xref: /linux/arch/mips/kernel/traps.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/kexec.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/kallsyms.h>
25 #include <linux/bootmem.h>
26 #include <linux/interrupt.h>
27 #include <linux/ptrace.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdebug.h>
30 #include <linux/kprobes.h>
31 #include <linux/notifier.h>
32 #include <linux/kdb.h>
33 #include <linux/irq.h>
34 #include <linux/perf_event.h>
35 
36 #include <asm/bootinfo.h>
37 #include <asm/branch.h>
38 #include <asm/break.h>
39 #include <asm/cop2.h>
40 #include <asm/cpu.h>
41 #include <asm/dsp.h>
42 #include <asm/fpu.h>
43 #include <asm/fpu_emulator.h>
44 #include <asm/mipsregs.h>
45 #include <asm/mipsmtregs.h>
46 #include <asm/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/ptrace.h>
49 #include <asm/sections.h>
50 #include <asm/tlbdebug.h>
51 #include <asm/traps.h>
52 #include <asm/uaccess.h>
53 #include <asm/watch.h>
54 #include <asm/mmu_context.h>
55 #include <asm/types.h>
56 #include <asm/stacktrace.h>
57 #include <asm/uasm.h>
58 
59 extern void check_wait(void);
60 extern asmlinkage void r4k_wait(void);
61 extern asmlinkage void rollback_handle_int(void);
62 extern asmlinkage void handle_int(void);
63 extern asmlinkage void handle_tlbm(void);
64 extern asmlinkage void handle_tlbl(void);
65 extern asmlinkage void handle_tlbs(void);
66 extern asmlinkage void handle_adel(void);
67 extern asmlinkage void handle_ades(void);
68 extern asmlinkage void handle_ibe(void);
69 extern asmlinkage void handle_dbe(void);
70 extern asmlinkage void handle_sys(void);
71 extern asmlinkage void handle_bp(void);
72 extern asmlinkage void handle_ri(void);
73 extern asmlinkage void handle_ri_rdhwr_vivt(void);
74 extern asmlinkage void handle_ri_rdhwr(void);
75 extern asmlinkage void handle_cpu(void);
76 extern asmlinkage void handle_ov(void);
77 extern asmlinkage void handle_tr(void);
78 extern asmlinkage void handle_fpe(void);
79 extern asmlinkage void handle_mdmx(void);
80 extern asmlinkage void handle_watch(void);
81 extern asmlinkage void handle_mt(void);
82 extern asmlinkage void handle_dsp(void);
83 extern asmlinkage void handle_mcheck(void);
84 extern asmlinkage void handle_reserved(void);
85 
86 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
87 				    struct mips_fpu_struct *ctx, int has_fpu,
88 				    void *__user *fault_addr);
89 
90 void (*board_be_init)(void);
91 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
92 void (*board_nmi_handler_setup)(void);
93 void (*board_ejtag_handler_setup)(void);
94 void (*board_bind_eic_interrupt)(int irq, int regset);
95 void (*board_ebase_setup)(void);
96 void __cpuinitdata(*board_cache_error_setup)(void);
97 
98 static void show_raw_backtrace(unsigned long reg29)
99 {
100 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
101 	unsigned long addr;
102 
103 	printk("Call Trace:");
104 #ifdef CONFIG_KALLSYMS
105 	printk("\n");
106 #endif
107 	while (!kstack_end(sp)) {
108 		unsigned long __user *p =
109 			(unsigned long __user *)(unsigned long)sp++;
110 		if (__get_user(addr, p)) {
111 			printk(" (Bad stack address)");
112 			break;
113 		}
114 		if (__kernel_text_address(addr))
115 			print_ip_sym(addr);
116 	}
117 	printk("\n");
118 }
119 
120 #ifdef CONFIG_KALLSYMS
121 int raw_show_trace;
122 static int __init set_raw_show_trace(char *str)
123 {
124 	raw_show_trace = 1;
125 	return 1;
126 }
127 __setup("raw_show_trace", set_raw_show_trace);
128 #endif
129 
130 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
131 {
132 	unsigned long sp = regs->regs[29];
133 	unsigned long ra = regs->regs[31];
134 	unsigned long pc = regs->cp0_epc;
135 
136 	if (!task)
137 		task = current;
138 
139 	if (raw_show_trace || !__kernel_text_address(pc)) {
140 		show_raw_backtrace(sp);
141 		return;
142 	}
143 	printk("Call Trace:\n");
144 	do {
145 		print_ip_sym(pc);
146 		pc = unwind_stack(task, &sp, pc, &ra);
147 	} while (pc);
148 	printk("\n");
149 }
150 
151 /*
152  * This routine abuses get_user()/put_user() to reference pointers
153  * with at least a bit of error checking ...
154  */
155 static void show_stacktrace(struct task_struct *task,
156 	const struct pt_regs *regs)
157 {
158 	const int field = 2 * sizeof(unsigned long);
159 	long stackdata;
160 	int i;
161 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
162 
163 	printk("Stack :");
164 	i = 0;
165 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
166 		if (i && ((i % (64 / field)) == 0))
167 			printk("\n	 ");
168 		if (i > 39) {
169 			printk(" ...");
170 			break;
171 		}
172 
173 		if (__get_user(stackdata, sp++)) {
174 			printk(" (Bad stack address)");
175 			break;
176 		}
177 
178 		printk(" %0*lx", field, stackdata);
179 		i++;
180 	}
181 	printk("\n");
182 	show_backtrace(task, regs);
183 }
184 
185 void show_stack(struct task_struct *task, unsigned long *sp)
186 {
187 	struct pt_regs regs;
188 	if (sp) {
189 		regs.regs[29] = (unsigned long)sp;
190 		regs.regs[31] = 0;
191 		regs.cp0_epc = 0;
192 	} else {
193 		if (task && task != current) {
194 			regs.regs[29] = task->thread.reg29;
195 			regs.regs[31] = 0;
196 			regs.cp0_epc = task->thread.reg31;
197 #ifdef CONFIG_KGDB_KDB
198 		} else if (atomic_read(&kgdb_active) != -1 &&
199 			   kdb_current_regs) {
200 			memcpy(&regs, kdb_current_regs, sizeof(regs));
201 #endif /* CONFIG_KGDB_KDB */
202 		} else {
203 			prepare_frametrace(&regs);
204 		}
205 	}
206 	show_stacktrace(task, &regs);
207 }
208 
209 static void show_code(unsigned int __user *pc)
210 {
211 	long i;
212 	unsigned short __user *pc16 = NULL;
213 
214 	printk("\nCode:");
215 
216 	if ((unsigned long)pc & 1)
217 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
218 	for(i = -3 ; i < 6 ; i++) {
219 		unsigned int insn;
220 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
221 			printk(" (Bad address in epc)\n");
222 			break;
223 		}
224 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
225 	}
226 }
227 
228 static void __show_regs(const struct pt_regs *regs)
