity_present) {
1696 				if (l1parity_present && l1parity)
1697 					errctl ^= ERRCTL_L2P;
1698 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1699 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1700 			}
1701 		}
1702 		break;
1703 
1704 	case CPU_5KC:
1705 	case CPU_5KE:
1706 	case CPU_LOONGSON1:
1707 		write_c0_ecc(0x80000000);
1708 		back_to_back_c0_hazard();
1709 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1710 		printk(KERN_INFO "Cache parity protection %sabled\n",
1711 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1712 		break;
1713 	case CPU_20KC:
1714 	case CPU_25KF:
1715 		/* Clear the DE bit (bit 16) in the c0_status register. */
1716 		printk(KERN_INFO "Enable cache parity protection for "
1717 		       "MIPS 20KC/25KF CPUs.\n");
1718 		clear_c0_status(ST0_DE);
1719 		break;
1720 	default:
1721 		break;
1722 	}
1723 }
1724 
1725 asmlinkage void cache_parity_error(void)
1726 {
1727 	const int field = 2 * sizeof(unsigned long);
1728 	unsigned int reg_val;
1729 
1730 	/* For the moment, report the problem and hang. */
1731 	printk("Cache error exception:\n");
1732 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1733 	reg_val = read_c0_cacheerr();
1734 	printk("c0_cacheerr == %08x\n", reg_val);
1735 
1736 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1737 	       reg_val & (1<<30) ? "secondary" : "primary",
1738 	       reg_val & (1<<31) ? "data" : "insn");
1739 	if ((cpu_has_mips_r2_r6) &&
1740 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1741 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1742 			reg_val & (1<<29) ? "ED " : "",
1743 			reg_val & (1<<28) ? "ET " : "",
1744 			reg_val & (1<<27) ? "ES " : "",
1745 			reg_val & (1<<26) ? "EE " : "",
1746 			reg_val & (1<<25) ? "EB " : "",
1747 			reg_val & (1<<24) ? "EI " : "",
1748 			reg_val & (1<<23) ? "E1 " : "",
1749 			reg_val & (1<<22) ? "E0 " : "");
1750 	} else {
1751 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1752 			reg_val & (1<<29) ? "ED " : "",
1753 			reg_val & (1<<28) ? "ET " : "",
1754 			reg_val & (1<<26) ? "EE " : "",
1755 			reg_val & (1<<25) ? "EB " : "",
1756 			reg_val & (1<<24) ? "EI " : "",
1757 			reg_val & (1<<23) ? "E1 " : "",
1758 			reg_val & (1<<22) ? "E0 " : "");
1759 	}
1760 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1761 
1762 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1763 	if (reg_val & (1<<22))
1764 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1765 
1766 	if (reg_val & (1<<23))
1767 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1768 #endif
1769 
1770 	panic("Can't handle the cache error!");
1771 }
1772 
1773 asmlinkage void do_ftlb(void)
1774 {
1775 	const int field = 2 * sizeof(unsigned long);
1776 	unsigned int reg_val;
1777 
1778 	/* For the moment, report the problem and hang. */
1779 	if ((cpu_has_mips_r2_r6) &&
1780 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1781 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1782 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1783 		       read_c0_ecc());
1784 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1785 		reg_val = read_c0_cacheerr();
1786 		pr_err("c0_cacheerr == %08x\n", reg_val);
1787 
1788 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1789 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1790 		} else {
1791 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1792 			       reg_val & (1<<30) ? "secondary" : "primary",
1793 			       reg_val & (1<<31) ? "data" : "insn");
1794 		}
1795 	} else {
1796 		pr_err("FTLB error exception\n");
1797 	}
1798 	/* Just print the cacheerr bits for now */
1799 	cache_parity_error();
1800 }
1801 
1802 /*
1803  * SDBBP EJTAG debug exception handler.
1804  * We skip the instruction and return to the next instruction.
1805  */
1806 void ejtag_exception_handler(struct pt_regs *regs)
1807 {
1808 	const int field = 2 * sizeof(unsigned long);
1809 	unsigned long depc, old_epc, old_ra;
1810 	unsigned int debug;
1811 
1812 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1813 	depc = read_c0_depc();
1814 	debug = read_c0_debug();
1815 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1816 	if (debug & 0x80000000) {
1817 		/*
1818 		 * In branch delay slot.
