xref: /linux/arch/mips/kernel/traps.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/spinlock.h>
23 #include <linux/kallsyms.h>
24 #include <linux/bootmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/ptrace.h>
27 #include <linux/kgdb.h>
28 #include <linux/kdebug.h>
29 #include <linux/kprobes.h>
30 #include <linux/notifier.h>
31 #include <linux/kdb.h>
32 #include <linux/irq.h>
33 #include <linux/perf_event.h>
34 
35 #include <asm/bootinfo.h>
36 #include <asm/branch.h>
37 #include <asm/break.h>
38 #include <asm/cop2.h>
39 #include <asm/cpu.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/fpu_emulator.h>
43 #include <asm/mipsregs.h>
44 #include <asm/mipsmtregs.h>
45 #include <asm/module.h>
46 #include <asm/pgtable.h>
47 #include <asm/ptrace.h>
48 #include <asm/sections.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
56 #include <asm/uasm.h>
57 
58 extern void check_wait(void);
59 extern asmlinkage void r4k_wait(void);
60 extern asmlinkage void rollback_handle_int(void);
61 extern asmlinkage void handle_int(void);
62 extern asmlinkage void handle_tlbm(void);
63 extern asmlinkage void handle_tlbl(void);
64 extern asmlinkage void handle_tlbs(void);
65 extern asmlinkage void handle_adel(void);
66 extern asmlinkage void handle_ades(void);
67 extern asmlinkage void handle_ibe(void);
68 extern asmlinkage void handle_dbe(void);
69 extern asmlinkage void handle_sys(void);
70 extern asmlinkage void handle_bp(void);
71 extern asmlinkage void handle_ri(void);
72 extern asmlinkage void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage void handle_ri_rdhwr(void);
74 extern asmlinkage void handle_cpu(void);
75 extern asmlinkage void handle_ov(void);
76 extern asmlinkage void handle_tr(void);
77 extern asmlinkage void handle_fpe(void);
78 extern asmlinkage void handle_mdmx(void);
79 extern asmlinkage void handle_watch(void);
80 extern asmlinkage void handle_mt(void);
81 extern asmlinkage void handle_dsp(void);
82 extern asmlinkage void handle_mcheck(void);
83 extern asmlinkage void handle_reserved(void);
84 
85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 				    struct mips_fpu_struct *ctx, int has_fpu,
87 				    void *__user *fault_addr);
88 
89 void (*board_be_init)(void);
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91 void (*board_nmi_handler_setup)(void);
92 void (*board_ejtag_handler_setup)(void);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
94 void (*board_ebase_setup)(void);
95 void __cpuinitdata(*board_cache_error_setup)(void);
96 
97 static void show_raw_backtrace(unsigned long reg29)
98 {
99 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
100 	unsigned long addr;
101 
102 	printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
104 	printk("\n");
105 #endif
106 	while (!kstack_end(sp)) {
107 		unsigned long __user *p =
108 			(unsigned long __user *)(unsigned long)sp++;
109 		if (__get_user(addr, p)) {
110 			printk(" (Bad stack address)");
111 			break;
112 		}
113 		if (__kernel_text_address(addr))
114 			print_ip_sym(addr);
115 	}
116 	printk("\n");
117 }
118 
119 #ifdef CONFIG_KALLSYMS
120 int raw_show_trace;
121 static int __init set_raw_show_trace(char *str)
122 {
123 	raw_show_trace = 1;
124 	return 1;
125 }
126 __setup("raw_show_trace", set_raw_show_trace);
127 #endif
128 
129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
130 {
131 	unsigned long sp = regs->regs[29];
132 	unsigned long ra = regs->regs[31];
133 	unsigned long pc = regs->cp0_epc;
134 
135 	if (!task)
136 		task = current;
137 
138 	if (raw_show_trace || !__kernel_text_address(pc)) {
139 		show_raw_backtrace(sp);
140 		return;
141 	}
142 	printk("Call Trace:\n");
143 	do {
144 		print_ip_sym(pc);
145 		pc = unwind_stack(task, &sp, pc, &ra);
146 	} while (pc);
147 	printk("\n");
148 }
149 
150 /*
151  * This routine abuses get_user()/put_user() to reference pointers
152  * with at least a bit of error checking ...
153  */
154 static void show_stacktrace(struct task_struct *task,
155 	const struct pt_regs *regs)
156 {
157 	const int field = 2 * sizeof(unsigned long);
158 	long stackdata;
159 	int i;
160 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
161 
162 	printk("Stack :");
163 	i = 0;
164 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
165 		if (i && ((i % (64 / field)) == 0))
166 			printk("\n       ");
167 		if (i > 39) {
168 			printk(" ...");
169 			break;
170 		}
171 
172 		if (__get_user(stackdata, sp++)) {
173 			printk(" (Bad stack address)");
174 			break;
175 		}
176 
177 		printk(" %0*lx", field, stackdata);
178 		i++;
179 	}
180 	printk("\n");
181 	show_backtrace(task, regs);
182 }
183 
184 void show_stack(struct task_struct *task, unsigned long *sp)
185 {
186 	struct pt_regs regs;
187 	if (sp) {
188 		regs.regs[29] = (unsigned long)sp;
189 		regs.regs[31] = 0;
190 		regs.cp0_epc = 0;
191 	} else {
192 		if (task && task != current) {
193 			regs.regs[29] = task->thread.reg29;
194 			regs.regs[31] = 0;
195 			regs.cp0_epc = task->thread.reg31;
196 #ifdef CONFIG_KGDB_KDB
197 		} else if (atomic_read(&kgdb_active) != -1 &&
198 			   kdb_current_regs) {
199 			memcpy(&regs, kdb_current_regs, sizeof(regs));
200 #endif /* CONFIG_KGDB_KDB */
201 		} else {
202 			prepare_frametrace(&regs);
203 		}
204 	}
205 	show_stacktrace(task, &regs);
206 }
207 
208 /*
209  * The architecture-independent dump_stack generator
210  */
211 void dump_stack(void)
212 {
213 	struct pt_regs regs;
214 
215 	prepare_frametrace(&regs);
216 	show_backtrace(current, &regs);
217 }
218 
219 EXPORT_SYMBOL(dump_stack);
220 
221 static void show_code(unsigned int __user *pc)
222 {
223 	long i;
224 	unsigned short __user *pc16 = NULL;
225 
226 	printk("\nCode:");
227 
228 	if ((unsigned long)pc & 1)
229 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
230 	for(i = -3 ; i < 6 ; i++) {
231 		unsigned int insn;
232 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
233 			printk(" (Bad address in epc)\n");
234 			break;
235 		}
236 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