229 {
230 	const int field = 2 * sizeof(unsigned long);
231 	unsigned int cause = regs->cp0_cause;
232 	int i;
233 
234 	show_regs_print_info(KERN_DEFAULT);
235 
236 	/*
237 	 * Saved main processor registers
238 	 */
239 	for (i = 0; i < 32; ) {
240 		if ((i % 4) == 0)
241 			printk("$%2d   :", i);
242 		if (i == 0)
243 			printk(" %0*lx", field, 0UL);
244 		else if (i == 26 || i == 27)
245 			printk(" %*s", field, "");
246 		else
247 			printk(" %0*lx", field, regs->regs[i]);
248 
249 		i++;
250 		if ((i % 4) == 0)
251 			printk("\n");
252 	}
253 
254 #ifdef CONFIG_CPU_HAS_SMARTMIPS
255 	printk("Acx    : %0*lx\n", field, regs->acx);
256 #endif
257 	printk("Hi    : %0*lx\n", field, regs->hi);
258 	printk("Lo    : %0*lx\n", field, regs->lo);
259 
260 	/*
261 	 * Saved cp0 registers
262 	 */
263 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
264 	       (void *) regs->cp0_epc);
265 	printk("    %s\n", print_tainted());
266 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
267 	       (void *) regs->regs[31]);
268 
269 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
270 
271 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
272 		if (regs->cp0_status & ST0_KUO)
273 			printk("KUo ");
274 		if (regs->cp0_status & ST0_IEO)
275 			printk("IEo ");
276 		if (regs->cp0_status & ST0_KUP)
277 			printk("KUp ");
278 		if (regs->cp0_status & ST0_IEP)
279 			printk("IEp ");
280 		if (regs->cp0_status & ST0_KUC)
281 			printk("KUc ");
282 		if (regs->cp0_status & ST0_IEC)
283 			printk("IEc ");
284 	} else {
285 		if (regs->cp0_status & ST0_KX)
286 			printk("KX ");
287 		if (regs->cp0_status & ST0_SX)
288 			printk("SX ");
289 		if (regs->cp0_status & ST0_UX)
290 			printk("UX ");
291 		switch (regs->cp0_status & ST0_KSU) {
292 		case KSU_USER:
293 			printk("USER ");
294 			break;
295 		case KSU_SUPERVISOR:
296 			printk("SUPERVISOR ");
297 			break;
298 		case KSU_KERNEL:
299 			printk("KERNEL ");
300 			break;
301 		default:
302 			printk("BAD_MODE ");
303 			break;
304 		}
305 		if (regs->cp0_status & ST0_ERL)
306 			printk("ERL ");
307 		if (regs->cp0_status & ST0_EXL)
308 			printk("EXL ");
309 		if (regs->cp0_status & ST0_IE)
310 			printk("IE ");
311 	}
312 	printk("\n");
313 
314 	printk("Cause : %08x\n", cause);
315 
316 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
317 	if (1 <= cause && cause <= 5)
318 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
319 
320 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
321 	       cpu_name_string());
322 }
323 
324 /*
325  * FIXME: really the generic show_regs should take a const pointer argument.
326  */
327 void show_regs(struct pt_regs *regs)
328 {
329 	__show_regs((struct pt_regs *)regs);
330 }
331 
332 void show_registers(struct pt_regs *regs)
333 {
334 	const int field = 2 * sizeof(unsigned long);
335 
336 	__show_regs(regs);
337 	print_modules();
338 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 	       current->comm, current->pid, current_thread_info(), current,
340 	      field, current_thread_info()->tp_value);
341 	if (cpu_has_userlocal) {
342 		unsigned long tls;
343 
344 		tls = read_c0_userlocal();
345 		if (tls != current_thread_info()->tp_value)
346 			printk("*HwTLS: %0*lx\n", field, tls);
347 	}
348 
349 	show_stacktrace(current, regs);
350 	show_code((unsigned int __user *) regs->cp0_epc);
351 	printk("\n");
352 }
353 
354 static int regs_to_trapnr(struct pt_regs *regs)
355 {
356 	return (regs->cp0_cause >> 2) & 0x1f;
357 }
358 
359 static DEFINE_RAW_SPINLOCK(die_lock);
360 
361 void __noreturn die(const char *str, struct pt_regs *regs)
362 {
363 	static int die_counter;
364 	int sig = SIGSEGV;
365 #ifdef CONFIG_MIPS_MT_SMTC
366 	unsigned long dvpret;
367 #endif /* CONFIG_MIPS_MT_SMTC */
368 
369 	oops_enter();
370 
371 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
372 		sig = 0;
373 
374 	console_verbose();
375 	raw_spin_lock_irq(&die_lock);
376 #ifdef CONFIG_MIPS_MT_SMTC
377 	dvpret = dvpe();
378 #endif /* CONFIG_MIPS_MT_SMTC */
379 	bust_spinlocks(1);
380 #ifdef CONFIG_MIPS_MT_SMTC
381 	mips_mt_regdump(dvpret);
382 #endif /* CONFIG_MIPS_MT_SMTC */
383 
384 	printk("%s[#%d]:\n", str, ++die_counter);
385 	show_registers(regs);
386 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
387 	raw_spin_unlock_irq(&die_lock);
388 
389 	oops_exit();
390 
391 	if (in_interrupt())
392 		panic("Fatal exception in interrupt");
393 
394 	if (panic_on_oops) {
395 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
396 		ssleep(5);
397 		panic("Fatal exception");
398 	}
399 
400 	if (regs && kexec_should_crash(current))
401 		crash_kexec(regs);
402 
403 	do_exit(sig);
404 }
405 
406 extern struct exception_table_entry __start___dbe_table[];
407 extern struct exception_table_entry __stop___dbe_table[];
408 
409 __asm__(
410 "	.section	__dbe_table, \"a\"\n"
411 "	.previous			\n");
412 
413 /* Given an address, look for it in the exception tables. */
414 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
415 {
416 	const struct exception_table_entry *e;
417 
418 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
419 	if (!e)
420 		e = search_module_dbetables(addr);
421 	return e;
422 }
423 
424 asmlinkage void do_be(struct pt_regs *regs)
425 {
426 	const int field = 2 * sizeof(unsigned long);
427 	const struct exception_table_entry *fixup = NULL;
428 	int data = regs->cp0_cause & 4;
429 	int action = MIPS_BE_FATAL;
430 
431 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
432 	if (data && !user_mode(regs))
433 		fixup = search_dbe_tables(exception_epc(regs));
434 
435 	if (fixup)
436 		action = MIPS_BE_FIXUP;
437 
438 	if (board_be_handler)
439 		action = board_be_handler(regs, fixup != NULL);
440 
441 	switch (action) {
442 	case MIPS_BE_DISCARD:
443 		return;
444 	case MIPS_BE_FIXUP:
445 		if (fixup) {
446 			regs->cp0_epc = fixup->nextinsn;
447 			return;
448 		}
449 		break;
450 	default:
451 		break;
452 	}
453 
454 	/*
455 	 * Assume it would be too dangerous to continue ...