1819 		 * We cheat a little bit here and use EPC to calculate the
1820 		 * debug return address (DEPC). EPC is restored after the
1821 		 * calculation.
1822 		 */
1823 		old_epc = regs->cp0_epc;
1824 		old_ra = regs->regs[31];
1825 		regs->cp0_epc = depc;
1826 		compute_return_epc(regs);
1827 		depc = regs->cp0_epc;
1828 		regs->cp0_epc = old_epc;
1829 		regs->regs[31] = old_ra;
1830 	} else
1831 		depc += 4;
1832 	write_c0_depc(depc);
1833 
1834 #if 0
1835 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1836 	write_c0_debug(debug | 0x100);
1837 #endif
1838 }
1839 
1840 /*
1841  * NMI exception handler.
1842  * No lock; only written during early bootup by CPU 0.
1843  */
1844 static RAW_NOTIFIER_HEAD(nmi_chain);
1845 
1846 int register_nmi_notifier(struct notifier_block *nb)
1847 {
1848 	return raw_notifier_chain_register(&nmi_chain, nb);
1849 }
1850 
1851 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1852 {
1853 	char str[100];
1854 
1855 	nmi_enter();
1856 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1857 	bust_spinlocks(1);
1858 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1859 		 smp_processor_id(), regs->cp0_epc);
1860 	regs->cp0_epc = read_c0_errorepc();
1861 	die(str, regs);
1862 	nmi_exit();
1863 }
1864 
1865 #define VECTORSPACING 0x100	/* for EI/VI mode */
1866 
1867 unsigned long ebase;
1868 EXPORT_SYMBOL_GPL(ebase);
1869 unsigned long exception_handlers[32];
1870 unsigned long vi_handlers[64];
1871 
1872 void __init *set_except_vector(int n, void *addr)
1873 {
1874 	unsigned long handler = (unsigned long) addr;
1875 	unsigned long old_handler;
1876 
1877 #ifdef CONFIG_CPU_MICROMIPS
1878 	/*
1879 	 * Only the TLB handlers are cache aligned with an even
1880 	 * address. All other handlers are on an odd address and
1881 	 * require no modification. Otherwise, MIPS32 mode will
1882 	 * be entered when handling any TLB exceptions. That
1883 	 * would be bad...since we must stay in microMIPS mode.
1884 	 */
1885 	if (!(handler & 0x1))
1886 		handler |= 1;
1887 #endif
1888 	old_handler = xchg(&exception_handlers[n], handler);
1889 
1890 	if (n == 0 && cpu_has_divec) {
1891 #ifdef CONFIG_CPU_MICROMIPS
1892 		unsigned long jump_mask = ~((1 << 27) - 1);
1893 #else
1894 		unsigned long jump_mask = ~((1 << 28) - 1);
1895 #endif
1896 		u32 *buf = (u32 *)(ebase + 0x200);
1897 		unsigned int k0 = 26;
1898 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1899 			uasm_i_j(&buf, handler & ~jump_mask);
1900 			uasm_i_nop(&buf);
1901 		} else {
1902 			UASM_i_LA(&buf, k0, handler);
1903 			uasm_i_jr(&buf, k0);
1904 			uasm_i_nop(&buf);
1905 		}
1906 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1907 	}
1908 	return (void *)old_handler;
1909 }
1910 
1911 static void do_default_vi(void)
1912 {
1913 	show_regs(get_irq_regs());
1914 	panic("Caught unexpected vectored interrupt.");
1915 }
1916 
1917 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1918 {
1919 	unsigned long handler;
1920 	unsigned long old_handler = vi_handlers[n];
1921 	int srssets = current_cpu_data.srsets;
1922 	u16 *h;
1923 	unsigned char *b;
1924 
1925 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1926 
1927 	if (addr == NULL) {
1928 		handler = (unsigned long) do_default_vi;
1929 		srs = 0;
1930 	} else
1931 		handler = (unsigned long) addr;
1932 	vi_handlers[n] = handler;
1933 
1934 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1935 
1936 	if (srs >= srssets)
1937 		panic("Shadow register set %d not supported", srs);
1938 
1939 	if (cpu_has_veic) {
1940 		if (board_bind_eic_interrupt)
1941 			board_bind_eic_interrupt(n, srs);
1942 	} else if (cpu_has_vint) {
1943 		/* SRSMap is only defined if shadow sets are implemented */
1944 		if (srssets > 1)
1945 			change_c0_srsmap(0xf << n*4, srs << n*4);
1946 	}
1947 
1948 	if (srs == 0) {
1949 		/*
1950 		 * If no shadow set is selected then use the default handler
1951 		 * that does normal register saving and standard interrupt exit
1952 		 */
1953 		extern char except_vec_vi, except_vec_vi_lui;
1954 		extern char except_vec_vi_ori, except_vec_vi_end;
1955 		extern char rollback_except_vec_vi;
1956 		char *vec_start = using_rollback_handler() ?
