1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/bootinfo.h> 41 #include <asm/branch.h> 42 #include <asm/break.h> 43 #include <asm/cop2.h> 44 #include <asm/cpu.h> 45 #include <asm/cpu-type.h> 46 #include <asm/dsp.h> 47 #include <asm/fpu.h> 48 #include <asm/fpu_emulator.h> 49 #include <asm/idle.h> 50 #include <asm/mips-r2-to-r6-emul.h> 51 #include <asm/mipsregs.h> 52 #include <asm/mipsmtregs.h> 53 #include <asm/module.h> 54 #include <asm/msa.h> 55 #include <asm/pgtable.h> 56 #include <asm/ptrace.h> 57 #include <asm/sections.h> 58 #include <asm/tlbdebug.h> 59 #include <asm/traps.h> 60 #include <asm/uaccess.h> 61 #include <asm/watch.h> 62 #include <asm/mmu_context.h> 63 #include <asm/types.h> 64 #include <asm/stacktrace.h> 65 #include <asm/uasm.h> 66 67 extern void check_wait(void); 68 extern asmlinkage void rollback_handle_int(void); 69 extern asmlinkage void handle_int(void); 70 extern u32 handle_tlbl[]; 71 extern u32 handle_tlbs[]; 72 extern u32 handle_tlbm[]; 73 extern asmlinkage void handle_adel(void); 74 extern asmlinkage void handle_ades(void); 75 extern asmlinkage void handle_ibe(void); 76 extern asmlinkage void handle_dbe(void); 77 extern asmlinkage void handle_sys(void); 78 extern asmlinkage void handle_bp(void); 79 extern asmlinkage void handle_ri(void); 80 extern asmlinkage void handle_ri_rdhwr_vivt(void); 81 extern asmlinkage void handle_ri_rdhwr(void); 82 extern asmlinkage void handle_cpu(void); 83 extern asmlinkage void handle_ov(void); 84 extern asmlinkage void handle_tr(void); 85 extern asmlinkage void handle_msa_fpe(void); 86 extern asmlinkage void handle_fpe(void); 87 extern asmlinkage void handle_ftlb(void); 88 extern asmlinkage void handle_msa(void); 89 extern asmlinkage void handle_mdmx(void); 90 extern asmlinkage void handle_watch(void); 91 extern asmlinkage void handle_mt(void); 92 extern asmlinkage void handle_dsp(void); 93 extern asmlinkage void handle_mcheck(void); 94 extern asmlinkage void handle_reserved(void); 95 extern void tlb_do_page_fault_0(void); 96 97 void (*board_be_init)(void); 98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 99 void (*board_nmi_handler_setup)(void); 100 void (*board_ejtag_handler_setup)(void); 101 void (*board_bind_eic_interrupt)(int irq, int regset); 102 void (*board_ebase_setup)(void); 103 void(*board_cache_error_setup)(void); 104 105 static void show_raw_backtrace(unsigned long reg29) 106 { 107 unsigned long *sp = (unsigned long *)(reg29 & ~3); 108 unsigned long addr; 109 110 printk("Call Trace:"); 111 #ifdef CONFIG_KALLSYMS 112 printk("\n"); 113 #endif 114 while (!kstack_end(sp)) { 115 unsigned long __user *p = 116 (unsigned long __user *)(unsigned long)sp++; 117 if (__get_user(addr, p)) { 118 printk(" (Bad stack address)"); 119 break; 120 } 121 if (__kernel_text_address(addr)) 122 print_ip_sym(addr); 123 } 124 printk("\n"); 125 } 126 127 #ifdef CONFIG_KALLSYMS 128 int raw_show_trace; 129 static int __init set_raw_show_trace(char *str) 130 { 131 raw_show_trace = 1; 132 return 1; 133 } 134 __setup("raw_show_trace", set_raw_show_trace); 135 #endif 136 137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 138 { 139 unsigned long sp = regs->regs[29]; 140 unsigned long ra = regs->regs[31]; 141 unsigned long pc = regs->cp0_epc; 142 143 if (!task) 144 task = current; 145 146 if (raw_show_trace || !__kernel_text_address(pc)) { 147 show_raw_backtrace(sp); 148 return; 149 } 150 printk("Call Trace:\n"); 151 do { 152 print_ip_sym(pc); 153 pc = unwind_stack(task, &sp, pc, &ra); 154 } while (pc); 155 printk("\n"); 156 } 157 158 /* 159 * This routine abuses get_user()/put_user() to reference pointers 160 * with at least a bit of error checking ... 161 */ 162 static void show_stacktrace(struct task_struct *task, 163 const struct pt_regs *regs) 164 { 165 const int field = 2 * sizeof(unsigned long); 166 long stackdata; 167 int i; 168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 169 170 printk("Stack :"); 171 i = 0; 172 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 173 if (i && ((i % (64 / field)) == 0)) 174 printk("\n "); 175 if (i > 39) { 176 printk(" ..."); 177 break; 178 } 179 180 if (__get_user(stackdata, sp++)) { 181 printk(" (Bad stack address)"); 182 break; 183 } 184 185 printk(" %0*lx", field, stackdata); 186 i++; 187 } 188 printk("\n"); 189 show_backtrace(task, regs); 190 } 191 192 void show_stack(struct task_struct *task, unsigned long *sp) 193 { 194 struct pt_regs regs; 195 mm_segment_t old_fs = get_fs(); 196 if (sp) { 197 regs.regs[29] = (unsigned long)sp; 198 regs.regs[31] = 0; 199 regs.cp0_epc = 0; 200 } else { 201 if (task && task != current) { 202 regs.regs[29] = task->thread.reg29; 203 regs.regs[31] = 0; 204 regs.cp0_epc = task->thread.reg31; 205 #ifdef CONFIG_KGDB_KDB 206 } else if (atomic_read(&kgdb_active) != -1 && 207 kdb_current_regs) { 208 memcpy(®s, kdb_current_regs, sizeof(regs)); 209 #endif /* CONFIG_KGDB_KDB */ 210 } else { 211 prepare_frametrace(®s); 212 } 213 } 214 /* 215 * show_stack() deals exclusively with kernel mode, so be sure to access 216 * the stack in the kernel (not user) address space. 217 */ 218 set_fs(KERNEL_DS); 219 show_stacktrace(task, ®s); 220 set_fs(old_fs); 221 } 222 223 static void show_code(unsigned int __user *pc) 224 { 225 long i; 226 unsigned short __user *pc16 = NULL; 227 228 printk("\nCode:"); 229 230 if ((unsigned long)pc & 1) 231 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 232 for(i = -3 ; i < 6 ; i++) { 233 unsigned int insn; 234 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 235 printk(" (Bad address in epc)\n"); 236 break; 237 } 238 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 239 } 240 } 241 242 static void __show_regs(const struct pt_regs *regs) 243 { 244 const int field = 2 * sizeof(unsigned long); 245 unsigned int cause = regs->cp0_cause; 246 unsigned int exccode; 247 int i; 248 249 show_regs_print_info(KERN_DEFAULT); 250 251 /* 252 * Saved main processor registers 253 */ 254 for (i = 0; i < 32; ) { 255 if ((i % 4) == 0) 256 printk("$%2d :", i); 257 if (i == 0) 258 printk(" %0*lx", field, 0UL); 259 else if (i == 26 || i == 27) 260 printk(" %*s", field, ""); 261 else 262 printk(" %0*lx", field, regs->regs[i]); 263 264 i++; 265 if ((i % 4) == 0) 266 printk("\n"); 267 } 268 269 #ifdef CONFIG_CPU_HAS_SMARTMIPS 270 printk("Acx : %0*lx\n", field, regs->acx); 271 #endif 272 printk("Hi : %0*lx\n", field, regs->hi); 273 printk("Lo : %0*lx\n", field, regs->lo); 274 275 /* 276 * Saved cp0 registers 277 */ 278 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 279 (void *) regs->cp0_epc); 280 printk("ra : %0*lx %pS\n", field, regs->regs[31], 281 (void *) regs->regs[31]); 282 283 printk("Status: %08x ", (uint32_t) regs->cp0_status); 284 285 if (cpu_has_3kex) { 286 if (regs->cp0_status & ST0_KUO) 287 printk("KUo "); 288 if (regs->cp0_status & ST0_IEO) 289 printk("IEo "); 290 if (regs->cp0_status & ST0_KUP) 291 printk("KUp "); 292 if (regs->cp0_status & ST0_IEP) 293 printk("IEp "); 294 if (regs->cp0_status & ST0_KUC) 295 printk("KUc "); 296 if (regs->cp0_status & ST0_IEC) 297 printk("IEc "); 298 } else if (cpu_has_4kex) { 299 if (regs->cp0_status & ST0_KX) 300 printk("KX "); 301 if (regs->cp0_status & ST0_SX) 302 printk("SX "); 303 if (regs->cp0_status & ST0_UX) 304 printk("UX "); 305 switch (regs->cp0_status & ST0_KSU) { 306 case KSU_USER: 307 printk("USER "); 308 break; 309 case KSU_SUPERVISOR: 310 printk("SUPERVISOR "); 311 break; 312 case KSU_KERNEL: 313 printk("KERNEL "); 314 break; 315 default: 316 printk("BAD_MODE "); 317 break; 318 } 319 if (regs->cp0_status & ST0_ERL) 320 printk("ERL "); 321 if (regs->cp0_status & ST0_EXL) 322 printk("EXL "); 323 if (regs->cp0_status & ST0_IE) 324 printk("IE "); 325 } 326 printk("\n"); 327 328 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 329 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 330 331 if (1 <= exccode && exccode <= 5) 332 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 333 334 printk("PrId : %08x (%s)\n", read_c0_prid(), 335 cpu_name_string()); 336 } 337 338 /* 339 * FIXME: really the generic show_regs should take a const pointer argument. 