237 	}
238 }
239 
240 static void __show_regs(const struct pt_regs *regs)
241 {
242 	const int field = 2 * sizeof(unsigned long);
243 	unsigned int cause = regs->cp0_cause;
244 	int i;
245 
246 	printk("Cpu %d\n", smp_processor_id());
247 
248 	/*
249 	 * Saved main processor registers
250 	 */
251 	for (i = 0; i < 32; ) {
252 		if ((i % 4) == 0)
253 			printk("$%2d   :", i);
254 		if (i == 0)
255 			printk(" %0*lx", field, 0UL);
256 		else if (i == 26 || i == 27)
257 			printk(" %*s", field, "");
258 		else
259 			printk(" %0*lx", field, regs->regs[i]);
260 
261 		i++;
262 		if ((i % 4) == 0)
263 			printk("\n");
264 	}
265 
266 #ifdef CONFIG_CPU_HAS_SMARTMIPS
267 	printk("Acx    : %0*lx\n", field, regs->acx);
268 #endif
269 	printk("Hi    : %0*lx\n", field, regs->hi);
270 	printk("Lo    : %0*lx\n", field, regs->lo);
271 
272 	/*
273 	 * Saved cp0 registers
274 	 */
275 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
276 	       (void *) regs->cp0_epc);
277 	printk("    %s\n", print_tainted());
278 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
279 	       (void *) regs->regs[31]);
280 
281 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
282 
283 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
284 		if (regs->cp0_status & ST0_KUO)
285 			printk("KUo ");
286 		if (regs->cp0_status & ST0_IEO)
287 			printk("IEo ");
288 		if (regs->cp0_status & ST0_KUP)
289 			printk("KUp ");
290 		if (regs->cp0_status & ST0_IEP)
291 			printk("IEp ");
292 		if (regs->cp0_status & ST0_KUC)
293 			printk("KUc ");
294 		if (regs->cp0_status & ST0_IEC)
295 			printk("IEc ");
296 	} else {
297 		if (regs->cp0_status & ST0_KX)
298 			printk("KX ");
299 		if (regs->cp0_status & ST0_SX)
300 			printk("SX ");
301 		if (regs->cp0_status & ST0_UX)
302 			printk("UX ");
303 		switch (regs->cp0_status & ST0_KSU) {
304 		case KSU_USER:
305 			printk("USER ");
306 			break;
307 		case KSU_SUPERVISOR:
308 			printk("SUPERVISOR ");
309 			break;
310 		case KSU_KERNEL:
311 			printk("KERNEL ");
312 			break;
313 		default:
314 			printk("BAD_MODE ");
315 			break;
316 		}
317 		if (regs->cp0_status & ST0_ERL)
318 			printk("ERL ");
319 		if (regs->cp0_status & ST0_EXL)
320 			printk("EXL ");
321 		if (regs->cp0_status & ST0_IE)
322 			printk("IE ");
323 	}
324 	printk("\n");
325 
326 	printk("Cause : %08x\n", cause);
327 
328 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 	if (1 <= cause && cause <= 5)
330 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
331 
332 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
333 	       cpu_name_string());
334 }
335 
336 /*
337  * FIXME: really the generic show_regs should take a const pointer argument.
338  */
339 void show_regs(struct pt_regs *regs)
340 {
341 	__show_regs((struct pt_regs *)regs);
342 }
343 
344 void show_registers(struct pt_regs *regs)
345 {
346 	const int field = 2 * sizeof(unsigned long);
347 
348 	__show_regs(regs);
349 	print_modules();
350 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
351 	       current->comm, current->pid, current_thread_info(), current,
352 	      field, current_thread_info()->tp_value);
353 	if (cpu_has_userlocal) {
354 		unsigned long tls;
355 
356 		tls = read_c0_userlocal();
357 		if (tls != current_thread_info()->tp_value)
358 			printk("*HwTLS: %0*lx\n", field, tls);
359 	}
360 
361 	show_stacktrace(current, regs);
362 	show_code((unsigned int __user *) regs->cp0_epc);
363 	printk("\n");
364 }
365 
366 static int regs_to_trapnr(struct pt_regs *regs)
367 {
368 	return (regs->cp0_cause >> 2) & 0x1f;
369 }
370 
371 static DEFINE_RAW_SPINLOCK(die_lock);
372 
373 void __noreturn die(const char *str, struct pt_regs *regs)
374 {
375 	static int die_counter;
376 	int sig = SIGSEGV;
377 #ifdef CONFIG_MIPS_MT_SMTC
378 	unsigned long dvpret;
379 #endif /* CONFIG_MIPS_MT_SMTC */
380 
381 	oops_enter();
382 
383 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
384 		sig = 0;
385 
386 	console_verbose();
387 	raw_spin_lock_irq(&die_lock);
388 #ifdef CONFIG_MIPS_MT_SMTC
389 	dvpret = dvpe();
390 #endif /* CONFIG_MIPS_MT_SMTC */
391 	bust_spinlocks(1);
392 #ifdef CONFIG_MIPS_MT_SMTC
393 	mips_mt_regdump(dvpret);
394 #endif /* CONFIG_MIPS_MT_SMTC */
395 
396 	printk("%s[#%d]:\n", str, ++die_counter);
397 	show_registers(regs);
398 	add_taint(TAINT_DIE);
399 	raw_spin_unlock_irq(&die_lock);
400 
401 	oops_exit();
402 
403 	if (in_interrupt())
404 		panic("Fatal exception in interrupt");
405 
406 	if (panic_on_oops) {
407 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
408 		ssleep(5);
409 		panic("Fatal exception");
410 	}
411 
412 	do_exit(sig);
413 }
414 
415 extern struct exception_table_entry __start___dbe_table[];
416 extern struct exception_table_entry __stop___dbe_table[];
417 
418 __asm__(
419 "	.section	__dbe_table, \"a\"\n"
420 "	.previous			\n");
421 
422 /* Given an address, look for it in the exception tables. */
423 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
424 {
425 	const struct exception_table_entry *e;
426 
427 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428 	if (!e)
429 		e = search_module_dbetables(addr);
430 	return e;
431 }
432 
433 asmlinkage void do_be(struct pt_regs *regs)
434 {
435 	const int field = 2 * sizeof(unsigned long);
436 	const struct exception_table_entry *fixup = NULL;
437 	int data = regs->cp0_cause & 4;
438 	int action = MIPS_BE_FATAL;
439 
440 	/* XXX For now.  Fixme, this searches the wrong table ...  */
441 	if (data && !user_mode(regs))
442 		fixup = search_dbe_tables(exception_epc(regs));
443 
444 	if (fixup)
445 		action = MIPS_BE_FIXUP;
446 
447 	if (board_be_handler)
448 		action = board_be_handler(regs, fixup != NULL);
449 
450 	switch (action) {
451 	case MIPS_BE_DISCARD:
452 		return;
453 	case MIPS_BE_FIXUP:
454 		if (fixup) {
455 			regs->cp0_epc = fixup->nextinsn;
456 			return;
457 		}
458 		break;
459 	default:
460 		break;
461 	}
462 
463 	/*
464 	 * Assume it would be too dangerous to continue ...