1957 			&rollback_except_vec_vi : &except_vec_vi;
1958 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1959 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1960 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1961 #else
1962 		const int lui_offset = &except_vec_vi_lui - vec_start;
1963 		const int ori_offset = &except_vec_vi_ori - vec_start;
1964 #endif
1965 		const int handler_len = &except_vec_vi_end - vec_start;
1966 
1967 		if (handler_len > VECTORSPACING) {
1968 			/*
1969 			 * Sigh... panicing won't help as the console
1970 			 * is probably not configured :(
1971 			 */
1972 			panic("VECTORSPACING too small");
1973 		}
1974 
1975 		set_handler(((unsigned long)b - ebase), vec_start,
1976 #ifdef CONFIG_CPU_MICROMIPS
1977 				(handler_len - 1));
1978 #else
1979 				handler_len);
1980 #endif
1981 		h = (u16 *)(b + lui_offset);
1982 		*h = (handler >> 16) & 0xffff;
1983 		h = (u16 *)(b + ori_offset);
1984 		*h = (handler & 0xffff);
1985 		local_flush_icache_range((unsigned long)b,
1986 					 (unsigned long)(b+handler_len));
1987 	}
1988 	else {
1989 		/*
1990 		 * In other cases jump directly to the interrupt handler. It
1991 		 * is the handler's responsibility to save registers if required
1992 		 * (eg hi/lo) and return from the exception using "eret".
1993 		 */
1994 		u32 insn;
1995 
1996 		h = (u16 *)b;
1997 		/* j handler */
1998 #ifdef CONFIG_CPU_MICROMIPS
1999 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2000 #else
2001 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2002 #endif
2003 		h[0] = (insn >> 16) & 0xffff;
2004 		h[1] = insn & 0xffff;
2005 		h[2] = 0;
2006 		h[3] = 0;
2007 		local_flush_icache_range((unsigned long)b,
2008 					 (unsigned long)(b+8));
2009 	}
2010 
2011 	return (void *)old_handler;
2012 }
2013 
2014 void *set_vi_handler(int n, vi_handler_t addr)
2015 {
2016 	return set_vi_srs_handler(n, addr, 0);
2017 }
2018 
2019 extern void tlb_init(void);
2020 
2021 /*
2022  * Timer interrupt
2023  */
2024 int cp0_compare_irq;
2025 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2026 int cp0_compare_irq_shift;
2027 
2028 /*
2029  * Performance counter IRQ or -1 if shared with timer
2030  */
2031 int cp0_perfcount_irq;
2032 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2033 
2034 /*
2035  * Fast debug channel IRQ or -1 if not present
2036  */
2037 int cp0_fdc_irq;
2038 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2039 
2040 static int noulri;
2041 
2042 static int __init ulri_disable(char *s)
2043 {
2044 	pr_info("Disabling ulri\n");
2045 	noulri = 1;
2046 
2047 	return 1;
2048 }
2049 __setup("noulri", ulri_disable);
2050 
2051 /* configure STATUS register */
2052 static void configure_status(void)
2053 {
2054 	/*
2055 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2056 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2057 	 * flag that some firmware may have left set and the TS bit (for
2058 	 * IP27).  Set XX for ISA IV code to work.