340 */ 341 void show_regs(struct pt_regs *regs) 342 { 343 __show_regs((struct pt_regs *)regs); 344 } 345 346 void show_registers(struct pt_regs *regs) 347 { 348 const int field = 2 * sizeof(unsigned long); 349 mm_segment_t old_fs = get_fs(); 350 351 __show_regs(regs); 352 print_modules(); 353 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 354 current->comm, current->pid, current_thread_info(), current, 355 field, current_thread_info()->tp_value); 356 if (cpu_has_userlocal) { 357 unsigned long tls; 358 359 tls = read_c0_userlocal(); 360 if (tls != current_thread_info()->tp_value) 361 printk("*HwTLS: %0*lx\n", field, tls); 362 } 363 364 if (!user_mode(regs)) 365 /* Necessary for getting the correct stack content */ 366 set_fs(KERNEL_DS); 367 show_stacktrace(current, regs); 368 show_code((unsigned int __user *) regs->cp0_epc); 369 printk("\n"); 370 set_fs(old_fs); 371 } 372 373 static DEFINE_RAW_SPINLOCK(die_lock); 374 375 void __noreturn die(const char *str, struct pt_regs *regs) 376 { 377 static int die_counter; 378 int sig = SIGSEGV; 379 380 oops_enter(); 381 382 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 383 SIGSEGV) == NOTIFY_STOP) 384 sig = 0; 385 386 console_verbose(); 387 raw_spin_lock_irq(&die_lock); 388 bust_spinlocks(1); 389 390 printk("%s[#%d]:\n", str, ++die_counter); 391 show_registers(regs); 392 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 393 raw_spin_unlock_irq(&die_lock); 394 395 oops_exit(); 396 397 if (in_interrupt()) 398 panic("Fatal exception in interrupt"); 399 400 if (panic_on_oops) { 401 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 402 ssleep(5); 403 panic("Fatal exception"); 404 } 405 406 if (regs && kexec_should_crash(current)) 407 crash_kexec(regs); 408 409 do_exit(sig); 410 } 411 412 extern struct exception_table_entry __start___dbe_table[]; 413 extern struct exception_table_entry __stop___dbe_table[]; 414 415 __asm__( 416 " .section __dbe_table, \"a\"\n" 417 " .previous \n"); 418 419 /* Given an address, look for it in the exception tables. */ 420 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 421 { 422 const struct exception_table_entry *e; 423 424 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 425 if (!e) 426 e = search_module_dbetables(addr); 427 return e; 428 } 429 430 asmlinkage void do_be(struct pt_regs *regs) 431 { 432 const int field = 2 * sizeof(unsigned long); 433 const struct exception_table_entry *fixup = NULL; 434 int data = regs->cp0_cause & 4; 435 int action = MIPS_BE_FATAL; 436 enum ctx_state prev_state; 437 438 prev_state = exception_enter(); 439 /* XXX For now. Fixme, this searches the wrong table ... */ 440 if (data && !user_mode(regs)) 441 fixup = search_dbe_tables(exception_epc(regs)); 442 443 if (fixup) 444 action = MIPS_BE_FIXUP; 445 446 if (board_be_handler) 447 action = board_be_handler(regs, fixup != NULL); 448 449 switch (action) { 450 case MIPS_BE_DISCARD: 451 goto out; 452 case MIPS_BE_FIXUP: 453 if (fixup) { 454 regs->cp0_epc = fixup->nextinsn; 455 goto out; 456 } 457 break; 458 default: 459 break; 460 } 461 462 /* 463 * Assume it would be too dangerous to continue ... 464 */ 465 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 466 data ? "Data" : "Instruction", 467 field, regs->cp0_epc, field, regs->regs[31]); 468 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 469 SIGBUS) == NOTIFY_STOP) 470 goto out; 471 472 die_if_kernel("Oops", regs); 473 force_sig(SIGBUS, current); 474 475 out: 476 exception_exit(prev_state); 477 } 478 479 /* 480 * ll/sc, rdhwr, sync emulation 481 */ 482 483 #define OPCODE 0xfc000000 484 #define BASE 0x03e00000 485 #define RT 0x001f0000 486 #define OFFSET 0x0000ffff 487 #define LL 0xc0000000 488 #define SC 0xe0000000 489 #define SPEC0 0x00000000 490 #define SPEC3 0x7c000000 491 #define RD 0x0000f800 492 #define FUNC 0x0000003f 493 #define SYNC 0x0000000f 494 #define RDHWR 0x0000003b 495 496 /* microMIPS definitions */ 497 #define MM_POOL32A_FUNC 0xfc00ffff 498 #define MM_RDHWR 0x00006b3c 499 #define MM_RS 0x001f0000 500 #define MM_RT 0x03e00000 501 502 /* 503 * The ll_bit is cleared by r*_switch.S 504 */ 505 506 unsigned int ll_bit; 507 struct task_struct *ll_task; 508 509 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 510 { 511 unsigned long value, __user *vaddr; 512 long offset; 513 514 /* 515 * analyse the ll instruction that just caused a ri exception 516 * and put the referenced address to addr. 517 */ 518 519 /* sign extend offset */ 520 offset = opcode & OFFSET; 521 offset <<= 16; 522 offset >>= 16; 523 524 vaddr = (unsigned long __user *) 525 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 526 527 if ((unsigned long)vaddr & 3) 528 return SIGBUS; 529 if (get_user(value, vaddr)) 530 return SIGSEGV; 531 532 preempt_disable(); 533 534 if (ll_task == NULL || ll_task == current) { 535 ll_bit = 1; 536 } else { 537 ll_bit = 0; 538 } 539 ll_task = current; 540 541 preempt_enable(); 542 543 regs->regs[(opcode & RT) >> 16] = value; 544 545 return 0; 546 } 547 548 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 549 { 550 unsigned long __user *vaddr; 551 unsigned long reg; 552 long offset; 553 554 /* 555 * analyse the sc instruction that just caused a ri exception 556 * and put the referenced address to addr. 557 */ 558 559 /* sign extend offset */ 560 offset = opcode & OFFSET; 561 offset <<= 16; 562 offset >>= 16; 563 564 vaddr = (unsigned long __user *) 565 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 566 reg = (opcode & RT) >> 16; 567 568 if ((unsigned long)vaddr & 3) 569 return SIGBUS; 570 571 preempt_disable(); 572 573 if (ll_bit == 0 || ll_task != current) { 574 regs->regs[reg] = 0; 575 preempt_enable(); 576 return 0; 577 } 578 579 preempt_enable(); 580 581 if (put_user(regs->regs[reg], vaddr)) 582 return SIGSEGV; 583 584 regs->regs[reg] = 1; 585 586 return 0; 587 } 588 589 /* 590 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 591 * opcodes are supposed to result in coprocessor unusable exceptions if 592 * executed on ll/sc-less processors. That's the theory. In practice a 593 * few processors such as NEC's VR4100 throw reserved instruction exceptions 594 * instead, so we're doing the emulation thing in both exception handlers. 595 */ 596 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 597 { 598 if ((opcode & OPCODE) == LL) { 599 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 600 1, regs, 0); 601 return simulate_ll(regs, opcode); 602 } 603 if ((opcode & OPCODE) == SC) { 604 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 605 1, regs, 0); 606 return simulate_sc(regs, opcode); 607 } 608 609 return -1; /* Must be something else ... */ 610 } 611 612 /* 613 * Simulate trapping 'rdhwr' instructions to provide user accessible 614 * registers not implemented in hardware. 