456 	 */
457 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
458 	       data ? "Data" : "Instruction",
459 	       field, regs->cp0_epc, field, regs->regs[31]);
460 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
461 	    == NOTIFY_STOP)
462 		return;
463 
464 	die_if_kernel("Oops", regs);
465 	force_sig(SIGBUS, current);
466 }
467 
468 /*
469  * ll/sc, rdhwr, sync emulation
470  */
471 
472 #define OPCODE 0xfc000000
473 #define BASE   0x03e00000
474 #define RT     0x001f0000
475 #define OFFSET 0x0000ffff
476 #define LL     0xc0000000
477 #define SC     0xe0000000
478 #define SPEC0  0x00000000
479 #define SPEC3  0x7c000000
480 #define RD     0x0000f800
481 #define FUNC   0x0000003f
482 #define SYNC   0x0000000f
483 #define RDHWR  0x0000003b
484 
485 /*
486  * The ll_bit is cleared by r*_switch.S
487  */
488 
489 unsigned int ll_bit;
490 struct task_struct *ll_task;
491 
492 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
493 {
494 	unsigned long value, __user *vaddr;
495 	long offset;
496 
497 	/*
498 	 * analyse the ll instruction that just caused a ri exception
499 	 * and put the referenced address to addr.
500 	 */
501 
502 	/* sign extend offset */
503 	offset = opcode & OFFSET;
504 	offset <<= 16;
505 	offset >>= 16;
506 
507 	vaddr = (unsigned long __user *)
508 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
509 
510 	if ((unsigned long)vaddr & 3)
511 		return SIGBUS;
512 	if (get_user(value, vaddr))
513 		return SIGSEGV;
514 
515 	preempt_disable();
516 
517 	if (ll_task == NULL || ll_task == current) {
518 		ll_bit = 1;
519 	} else {
520 		ll_bit = 0;
521 	}
522 	ll_task = current;
523 
524 	preempt_enable();
525 
526 	regs->regs[(opcode & RT) >> 16] = value;
527 
528 	return 0;
529 }
530 
531 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
532 {
533 	unsigned long __user *vaddr;
534 	unsigned long reg;
535 	long offset;
536 
537 	/*
538 	 * analyse the sc instruction that just caused a ri exception
539 	 * and put the referenced address to addr.
540 	 */
541 
542 	/* sign extend offset */
543 	offset = opcode & OFFSET;
544 	offset <<= 16;
545 	offset >>= 16;
546 
547 	vaddr = (unsigned long __user *)
548 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
549 	reg = (opcode & RT) >> 16;
550 
551 	if ((unsigned long)vaddr & 3)
552 		return SIGBUS;
553 
554 	preempt_disable();
555 
556 	if (ll_bit == 0 || ll_task != current) {
557 		regs->regs[reg] = 0;
558 		preempt_enable();
559 		return 0;
560 	}
561 
562 	preempt_enable();
563 
564 	if (put_user(regs->regs[reg], vaddr))
565 		return SIGSEGV;
566 
567 	regs->regs[reg] = 1;
568 
569 	return 0;
570 }
571 
572 /*
573  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
574  * opcodes are supposed to result in coprocessor unusable exceptions if
575  * executed on ll/sc-less processors.  That's the theory.  In practice a
576  * few processors such as NEC's VR4100 throw reserved instruction exceptions
577  * instead, so we're doing the emulation thing in both exception handlers.
578  */
579 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
580 {
581 	if ((opcode & OPCODE) == LL) {
582 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
583 				1, regs, 0);
584 		return simulate_ll(regs, opcode);
585 	}
586 	if ((opcode & OPCODE) == SC) {
587 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
588 				1, regs, 0);
589 		return simulate_sc(regs, opcode);
590 	}
591 
592 	return -1;			/* Must be something else ... */
593 }
594 
595 /*
596  * Simulate trapping 'rdhwr' instructions to provide user accessible
597  * registers not implemented in hardware.
598  */
599 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
600 {
601 	struct thread_info *ti = task_thread_info(current);
602 
603 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
604 		int rd = (opcode & RD) >> 11;
605 		int rt = (opcode & RT) >> 16;
606 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 				1, regs, 0);
608 		switch (rd) {
609 		case 0:		/* CPU number */
610 			regs->regs[rt] = smp_processor_id();
611 			return 0;
612 		case 1:		/* SYNCI length */
613 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
614 					     current_cpu_data.icache.linesz);
615 			return 0;
616 		case 2:		/* Read count register */
617 			regs->regs[rt] = read_c0_count();
618 			return 0;
619 		case 3:		/* Count register resolution */
620 			switch (current_cpu_data.cputype) {
621 			case CPU_20KC:
622 			case CPU_25KF:
623 				regs->regs[rt] = 1;
624 				break;
625 			default:
626 				regs->regs[rt] = 2;
627 			}
628 			return 0;
629 		case 29:
630 			regs->regs[rt] = ti->tp_value;
631 			return 0;
632 		default:
633 			return -1;
634 		}
635 	}
636 
637 	/* Not ours.  */
638 	return -1;
639 }
640 
641 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
642 {
643 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
644 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
645 				1, regs, 0);
646 		return 0;
647 	}
648 
649 	return -1;			/* Must be something else ... */
650 }
651 
652 asmlinkage void do_ov(struct pt_regs *regs)
653 {
654 	siginfo_t info;
655 
656 	die_if_kernel("Integer overflow", regs);
657 
658 	info.si_code = FPE_INTOVF;
659 	info.si_signo = SIGFPE;
660 	info.si_errno = 0;
661 	info.si_addr = (void __user *) regs->cp0_epc;
662 	force_sig_info(SIGFPE, &info, current);
663 }
664 
665 static int process_fpemu_return(int sig, void __user *fault_addr)
666 {
667 	if (sig == SIGSEGV || sig == SIGBUS) {
668 		struct siginfo si = {0};
669 		si.si_addr = fault_addr;
670 		si.si_signo = sig;
671 		if (sig == SIGSEGV) {
672 			if (find_vma(current->mm, (unsigned long)fault_addr))
673 				si.si_code = SEGV_ACCERR;
674 			else
675 				si.si_code = SEGV_MAPERR;
676 		} else {
677 			si.si_code = BUS_ADRERR;
678 		}
679 		force_sig_info(sig, &si, current);
680 		return 1;
681 	} else if (sig) {
682 		force_sig(sig, current);
683 		return 1;
684 	} else {
685 		return 0;
686 	}
687 }
688 
689 /*
690  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
691  */
692 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
693 {
694 	siginfo_t info = {0};
695 
696 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
697 	    == NOTIFY_STOP)
698 		return;
699 	die_if_kernel("FP exception in kernel code", regs);
700 
701 	if (fcr31 & FPU_CSR_UNI_X) {
702 		int sig;
703 		void __user *fault_addr = NULL;
704 
705 		/*
706 		 * Unimplemented operation exception.  If we've got the full
707 		 * software emulator on-board, let's use it...
708 		 *
709 		 * Force FPU to dump state into task/thread context.  We're
710 		 * moving a lot of data here for what is probably a single
711 		 * instruction, but the alternative is to pre-decode the FP
712 		 * register operands before invoking the emulator, which seems
713 		 * a bit extreme for what should be an infrequent event.
714 		 */
715 		/* Ensure 'resume' not overwrite saved fp context again. */
716 		lose_fpu(1);
717 
718 		/* Run the emulator */
719 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
720 					       &fault_addr);
721 
722 		/*
723 		 * We can't allow the emulated instruction to leave any of
724 		 * the cause bit set in $fcr31.