2059 	 */
2060 	unsigned int status_set = ST0_CU0;
2061 #ifdef CONFIG_64BIT
2062 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2063 #endif
2064 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2065 		status_set |= ST0_XX;
2066 	if (cpu_has_dsp)
2067 		status_set |= ST0_MX;
2068 
2069 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2070 			 status_set);
2071 }
2072 
2073 unsigned int hwrena;
2074 EXPORT_SYMBOL_GPL(hwrena);
2075 
2076 /* configure HWRENA register */
2077 static void configure_hwrena(void)
2078 {
2079 	hwrena = cpu_hwrena_impl_bits;
2080 
2081 	if (cpu_has_mips_r2_r6)
2082 		hwrena |= MIPS_HWRENA_CPUNUM |
2083 			  MIPS_HWRENA_SYNCISTEP |
2084 			  MIPS_HWRENA_CC |
2085 			  MIPS_HWRENA_CCRES;
2086 
2087 	if (!noulri && cpu_has_userlocal)
2088 		hwrena |= MIPS_HWRENA_ULR;
2089 
2090 	if (hwrena)
2091 		write_c0_hwrena(hwrena);
2092 }
2093 
2094 static void configure_exception_vector(void)
2095 {
2096 	if (cpu_has_veic || cpu_has_vint) {
2097 		unsigned long sr = set_c0_status(ST0_BEV);
2098 		/* If available, use WG to set top bits of EBASE */
2099 		if (cpu_has_ebase_wg) {
2100 #ifdef CONFIG_64BIT
2101 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2102 #else
2103 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2104 #endif
2105 		}
2106 		write_c0_ebase(ebase);
2107 		write_c0_status(sr);
2108 		/* Setting vector spacing enables EI/VI mode  */
2109 		change_c0_intctl(0x3e0, VECTORSPACING);
2110 	}
2111 	if (cpu_has_divec) {
2112 		if (cpu_has_mipsmt) {
2113 			unsigned int vpflags = dvpe();
2114 			set_c0_cause(CAUSEF_IV);
2115 			evpe(vpflags);
2116 		} else
2117 			set_c0_cause(CAUSEF_IV);
2118 	}
2119 }
2120 
2121 void per_cpu_trap_init(bool is_boot_cpu)
2122 {
2123 	unsigned int cpu = smp_processor_id();
2124 
2125 	configure_status();
2126 	configure_hwrena();
2127 
2128 	configure_exception_vector();
2129 
2130 	/*
2131 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2132 	 *
2133 	 *  o read IntCtl.IPTI to determine the timer interrupt
2134 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2135 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2136 	 */
2137 	if (cpu_has_mips_r2_r6) {
2138 		/*
2139 		 * We shouldn't trust a secondary core has a sane EBASE register
2140 		 * so use the one calculated by the boot CPU.
2141 		 */
2142 		if (!is_boot_cpu) {
2143 			/* If available, use WG to set top bits of EBASE */
2144 			if (cpu_has_ebase_wg) {
2145 #ifdef CONFIG_64BIT
2146 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2147 #else
2148 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2149 #endif
2150 			}
2151 			write_c0_ebase(ebase);
2152 		}
2153 
2154 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2155 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2156 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2157 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2158 		if (!cp0_fdc_irq)
2159 			cp0_fdc_irq = -1;
2160 
2161 	} else {
2162 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2163 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2164 		cp0_perfcount_irq = -1;
2165 		cp0_fdc_irq = -1;
2166 	}
2167 
2168 	if (!cpu_data[cpu].asid_cache)
2169 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2170 
2171 	atomic_inc(&init_mm.mm_count);
2172 	current->active_mm = &init_mm;
2173 	BUG_ON(current->mm);
2174 	enter_lazy_tlb(&init_mm, current);
2175 
2176 	/* Boot CPU's cache setup in setup_arch(). */
2177 	if (!is_boot_cpu)
2178 		cpu_cache_init();
2179 	tlb_init();
2180 	TLBMISS_HANDLER_SETUP();
2181 }
2182 
2183 /* Install CPU exception handler */
2184 void set_handler(unsigned long offset, void *addr, unsigned long size)
2185 {
2186 #ifdef CONFIG_CPU_MICROMIPS
2187 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2188 #else
2189 	memcpy((void *)(ebase + offset), addr, size);
2190 #endif
2191 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2192 }
2193 
2194 static char panic_null_cerr[] =
2195 	"Trying to set NULL cache error exception handler";
2196 
2197 /*
2198  * Install uncached CPU exception handler.