465 	 */
466 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467 	       data ? "Data" : "Instruction",
468 	       field, regs->cp0_epc, field, regs->regs[31]);
469 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
470 	    == NOTIFY_STOP)
471 		return;
472 
473 	die_if_kernel("Oops", regs);
474 	force_sig(SIGBUS, current);
475 }
476 
477 /*
478  * ll/sc, rdhwr, sync emulation
479  */
480 
481 #define OPCODE 0xfc000000
482 #define BASE   0x03e00000
483 #define RT     0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL     0xc0000000
486 #define SC     0xe0000000
487 #define SPEC0  0x00000000
488 #define SPEC3  0x7c000000
489 #define RD     0x0000f800
490 #define FUNC   0x0000003f
491 #define SYNC   0x0000000f
492 #define RDHWR  0x0000003b
493 
494 /*
495  * The ll_bit is cleared by r*_switch.S
496  */
497 
498 unsigned int ll_bit;
499 struct task_struct *ll_task;
500 
501 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
502 {
503 	unsigned long value, __user *vaddr;
504 	long offset;
505 
506 	/*
507 	 * analyse the ll instruction that just caused a ri exception
508 	 * and put the referenced address to addr.
509 	 */
510 
511 	/* sign extend offset */
512 	offset = opcode & OFFSET;
513 	offset <<= 16;
514 	offset >>= 16;
515 
516 	vaddr = (unsigned long __user *)
517 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
518 
519 	if ((unsigned long)vaddr & 3)
520 		return SIGBUS;
521 	if (get_user(value, vaddr))
522 		return SIGSEGV;
523 
524 	preempt_disable();
525 
526 	if (ll_task == NULL || ll_task == current) {
527 		ll_bit = 1;
528 	} else {
529 		ll_bit = 0;
530 	}
531 	ll_task = current;
532 
533 	preempt_enable();
534 
535 	regs->regs[(opcode & RT) >> 16] = value;
536 
537 	return 0;
538 }
539 
540 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
541 {
542 	unsigned long __user *vaddr;
543 	unsigned long reg;
544 	long offset;
545 
546 	/*
547 	 * analyse the sc instruction that just caused a ri exception
548 	 * and put the referenced address to addr.
549 	 */
550 
551 	/* sign extend offset */
552 	offset = opcode & OFFSET;
553 	offset <<= 16;
554 	offset >>= 16;
555 
556 	vaddr = (unsigned long __user *)
557 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
558 	reg = (opcode & RT) >> 16;
559 
560 	if ((unsigned long)vaddr & 3)
561 		return SIGBUS;
562 
563 	preempt_disable();
564 
565 	if (ll_bit == 0 || ll_task != current) {
566 		regs->regs[reg] = 0;
567 		preempt_enable();
568 		return 0;
569 	}
570 
571 	preempt_enable();
572 
573 	if (put_user(regs->regs[reg], vaddr))
574 		return SIGSEGV;
575 
576 	regs->regs[reg] = 1;
577 
578 	return 0;
579 }
580 
581 /*
582  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
583  * opcodes are supposed to result in coprocessor unusable exceptions if
584  * executed on ll/sc-less processors.  That's the theory.  In practice a
585  * few processors such as NEC's VR4100 throw reserved instruction exceptions
586  * instead, so we're doing the emulation thing in both exception handlers.
587  */
588 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
589 {
590 	if ((opcode & OPCODE) == LL) {
591 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
592 				1, regs, 0);
593 		return simulate_ll(regs, opcode);
594 	}
595 	if ((opcode & OPCODE) == SC) {
596 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597 				1, regs, 0);
598 		return simulate_sc(regs, opcode);
599 	}
600 
601 	return -1;			/* Must be something else ... */
602 }
603 
604 /*
605  * Simulate trapping 'rdhwr' instructions to provide user accessible
606  * registers not implemented in hardware.
607  */
608 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
609 {
610 	struct thread_info *ti = task_thread_info(current);
611 
612 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
613 		int rd = (opcode & RD) >> 11;
614 		int rt = (opcode & RT) >> 16;
615 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616 				1, regs, 0);
617 		switch (rd) {
618 		case 0:		/* CPU number */
619 			regs->regs[rt] = smp_processor_id();
620 			return 0;
621 		case 1:		/* SYNCI length */
622 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
623 					     current_cpu_data.icache.linesz);
624 			return 0;
625 		case 2:		/* Read count register */
626 			regs->regs[rt] = read_c0_count();
627 			return 0;
628 		case 3:		/* Count register resolution */
629 			switch (current_cpu_data.cputype) {
630 			case CPU_20KC:
631 			case CPU_25KF:
632 				regs->regs[rt] = 1;
633 				break;
634 			default:
635 				regs->regs[rt] = 2;
636 			}
637 			return 0;
638 		case 29:
639 			regs->regs[rt] = ti->tp_value;
640 			return 0;
641 		default:
642 			return -1;
643 		}
644 	}
645 
646 	/* Not ours.  */
647 	return -1;
648 }
649 
650 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
651 {
652 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
653 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
654 				1, regs, 0);
655 		return 0;
656 	}
657 
658 	return -1;			/* Must be something else ... */
659 }
660 
661 asmlinkage void do_ov(struct pt_regs *regs)
662 {
663 	siginfo_t info;
664 
665 	die_if_kernel("Integer overflow", regs);
666 
667 	info.si_code = FPE_INTOVF;
668 	info.si_signo = SIGFPE;
669 	info.si_errno = 0;
670 	info.si_addr = (void __user *) regs->cp0_epc;
671 	force_sig_info(SIGFPE, &info, current);
672 }
673 
674 static int process_fpemu_return(int sig, void __user *fault_addr)
675 {
676 	if (sig == SIGSEGV || sig == SIGBUS) {
677 		struct siginfo si = {0};
678 		si.si_addr = fault_addr;
679 		si.si_signo = sig;
680 		if (sig == SIGSEGV) {
681 			if (find_vma(current->mm, (unsigned long)fault_addr))
682 				si.si_code = SEGV_ACCERR;
683 			else
684 				si.si_code = SEGV_MAPERR;
685 		} else {
686 			si.si_code = BUS_ADRERR;
687 		}
688 		force_sig_info(sig, &si, current);
689 		return 1;
690 	} else if (sig) {
691 		force_sig(sig, current);
692 		return 1;
693 	} else {
694 		return 0;
695 	}
696 }
697 
698 /*
699  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
700  */
701 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
702 {
703 	siginfo_t info = {0};
704 
705 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
706 	    == NOTIFY_STOP)
707 		return;
708 	die_if_kernel("FP exception in kernel code", regs);
709 
710 	if (fcr31 & FPU_CSR_UNI_X) {
711 		int sig;
712 		void __user *fault_addr = NULL;
713 
714 		/*
715 		 * Unimplemented operation exception.  If we've got the full
716 		 * software emulator on-board, let's use it...
717 		 *
718 		 * Force FPU to dump state into task/thread context.  We're
719 		 * moving a lot of data here for what is probably a single
720 		 * instruction, but the alternative is to pre-decode the FP
721 		 * register operands before invoking the emulator, which seems
722 		 * a bit extreme for what should be an infrequent event.
723 		 */
724 		/* Ensure 'resume' not overwrite saved fp context again. */
725 		lose_fpu(1);
726 
727 		/* Run the emulator */
728 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
729 					       &fault_addr);
730 
731 		/*
732 		 * We can't allow the emulated instruction to leave any of
733 		 * the cause bit set in $fcr31.