725 		 */
726 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
727 
728 		/* Restore the hardware register state */
729 		own_fpu(1);	/* Using the FPU again.	 */
730 
731 		/* If something went wrong, signal */
732 		process_fpemu_return(sig, fault_addr);
733 
734 		return;
735 	} else if (fcr31 & FPU_CSR_INV_X)
736 		info.si_code = FPE_FLTINV;
737 	else if (fcr31 & FPU_CSR_DIV_X)
738 		info.si_code = FPE_FLTDIV;
739 	else if (fcr31 & FPU_CSR_OVF_X)
740 		info.si_code = FPE_FLTOVF;
741 	else if (fcr31 & FPU_CSR_UDF_X)
742 		info.si_code = FPE_FLTUND;
743 	else if (fcr31 & FPU_CSR_INE_X)
744 		info.si_code = FPE_FLTRES;
745 	else
746 		info.si_code = __SI_FAULT;
747 	info.si_signo = SIGFPE;
748 	info.si_errno = 0;
749 	info.si_addr = (void __user *) regs->cp0_epc;
750 	force_sig_info(SIGFPE, &info, current);
751 }
752 
753 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
754 	const char *str)
755 {
756 	siginfo_t info;
757 	char b[40];
758 
759 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
760 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
761 		return;
762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
763 
764 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
765 		return;
766 
767 	/*
768 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
769 	 * insns, even for trap and break codes that indicate arithmetic
770 	 * failures.  Weird ...
771 	 * But should we continue the brokenness???  --macro
772 	 */
773 	switch (code) {
774 	case BRK_OVERFLOW:
775 	case BRK_DIVZERO:
776 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
777 		die_if_kernel(b, regs);
778 		if (code == BRK_DIVZERO)
779 			info.si_code = FPE_INTDIV;
780 		else
781 			info.si_code = FPE_INTOVF;
782 		info.si_signo = SIGFPE;
783 		info.si_errno = 0;
784 		info.si_addr = (void __user *) regs->cp0_epc;
785 		force_sig_info(SIGFPE, &info, current);
786 		break;
787 	case BRK_BUG:
788 		die_if_kernel("Kernel bug detected", regs);
789 		force_sig(SIGTRAP, current);
790 		break;
791 	case BRK_MEMU:
792 		/*
793 		 * Address errors may be deliberately induced by the FPU
794 		 * emulator to retake control of the CPU after executing the
795 		 * instruction in the delay slot of an emulated branch.
796 		 *
797 		 * Terminate if exception was recognized as a delay slot return
798 		 * otherwise handle as normal.
799 		 */
800 		if (do_dsemulret(regs))
801 			return;
802 
803 		die_if_kernel("Math emu break/trap", regs);
804 		force_sig(SIGTRAP, current);
805 		break;
806 	default:
807 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
808 		die_if_kernel(b, regs);
809 		force_sig(SIGTRAP, current);
810 	}
811 }
812 
813 asmlinkage void do_bp(struct pt_regs *regs)
814 {
815 	unsigned int opcode, bcode;
816 
817 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
818 		goto out_sigsegv;
819 
820 	/*
821 	 * There is the ancient bug in the MIPS assemblers that the break
822 	 * code starts left to bit 16 instead to bit 6 in the opcode.
823 	 * Gas is bug-compatible, but not always, grrr...
824 	 * We handle both cases with a simple heuristics.  --macro
825 	 */
826 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
827 	if (bcode >= (1 << 10))
828 		bcode >>= 10;
829 
830 	/*
831 	 * notify the kprobe handlers, if instruction is likely to
832 	 * pertain to them.
833 	 */
834 	switch (bcode) {
835 	case BRK_KPROBE_BP:
836 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
837 			return;
838 		else
839 			break;
840 	case BRK_KPROBE_SSTEPBP:
841 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
842 			return;
843 		else
844 			break;
845 	default:
846 		break;
847 	}
848 
849 	do_trap_or_bp(regs, bcode, "Break");
850 	return;
851 
852 out_sigsegv:
853 	force_sig(SIGSEGV, current);
854 }
855 
856 asmlinkage void do_tr(struct pt_regs *regs)
857 {
858 	unsigned int opcode, tcode = 0;
859 
860 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
861 		goto out_sigsegv;
862 
863 	/* Immediate versions don't provide a code.  */
864 	if (!(opcode & OPCODE))
865 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
866 
867 	do_trap_or_bp(regs, tcode, "Trap");
868 	return;
869 
870 out_sigsegv:
871 	force_sig(SIGSEGV, current);
872 }
873 
874 asmlinkage void do_ri(struct pt_regs *regs)
875 {
876 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
877 	unsigned long old_epc = regs->cp0_epc;
878 	unsigned int opcode = 0;
879 	int status = -1;
880 
881 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
882 	    == NOTIFY_STOP)
883 		return;
884 
885 	die_if_kernel("Reserved instruction in kernel code", regs);
886 
887 	if (unlikely(compute_return_epc(regs) < 0))
888 		return;
889 
890 	if (unlikely(get_user(opcode, epc) < 0))
891 		status = SIGSEGV;
892 
893 	if (!cpu_has_llsc && status < 0)
894 		status = simulate_llsc(regs, opcode);
895 
896 	if (status < 0)
897 		status = simulate_rdhwr(regs, opcode);
898 
899 	if (status < 0)
900 		status = simulate_sync(regs, opcode);
901 
902 	if (status < 0)
903 		status = SIGILL;
904 
905 	if (unlikely(status > 0)) {
906 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
907 		force_sig(status, current);
908 	}
909 }
910 
911 /*
912  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
913  * emulated more than some threshold number of instructions, force migration to
914  * a "CPU" that has FP support.
915  */
916 static void mt_ase_fp_affinity(void)
917 {
918 #ifdef CONFIG_MIPS_MT_FPAFF
919 	if (mt_fpemul_threshold > 0 &&
920 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
921 		/*
922 		 * If there's no FPU present, or if the application has already
923 		 * restricted the allowed set to exclude any CPUs with FPUs,
924 		 * we'll skip the procedure.
925 		 */
926 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
927 			cpumask_t tmask;
928 
929 			current->thread.user_cpus_allowed
930 				= current->cpus_allowed;
931 			cpus_and(tmask, current->cpus_allowed,
932 				mt_fpu_cpumask);
933 			set_cpus_allowed_ptr(current, &tmask);
934 			set_thread_flag(TIF_FPUBOUND);
935 		}
936 	}
937 #endif /* CONFIG_MIPS_MT_FPAFF */
938 }
939 
940 /*
941  * No lock; only written during early bootup by CPU 0.