2199  * This is suitable only for the cache error exception which is the only
2200  * exception handler that is being run uncached.
2201  */
2202 void set_uncached_handler(unsigned long offset, void *addr,
2203 	unsigned long size)
2204 {
2205 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2206 
2207 	if (!addr)
2208 		panic(panic_null_cerr);
2209 
2210 	memcpy((void *)(uncached_ebase + offset), addr, size);
2211 }
2212 
2213 static int __initdata rdhwr_noopt;
2214 static int __init set_rdhwr_noopt(char *str)
2215 {
2216 	rdhwr_noopt = 1;
2217 	return 1;
2218 }
2219 
2220 __setup("rdhwr_noopt", set_rdhwr_noopt);
2221 
2222 void __init trap_init(void)
2223 {
2224 	extern char except_vec3_generic;
2225 	extern char except_vec4;
2226 	extern char except_vec3_r4000;
2227 	unsigned long i;
2228 
2229 	check_wait();
2230 
2231 	if (cpu_has_veic || cpu_has_vint) {
2232 		unsigned long size = 0x200 + VECTORSPACING*64;
2233 		phys_addr_t ebase_pa;
2234 
2235 		ebase = (unsigned long)
2236 			__alloc_bootmem(size, 1 << fls(size), 0);
2237 
2238 		/*
2239 		 * Try to ensure ebase resides in KSeg0 if possible.
2240 		 *
2241 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2242 		 * hitting a poorly defined exception base for Cache Errors.
2243 		 * The allocation is likely to be in the low 512MB of physical,
2244 		 * in which case we should be able to convert to KSeg0.
2245 		 *
2246 		 * EVA is special though as it allows segments to be rearranged
2247 		 * and to become uncached during cache error handling.
2248 		 */
2249 		ebase_pa = __pa(ebase);
2250 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2251 			ebase = CKSEG0ADDR(ebase_pa);
2252 	} else {
2253 		ebase = CAC_BASE;
2254 
2255 		if (cpu_has_mips_r2_r6) {
2256 			if (cpu_has_ebase_wg) {
2257 #ifdef CONFIG_64BIT
2258 				ebase = (read_c0_ebase_64() & ~0xfff);
2259 #else
2260 				ebase = (read_c0_ebase() & ~0xfff);
2261 #endif
2262 			} else {
2263 				ebase += (read_c0_ebase() & 0x3ffff000);
2264 			}
2265 		}
2266 	}
2267 
2268 	if (cpu_has_mmips) {
2269 		unsigned int config3 = read_c0_config3();
2270 
2271 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2272 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2273 		else
2274 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2275 	}
2276 
2277 	if (board_ebase_setup)
2278 		board_ebase_setup();
2279 	per_cpu_trap_init(true);
2280 
2281 	/*
2282 	 * Copy the generic exception handlers to their final destination.
2283 	 * This will be overridden later as suitable for a particular
2284 	 * configuration.
2285 	 */
2286 	set_handler(0x180, &except_vec3_generic, 0x80);
2287 
2288 	/*
2289 	 * Setup default vectors
2290 	 */
2291 	for (i = 0; i <= 31; i++)
2292 		set_except_vector(i, handle_reserved);
2293 
2294 	/*
2295 	 * Copy the EJTAG debug exception vector handler code to it's final
2296 	 * destination.
2297 	 */
2298 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2299 		board_ejtag_handler_setup();
2300 
2301 	/*
2302 	 * Only some CPUs have the watch exceptions.
2303 	 */
2304 	if (cpu_has_watch)
2305 		set_except_vector(EXCCODE_WATCH, handle_watch);
2306 
2307 	/*
2308 	 * Initialise interrupt handlers
2309 	 */
2310 	if (cpu_has_veic || cpu_has_vint) {
2311 		int nvec = cpu_has_veic ? 64 : 8;
2312 		for (i = 0; i < nvec; i++)
2313 			set_vi_handler(i, NULL);
2314 	}
2315 	else if (cpu_has_divec)
2316 		set_handler(0x200, &except_vec4, 0x8);
2317 
2318 	/*
2319 	 * Some CPUs can enable/disable for cache parity detection, but does
2320 	 * it different ways.