734 		 */
735 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
736 
737 		/* Restore the hardware register state */
738 		own_fpu(1);	/* Using the FPU again.  */
739 
740 		/* If something went wrong, signal */
741 		process_fpemu_return(sig, fault_addr);
742 
743 		return;
744 	} else if (fcr31 & FPU_CSR_INV_X)
745 		info.si_code = FPE_FLTINV;
746 	else if (fcr31 & FPU_CSR_DIV_X)
747 		info.si_code = FPE_FLTDIV;
748 	else if (fcr31 & FPU_CSR_OVF_X)
749 		info.si_code = FPE_FLTOVF;
750 	else if (fcr31 & FPU_CSR_UDF_X)
751 		info.si_code = FPE_FLTUND;
752 	else if (fcr31 & FPU_CSR_INE_X)
753 		info.si_code = FPE_FLTRES;
754 	else
755 		info.si_code = __SI_FAULT;
756 	info.si_signo = SIGFPE;
757 	info.si_errno = 0;
758 	info.si_addr = (void __user *) regs->cp0_epc;
759 	force_sig_info(SIGFPE, &info, current);
760 }
761 
762 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
763 	const char *str)
764 {
765 	siginfo_t info;
766 	char b[40];
767 
768 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
769 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770 		return;
771 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
772 
773 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774 		return;
775 
776 	/*
777 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
778 	 * insns, even for trap and break codes that indicate arithmetic
779 	 * failures.  Weird ...
780 	 * But should we continue the brokenness???  --macro
781 	 */
782 	switch (code) {
783 	case BRK_OVERFLOW:
784 	case BRK_DIVZERO:
785 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
786 		die_if_kernel(b, regs);
787 		if (code == BRK_DIVZERO)
788 			info.si_code = FPE_INTDIV;
789 		else
790 			info.si_code = FPE_INTOVF;
791 		info.si_signo = SIGFPE;
792 		info.si_errno = 0;
793 		info.si_addr = (void __user *) regs->cp0_epc;
794 		force_sig_info(SIGFPE, &info, current);
795 		break;
796 	case BRK_BUG:
797 		die_if_kernel("Kernel bug detected", regs);
798 		force_sig(SIGTRAP, current);
799 		break;
800 	case BRK_MEMU:
801 		/*
802 		 * Address errors may be deliberately induced by the FPU
803 		 * emulator to retake control of the CPU after executing the
804 		 * instruction in the delay slot of an emulated branch.
805 		 *
806 		 * Terminate if exception was recognized as a delay slot return
807 		 * otherwise handle as normal.
808 		 */
809 		if (do_dsemulret(regs))
810 			return;
811 
812 		die_if_kernel("Math emu break/trap", regs);
813 		force_sig(SIGTRAP, current);
814 		break;
815 	default:
816 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
817 		die_if_kernel(b, regs);
818 		force_sig(SIGTRAP, current);
819 	}
820 }
821 
822 asmlinkage void do_bp(struct pt_regs *regs)
823 {
824 	unsigned int opcode, bcode;
825 
826 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
827 		goto out_sigsegv;
828 
829 	/*
830 	 * There is the ancient bug in the MIPS assemblers that the break
831 	 * code starts left to bit 16 instead to bit 6 in the opcode.
832 	 * Gas is bug-compatible, but not always, grrr...
833 	 * We handle both cases with a simple heuristics.  --macro
834 	 */
835 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
836 	if (bcode >= (1 << 10))
837 		bcode >>= 10;
838 
839 	/*
840 	 * notify the kprobe handlers, if instruction is likely to
841 	 * pertain to them.
842 	 */
843 	switch (bcode) {
844 	case BRK_KPROBE_BP:
845 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
846 			return;
847 		else
848 			break;
849 	case BRK_KPROBE_SSTEPBP:
850 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
851 			return;
852 		else
853 			break;
854 	default:
855 		break;
856 	}
857 
858 	do_trap_or_bp(regs, bcode, "Break");
859 	return;
860 
861 out_sigsegv:
862 	force_sig(SIGSEGV, current);
863 }
864 
865 asmlinkage void do_tr(struct pt_regs *regs)
866 {
867 	unsigned int opcode, tcode = 0;
868 
869 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
870 		goto out_sigsegv;
871 
872 	/* Immediate versions don't provide a code.  */
873 	if (!(opcode & OPCODE))
874 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
875 
876 	do_trap_or_bp(regs, tcode, "Trap");
877 	return;
878 
879 out_sigsegv:
880 	force_sig(SIGSEGV, current);
881 }
882 
883 asmlinkage void do_ri(struct pt_regs *regs)
884 {
885 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
886 	unsigned long old_epc = regs->cp0_epc;
887 	unsigned int opcode = 0;
888 	int status = -1;
889 
890 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
891 	    == NOTIFY_STOP)
892 		return;
893 
894 	die_if_kernel("Reserved instruction in kernel code", regs);
895 
896 	if (unlikely(compute_return_epc(regs) < 0))
897 		return;
898 
899 	if (unlikely(get_user(opcode, epc) < 0))
900 		status = SIGSEGV;
901 
902 	if (!cpu_has_llsc && status < 0)
903 		status = simulate_llsc(regs, opcode);
904 
905 	if (status < 0)
906 		status = simulate_rdhwr(regs, opcode);
907 
908 	if (status < 0)
909 		status = simulate_sync(regs, opcode);
910 
911 	if (status < 0)
912 		status = SIGILL;
913 
914 	if (unlikely(status > 0)) {
915 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
916 		force_sig(status, current);
917 	}
918 }
919 
920 /*
921  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
922  * emulated more than some threshold number of instructions, force migration to
923  * a "CPU" that has FP support.
924  */
925 static void mt_ase_fp_affinity(void)
926 {
927 #ifdef CONFIG_MIPS_MT_FPAFF
928 	if (mt_fpemul_threshold > 0 &&
929 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
930 		/*
931 		 * If there's no FPU present, or if the application has already
932 		 * restricted the allowed set to exclude any CPUs with FPUs,
933 		 * we'll skip the procedure.
934 		 */
935 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
936 			cpumask_t tmask;
937 
938 			current->thread.user_cpus_allowed
939 				= current->cpus_allowed;
940 			cpus_and(tmask, current->cpus_allowed,
941 				mt_fpu_cpumask);
942 			set_cpus_allowed_ptr(current, &tmask);
943 			set_thread_flag(TIF_FPUBOUND);
944 		}
945 	}
946 #endif /* CONFIG_MIPS_MT_FPAFF */
947 }
948 
949 /*
950  * No lock; only written during early bootup by CPU 0.