615 */ 616 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 617 { 618 struct thread_info *ti = task_thread_info(current); 619 620 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 621 1, regs, 0); 622 switch (rd) { 623 case 0: /* CPU number */ 624 regs->regs[rt] = smp_processor_id(); 625 return 0; 626 case 1: /* SYNCI length */ 627 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 628 current_cpu_data.icache.linesz); 629 return 0; 630 case 2: /* Read count register */ 631 regs->regs[rt] = read_c0_count(); 632 return 0; 633 case 3: /* Count register resolution */ 634 switch (current_cpu_type()) { 635 case CPU_20KC: 636 case CPU_25KF: 637 regs->regs[rt] = 1; 638 break; 639 default: 640 regs->regs[rt] = 2; 641 } 642 return 0; 643 case 29: 644 regs->regs[rt] = ti->tp_value; 645 return 0; 646 default: 647 return -1; 648 } 649 } 650 651 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 652 { 653 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 654 int rd = (opcode & RD) >> 11; 655 int rt = (opcode & RT) >> 16; 656 657 simulate_rdhwr(regs, rd, rt); 658 return 0; 659 } 660 661 /* Not ours. */ 662 return -1; 663 } 664 665 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 666 { 667 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 668 int rd = (opcode & MM_RS) >> 16; 669 int rt = (opcode & MM_RT) >> 21; 670 simulate_rdhwr(regs, rd, rt); 671 return 0; 672 } 673 674 /* Not ours. */ 675 return -1; 676 } 677 678 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 679 { 680 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 681 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 682 1, regs, 0); 683 return 0; 684 } 685 686 return -1; /* Must be something else ... */ 687 } 688 689 asmlinkage void do_ov(struct pt_regs *regs) 690 { 691 enum ctx_state prev_state; 692 siginfo_t info; 693 694 prev_state = exception_enter(); 695 die_if_kernel("Integer overflow", regs); 696 697 info.si_code = FPE_INTOVF; 698 info.si_signo = SIGFPE; 699 info.si_errno = 0; 700 info.si_addr = (void __user *) regs->cp0_epc; 701 force_sig_info(SIGFPE, &info, current); 702 exception_exit(prev_state); 703 } 704 705 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 706 { 707 struct siginfo si = { 0 }; 708 709 switch (sig) { 710 case 0: 711 return 0; 712 713 case SIGFPE: 714 si.si_addr = fault_addr; 715 si.si_signo = sig; 716 /* 717 * Inexact can happen together with Overflow or Underflow. 718 * Respect the mask to deliver the correct exception. 719 */ 720 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 721 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 722 if (fcr31 & FPU_CSR_INV_X) 723 si.si_code = FPE_FLTINV; 724 else if (fcr31 & FPU_CSR_DIV_X) 725 si.si_code = FPE_FLTDIV; 726 else if (fcr31 & FPU_CSR_OVF_X) 727 si.si_code = FPE_FLTOVF; 728 else if (fcr31 & FPU_CSR_UDF_X) 729 si.si_code = FPE_FLTUND; 730 else if (fcr31 & FPU_CSR_INE_X) 731 si.si_code = FPE_FLTRES; 732 else 733 si.si_code = __SI_FAULT; 734 force_sig_info(sig, &si, current); 735 return 1; 736 737 case SIGBUS: 738 si.si_addr = fault_addr; 739 si.si_signo = sig; 740 si.si_code = BUS_ADRERR; 741 force_sig_info(sig, &si, current); 742 return 1; 743 744 case SIGSEGV: 745 si.si_addr = fault_addr; 746 si.si_signo = sig; 747 down_read(¤t->mm->mmap_sem); 748 if (find_vma(current->mm, (unsigned long)fault_addr)) 749 si.si_code = SEGV_ACCERR; 750 else 751 si.si_code = SEGV_MAPERR; 752 up_read(¤t->mm->mmap_sem); 753 force_sig_info(sig, &si, current); 754 return 1; 755 756 default: 757 force_sig(sig, current); 758 return 1; 759 } 760 } 761 762 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 763 unsigned long old_epc, unsigned long old_ra) 764 { 765 union mips_instruction inst = { .word = opcode }; 766 void __user *fault_addr; 767 unsigned long fcr31; 768 int sig; 769 770 /* If it's obviously not an FP instruction, skip it */ 771 switch (inst.i_format.opcode) { 772 case cop1_op: 773 case cop1x_op: 774 case lwc1_op: 775 case ldc1_op: 776 case swc1_op: 777 case sdc1_op: 778 break; 779 780 default: 781 return -1; 782 } 783 784 /* 785 * do_ri skipped over the instruction via compute_return_epc, undo 786 * that for the FPU emulator. 787 */ 788 regs->cp0_epc = old_epc; 789 regs->regs[31] = old_ra; 790 791 /* Save the FP context to struct thread_struct */ 792 lose_fpu(1); 793 794 /* Run the emulator */ 795 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 796 &fault_addr); 797 fcr31 = current->thread.fpu.fcr31; 798 799 /* 800 * We can't allow the emulated instruction to leave any of 801 * the cause bits set in $fcr31. 802 */ 803 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 804 805 /* Restore the hardware register state */ 806 own_fpu(1); 807 808 /* Send a signal if required. */ 809 process_fpemu_return(sig, fault_addr, fcr31); 810 811 return 0; 812 } 813 814 /* 815 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 816 */ 817 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 818 { 819 enum ctx_state prev_state; 820 void __user *fault_addr; 821 int sig; 822 823 prev_state = exception_enter(); 824 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 825 SIGFPE) == NOTIFY_STOP) 826 goto out; 827 828 /* Clear FCSR.Cause before enabling interrupts */ 829 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 830 local_irq_enable(); 831 832 die_if_kernel("FP exception in kernel code", regs); 833 834 if (fcr31 & FPU_CSR_UNI_X) { 835 /* 836 * Unimplemented operation exception. If we've got the full 837 * software emulator on-board, let's use it... 838 * 839 * Force FPU to dump state into task/thread context. We're 840 * moving a lot of data here for what is probably a single 841 * instruction, but the alternative is to pre-decode the FP 842 * register operands before invoking the emulator, which seems 843 * a bit extreme for what should be an infrequent event. 844 */ 845 /* Ensure 'resume' not overwrite saved fp context again. */ 846 lose_fpu(1); 847 848 /* Run the emulator */ 849 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 850 &fault_addr); 851 fcr31 = current->thread.fpu.fcr31; 852 853 /* 854 * We can't allow the emulated instruction to leave any of 855 * the cause bits set in $fcr31. 856 */ 857 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 858 859 /* Restore the hardware register state */ 860 own_fpu(1); /* Using the FPU again. */ 861 } else { 862 sig = SIGFPE; 863 fault_addr = (void __user *) regs->cp0_epc; 864 } 865 866 /* Send a signal if required. */ 867 process_fpemu_return(sig, fault_addr, fcr31); 868 869 out: 870 exception_exit(prev_state); 871 } 872 873 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 874 const char *str) 875 { 876 siginfo_t info; 877 char b[40]; 878 879 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 880 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 881 SIGTRAP) == NOTIFY_STOP) 882 return; 883 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 884 885 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 886 SIGTRAP) == NOTIFY_STOP) 887 return; 888 889 /* 890 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 891 * insns, even for trap and break codes that indicate arithmetic 892 * failures. Weird ... 893 * But should we continue the brokenness??? --macro 894 */ 895 switch (code) { 896 case BRK_OVERFLOW: 897 case BRK_DIVZERO: 898 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 899 die_if_kernel(b, regs); 900 if (code == BRK_DIVZERO) 901 info.si_code = FPE_INTDIV; 902 else 903 info.si_code = FPE_INTOVF; 904 info.si_signo = SIGFPE; 905 info.si_errno = 0; 906 info.si_addr = (void __user *) regs->cp0_epc; 907 force_sig_info(SIGFPE, &info, current); 908 break; 909 case BRK_BUG: 910 die_if_kernel("Kernel bug detected", regs); 911 force_sig(SIGTRAP, current); 912 break; 913 case BRK_MEMU: 914 /* 915 * This breakpoint code is used by the FPU emulator to retake 916 * control of the CPU after executing the instruction from the 917 * delay slot of an emulated branch. 918 * 919 * Terminate if exception was recognized as a delay slot return 920 * otherwise handle as normal. 