942  */
943 static RAW_NOTIFIER_HEAD(cu2_chain);
944 
945 int __ref register_cu2_notifier(struct notifier_block *nb)
946 {
947 	return raw_notifier_chain_register(&cu2_chain, nb);
948 }
949 
950 int cu2_notifier_call_chain(unsigned long val, void *v)
951 {
952 	return raw_notifier_call_chain(&cu2_chain, val, v);
953 }
954 
955 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
956 	void *data)
957 {
958 	struct pt_regs *regs = data;
959 
960 	switch (action) {
961 	default:
962 		die_if_kernel("Unhandled kernel unaligned access or invalid "
963 			      "instruction", regs);
964 		/* Fall through	 */
965 
966 	case CU2_EXCEPTION:
967 		force_sig(SIGILL, current);
968 	}
969 
970 	return NOTIFY_OK;
971 }
972 
973 asmlinkage void do_cpu(struct pt_regs *regs)
974 {
975 	unsigned int __user *epc;
976 	unsigned long old_epc;
977 	unsigned int opcode;
978 	unsigned int cpid;
979 	int status;
980 	unsigned long __maybe_unused flags;
981 
982 	die_if_kernel("do_cpu invoked from kernel context!", regs);
983 
984 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
985 
986 	switch (cpid) {
987 	case 0:
988 		epc = (unsigned int __user *)exception_epc(regs);
989 		old_epc = regs->cp0_epc;
990 		opcode = 0;
991 		status = -1;
992 
993 		if (unlikely(compute_return_epc(regs) < 0))
994 			return;
995 
996 		if (unlikely(get_user(opcode, epc) < 0))
997 			status = SIGSEGV;
998 
999 		if (!cpu_has_llsc && status < 0)
1000 			status = simulate_llsc(regs, opcode);
1001 
1002 		if (status < 0)
1003 			status = simulate_rdhwr(regs, opcode);
1004 
1005 		if (status < 0)
1006 			status = SIGILL;
1007 
1008 		if (unlikely(status > 0)) {
1009 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1010 			force_sig(status, current);
1011 		}
1012 
1013 		return;
1014 
1015 	case 3:
1016 		/*
1017 		 * Old (MIPS I and MIPS II) processors will set this code
1018 		 * for COP1X opcode instructions that replaced the original
1019 		 * COP3 space.	We don't limit COP1 space instructions in
1020 		 * the emulator according to the CPU ISA, so we want to
1021 		 * treat COP1X instructions consistently regardless of which
1022 		 * code the CPU chose.	Therefore we redirect this trap to
1023 		 * the FP emulator too.
1024 		 *
1025 		 * Then some newer FPU-less processors use this code
1026 		 * erroneously too, so they are covered by this choice
1027 		 * as well.
1028 		 */
1029 		if (raw_cpu_has_fpu)
1030 			break;
1031 		/* Fall through.  */
1032 
1033 	case 1:
1034 		if (used_math())	/* Using the FPU again.	 */
1035 			own_fpu(1);
1036 		else {			/* First time FPU user.	 */
1037 			init_fpu();
1038 			set_used_math();
1039 		}
1040 
1041 		if (!raw_cpu_has_fpu) {
1042 			int sig;
1043 			void __user *fault_addr = NULL;
1044 			sig = fpu_emulator_cop1Handler(regs,
1045 						       &current->thread.fpu,
1046 						       0, &fault_addr);
1047 			if (!process_fpemu_return(sig, fault_addr))
1048 				mt_ase_fp_affinity();
1049 		}
1050 
1051 		return;
1052 
1053 	case 2:
1054 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1055 		return;
1056 	}
1057 
1058 	force_sig(SIGILL, current);
1059 }
1060 
1061 asmlinkage void do_mdmx(struct pt_regs *regs)
1062 {
1063 	force_sig(SIGILL, current);
1064 }
1065 
1066 /*
1067  * Called with interrupts disabled.
1068  */
1069 asmlinkage void do_watch(struct pt_regs *regs)
1070 {
1071 	u32 cause;
1072 
1073 	/*
1074 	 * Clear WP (bit 22) bit of cause register so we don't loop
1075 	 * forever.
1076 	 */
1077 	cause = read_c0_cause();
1078 	cause &= ~(1 << 22);
1079 	write_c0_cause(cause);
1080 
1081 	/*
1082 	 * If the current thread has the watch registers loaded, save
1083 	 * their values and send SIGTRAP.  Otherwise another thread
1084 	 * left the registers set, clear them and continue.
1085 	 */
1086 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1087 		mips_read_watch_registers();
1088 		local_irq_enable();
1089 		force_sig(SIGTRAP, current);
1090 	} else {
1091 		mips_clear_watch_registers();
1092 		local_irq_enable();
1093 	}
1094 }
1095 
1096 asmlinkage void do_mcheck(struct pt_regs *regs)
1097 {
1098 	const int field = 2 * sizeof(unsigned long);
1099 	int multi_match = regs->cp0_status & ST0_TS;
1100 
1101 	show_regs(regs);
1102 
1103 	if (multi_match) {
1104 		printk("Index	: %0x\n", read_c0_index());
1105 		printk("Pagemask: %0x\n", read_c0_pagemask());
1106 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1107 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1108 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1109 		printk("\n");
1110 		dump_tlb_all();
1111 	}
1112 
1113 	show_code((unsigned int __user *) regs->cp0_epc);
1114 
1115 	/*
1116 	 * Some chips may have other causes of machine check (e.g. SB1
1117 	 * graduation timer)
1118 	 */
1119 	panic("Caught Machine Check exception - %scaused by multiple "
1120 	      "matching entries in the TLB.",
1121 	      (multi_match) ? "" : "not ");
1122 }
1123 
1124 asmlinkage void do_mt(struct pt_regs *regs)
1125 {
1126 	int subcode;
1127 
1128 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1129 			>> VPECONTROL_EXCPT_SHIFT;
1130 	switch (subcode) {
1131 	case 0:
1132 		printk(KERN_DEBUG "Thread Underflow\n");
1133 		break;
1134 	case 1:
1135 		printk(KERN_DEBUG "Thread Overflow\n");
1136 		break;
1137 	case 2:
1138 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1139 		break;
1140 	case 3:
1141 		printk(KERN_DEBUG "Gating Storage Exception\n");
1142 		break;
1143 	case 4:
1144 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1145 		break;
1146 	case 5:
1147 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1148 		break;
1149 	default:
1150 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1151 			subcode);
1152 		break;
1153 	}
1154 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1155 
1156 	force_sig(SIGILL, current);
1157 }
1158 
1159 
1160 asmlinkage void do_dsp(struct pt_regs *regs)
1161 {
1162 	if (cpu_has_dsp)
1163 		panic("Unexpected DSP exception");
1164 
1165 	force_sig(SIGILL, current);
1166 }
1167 
1168 asmlinkage void do_reserved(struct pt_regs *regs)
1169 {
1170 	/*
1171 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1172 	 * caused by a new unknown cpu type or after another deadly
1173 	 * hard/software error.
1174 	 */
1175 	show_regs(regs);
1176 	panic("Caught reserved exception %ld - should not happen.",
1177 	      (regs->cp0_cause & 0x7f) >> 2);
1178 }
1179 
1180 static int __initdata l1parity = 1;
1181 static int __init nol1parity(char *s)
1182 {
1183 	l1parity = 0;
1184 	return 1;
1185 }
1186 __setup("nol1par", nol1parity);
1187 static int __initdata l2parity = 1;
1188 static int __init nol2parity(char *s)
1189 {
1190 	l2parity = 0;
1191 	return 1;
1192 }
1193 __setup("nol2par", nol2parity);
1194 
1195 /*
1196  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1197  * it different ways.