2321 	 */
2322 	parity_protection_init();
2323 
2324 	/*
2325 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2326 	 * by external hardware.  Therefore these two exceptions
2327 	 * may have board specific handlers.
2328 	 */
2329 	if (board_be_init)
2330 		board_be_init();
2331 
2332 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2333 					rollback_handle_int : handle_int);
2334 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2335 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2336 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2337 
2338 	set_except_vector(EXCCODE_ADEL, handle_adel);
2339 	set_except_vector(EXCCODE_ADES, handle_ades);
2340 
2341 	set_except_vector(EXCCODE_IBE, handle_ibe);
2342 	set_except_vector(EXCCODE_DBE, handle_dbe);
2343 
2344 	set_except_vector(EXCCODE_SYS, handle_sys);
2345 	set_except_vector(EXCCODE_BP, handle_bp);
2346 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2347 			  (cpu_has_vtag_icache ?
2348 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2349 	set_except_vector(EXCCODE_CPU, handle_cpu);
2350 	set_except_vector(EXCCODE_OV, handle_ov);
2351 	set_except_vector(EXCCODE_TR, handle_tr);
2352 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2353 
2354 	if (current_cpu_type() == CPU_R6000 ||
2355 	    current_cpu_type() == CPU_R6000A) {
2356 		/*
2357 		 * The R6000 is the only R-series CPU that features a machine
2358 		 * check exception (similar to the R4000 cache error) and
2359 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2360 		 * written yet.	 Well, anyway there is no R6000 machine on the
2361 		 * current list of targets for Linux/MIPS.
2362 		 * (Duh, crap, there is someone with a triple R6k machine)
2363 		 */
2364 		//set_except_vector(14, handle_mc);
2365 		//set_except_vector(15, handle_ndc);
2366 	}
2367 
2368 
2369 	if (board_nmi_handler_setup)
2370 		board_nmi_handler_setup();
2371 
2372 	if (cpu_has_fpu && !cpu_has_nofpuex)
2373 		set_except_vector(EXCCODE_FPE, handle_fpe);
2374 
2375 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2376 
2377 	if (cpu_has_rixiex) {
2378 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2379 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2380 	}
2381 
2382 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2383 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2384 
2385 	if (cpu_has_mcheck)
2386 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2387 
2388 	if (cpu_has_mipsmt)
2389 		set_except_vector(EXCCODE_THREAD, handle_mt);
2390 
2391 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2392 
2393 	if (board_cache_error_setup)
2394 		board_cache_error_setup();
2395 
2396 	if (cpu_has_vce)
2397 		/* Special exception: R4[04]00 uses also the divec space. */
2398 		set_handler(0x180, &except_vec3_r4000, 0x100);
2399 	else if (cpu_has_4kex)
2400 		set_handler(0x180, &except_vec3_generic, 0x80);
2401 	else
2402 		set_handler(0x080, &except_vec3_generic, 0x80);
2403 
2404 	local_flush_icache_range(ebase, ebase + 0x400);
2405 
2406 	sort_extable(__start___dbe_table, __stop___dbe_table);
2407 
2408 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2409 }
2410 
2411 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2412 			    void *v)
2413 {
2414 	switch (cmd) {
2415 	case CPU_PM_ENTER_FAILED:
2416 	case CPU_PM_EXIT:
2417 		configure_status();
2418 		configure_hwrena();
2419 		configure_exception_vector();
2420 
2421 		/* Restore register with CPU number for TLB handlers */
2422 		TLBMISS_HANDLER_RESTORE();
2423 
2424 		break;
2425 	}
2426 
2427 	return NOTIFY_OK;
2428 }
2429 
2430 static struct notifier_block trap_pm_notifier_block = {
2431 	.notifier_call = trap_pm_notifier,
2432 };
2433 
2434 static int __init trap_pm_init(void)
2435 {
2436 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2437 }
2438 arch_initcall(trap_pm_init);
2439