921 */ 922 if (do_dsemulret(regs)) 923 return; 924 925 die_if_kernel("Math emu break/trap", regs); 926 force_sig(SIGTRAP, current); 927 break; 928 default: 929 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 930 die_if_kernel(b, regs); 931 force_sig(SIGTRAP, current); 932 } 933 } 934 935 asmlinkage void do_bp(struct pt_regs *regs) 936 { 937 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 938 unsigned int opcode, bcode; 939 enum ctx_state prev_state; 940 mm_segment_t seg; 941 942 seg = get_fs(); 943 if (!user_mode(regs)) 944 set_fs(KERNEL_DS); 945 946 prev_state = exception_enter(); 947 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 948 if (get_isa16_mode(regs->cp0_epc)) { 949 u16 instr[2]; 950 951 if (__get_user(instr[0], (u16 __user *)epc)) 952 goto out_sigsegv; 953 954 if (!cpu_has_mmips) { 955 /* MIPS16e mode */ 956 bcode = (instr[0] >> 5) & 0x3f; 957 } else if (mm_insn_16bit(instr[0])) { 958 /* 16-bit microMIPS BREAK */ 959 bcode = instr[0] & 0xf; 960 } else { 961 /* 32-bit microMIPS BREAK */ 962 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 963 goto out_sigsegv; 964 opcode = (instr[0] << 16) | instr[1]; 965 bcode = (opcode >> 6) & ((1 << 20) - 1); 966 } 967 } else { 968 if (__get_user(opcode, (unsigned int __user *)epc)) 969 goto out_sigsegv; 970 bcode = (opcode >> 6) & ((1 << 20) - 1); 971 } 972 973 /* 974 * There is the ancient bug in the MIPS assemblers that the break 975 * code starts left to bit 16 instead to bit 6 in the opcode. 976 * Gas is bug-compatible, but not always, grrr... 977 * We handle both cases with a simple heuristics. --macro 978 */ 979 if (bcode >= (1 << 10)) 980 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 981 982 /* 983 * notify the kprobe handlers, if instruction is likely to 984 * pertain to them. 985 */ 986 switch (bcode) { 987 case BRK_UPROBE: 988 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 989 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 990 goto out; 991 else 992 break; 993 case BRK_UPROBE_XOL: 994 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 995 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 996 goto out; 997 else 998 break; 999 case BRK_KPROBE_BP: 1000 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1001 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1002 goto out; 1003 else 1004 break; 1005 case BRK_KPROBE_SSTEPBP: 1006 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1007 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1008 goto out; 1009 else 1010 break; 1011 default: 1012 break; 1013 } 1014 1015 do_trap_or_bp(regs, bcode, "Break"); 1016 1017 out: 1018 set_fs(seg); 1019 exception_exit(prev_state); 1020 return; 1021 1022 out_sigsegv: 1023 force_sig(SIGSEGV, current); 1024 goto out; 1025 } 1026 1027 asmlinkage void do_tr(struct pt_regs *regs) 1028 { 1029 u32 opcode, tcode = 0; 1030 enum ctx_state prev_state; 1031 u16 instr[2]; 1032 mm_segment_t seg; 1033 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1034 1035 seg = get_fs(); 1036 if (!user_mode(regs)) 1037 set_fs(get_ds()); 1038 1039 prev_state = exception_enter(); 1040 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1041 if (get_isa16_mode(regs->cp0_epc)) { 1042 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1043 __get_user(instr[1], (u16 __user *)(epc + 2))) 1044 goto out_sigsegv; 1045 opcode = (instr[0] << 16) | instr[1]; 1046 /* Immediate versions don't provide a code. */ 1047 if (!(opcode & OPCODE)) 1048 tcode = (opcode >> 12) & ((1 << 4) - 1); 1049 } else { 1050 if (__get_user(opcode, (u32 __user *)epc)) 1051 goto out_sigsegv; 1052 /* Immediate versions don't provide a code. */ 1053 if (!(opcode & OPCODE)) 1054 tcode = (opcode >> 6) & ((1 << 10) - 1); 1055 } 1056 1057 do_trap_or_bp(regs, tcode, "Trap"); 1058 1059 out: 1060 set_fs(seg); 1061 exception_exit(prev_state); 1062 return; 1063 1064 out_sigsegv: 1065 force_sig(SIGSEGV, current); 1066 goto out; 1067 } 1068 1069 asmlinkage void do_ri(struct pt_regs *regs) 1070 { 1071 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1072 unsigned long old_epc = regs->cp0_epc; 1073 unsigned long old31 = regs->regs[31]; 1074 enum ctx_state prev_state; 1075 unsigned int opcode = 0; 1076 int status = -1; 1077 1078 /* 1079 * Avoid any kernel code. Just emulate the R2 instruction 1080 * as quickly as possible. 1081 */ 1082 if (mipsr2_emulation && cpu_has_mips_r6 && 1083 likely(user_mode(regs)) && 1084 likely(get_user(opcode, epc) >= 0)) { 1085 unsigned long fcr31 = 0; 1086 1087 status = mipsr2_decoder(regs, opcode, &fcr31); 1088 switch (status) { 1089 case 0: 1090 case SIGEMT: 1091 task_thread_info(current)->r2_emul_return = 1; 1092 return; 1093 case SIGILL: 1094 goto no_r2_instr; 1095 default: 1096 process_fpemu_return(status, 1097 ¤t->thread.cp0_baduaddr, 1098 fcr31); 1099 task_thread_info(current)->r2_emul_return = 1; 1100 return; 1101 } 1102 } 1103 1104 no_r2_instr: 1105 1106 prev_state = exception_enter(); 1107 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1108 1109 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1110 SIGILL) == NOTIFY_STOP) 1111 goto out; 1112 1113 die_if_kernel("Reserved instruction in kernel code", regs); 1114 1115 if (unlikely(compute_return_epc(regs) < 0)) 1116 goto out; 1117 1118 if (get_isa16_mode(regs->cp0_epc)) { 1119 unsigned short mmop[2] = { 0 }; 1120 1121 if (unlikely(get_user(mmop[0], epc) < 0)) 1122 status = SIGSEGV; 1123 if (unlikely(get_user(mmop[1], epc) < 0)) 1124 status = SIGSEGV; 1125 opcode = (mmop[0] << 16) | mmop[1]; 1126 1127 if (status < 0) 1128 status = simulate_rdhwr_mm(regs, opcode); 1129 } else { 1130 if (unlikely(get_user(opcode, epc) < 0)) 1131 status = SIGSEGV; 1132 1133 if (!cpu_has_llsc && status < 0) 1134 status = simulate_llsc(regs, opcode); 1135 1136 if (status < 0) 1137 status = simulate_rdhwr_normal(regs, opcode); 1138 1139 if (status < 0) 1140 status = simulate_sync(regs, opcode); 1141 1142 if (status < 0) 1143 status = simulate_fp(regs, opcode, old_epc, old31); 1144 } 1145 1146 if (status < 0) 1147 status = SIGILL; 1148 1149 if (unlikely(status > 0)) { 1150 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1151 regs->regs[31] = old31; 1152 force_sig(status, current); 1153 } 1154 1155 out: 1156 exception_exit(prev_state); 1157 } 1158 1159 /* 1160 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1161 * emulated more than some threshold number of instructions, force migration to 1162 * a "CPU" that has FP support. 1163 */ 1164 static void mt_ase_fp_affinity(void) 1165 { 1166 #ifdef CONFIG_MIPS_MT_FPAFF 1167 if (mt_fpemul_threshold > 0 && 1168 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1169 /* 1170 * If there's no FPU present, or if the application has already 1171 * restricted the allowed set to exclude any CPUs with FPUs, 1172 * we'll skip the procedure. 1173 */ 1174 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1175 cpumask_t tmask; 1176 1177 current->thread.user_cpus_allowed 1178 = current->cpus_allowed; 1179 cpumask_and(&tmask, ¤t->cpus_allowed, 1180 &mt_fpu_cpumask); 1181 set_cpus_allowed_ptr(current, &tmask); 1182 set_thread_flag(TIF_FPUBOUND); 1183 } 1184 } 1185 #endif /* CONFIG_MIPS_MT_FPAFF */ 1186 } 1187 1188 /* 1189 * No lock; only written during early bootup by CPU 0. 