951  */
952 static RAW_NOTIFIER_HEAD(cu2_chain);
953 
954 int __ref register_cu2_notifier(struct notifier_block *nb)
955 {
956 	return raw_notifier_chain_register(&cu2_chain, nb);
957 }
958 
959 int cu2_notifier_call_chain(unsigned long val, void *v)
960 {
961 	return raw_notifier_call_chain(&cu2_chain, val, v);
962 }
963 
964 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
965         void *data)
966 {
967 	struct pt_regs *regs = data;
968 
969 	switch (action) {
970 	default:
971 		die_if_kernel("Unhandled kernel unaligned access or invalid "
972 			      "instruction", regs);
973 		/* Fall through  */
974 
975 	case CU2_EXCEPTION:
976 		force_sig(SIGILL, current);
977 	}
978 
979 	return NOTIFY_OK;
980 }
981 
982 asmlinkage void do_cpu(struct pt_regs *regs)
983 {
984 	unsigned int __user *epc;
985 	unsigned long old_epc;
986 	unsigned int opcode;
987 	unsigned int cpid;
988 	int status;
989 	unsigned long __maybe_unused flags;
990 
991 	die_if_kernel("do_cpu invoked from kernel context!", regs);
992 
993 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
994 
995 	switch (cpid) {
996 	case 0:
997 		epc = (unsigned int __user *)exception_epc(regs);
998 		old_epc = regs->cp0_epc;
999 		opcode = 0;
1000 		status = -1;
1001 
1002 		if (unlikely(compute_return_epc(regs) < 0))
1003 			return;
1004 
1005 		if (unlikely(get_user(opcode, epc) < 0))
1006 			status = SIGSEGV;
1007 
1008 		if (!cpu_has_llsc && status < 0)
1009 			status = simulate_llsc(regs, opcode);
1010 
1011 		if (status < 0)
1012 			status = simulate_rdhwr(regs, opcode);
1013 
1014 		if (status < 0)
1015 			status = SIGILL;
1016 
1017 		if (unlikely(status > 0)) {
1018 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1019 			force_sig(status, current);
1020 		}
1021 
1022 		return;
1023 
1024 	case 1:
1025 		if (used_math())	/* Using the FPU again.  */
1026 			own_fpu(1);
1027 		else {			/* First time FPU user.  */
1028 			init_fpu();
1029 			set_used_math();
1030 		}
1031 
1032 		if (!raw_cpu_has_fpu) {
1033 			int sig;
1034 			void __user *fault_addr = NULL;
1035 			sig = fpu_emulator_cop1Handler(regs,
1036 						       &current->thread.fpu,
1037 						       0, &fault_addr);
1038 			if (!process_fpemu_return(sig, fault_addr))
1039 				mt_ase_fp_affinity();
1040 		}
1041 
1042 		return;
1043 
1044 	case 2:
1045 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1046 		return;
1047 
1048 	case 3:
1049 		break;
1050 	}
1051 
1052 	force_sig(SIGILL, current);
1053 }
1054 
1055 asmlinkage void do_mdmx(struct pt_regs *regs)
1056 {
1057 	force_sig(SIGILL, current);
1058 }
1059 
1060 /*
1061  * Called with interrupts disabled.
1062  */
1063 asmlinkage void do_watch(struct pt_regs *regs)
1064 {
1065 	u32 cause;
1066 
1067 	/*
1068 	 * Clear WP (bit 22) bit of cause register so we don't loop
1069 	 * forever.
1070 	 */
1071 	cause = read_c0_cause();
1072 	cause &= ~(1 << 22);
1073 	write_c0_cause(cause);
1074 
1075 	/*
1076 	 * If the current thread has the watch registers loaded, save
1077 	 * their values and send SIGTRAP.  Otherwise another thread
1078 	 * left the registers set, clear them and continue.
1079 	 */
1080 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1081 		mips_read_watch_registers();
1082 		local_irq_enable();
1083 		force_sig(SIGTRAP, current);
1084 	} else {
1085 		mips_clear_watch_registers();
1086 		local_irq_enable();
1087 	}
1088 }
1089 
1090 asmlinkage void do_mcheck(struct pt_regs *regs)
1091 {
1092 	const int field = 2 * sizeof(unsigned long);
1093 	int multi_match = regs->cp0_status & ST0_TS;
1094 
1095 	show_regs(regs);
1096 
1097 	if (multi_match) {
1098 		printk("Index   : %0x\n", read_c0_index());
1099 		printk("Pagemask: %0x\n", read_c0_pagemask());
1100 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1101 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1102 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1103 		printk("\n");
1104 		dump_tlb_all();
1105 	}
1106 
1107 	show_code((unsigned int __user *) regs->cp0_epc);
1108 
1109 	/*
1110 	 * Some chips may have other causes of machine check (e.g. SB1
1111 	 * graduation timer)
1112 	 */
1113 	panic("Caught Machine Check exception - %scaused by multiple "
1114 	      "matching entries in the TLB.",
1115 	      (multi_match) ? "" : "not ");
1116 }
1117 
1118 asmlinkage void do_mt(struct pt_regs *regs)
1119 {
1120 	int subcode;
1121 
1122 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1123 			>> VPECONTROL_EXCPT_SHIFT;
1124 	switch (subcode) {
1125 	case 0:
1126 		printk(KERN_DEBUG "Thread Underflow\n");
1127 		break;
1128 	case 1:
1129 		printk(KERN_DEBUG "Thread Overflow\n");
1130 		break;
1131 	case 2:
1132 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1133 		break;
1134 	case 3:
1135 		printk(KERN_DEBUG "Gating Storage Exception\n");
1136 		break;
1137 	case 4:
1138 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1139 		break;
1140 	case 5:
1141 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1142 		break;
1143 	default:
1144 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145 			subcode);
1146 		break;
1147 	}
1148 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1149 
1150 	force_sig(SIGILL, current);
1151 }
1152 
1153 
1154 asmlinkage void do_dsp(struct pt_regs *regs)
1155 {
1156 	if (cpu_has_dsp)
1157 		panic("Unexpected DSP exception");
1158 
1159 	force_sig(SIGILL, current);
1160 }
1161 
1162 asmlinkage void do_reserved(struct pt_regs *regs)
1163 {
1164 	/*
1165 	 * Game over - no way to handle this if it ever occurs.  Most probably
1166 	 * caused by a new unknown cpu type or after another deadly
1167 	 * hard/software error.
1168 	 */
1169 	show_regs(regs);
1170 	panic("Caught reserved exception %ld - should not happen.",
1171 	      (regs->cp0_cause & 0x7f) >> 2);
1172 }
1173 
1174 static int __initdata l1parity = 1;
1175 static int __init nol1parity(char *s)
1176 {
1177 	l1parity = 0;
1178 	return 1;
1179 }
1180 __setup("nol1par", nol1parity);
1181 static int __initdata l2parity = 1;
1182 static int __init nol2parity(char *s)
1183 {
1184 	l2parity = 0;
1185 	return 1;
1186 }
1187 __setup("nol2par", nol2parity);
1188 
1189 /*
1190  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1191  * it different ways.