1198  */
1199 static inline void parity_protection_init(void)
1200 {
1201 	switch (current_cpu_type()) {
1202 	case CPU_24K:
1203 	case CPU_34K:
1204 	case CPU_74K:
1205 	case CPU_1004K:
1206 		{
1207 #define ERRCTL_PE	0x80000000
1208 #define ERRCTL_L2P	0x00800000
1209 			unsigned long errctl;
1210 			unsigned int l1parity_present, l2parity_present;
1211 
1212 			errctl = read_c0_ecc();
1213 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1214 
1215 			/* probe L1 parity support */
1216 			write_c0_ecc(errctl | ERRCTL_PE);
1217 			back_to_back_c0_hazard();
1218 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1219 
1220 			/* probe L2 parity support */
1221 			write_c0_ecc(errctl|ERRCTL_L2P);
1222 			back_to_back_c0_hazard();
1223 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1224 
1225 			if (l1parity_present && l2parity_present) {
1226 				if (l1parity)
1227 					errctl |= ERRCTL_PE;
1228 				if (l1parity ^ l2parity)
1229 					errctl |= ERRCTL_L2P;
1230 			} else if (l1parity_present) {
1231 				if (l1parity)
1232 					errctl |= ERRCTL_PE;
1233 			} else if (l2parity_present) {
1234 				if (l2parity)
1235 					errctl |= ERRCTL_L2P;
1236 			} else {
1237 				/* No parity available */
1238 			}
1239 
1240 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1241 
1242 			write_c0_ecc(errctl);
1243 			back_to_back_c0_hazard();
1244 			errctl = read_c0_ecc();
1245 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1246 
1247 			if (l1parity_present)
1248 				printk(KERN_INFO "Cache parity protection %sabled\n",
1249 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1250 
1251 			if (l2parity_present) {
1252 				if (l1parity_present && l1parity)
1253 					errctl ^= ERRCTL_L2P;
1254 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1255 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1256 			}
1257 		}
1258 		break;
1259 
1260 	case CPU_5KC:
1261 	case CPU_5KE:
1262 	case CPU_LOONGSON1:
1263 		write_c0_ecc(0x80000000);
1264 		back_to_back_c0_hazard();
1265 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1266 		printk(KERN_INFO "Cache parity protection %sabled\n",
1267 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1268 		break;
1269 	case CPU_20KC:
1270 	case CPU_25KF:
1271 		/* Clear the DE bit (bit 16) in the c0_status register. */
1272 		printk(KERN_INFO "Enable cache parity protection for "
1273 		       "MIPS 20KC/25KF CPUs.\n");
1274 		clear_c0_status(ST0_DE);
1275 		break;
1276 	default:
1277 		break;
1278 	}
1279 }
1280 
1281 asmlinkage void cache_parity_error(void)
1282 {
1283 	const int field = 2 * sizeof(unsigned long);
1284 	unsigned int reg_val;
1285 
1286 	/* For the moment, report the problem and hang. */
1287 	printk("Cache error exception:\n");
1288 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1289 	reg_val = read_c0_cacheerr();
1290 	printk("c0_cacheerr == %08x\n", reg_val);
1291 
1292 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1293 	       reg_val & (1<<30) ? "secondary" : "primary",
1294 	       reg_val & (1<<31) ? "data" : "insn");
1295 	printk("Error bits: %s%s%s%s%s%s%s\n",
1296 	       reg_val & (1<<29) ? "ED " : "",
1297 	       reg_val & (1<<28) ? "ET " : "",
1298 	       reg_val & (1<<26) ? "EE " : "",
1299 	       reg_val & (1<<25) ? "EB " : "",
1300 	       reg_val & (1<<24) ? "EI " : "",
1301 	       reg_val & (1<<23) ? "E1 " : "",
1302 	       reg_val & (1<<22) ? "E0 " : "");
1303 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1304 
1305 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1306 	if (reg_val & (1<<22))
1307 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1308 
1309 	if (reg_val & (1<<23))
1310 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1311 #endif
1312 
1313 	panic("Can't handle the cache error!");
1314 }
1315 
1316 /*
1317  * SDBBP EJTAG debug exception handler.
1318  * We skip the instruction and return to the next instruction.
1319  */
1320 void ejtag_exception_handler(struct pt_regs *regs)
1321 {
1322 	const int field = 2 * sizeof(unsigned long);
1323 	unsigned long depc, old_epc;
1324 	unsigned int debug;
1325 
1326 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1327 	depc = read_c0_depc();
1328 	debug = read_c0_debug();
1329 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1330 	if (debug & 0x80000000) {
1331 		/*
1332 		 * In branch delay slot.
1333 		 * We cheat a little bit here and use EPC to calculate the
1334 		 * debug return address (DEPC). EPC is restored after the
1335 		 * calculation.
1336 		 */
1337 		old_epc = regs->cp0_epc;
1338 		regs->cp0_epc = depc;
1339 		__compute_return_epc(regs);
1340 		depc = regs->cp0_epc;
1341 		regs->cp0_epc = old_epc;
1342 	} else
1343 		depc += 4;
1344 	write_c0_depc(depc);
1345 
1346 #if 0
1347 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1348 	write_c0_debug(debug | 0x100);
1349 #endif
1350 }
1351 
1352 /*
1353  * NMI exception handler.
1354  * No lock; only written during early bootup by CPU 0.
1355  */
1356 static RAW_NOTIFIER_HEAD(nmi_chain);
1357 
1358 int register_nmi_notifier(struct notifier_block *nb)
1359 {
1360 	return raw_notifier_chain_register(&nmi_chain, nb);
1361 }
1362 
1363 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1364 {
1365 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1366 	bust_spinlocks(1);
1367 	printk("NMI taken!!!!\n");
1368 	die("NMI", regs);
1369 }
1370 
1371 #define VECTORSPACING 0x100	/* for EI/VI mode */
1372 
1373 unsigned long ebase;
1374 unsigned long exception_handlers[32];
1375 unsigned long vi_handlers[64];
1376 
1377 void __init *set_except_vector(int n, void *addr)
1378 {
1379 	unsigned long handler = (unsigned long) addr;
1380 	unsigned long old_handler = exception_handlers[n];
1381 
1382 	exception_handlers[n] = handler;
1383 	if (n == 0 && cpu_has_divec) {
1384 		unsigned long jump_mask = ~((1 << 28) - 1);
1385 		u32 *buf = (u32 *)(ebase + 0x200);
1386 		unsigned int k0 = 26;
1387 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1388 			uasm_i_j(&buf, handler & ~jump_mask);
1389 			uasm_i_nop(&buf);
1390 		} else {
1391 			UASM_i_LA(&buf, k0, handler);
1392 			uasm_i_jr(&buf, k0);
1393 			uasm_i_nop(&buf);
1394 		}
1395 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1396 	}
1397 	return (void *)old_handler;
1398 }
1399 
1400 static asmlinkage void do_default_vi(void)
1401 {
1402 	show_regs(get_irq_regs());
1403 	panic("Caught unexpected vectored interrupt.");
1404 }
1405 
1406 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1407 {
1408 	unsigned long handler;
1409 	unsigned long old_handler = vi_handlers[n];
1410 	int srssets = current_cpu_data.srsets;
1411 	u32 *w;
1412 	unsigned char *b;
1413 
1414 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1415 
1416 	if (addr == NULL) {
1417 		handler = (unsigned long) do_default_vi;
1418 		srs = 0;
1419 	} else
1420 		handler = (unsigned long) addr;
1421 	vi_handlers[n] = (unsigned long) addr;
1422 
1423 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1424 
1425 	if (srs >= srssets)
1426 		panic("Shadow register set %d not supported", srs);
1427 
1428 	if (cpu_has_veic) {
1429 		if (board_bind_eic_interrupt)
1430 			board_bind_eic_interrupt(n, srs);
1431 	} else if (cpu_has_vint) {
1432 		/* SRSMap is only defined if shadow sets are implemented */
1433 		if (srssets > 1)
1434 			change_c0_srsmap(0xf << n*4, srs << n*4);
1435 	}
1436 
1437 	if (srs == 0) {
1438 		/*
1439 		 * If no shadow set is selected then use the default handler
1440 		 * that does normal register saving and a standard interrupt exit
1441 		 */
1442 
1443 		extern char except_vec_vi, except_vec_vi_lui;
1444 		extern char except_vec_vi_ori, except_vec_vi_end;
1445 		extern char rollback_except_vec_vi;
1446 		char *vec_start = (cpu_wait == r4k_wait) ?