1190 */ 1191 static RAW_NOTIFIER_HEAD(cu2_chain); 1192 1193 int __ref register_cu2_notifier(struct notifier_block *nb) 1194 { 1195 return raw_notifier_chain_register(&cu2_chain, nb); 1196 } 1197 1198 int cu2_notifier_call_chain(unsigned long val, void *v) 1199 { 1200 return raw_notifier_call_chain(&cu2_chain, val, v); 1201 } 1202 1203 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1204 void *data) 1205 { 1206 struct pt_regs *regs = data; 1207 1208 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1209 "instruction", regs); 1210 force_sig(SIGILL, current); 1211 1212 return NOTIFY_OK; 1213 } 1214 1215 static int wait_on_fp_mode_switch(atomic_t *p) 1216 { 1217 /* 1218 * The FP mode for this task is currently being switched. That may 1219 * involve modifications to the format of this tasks FP context which 1220 * make it unsafe to proceed with execution for the moment. Instead, 1221 * schedule some other task. 1222 */ 1223 schedule(); 1224 return 0; 1225 } 1226 1227 static int enable_restore_fp_context(int msa) 1228 { 1229 int err, was_fpu_owner, prior_msa; 1230 1231 /* 1232 * If an FP mode switch is currently underway, wait for it to 1233 * complete before proceeding. 1234 */ 1235 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1236 wait_on_fp_mode_switch, TASK_KILLABLE); 1237 1238 if (!used_math()) { 1239 /* First time FP context user. */ 1240 preempt_disable(); 1241 err = init_fpu(); 1242 if (msa && !err) { 1243 enable_msa(); 1244 _init_msa_upper(); 1245 set_thread_flag(TIF_USEDMSA); 1246 set_thread_flag(TIF_MSA_CTX_LIVE); 1247 } 1248 preempt_enable(); 1249 if (!err) 1250 set_used_math(); 1251 return err; 1252 } 1253 1254 /* 1255 * This task has formerly used the FP context. 1256 * 1257 * If this thread has no live MSA vector context then we can simply 1258 * restore the scalar FP context. If it has live MSA vector context 1259 * (that is, it has or may have used MSA since last performing a 1260 * function call) then we'll need to restore the vector context. This 1261 * applies even if we're currently only executing a scalar FP 1262 * instruction. This is because if we were to later execute an MSA 1263 * instruction then we'd either have to: 1264 * 1265 * - Restore the vector context & clobber any registers modified by 1266 * scalar FP instructions between now & then. 1267 * 1268 * or 1269 * 1270 * - Not restore the vector context & lose the most significant bits 1271 * of all vector registers. 1272 * 1273 * Neither of those options is acceptable. We cannot restore the least 1274 * significant bits of the registers now & only restore the most 1275 * significant bits later because the most significant bits of any 1276 * vector registers whose aliased FP register is modified now will have 1277 * been zeroed. We'd have no way to know that when restoring the vector 1278 * context & thus may load an outdated value for the most significant 1279 * bits of a vector register. 1280 */ 1281 if (!msa && !thread_msa_context_live()) 1282 return own_fpu(1); 1283 1284 /* 1285 * This task is using or has previously used MSA. Thus we require 1286 * that Status.FR == 1. 1287 */ 1288 preempt_disable(); 1289 was_fpu_owner = is_fpu_owner(); 1290 err = own_fpu_inatomic(0); 1291 if (err) 1292 goto out; 1293 1294 enable_msa(); 1295 write_msa_csr(current->thread.fpu.msacsr); 1296 set_thread_flag(TIF_USEDMSA); 1297 1298 /* 1299 * If this is the first time that the task is using MSA and it has 1300 * previously used scalar FP in this time slice then we already nave 1301 * FP context which we shouldn't clobber. We do however need to clear 1302 * the upper 64b of each vector register so that this task has no 1303 * opportunity to see data left behind by another. 1304 */ 1305 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1306 if (!prior_msa && was_fpu_owner) { 1307 _init_msa_upper(); 1308 1309 goto out; 1310 } 1311 1312 if (!prior_msa) { 1313 /* 1314 * Restore the least significant 64b of each vector register 1315 * from the existing scalar FP context. 1316 */ 1317 _restore_fp(current); 1318 1319 /* 1320 * The task has not formerly used MSA, so clear the upper 64b 1321 * of each vector register such that it cannot see data left 1322 * behind by another task. 1323 */ 1324 _init_msa_upper(); 1325 } else { 1326 /* We need to restore the vector context. */ 1327 restore_msa(current); 1328 1329 /* Restore the scalar FP control & status register */ 1330 if (!was_fpu_owner) 1331 write_32bit_cp1_register(CP1_STATUS, 1332 current->thread.fpu.fcr31); 1333 } 1334 1335 out: 1336 preempt_enable(); 1337 1338 return 0; 1339 } 1340 1341 asmlinkage void do_cpu(struct pt_regs *regs) 1342 { 1343 enum ctx_state prev_state; 1344 unsigned int __user *epc; 1345 unsigned long old_epc, old31; 1346 void __user *fault_addr; 1347 unsigned int opcode; 1348 unsigned long fcr31; 1349 unsigned int cpid; 1350 int status, err; 1351 unsigned long __maybe_unused flags; 1352 int sig; 1353 1354 prev_state = exception_enter(); 1355 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1356 1357 if (cpid != 2) 1358 die_if_kernel("do_cpu invoked from kernel context!", regs); 1359 1360 switch (cpid) { 1361 case 0: 1362 epc = (unsigned int __user *)exception_epc(regs); 1363 old_epc = regs->cp0_epc; 1364 old31 = regs->regs[31]; 1365 opcode = 0; 1366 status = -1; 1367 1368 if (unlikely(compute_return_epc(regs) < 0)) 1369 break; 1370 1371 if (get_isa16_mode(regs->cp0_epc)) { 1372 unsigned short mmop[2] = { 0 }; 1373 1374 if (unlikely(get_user(mmop[0], epc) < 0)) 1375 status = SIGSEGV; 1376 if (unlikely(get_user(mmop[1], epc) < 0)) 1377 status = SIGSEGV; 1378 opcode = (mmop[0] << 16) | mmop[1]; 1379 1380 if (status < 0) 1381 status = simulate_rdhwr_mm(regs, opcode); 1382 } else { 1383 if (unlikely(get_user(opcode, epc) < 0)) 1384 status = SIGSEGV; 1385 1386 if (!cpu_has_llsc && status < 0) 1387 status = simulate_llsc(regs, opcode); 1388 1389 if (status < 0) 1390 status = simulate_rdhwr_normal(regs, opcode); 1391 } 1392 1393 if (status < 0) 1394 status = SIGILL; 1395 1396 if (unlikely(status > 0)) { 1397 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1398 regs->regs[31] = old31; 1399 force_sig(status, current); 1400 } 1401 1402 break; 1403 1404 case 3: 1405 /* 1406 * The COP3 opcode space and consequently the CP0.Status.CU3 1407 * bit and the CP0.Cause.CE=3 encoding have been removed as 1408 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1409 * up the space has been reused for COP1X instructions, that 1410 * are enabled by the CP0.Status.CU1 bit and consequently 1411 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1412 * exceptions. Some FPU-less processors that implement one 1413 * of these ISAs however use this code erroneously for COP1X 1414 * instructions. Therefore we redirect this trap to the FP 1415 * emulator too. 1416 */ 1417 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1418 force_sig(SIGILL, current); 1419 break; 1420 } 1421 /* Fall through. */ 1422 1423 case 1: 1424 err = enable_restore_fp_context(0); 1425 1426 if (raw_cpu_has_fpu && !err) 1427 break; 1428 1429 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1430 &fault_addr); 1431 fcr31 = current->thread.fpu.fcr31; 1432 1433 /* 1434 * We can't allow the emulated instruction to leave 1435 * any of the cause bits set in $fcr31. 