1192  */
1193 static inline void parity_protection_init(void)
1194 {
1195 	switch (current_cpu_type()) {
1196 	case CPU_24K:
1197 	case CPU_34K:
1198 	case CPU_74K:
1199 	case CPU_1004K:
1200 		{
1201 #define ERRCTL_PE	0x80000000
1202 #define ERRCTL_L2P	0x00800000
1203 			unsigned long errctl;
1204 			unsigned int l1parity_present, l2parity_present;
1205 
1206 			errctl = read_c0_ecc();
1207 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1208 
1209 			/* probe L1 parity support */
1210 			write_c0_ecc(errctl | ERRCTL_PE);
1211 			back_to_back_c0_hazard();
1212 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1213 
1214 			/* probe L2 parity support */
1215 			write_c0_ecc(errctl|ERRCTL_L2P);
1216 			back_to_back_c0_hazard();
1217 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1218 
1219 			if (l1parity_present && l2parity_present) {
1220 				if (l1parity)
1221 					errctl |= ERRCTL_PE;
1222 				if (l1parity ^ l2parity)
1223 					errctl |= ERRCTL_L2P;
1224 			} else if (l1parity_present) {
1225 				if (l1parity)
1226 					errctl |= ERRCTL_PE;
1227 			} else if (l2parity_present) {
1228 				if (l2parity)
1229 					errctl |= ERRCTL_L2P;
1230 			} else {
1231 				/* No parity available */
1232 			}
1233 
1234 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1235 
1236 			write_c0_ecc(errctl);
1237 			back_to_back_c0_hazard();
1238 			errctl = read_c0_ecc();
1239 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1240 
1241 			if (l1parity_present)
1242 				printk(KERN_INFO "Cache parity protection %sabled\n",
1243 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1244 
1245 			if (l2parity_present) {
1246 				if (l1parity_present && l1parity)
1247 					errctl ^= ERRCTL_L2P;
1248 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1249 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1250 			}
1251 		}
1252 		break;
1253 
1254 	case CPU_5KC:
1255 	case CPU_5KE:
1256 		write_c0_ecc(0x80000000);
1257 		back_to_back_c0_hazard();
1258 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1259 		printk(KERN_INFO "Cache parity protection %sabled\n",
1260 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1261 		break;
1262 	case CPU_20KC:
1263 	case CPU_25KF:
1264 		/* Clear the DE bit (bit 16) in the c0_status register. */
1265 		printk(KERN_INFO "Enable cache parity protection for "
1266 		       "MIPS 20KC/25KF CPUs.\n");
1267 		clear_c0_status(ST0_DE);
1268 		break;
1269 	default:
1270 		break;
1271 	}
1272 }
1273 
1274 asmlinkage void cache_parity_error(void)
1275 {
1276 	const int field = 2 * sizeof(unsigned long);
1277 	unsigned int reg_val;
1278 
1279 	/* For the moment, report the problem and hang. */
1280 	printk("Cache error exception:\n");
1281 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1282 	reg_val = read_c0_cacheerr();
1283 	printk("c0_cacheerr == %08x\n", reg_val);
1284 
1285 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1286 	       reg_val & (1<<30) ? "secondary" : "primary",
1287 	       reg_val & (1<<31) ? "data" : "insn");
1288 	printk("Error bits: %s%s%s%s%s%s%s\n",
1289 	       reg_val & (1<<29) ? "ED " : "",
1290 	       reg_val & (1<<28) ? "ET " : "",
1291 	       reg_val & (1<<26) ? "EE " : "",
1292 	       reg_val & (1<<25) ? "EB " : "",
1293 	       reg_val & (1<<24) ? "EI " : "",
1294 	       reg_val & (1<<23) ? "E1 " : "",
1295 	       reg_val & (1<<22) ? "E0 " : "");
1296 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1297 
1298 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1299 	if (reg_val & (1<<22))
1300 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1301 
1302 	if (reg_val & (1<<23))
1303 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1304 #endif
1305 
1306 	panic("Can't handle the cache error!");
1307 }
1308 
1309 /*
1310  * SDBBP EJTAG debug exception handler.
1311  * We skip the instruction and return to the next instruction.
1312  */
1313 void ejtag_exception_handler(struct pt_regs *regs)
1314 {
1315 	const int field = 2 * sizeof(unsigned long);
1316 	unsigned long depc, old_epc;
1317 	unsigned int debug;
1318 
1319 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1320 	depc = read_c0_depc();
1321 	debug = read_c0_debug();
1322 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1323 	if (debug & 0x80000000) {
1324 		/*
1325 		 * In branch delay slot.
1326 		 * We cheat a little bit here and use EPC to calculate the
1327 		 * debug return address (DEPC). EPC is restored after the
1328 		 * calculation.
1329 		 */
1330 		old_epc = regs->cp0_epc;
1331 		regs->cp0_epc = depc;
1332 		__compute_return_epc(regs);
1333 		depc = regs->cp0_epc;
1334 		regs->cp0_epc = old_epc;
1335 	} else
1336 		depc += 4;
1337 	write_c0_depc(depc);
1338 
1339 #if 0
1340 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1341 	write_c0_debug(debug | 0x100);
1342 #endif
1343 }
1344 
1345 /*
1346  * NMI exception handler.
1347  * No lock; only written during early bootup by CPU 0.
1348  */
1349 static RAW_NOTIFIER_HEAD(nmi_chain);
1350 
1351 int register_nmi_notifier(struct notifier_block *nb)
1352 {
1353 	return raw_notifier_chain_register(&nmi_chain, nb);
1354 }
1355 
1356 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1357 {
1358 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1359 	bust_spinlocks(1);
1360 	printk("NMI taken!!!!\n");
1361 	die("NMI", regs);
1362 }
1363 
1364 #define VECTORSPACING 0x100	/* for EI/VI mode */
1365 
1366 unsigned long ebase;
1367 unsigned long exception_handlers[32];
1368 unsigned long vi_handlers[64];
1369 
1370 void __init *set_except_vector(int n, void *addr)
1371 {
1372 	unsigned long handler = (unsigned long) addr;
1373 	unsigned long old_handler = exception_handlers[n];
1374 
1375 	exception_handlers[n] = handler;
1376 	if (n == 0 && cpu_has_divec) {
1377 		unsigned long jump_mask = ~((1 << 28) - 1);
1378 		u32 *buf = (u32 *)(ebase + 0x200);
1379 		unsigned int k0 = 26;
1380 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1381 			uasm_i_j(&buf, handler & ~jump_mask);
1382 			uasm_i_nop(&buf);
1383 		} else {
1384 			UASM_i_LA(&buf, k0, handler);
1385 			uasm_i_jr(&buf, k0);
1386 			uasm_i_nop(&buf);
1387 		}
1388 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1389 	}
1390 	return (void *)old_handler;
1391 }
1392 
1393 static asmlinkage void do_default_vi(void)
1394 {
1395 	show_regs(get_irq_regs());
1396 	panic("Caught unexpected vectored interrupt.");
1397 }
1398 
1399 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1400 {
1401 	unsigned long handler;
1402 	unsigned long old_handler = vi_handlers[n];
1403 	int srssets = current_cpu_data.srsets;
1404 	u32 *w;
1405 	unsigned char *b;
1406 
1407 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1408 
1409 	if (addr == NULL) {
1410 		handler = (unsigned long) do_default_vi;
1411 		srs = 0;
1412 	} else
1413 		handler = (unsigned long) addr;
1414 	vi_handlers[n] = (unsigned long) addr;
1415 
1416 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1417 
1418 	if (srs >= srssets)
1419 		panic("Shadow register set %d not supported", srs);
1420 
1421 	if (cpu_has_veic) {
1422 		if (board_bind_eic_interrupt)
1423 			board_bind_eic_interrupt(n, srs);
1424 	} else if (cpu_has_vint) {
1425 		/* SRSMap is only defined if shadow sets are implemented */
1426 		if (srssets > 1)
1427 			change_c0_srsmap(0xf << n*4, srs << n*4);
1428 	}
1429 
1430 	if (srs == 0) {
1431 		/*
1432 		 * If no shadow set is selected then use the default handler
1433 		 * that does normal register saving and a standard interrupt exit
1434 		 */
1435 
1436 		extern char except_vec_vi, except_vec_vi_lui;
1437 		extern char except_vec_vi_ori, except_vec_vi_end;
1438 		extern char rollback_except_vec_vi;
1439 		char *vec_start = (cpu_wait == r4k_wait) ?