1447 			&rollback_except_vec_vi : &except_vec_vi;
1448 #ifdef CONFIG_MIPS_MT_SMTC
1449 		/*
1450 		 * We need to provide the SMTC vectored interrupt handler
1451 		 * not only with the address of the handler, but with the
1452 		 * Status.IM bit to be masked before going there.
1453 		 */
1454 		extern char except_vec_vi_mori;
1455 		const int mori_offset = &except_vec_vi_mori - vec_start;
1456 #endif /* CONFIG_MIPS_MT_SMTC */
1457 		const int handler_len = &except_vec_vi_end - vec_start;
1458 		const int lui_offset = &except_vec_vi_lui - vec_start;
1459 		const int ori_offset = &except_vec_vi_ori - vec_start;
1460 
1461 		if (handler_len > VECTORSPACING) {
1462 			/*
1463 			 * Sigh... panicing won't help as the console
1464 			 * is probably not configured :(
1465 			 */
1466 			panic("VECTORSPACING too small");
1467 		}
1468 
1469 		memcpy(b, vec_start, handler_len);
1470 #ifdef CONFIG_MIPS_MT_SMTC
1471 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1472 
1473 		w = (u32 *)(b + mori_offset);
1474 		*w = (*w & 0xffff0000) | (0x100 << n);
1475 #endif /* CONFIG_MIPS_MT_SMTC */
1476 		w = (u32 *)(b + lui_offset);
1477 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1478 		w = (u32 *)(b + ori_offset);
1479 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1480 		local_flush_icache_range((unsigned long)b,
1481 					 (unsigned long)(b+handler_len));
1482 	}
1483 	else {
1484 		/*
1485 		 * In other cases jump directly to the interrupt handler
1486 		 *
1487 		 * It is the handlers responsibility to save registers if required
1488 		 * (eg hi/lo) and return from the exception using "eret"
1489 		 */
1490 		w = (u32 *)b;
1491 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1492 		*w = 0;
1493 		local_flush_icache_range((unsigned long)b,
1494 					 (unsigned long)(b+8));
1495 	}
1496 
1497 	return (void *)old_handler;
1498 }
1499 
1500 void *set_vi_handler(int n, vi_handler_t addr)
1501 {
1502 	return set_vi_srs_handler(n, addr, 0);
1503 }
1504 
1505 extern void tlb_init(void);
1506 extern void flush_tlb_handlers(void);
1507 
1508 /*
1509  * Timer interrupt
1510  */
1511 int cp0_compare_irq;
1512 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1513 int cp0_compare_irq_shift;
1514 
1515 /*
1516  * Performance counter IRQ or -1 if shared with timer
1517  */
1518 int cp0_perfcount_irq;
1519 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1520 
1521 static int __cpuinitdata noulri;
1522 
1523 static int __init ulri_disable(char *s)
1524 {
1525 	pr_info("Disabling ulri\n");
1526 	noulri = 1;
1527 
1528 	return 1;
1529 }
1530 __setup("noulri", ulri_disable);
1531 
1532 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1533 {
1534 	unsigned int cpu = smp_processor_id();
1535 	unsigned int status_set = ST0_CU0;
1536 	unsigned int hwrena = cpu_hwrena_impl_bits;
1537 #ifdef CONFIG_MIPS_MT_SMTC
1538 	int secondaryTC = 0;
1539 	int bootTC = (cpu == 0);
1540 
1541 	/*
1542 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1543 	 * Note that this hack assumes that the SMTC init code
1544 	 * assigns TCs consecutively and in ascending order.
1545 	 */
1546 
1547 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1548 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1549 		secondaryTC = 1;
1550 #endif /* CONFIG_MIPS_MT_SMTC */
1551 
1552 	/*
1553 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1554 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1555 	 * flag that some firmware may have left set and the TS bit (for
1556 	 * IP27).  Set XX for ISA IV code to work.
1557 	 */
1558 #ifdef CONFIG_64BIT
1559 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1560 #endif
1561 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1562 		status_set |= ST0_XX;
1563 	if (cpu_has_dsp)
1564 		status_set |= ST0_MX;
1565 
1566 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1567 			 status_set);
1568 
1569 	if (cpu_has_mips_r2)
1570 		hwrena |= 0x0000000f;
1571 
1572 	if (!noulri && cpu_has_userlocal)
1573 		hwrena |= (1 << 29);
1574 
1575 	if (hwrena)
1576 		write_c0_hwrena(hwrena);
1577 
1578 #ifdef CONFIG_MIPS_MT_SMTC
1579 	if (!secondaryTC) {
1580 #endif /* CONFIG_MIPS_MT_SMTC */
1581 
1582 	if (cpu_has_veic || cpu_has_vint) {
1583 		unsigned long sr = set_c0_status(ST0_BEV);
1584 		write_c0_ebase(ebase);
1585 		write_c0_status(sr);
1586 		/* Setting vector spacing enables EI/VI mode  */
1587 		change_c0_intctl(0x3e0, VECTORSPACING);
1588 	}
1589 	if (cpu_has_divec) {
1590 		if (cpu_has_mipsmt) {
1591 			unsigned int vpflags = dvpe();
1592 			set_c0_cause(CAUSEF_IV);
1593 			evpe(vpflags);
1594 		} else
1595 			set_c0_cause(CAUSEF_IV);
1596 	}
1597 
1598 	/*
1599 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1600 	 *
1601 	 *  o read IntCtl.IPTI to determine the timer interrupt
1602 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1603 	 */
1604 	if (cpu_has_mips_r2) {
1605 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1606 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1607 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1608 		if (cp0_perfcount_irq == cp0_compare_irq)
1609 			cp0_perfcount_irq = -1;
1610 	} else {
1611 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1612 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1613 		cp0_perfcount_irq = -1;
1614 	}
1615 
1616 #ifdef CONFIG_MIPS_MT_SMTC
1617 	}
1618 #endif /* CONFIG_MIPS_MT_SMTC */
1619 
1620 	if (!cpu_data[cpu].asid_cache)
1621 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1622 
1623 	atomic_inc(&init_mm.mm_count);
1624 	current->active_mm = &init_mm;
1625 	BUG_ON(current->mm);
1626 	enter_lazy_tlb(&init_mm, current);
1627 
1628 #ifdef CONFIG_MIPS_MT_SMTC
1629 	if (bootTC) {
1630 #endif /* CONFIG_MIPS_MT_SMTC */
1631 		/* Boot CPU's cache setup in setup_arch(). */
1632 		if (!is_boot_cpu)
1633 			cpu_cache_init();
1634 		tlb_init();
1635 #ifdef CONFIG_MIPS_MT_SMTC
1636 	} else if (!secondaryTC) {
1637 		/*
1638 		 * First TC in non-boot VPE must do subset of tlb_init()
1639 		 * for MMU countrol registers.