1436 */ 1437 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1438 1439 /* Send a signal if required. */ 1440 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1441 mt_ase_fp_affinity(); 1442 1443 break; 1444 1445 case 2: 1446 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1447 break; 1448 } 1449 1450 exception_exit(prev_state); 1451 } 1452 1453 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1454 { 1455 enum ctx_state prev_state; 1456 1457 prev_state = exception_enter(); 1458 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1459 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1460 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1461 goto out; 1462 1463 /* Clear MSACSR.Cause before enabling interrupts */ 1464 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1465 local_irq_enable(); 1466 1467 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1468 force_sig(SIGFPE, current); 1469 out: 1470 exception_exit(prev_state); 1471 } 1472 1473 asmlinkage void do_msa(struct pt_regs *regs) 1474 { 1475 enum ctx_state prev_state; 1476 int err; 1477 1478 prev_state = exception_enter(); 1479 1480 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1481 force_sig(SIGILL, current); 1482 goto out; 1483 } 1484 1485 die_if_kernel("do_msa invoked from kernel context!", regs); 1486 1487 err = enable_restore_fp_context(1); 1488 if (err) 1489 force_sig(SIGILL, current); 1490 out: 1491 exception_exit(prev_state); 1492 } 1493 1494 asmlinkage void do_mdmx(struct pt_regs *regs) 1495 { 1496 enum ctx_state prev_state; 1497 1498 prev_state = exception_enter(); 1499 force_sig(SIGILL, current); 1500 exception_exit(prev_state); 1501 } 1502 1503 /* 1504 * Called with interrupts disabled. 1505 */ 1506 asmlinkage void do_watch(struct pt_regs *regs) 1507 { 1508 enum ctx_state prev_state; 1509 u32 cause; 1510 1511 prev_state = exception_enter(); 1512 /* 1513 * Clear WP (bit 22) bit of cause register so we don't loop 1514 * forever. 1515 */ 1516 cause = read_c0_cause(); 1517 cause &= ~(1 << 22); 1518 write_c0_cause(cause); 1519 1520 /* 1521 * If the current thread has the watch registers loaded, save 1522 * their values and send SIGTRAP. Otherwise another thread 1523 * left the registers set, clear them and continue. 1524 */ 1525 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1526 mips_read_watch_registers(); 1527 local_irq_enable(); 1528 force_sig(SIGTRAP, current); 1529 } else { 1530 mips_clear_watch_registers(); 1531 local_irq_enable(); 1532 } 1533 exception_exit(prev_state); 1534 } 1535 1536 asmlinkage void do_mcheck(struct pt_regs *regs) 1537 { 1538 int multi_match = regs->cp0_status & ST0_TS; 1539 enum ctx_state prev_state; 1540 mm_segment_t old_fs = get_fs(); 1541 1542 prev_state = exception_enter(); 1543 show_regs(regs); 1544 1545 if (multi_match) { 1546 dump_tlb_regs(); 1547 pr_info("\n"); 1548 dump_tlb_all(); 1549 } 1550 1551 if (!user_mode(regs)) 1552 set_fs(KERNEL_DS); 1553 1554 show_code((unsigned int __user *) regs->cp0_epc); 1555 1556 set_fs(old_fs); 1557 1558 /* 1559 * Some chips may have other causes of machine check (e.g. SB1 1560 * graduation timer) 1561 */ 1562 panic("Caught Machine Check exception - %scaused by multiple " 1563 "matching entries in the TLB.", 1564 (multi_match) ? "" : "not "); 1565 } 1566 1567 asmlinkage void do_mt(struct pt_regs *regs) 1568 { 1569 int subcode; 1570 1571 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1572 >> VPECONTROL_EXCPT_SHIFT; 1573 switch (subcode) { 1574 case 0: 1575 printk(KERN_DEBUG "Thread Underflow\n"); 1576 break; 1577 case 1: 1578 printk(KERN_DEBUG "Thread Overflow\n"); 1579 break; 1580 case 2: 1581 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1582 break; 1583 case 3: 1584 printk(KERN_DEBUG "Gating Storage Exception\n"); 1585 break; 1586 case 4: 1587 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1588 break; 1589 case 5: 1590 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1591 break; 1592 default: 1593 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1594 subcode); 1595 break; 1596 } 1597 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1598 1599 force_sig(SIGILL, current); 1600 } 1601 1602 1603 asmlinkage void do_dsp(struct pt_regs *regs) 1604 { 1605 if (cpu_has_dsp) 1606 panic("Unexpected DSP exception"); 1607 1608 force_sig(SIGILL, current); 1609 } 1610 1611 asmlinkage void do_reserved(struct pt_regs *regs) 1612 { 1613 /* 1614 * Game over - no way to handle this if it ever occurs. Most probably 1615 * caused by a new unknown cpu type or after another deadly 1616 * hard/software error. 1617 */ 1618 show_regs(regs); 1619 panic("Caught reserved exception %ld - should not happen.", 1620 (regs->cp0_cause & 0x7f) >> 2); 1621 } 1622 1623 static int __initdata l1parity = 1; 1624 static int __init nol1parity(char *s) 1625 { 1626 l1parity = 0; 1627 return 1; 1628 } 1629 __setup("nol1par", nol1parity); 1630 static int __initdata l2parity = 1; 1631 static int __init nol2parity(char *s) 1632 { 1633 l2parity = 0; 1634 return 1; 1635 } 1636 __setup("nol2par", nol2parity); 1637 1638 /* 1639 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1640 * it different ways. 1641 */ 1642 static inline void parity_protection_init(void) 1643 { 1644 switch (current_cpu_type()) { 1645 case CPU_24K: 1646 case CPU_34K: 1647 case CPU_74K: 1648 case CPU_1004K: 1649 case CPU_1074K: 1650 case CPU_INTERAPTIV: 1651 case CPU_PROAPTIV: 1652 case CPU_P5600: 1653 case CPU_QEMU_GENERIC: 1654 case CPU_I6400: 1655 { 1656 #define ERRCTL_PE 0x80000000 1657 #define ERRCTL_L2P 0x00800000 1658 unsigned long errctl; 1659 unsigned int l1parity_present, l2parity_present; 1660 1661 errctl = read_c0_ecc(); 1662 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1663 1664 /* probe L1 parity support */ 1665 write_c0_ecc(errctl | ERRCTL_PE); 1666 back_to_back_c0_hazard(); 1667 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1668 1669 /* probe L2 parity support */ 1670 write_c0_ecc(errctl|ERRCTL_L2P); 1671 back_to_back_c0_hazard(); 1672 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1673 1674 if (l1parity_present && l2parity_present) { 1675 if (l1parity) 1676 errctl |= ERRCTL_PE; 1677 if (l1parity ^ l2parity) 1678 errctl |= ERRCTL_L2P; 1679 } else if (l1parity_present) { 1680 if (l1parity) 1681 errctl |= ERRCTL_PE; 1682 } else if (l2parity_present) { 1683 if (l2parity) 1684 errctl |= ERRCTL_L2P; 1685 } else { 1686 /* No parity available */ 1687 } 1688 1689 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1690 1691 write_c0_ecc(errctl); 1692 back_to_back_c0_hazard(); 1693 errctl = read_c0_ecc(); 1694 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1695 1696 if (l1parity_present) 1697 printk(KERN_INFO "Cache parity protection %sabled\n", 1698 (errctl & ERRCTL_PE) ? "en" : "dis"); 1699 1700 if (l2parity_present) { 1701 if (l1parity_present && l1parity) 1702 errctl ^= ERRCTL_L2P; 1703 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1704 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1705 } 1706 } 1707 break; 1708 1709 case CPU_5KC: 1710 case CPU_5KE: 1711 case CPU_LOONGSON1: 1712 write_c0_ecc(0x80000000); 1713 back_to_back_c0_hazard(); 1714 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1715 printk(KERN_INFO "Cache parity protection %sabled\n", 1716 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1717 break; 1718 case CPU_20KC: 1719 case CPU_25KF: 1720 /* Clear the DE bit (bit 16) in the c0_status register. */ 1721 printk(KERN_INFO "Enable cache parity protection for " 1722 "MIPS 20KC/25KF CPUs.