1440 			&rollback_except_vec_vi : &except_vec_vi;
1441 #ifdef CONFIG_MIPS_MT_SMTC
1442 		/*
1443 		 * We need to provide the SMTC vectored interrupt handler
1444 		 * not only with the address of the handler, but with the
1445 		 * Status.IM bit to be masked before going there.
1446 		 */
1447 		extern char except_vec_vi_mori;
1448 		const int mori_offset = &except_vec_vi_mori - vec_start;
1449 #endif /* CONFIG_MIPS_MT_SMTC */
1450 		const int handler_len = &except_vec_vi_end - vec_start;
1451 		const int lui_offset = &except_vec_vi_lui - vec_start;
1452 		const int ori_offset = &except_vec_vi_ori - vec_start;
1453 
1454 		if (handler_len > VECTORSPACING) {
1455 			/*
1456 			 * Sigh... panicing won't help as the console
1457 			 * is probably not configured :(
1458 			 */
1459 			panic("VECTORSPACING too small");
1460 		}
1461 
1462 		memcpy(b, vec_start, handler_len);
1463 #ifdef CONFIG_MIPS_MT_SMTC
1464 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1465 
1466 		w = (u32 *)(b + mori_offset);
1467 		*w = (*w & 0xffff0000) | (0x100 << n);
1468 #endif /* CONFIG_MIPS_MT_SMTC */
1469 		w = (u32 *)(b + lui_offset);
1470 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1471 		w = (u32 *)(b + ori_offset);
1472 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1473 		local_flush_icache_range((unsigned long)b,
1474 					 (unsigned long)(b+handler_len));
1475 	}
1476 	else {
1477 		/*
1478 		 * In other cases jump directly to the interrupt handler
1479 		 *
1480 		 * It is the handlers responsibility to save registers if required
1481 		 * (eg hi/lo) and return from the exception using "eret"
1482 		 */
1483 		w = (u32 *)b;
1484 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1485 		*w = 0;
1486 		local_flush_icache_range((unsigned long)b,
1487 					 (unsigned long)(b+8));
1488 	}
1489 
1490 	return (void *)old_handler;
1491 }
1492 
1493 void *set_vi_handler(int n, vi_handler_t addr)
1494 {
1495 	return set_vi_srs_handler(n, addr, 0);
1496 }
1497 
1498 extern void tlb_init(void);
1499 extern void flush_tlb_handlers(void);
1500 
1501 /*
1502  * Timer interrupt
1503  */
1504 int cp0_compare_irq;
1505 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1506 int cp0_compare_irq_shift;
1507 
1508 /*
1509  * Performance counter IRQ or -1 if shared with timer
1510  */
1511 int cp0_perfcount_irq;
1512 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1513 
1514 static int __cpuinitdata noulri;
1515 
1516 static int __init ulri_disable(char *s)
1517 {
1518 	pr_info("Disabling ulri\n");
1519 	noulri = 1;
1520 
1521 	return 1;
1522 }
1523 __setup("noulri", ulri_disable);
1524 
1525 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1526 {
1527 	unsigned int cpu = smp_processor_id();
1528 	unsigned int status_set = ST0_CU0;
1529 	unsigned int hwrena = cpu_hwrena_impl_bits;
1530 #ifdef CONFIG_MIPS_MT_SMTC
1531 	int secondaryTC = 0;
1532 	int bootTC = (cpu == 0);
1533 
1534 	/*
1535 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1536 	 * Note that this hack assumes that the SMTC init code
1537 	 * assigns TCs consecutively and in ascending order.
1538 	 */
1539 
1540 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1541 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1542 		secondaryTC = 1;
1543 #endif /* CONFIG_MIPS_MT_SMTC */
1544 
1545 	/*
1546 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1547 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1548 	 * flag that some firmware may have left set and the TS bit (for
1549 	 * IP27).  Set XX for ISA IV code to work.
1550 	 */
1551 #ifdef CONFIG_64BIT
1552 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1553 #endif
1554 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1555 		status_set |= ST0_XX;
1556 	if (cpu_has_dsp)
1557 		status_set |= ST0_MX;
1558 
1559 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1560 			 status_set);
1561 
1562 	if (cpu_has_mips_r2)
1563 		hwrena |= 0x0000000f;
1564 
1565 	if (!noulri && cpu_has_userlocal)
1566 		hwrena |= (1 << 29);
1567 
1568 	if (hwrena)
1569 		write_c0_hwrena(hwrena);
1570 
1571 #ifdef CONFIG_MIPS_MT_SMTC
1572 	if (!secondaryTC) {
1573 #endif /* CONFIG_MIPS_MT_SMTC */
1574 
1575 	if (cpu_has_veic || cpu_has_vint) {
1576 		unsigned long sr = set_c0_status(ST0_BEV);
1577 		write_c0_ebase(ebase);
1578 		write_c0_status(sr);
1579 		/* Setting vector spacing enables EI/VI mode  */
1580 		change_c0_intctl(0x3e0, VECTORSPACING);
1581 	}
1582 	if (cpu_has_divec) {
1583 		if (cpu_has_mipsmt) {
1584 			unsigned int vpflags = dvpe();
1585 			set_c0_cause(CAUSEF_IV);
1586 			evpe(vpflags);
1587 		} else
1588 			set_c0_cause(CAUSEF_IV);
1589 	}
1590 
1591 	/*
1592 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1593 	 *
1594 	 *  o read IntCtl.IPTI to determine the timer interrupt
1595 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1596 	 */
1597 	if (cpu_has_mips_r2) {
1598 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1599 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1600 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1601 		if (cp0_perfcount_irq == cp0_compare_irq)
1602 			cp0_perfcount_irq = -1;
1603 	} else {
1604 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1605 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1606 		cp0_perfcount_irq = -1;
1607 	}
1608 
1609 #ifdef CONFIG_MIPS_MT_SMTC
1610 	}
1611 #endif /* CONFIG_MIPS_MT_SMTC */
1612 
1613 	if (!cpu_data[cpu].asid_cache)
1614 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1615 
1616 	atomic_inc(&init_mm.mm_count);
1617 	current->active_mm = &init_mm;
1618 	BUG_ON(current->mm);
1619 	enter_lazy_tlb(&init_mm, current);
1620 
1621 #ifdef CONFIG_MIPS_MT_SMTC
1622 	if (bootTC) {
1623 #endif /* CONFIG_MIPS_MT_SMTC */
1624 		/* Boot CPU's cache setup in setup_arch(). */
1625 		if (!is_boot_cpu)
1626 			cpu_cache_init();
1627 		tlb_init();
1628 #ifdef CONFIG_MIPS_MT_SMTC
1629 	} else if (!secondaryTC) {
1630 		/*
1631 		 * First TC in non-boot VPE must do subset of tlb_init()
1632 		 * for MMU countrol registers.