1640 		 */
1641 		write_c0_pagemask(PM_DEFAULT_MASK);
1642 		write_c0_wired(0);
1643 	}
1644 #endif /* CONFIG_MIPS_MT_SMTC */
1645 	TLBMISS_HANDLER_SETUP();
1646 }
1647 
1648 /* Install CPU exception handler */
1649 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1650 {
1651 	memcpy((void *)(ebase + offset), addr, size);
1652 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1653 }
1654 
1655 static char panic_null_cerr[] __cpuinitdata =
1656 	"Trying to set NULL cache error exception handler";
1657 
1658 /*
1659  * Install uncached CPU exception handler.
1660  * This is suitable only for the cache error exception which is the only
1661  * exception handler that is being run uncached.
1662  */
1663 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1664 	unsigned long size)
1665 {
1666 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1667 
1668 	if (!addr)
1669 		panic(panic_null_cerr);
1670 
1671 	memcpy((void *)(uncached_ebase + offset), addr, size);
1672 }
1673 
1674 static int __initdata rdhwr_noopt;
1675 static int __init set_rdhwr_noopt(char *str)
1676 {
1677 	rdhwr_noopt = 1;
1678 	return 1;
1679 }
1680 
1681 __setup("rdhwr_noopt", set_rdhwr_noopt);
1682 
1683 void __init trap_init(void)
1684 {
1685 	extern char except_vec3_generic, except_vec3_r4000;
1686 	extern char except_vec4;
1687 	unsigned long i;
1688 	int rollback;
1689 
1690 	check_wait();
1691 	rollback = (cpu_wait == r4k_wait);
1692 
1693 #if defined(CONFIG_KGDB)
1694 	if (kgdb_early_setup)
1695 		return; /* Already done */
1696 #endif
1697 
1698 	if (cpu_has_veic || cpu_has_vint) {
1699 		unsigned long size = 0x200 + VECTORSPACING*64;
1700 		ebase = (unsigned long)
1701 			__alloc_bootmem(size, 1 << fls(size), 0);
1702 	} else {
1703 		ebase = CKSEG0;
1704 		if (cpu_has_mips_r2)
1705 			ebase += (read_c0_ebase() & 0x3ffff000);
1706 	}
1707 
1708 	if (board_ebase_setup)
1709 		board_ebase_setup();
1710 	per_cpu_trap_init(true);
1711 
1712 	/*
1713 	 * Copy the generic exception handlers to their final destination.
1714 	 * This will be overriden later as suitable for a particular
1715 	 * configuration.
1716 	 */
1717 	set_handler(0x180, &except_vec3_generic, 0x80);
1718 
1719 	/*
1720 	 * Setup default vectors
1721 	 */
1722 	for (i = 0; i <= 31; i++)
1723 		set_except_vector(i, handle_reserved);
1724 
1725 	/*
1726 	 * Copy the EJTAG debug exception vector handler code to it's final
1727 	 * destination.
1728 	 */
1729 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1730 		board_ejtag_handler_setup();
1731 
1732 	/*
1733 	 * Only some CPUs have the watch exceptions.
1734 	 */
1735 	if (cpu_has_watch)
1736 		set_except_vector(23, handle_watch);
1737 
1738 	/*
1739 	 * Initialise interrupt handlers
1740 	 */
1741 	if (cpu_has_veic || cpu_has_vint) {
1742 		int nvec = cpu_has_veic ? 64 : 8;
1743 		for (i = 0; i < nvec; i++)
1744 			set_vi_handler(i, NULL);
1745 	}
1746 	else if (cpu_has_divec)
1747 		set_handler(0x200, &except_vec4, 0x8);
1748 
1749 	/*
1750 	 * Some CPUs can enable/disable for cache parity detection, but does
1751 	 * it different ways.
1752 	 */
1753 	parity_protection_init();
1754 
1755 	/*
1756 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1757 	 * by external hardware.  Therefore these two exceptions
1758 	 * may have board specific handlers.
1759 	 */
1760 	if (board_be_init)
1761 		board_be_init();
1762 
1763 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1764 	set_except_vector(1, handle_tlbm);
1765 	set_except_vector(2, handle_tlbl);
1766 	set_except_vector(3, handle_tlbs);
1767 
1768 	set_except_vector(4, handle_adel);
1769 	set_except_vector(5, handle_ades);
1770 
1771 	set_except_vector(6, handle_ibe);
1772 	set_except_vector(7, handle_dbe);
1773 
1774 	set_except_vector(8, handle_sys);
1775 	set_except_vector(9, handle_bp);
1776 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1777 			  (cpu_has_vtag_icache ?
1778 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1779 	set_except_vector(11, handle_cpu);
1780 	set_except_vector(12, handle_ov);
1781 	set_except_vector(13, handle_tr);
1782 
1783 	if (current_cpu_type() == CPU_R6000 ||
1784 	    current_cpu_type() == CPU_R6000A) {
1785 		/*
1786 		 * The R6000 is the only R-series CPU that features a machine
1787 		 * check exception (similar to the R4000 cache error) and
1788 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1789 		 * written yet.	 Well, anyway there is no R6000 machine on the
1790 		 * current list of targets for Linux/MIPS.
1791 		 * (Duh, crap, there is someone with a triple R6k machine)
1792 		 */
1793 		//set_except_vector(14, handle_mc);
1794 		//set_except_vector(15, handle_ndc);
1795 	}
1796 
1797 
1798 	if (board_nmi_handler_setup)
1799 		board_nmi_handler_setup();
1800 
1801 	if (cpu_has_fpu && !cpu_has_nofpuex)
1802 		set_except_vector(15, handle_fpe);
1803 
1804 	set_except_vector(22, handle_mdmx);
1805 
1806 	if (cpu_has_mcheck)
1807 		set_except_vector(24, handle_mcheck);
1808 
1809 	if (cpu_has_mipsmt)
1810 		set_except_vector(25, handle_mt);
1811 
1812 	set_except_vector(26, handle_dsp);
1813 
1814 	if (board_cache_error_setup)
1815 		board_cache_error_setup();
1816 
1817 	if (cpu_has_vce)
1818 		/* Special exception: R4[04]00 uses also the divec space. */
1819 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1820 	else if (cpu_has_4kex)
1821 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1822 	else
1823 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1824 
1825 	local_flush_icache_range(ebase, ebase + 0x400);
1826 	flush_tlb_handlers();
1827 
1828 	sort_extable(__start___dbe_table, __stop___dbe_table);
1829 
1830 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1831 }
1832