\n"); 1723 clear_c0_status(ST0_DE); 1724 break; 1725 default: 1726 break; 1727 } 1728 } 1729 1730 asmlinkage void cache_parity_error(void) 1731 { 1732 const int field = 2 * sizeof(unsigned long); 1733 unsigned int reg_val; 1734 1735 /* For the moment, report the problem and hang. */ 1736 printk("Cache error exception:\n"); 1737 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1738 reg_val = read_c0_cacheerr(); 1739 printk("c0_cacheerr == %08x\n", reg_val); 1740 1741 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1742 reg_val & (1<<30) ? "secondary" : "primary", 1743 reg_val & (1<<31) ? "data" : "insn"); 1744 if ((cpu_has_mips_r2_r6) && 1745 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1746 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1747 reg_val & (1<<29) ? "ED " : "", 1748 reg_val & (1<<28) ? "ET " : "", 1749 reg_val & (1<<27) ? "ES " : "", 1750 reg_val & (1<<26) ? "EE " : "", 1751 reg_val & (1<<25) ? "EB " : "", 1752 reg_val & (1<<24) ? "EI " : "", 1753 reg_val & (1<<23) ? "E1 " : "", 1754 reg_val & (1<<22) ? "E0 " : ""); 1755 } else { 1756 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1757 reg_val & (1<<29) ? "ED " : "", 1758 reg_val & (1<<28) ? "ET " : "", 1759 reg_val & (1<<26) ? "EE " : "", 1760 reg_val & (1<<25) ? "EB " : "", 1761 reg_val & (1<<24) ? "EI " : "", 1762 reg_val & (1<<23) ? "E1 " : "", 1763 reg_val & (1<<22) ? "E0 " : ""); 1764 } 1765 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1766 1767 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1768 if (reg_val & (1<<22)) 1769 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1770 1771 if (reg_val & (1<<23)) 1772 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1773 #endif 1774 1775 panic("Can't handle the cache error!"); 1776 } 1777 1778 asmlinkage void do_ftlb(void) 1779 { 1780 const int field = 2 * sizeof(unsigned long); 1781 unsigned int reg_val; 1782 1783 /* For the moment, report the problem and hang. */ 1784 if ((cpu_has_mips_r2_r6) && 1785 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1786 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1787 read_c0_ecc()); 1788 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1789 reg_val = read_c0_cacheerr(); 1790 pr_err("c0_cacheerr == %08x\n", reg_val); 1791 1792 if ((reg_val & 0xc0000000) == 0xc0000000) { 1793 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1794 } else { 1795 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1796 reg_val & (1<<30) ? "secondary" : "primary", 1797 reg_val & (1<<31) ? "data" : "insn"); 1798 } 1799 } else { 1800 pr_err("FTLB error exception\n"); 1801 } 1802 /* Just print the cacheerr bits for now */ 1803 cache_parity_error(); 1804 } 1805 1806 /* 1807 * SDBBP EJTAG debug exception handler. 1808 * We skip the instruction and return to the next instruction. 1809 */ 1810 void ejtag_exception_handler(struct pt_regs *regs) 1811 { 1812 const int field = 2 * sizeof(unsigned long); 1813 unsigned long depc, old_epc, old_ra; 1814 unsigned int debug; 1815 1816 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1817 depc = read_c0_depc(); 1818 debug = read_c0_debug(); 1819 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1820 if (debug & 0x80000000) { 1821 /* 1822 * In branch delay slot. 1823 * We cheat a little bit here and use EPC to calculate the 1824 * debug return address (DEPC). EPC is restored after the 1825 * calculation. 1826 */ 1827 old_epc = regs->cp0_epc; 1828 old_ra = regs->regs[31]; 1829 regs->cp0_epc = depc; 1830 compute_return_epc(regs); 1831 depc = regs->cp0_epc; 1832 regs->cp0_epc = old_epc; 1833 regs->regs[31] = old_ra; 1834 } else 1835 depc += 4; 1836 write_c0_depc(depc); 1837 1838 #if 0 1839 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1840 write_c0_debug(debug | 0x100); 1841 #endif 1842 } 1843 1844 /* 1845 * NMI exception handler. 1846 * No lock; only written during early bootup by CPU 0. 1847 */ 1848 static RAW_NOTIFIER_HEAD(nmi_chain); 1849 1850 int register_nmi_notifier(struct notifier_block *nb) 1851 { 1852 return raw_notifier_chain_register(&nmi_chain, nb); 1853 } 1854 1855 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1856 { 1857 char str[100]; 1858 1859 raw_notifier_call_chain(&nmi_chain, 0, regs); 1860 bust_spinlocks(1); 1861 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1862 smp_processor_id(), regs->cp0_epc); 1863 regs->cp0_epc = read_c0_errorepc(); 1864 die(str, regs); 1865 } 1866 1867 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1868 1869 unsigned long ebase; 1870 unsigned long exception_handlers[32]; 1871 unsigned long vi_handlers[64]; 1872 1873 void __init *set_except_vector(int n, void *addr) 1874 { 1875 unsigned long handler = (unsigned long) addr; 1876 unsigned long old_handler; 1877 1878 #ifdef CONFIG_CPU_MICROMIPS 1879 /* 1880 * Only the TLB handlers are cache aligned with an even 1881 * address. All other handlers are on an odd address and 1882 * require no modification. Otherwise, MIPS32 mode will 1883 * be entered when handling any TLB exceptions. That 1884 * would be bad...since we must stay in microMIPS mode. 1885 */ 1886 if (!(handler & 0x1)) 1887 handler |= 1; 1888 #endif 1889 old_handler = xchg(&exception_handlers[n], handler); 1890 1891 if (n == 0 && cpu_has_divec) { 1892 #ifdef CONFIG_CPU_MICROMIPS 1893 unsigned long jump_mask = ~((1 << 27) - 1); 1894 #else 1895 unsigned long jump_mask = ~((1 << 28) - 1); 1896 #endif 1897 u32 *buf = (u32 *)(ebase + 0x200); 1898 unsigned int k0 = 26; 1899 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1900 uasm_i_j(&buf, handler & ~jump_mask); 1901 uasm_i_nop(&buf); 1902 } else { 1903 UASM_i_LA(&buf, k0, handler); 1904 uasm_i_jr(&buf, k0); 1905 uasm_i_nop(&buf); 1906 } 1907 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1908 } 1909 return (void *)old_handler; 1910 } 1911 1912 static void do_default_vi(void) 1913 { 1914 show_regs(get_irq_regs()); 1915 panic("Caught unexpected vectored interrupt."); 1916 } 1917 1918 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1919 { 1920 unsigned long handler; 1921 unsigned long old_handler = vi_handlers[n]; 1922 int srssets = current_cpu_data.srsets; 1923 u16 *h; 1924 unsigned char *b; 1925 1926 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1927 1928 if (addr == NULL) { 1929 handler = (unsigned long) do_default_vi; 1930 srs = 0; 1931 } else 1932 handler = (unsigned long) addr; 1933 vi_handlers[n] = handler; 1934 1935 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1936 1937 if (srs >= srssets) 1938 panic("Shadow register set %d not supported", srs); 1939 1940 if (cpu_has_veic) { 1941 if (board_bind_eic_interrupt) 1942 board_bind_eic_interrupt(n, srs); 1943 } else if (cpu_has_vint) { 1944 /* SRSMap is only defined if shadow sets are implemented */ 1945 if (srssets > 1) 1946 change_c0_srsmap(0xf << n*4, srs << n*4); 1947 } 1948 1949 if (srs == 0) { 1950 /* 1951 * If no shadow set is selected then use the default handler 1952 * that does normal register saving and standard interrupt exit 1953 */ 1954 extern char except_vec_vi, except_vec_vi_lui; 1955 extern char except_vec_vi_ori, except_vec_vi_end; 1956 extern char rollback_except_vec_vi; 1957 char *vec_start = using_rollback_handler() ? 1958 &rollback_except_vec_vi : &except_vec_vi; 1959 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1960 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1961 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1962 #else 1963 const int lui_offset = &except_vec_vi_lui - vec_start; 1964 const int ori_offset = &except_vec_vi_ori - vec_start; 1965 #endif 1966 const int handler_len = &except_vec_vi_end - vec_start; 1967 1968 if (handler_len > VECTORSPACING) { 1969 /* 1970 * Sigh... panicing won't help as the console 1971 * is probably not configured :( 1972 */ 1973 panic("VECTORSPACING too small"); 1974 } 1975 1976 set_handler(((unsigned long)b - ebase), vec_start, 1977 #ifdef CONFIG_CPU_MICROMIPS 1978 (handler_len - 1)); 1979 #else 1980 handler_len); 1981 #endif 1982 h = (u16 *)(b + lui_offset); 1983 *h = (handler >> 16) & 0xffff; 1984 h = (u16 *)(b + ori_offset); 1985 *h = (handler & 0xffff); 1986 local_flush_icache_range((unsigned long)b, 1987 (unsigned long)(b+handler_len)); 1988 } 1989 else { 1990 /* 1991 * In other cases jump directly to the interrupt handler. It 1992 * is the handler's responsibility to save registers if required 1993 * (eg hi/lo) and return from the exception using "eret". 