1633 		 */
1634 		write_c0_pagemask(PM_DEFAULT_MASK);
1635 		write_c0_wired(0);
1636 	}
1637 #endif /* CONFIG_MIPS_MT_SMTC */
1638 	TLBMISS_HANDLER_SETUP();
1639 }
1640 
1641 /* Install CPU exception handler */
1642 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1643 {
1644 	memcpy((void *)(ebase + offset), addr, size);
1645 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1646 }
1647 
1648 static char panic_null_cerr[] __cpuinitdata =
1649 	"Trying to set NULL cache error exception handler";
1650 
1651 /*
1652  * Install uncached CPU exception handler.
1653  * This is suitable only for the cache error exception which is the only
1654  * exception handler that is being run uncached.
1655  */
1656 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1657 	unsigned long size)
1658 {
1659 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1660 
1661 	if (!addr)
1662 		panic(panic_null_cerr);
1663 
1664 	memcpy((void *)(uncached_ebase + offset), addr, size);
1665 }
1666 
1667 static int __initdata rdhwr_noopt;
1668 static int __init set_rdhwr_noopt(char *str)
1669 {
1670 	rdhwr_noopt = 1;
1671 	return 1;
1672 }
1673 
1674 __setup("rdhwr_noopt", set_rdhwr_noopt);
1675 
1676 void __init trap_init(void)
1677 {
1678 	extern char except_vec3_generic, except_vec3_r4000;
1679 	extern char except_vec4;
1680 	unsigned long i;
1681 	int rollback;
1682 
1683 	check_wait();
1684 	rollback = (cpu_wait == r4k_wait);
1685 
1686 #if defined(CONFIG_KGDB)
1687 	if (kgdb_early_setup)
1688 		return;	/* Already done */
1689 #endif
1690 
1691 	if (cpu_has_veic || cpu_has_vint) {
1692 		unsigned long size = 0x200 + VECTORSPACING*64;
1693 		ebase = (unsigned long)
1694 			__alloc_bootmem(size, 1 << fls(size), 0);
1695 	} else {
1696 		ebase = CKSEG0;
1697 		if (cpu_has_mips_r2)
1698 			ebase += (read_c0_ebase() & 0x3ffff000);
1699 	}
1700 
1701 	if (board_ebase_setup)
1702 		board_ebase_setup();
1703 	per_cpu_trap_init(true);
1704 
1705 	/*
1706 	 * Copy the generic exception handlers to their final destination.
1707 	 * This will be overriden later as suitable for a particular
1708 	 * configuration.
1709 	 */
1710 	set_handler(0x180, &except_vec3_generic, 0x80);
1711 
1712 	/*
1713 	 * Setup default vectors
1714 	 */
1715 	for (i = 0; i <= 31; i++)
1716 		set_except_vector(i, handle_reserved);
1717 
1718 	/*
1719 	 * Copy the EJTAG debug exception vector handler code to it's final
1720 	 * destination.
1721 	 */
1722 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1723 		board_ejtag_handler_setup();
1724 
1725 	/*
1726 	 * Only some CPUs have the watch exceptions.
1727 	 */
1728 	if (cpu_has_watch)
1729 		set_except_vector(23, handle_watch);
1730 
1731 	/*
1732 	 * Initialise interrupt handlers
1733 	 */
1734 	if (cpu_has_veic || cpu_has_vint) {
1735 		int nvec = cpu_has_veic ? 64 : 8;
1736 		for (i = 0; i < nvec; i++)
1737 			set_vi_handler(i, NULL);
1738 	}
1739 	else if (cpu_has_divec)
1740 		set_handler(0x200, &except_vec4, 0x8);
1741 
1742 	/*
1743 	 * Some CPUs can enable/disable for cache parity detection, but does
1744 	 * it different ways.
1745 	 */
1746 	parity_protection_init();
1747 
1748 	/*
1749 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1750 	 * by external hardware.  Therefore these two exceptions
1751 	 * may have board specific handlers.
1752 	 */
1753 	if (board_be_init)
1754 		board_be_init();
1755 
1756 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1757 	set_except_vector(1, handle_tlbm);
1758 	set_except_vector(2, handle_tlbl);
1759 	set_except_vector(3, handle_tlbs);
1760 
1761 	set_except_vector(4, handle_adel);
1762 	set_except_vector(5, handle_ades);
1763 
1764 	set_except_vector(6, handle_ibe);
1765 	set_except_vector(7, handle_dbe);
1766 
1767 	set_except_vector(8, handle_sys);
1768 	set_except_vector(9, handle_bp);
1769 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1770 			  (cpu_has_vtag_icache ?
1771 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1772 	set_except_vector(11, handle_cpu);
1773 	set_except_vector(12, handle_ov);
1774 	set_except_vector(13, handle_tr);
1775 
1776 	if (current_cpu_type() == CPU_R6000 ||
1777 	    current_cpu_type() == CPU_R6000A) {
1778 		/*
1779 		 * The R6000 is the only R-series CPU that features a machine
1780 		 * check exception (similar to the R4000 cache error) and
1781 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1782 		 * written yet.  Well, anyway there is no R6000 machine on the
1783 		 * current list of targets for Linux/MIPS.
1784 		 * (Duh, crap, there is someone with a triple R6k machine)
1785 		 */
1786 		//set_except_vector(14, handle_mc);
1787 		//set_except_vector(15, handle_ndc);
1788 	}
1789 
1790 
1791 	if (board_nmi_handler_setup)
1792 		board_nmi_handler_setup();
1793 
1794 	if (cpu_has_fpu && !cpu_has_nofpuex)
1795 		set_except_vector(15, handle_fpe);
1796 
1797 	set_except_vector(22, handle_mdmx);
1798 
1799 	if (cpu_has_mcheck)
1800 		set_except_vector(24, handle_mcheck);
1801 
1802 	if (cpu_has_mipsmt)
1803 		set_except_vector(25, handle_mt);
1804 
1805 	set_except_vector(26, handle_dsp);
1806 
1807 	if (board_cache_error_setup)
1808 		board_cache_error_setup();
1809 
1810 	if (cpu_has_vce)
1811 		/* Special exception: R4[04]00 uses also the divec space. */
1812 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1813 	else if (cpu_has_4kex)
1814 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1815 	else
1816 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1817 
1818 	local_flush_icache_range(ebase, ebase + 0x400);
1819 	flush_tlb_handlers();
1820 
1821 	sort_extable(__start___dbe_table, __stop___dbe_table);
1822 
1823 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1824 }
1825