1994 */ 1995 u32 insn; 1996 1997 h = (u16 *)b; 1998 /* j handler */ 1999 #ifdef CONFIG_CPU_MICROMIPS 2000 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2001 #else 2002 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2003 #endif 2004 h[0] = (insn >> 16) & 0xffff; 2005 h[1] = insn & 0xffff; 2006 h[2] = 0; 2007 h[3] = 0; 2008 local_flush_icache_range((unsigned long)b, 2009 (unsigned long)(b+8)); 2010 } 2011 2012 return (void *)old_handler; 2013 } 2014 2015 void *set_vi_handler(int n, vi_handler_t addr) 2016 { 2017 return set_vi_srs_handler(n, addr, 0); 2018 } 2019 2020 extern void tlb_init(void); 2021 2022 /* 2023 * Timer interrupt 2024 */ 2025 int cp0_compare_irq; 2026 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2027 int cp0_compare_irq_shift; 2028 2029 /* 2030 * Performance counter IRQ or -1 if shared with timer 2031 */ 2032 int cp0_perfcount_irq; 2033 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2034 2035 /* 2036 * Fast debug channel IRQ or -1 if not present 2037 */ 2038 int cp0_fdc_irq; 2039 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2040 2041 static int noulri; 2042 2043 static int __init ulri_disable(char *s) 2044 { 2045 pr_info("Disabling ulri\n"); 2046 noulri = 1; 2047 2048 return 1; 2049 } 2050 __setup("noulri", ulri_disable); 2051 2052 /* configure STATUS register */ 2053 static void configure_status(void) 2054 { 2055 /* 2056 * Disable coprocessors and select 32-bit or 64-bit addressing 2057 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2058 * flag that some firmware may have left set and the TS bit (for 2059 * IP27). Set XX for ISA IV code to work. 2060 */ 2061 unsigned int status_set = ST0_CU0; 2062 #ifdef CONFIG_64BIT 2063 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2064 #endif 2065 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2066 status_set |= ST0_XX; 2067 if (cpu_has_dsp) 2068 status_set |= ST0_MX; 2069 2070 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2071 status_set); 2072 } 2073 2074 /* configure HWRENA register */ 2075 static void configure_hwrena(void) 2076 { 2077 unsigned int hwrena = cpu_hwrena_impl_bits; 2078 2079 if (cpu_has_mips_r2_r6) 2080 hwrena |= 0x0000000f; 2081 2082 if (!noulri && cpu_has_userlocal) 2083 hwrena |= (1 << 29); 2084 2085 if (hwrena) 2086 write_c0_hwrena(hwrena); 2087 } 2088 2089 static void configure_exception_vector(void) 2090 { 2091 if (cpu_has_veic || cpu_has_vint) { 2092 unsigned long sr = set_c0_status(ST0_BEV); 2093 write_c0_ebase(ebase); 2094 write_c0_status(sr); 2095 /* Setting vector spacing enables EI/VI mode */ 2096 change_c0_intctl(0x3e0, VECTORSPACING); 2097 } 2098 if (cpu_has_divec) { 2099 if (cpu_has_mipsmt) { 2100 unsigned int vpflags = dvpe(); 2101 set_c0_cause(CAUSEF_IV); 2102 evpe(vpflags); 2103 } else 2104 set_c0_cause(CAUSEF_IV); 2105 } 2106 } 2107 2108 void per_cpu_trap_init(bool is_boot_cpu) 2109 { 2110 unsigned int cpu = smp_processor_id(); 2111 2112 configure_status(); 2113 configure_hwrena(); 2114 2115 configure_exception_vector(); 2116 2117 /* 2118 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2119 * 2120 * o read IntCtl.IPTI to determine the timer interrupt 2121 * o read IntCtl.IPPCI to determine the performance counter interrupt 2122 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2123 */ 2124 if (cpu_has_mips_r2_r6) { 2125 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2126 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2127 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2128 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2129 if (!cp0_fdc_irq) 2130 cp0_fdc_irq = -1; 2131 2132 } else { 2133 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2134 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2135 cp0_perfcount_irq = -1; 2136 cp0_fdc_irq = -1; 2137 } 2138 2139 if (!cpu_data[cpu].asid_cache) 2140 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2141 2142 atomic_inc(&init_mm.mm_count); 2143 current->active_mm = &init_mm; 2144 BUG_ON(current->mm); 2145 enter_lazy_tlb(&init_mm, current); 2146 2147 /* Boot CPU's cache setup in setup_arch(). */ 2148 if (!is_boot_cpu) 2149 cpu_cache_init(); 2150 tlb_init(); 2151 TLBMISS_HANDLER_SETUP(); 2152 } 2153 2154 /* Install CPU exception handler */ 2155 void set_handler(unsigned long offset, void *addr, unsigned long size) 2156 { 2157 #ifdef CONFIG_CPU_MICROMIPS 2158 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2159 #else 2160 memcpy((void *)(ebase + offset), addr, size); 2161 #endif 2162 local_flush_icache_range(ebase + offset, ebase + offset + size); 2163 } 2164 2165 static char panic_null_cerr[] = 2166 "Trying to set NULL cache error exception handler"; 2167 2168 /* 2169 * Install uncached CPU exception handler. 2170 * This is suitable only for the cache error exception which is the only 2171 * exception handler that is being run uncached. 2172 */ 2173 void set_uncached_handler(unsigned long offset, void *addr, 2174 unsigned long size) 2175 { 2176 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2177 2178 if (!addr) 2179 panic(panic_null_cerr); 2180 2181 memcpy((void *)(uncached_ebase + offset), addr, size); 2182 } 2183 2184 static int __initdata rdhwr_noopt; 2185 static int __init set_rdhwr_noopt(char *str) 2186 { 2187 rdhwr_noopt = 1; 2188 return 1; 2189 } 2190 2191 __setup("rdhwr_noopt", set_rdhwr_noopt); 2192 2193 void __init trap_init(void) 2194 { 2195 extern char except_vec3_generic; 2196 extern char except_vec4; 2197 extern char except_vec3_r4000; 2198 unsigned long i; 2199 2200 check_wait(); 2201 2202 if (cpu_has_veic || cpu_has_vint) { 2203 unsigned long size = 0x200 + VECTORSPACING*64; 2204 ebase = (unsigned long) 2205 __alloc_bootmem(size, 1 << fls(size), 0); 2206 } else { 2207 #ifdef CONFIG_KVM_GUEST 2208 #define KVM_GUEST_KSEG0 0x40000000 2209 ebase = KVM_GUEST_KSEG0; 2210 #else 2211 ebase = CKSEG0; 2212 #endif 2213 if (cpu_has_mips_r2_r6) 2214 ebase += (read_c0_ebase() & 0x3ffff000); 2215 } 2216 2217 if (cpu_has_mmips) { 2218 unsigned int config3 = read_c0_config3(); 2219 2220 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2221 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2222 else 2223 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2224 } 2225 2226 if (board_ebase_setup) 2227 board_ebase_setup(); 2228 per_cpu_trap_init(true); 2229 2230 /* 2231 * Copy the generic exception handlers to their final destination. 2232 * This will be overriden later as suitable for a particular 2233 * configuration. 2234 */ 2235 set_handler(0x180, &except_vec3_generic, 0x80); 2236 2237 /* 2238 * Setup default vectors 2239 */ 2240 for (i = 0; i <= 31; i++) 2241 set_except_vector(i, handle_reserved); 2242 2243 /* 2244 * Copy the EJTAG debug exception vector handler code to it's final 2245 * destination. 2246 */ 2247 if (cpu_has_ejtag && board_ejtag_handler_setup) 2248 board_ejtag_handler_setup(); 2249 2250 /* 2251 * Only some CPUs have the watch exceptions. 2252 */ 2253 if (cpu_has_watch) 2254 set_except_vector(23, handle_watch); 2255 2256 /* 2257 * Initialise interrupt handlers 2258 */ 2259 if (cpu_has_veic || cpu_has_vint) { 2260 int nvec = cpu_has_veic ? 64 : 8; 2261 for (i = 0; i < nvec; i++) 2262 set_vi_handler(i, NULL); 2263 } 2264 else if (cpu_has_divec) 2265 set_handler(0x200, &except_vec4, 0x8); 2266 2267 /* 2268 * Some CPUs can enable/disable for cache parity detection, but does 2269 * it different ways. 2270 */ 2271 parity_protection_init(); 2272 2273 /* 2274 * The Data Bus Errors / Instruction Bus Errors are signaled 2275 * by external hardware. Therefore these two exceptions 2276 * may have board specific handlers. 2277 */ 2278 if (board_be_init) 2279 board_be_init(); 2280 2281 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2282 : handle_int); 2283 set_except_vector(1, handle_tlbm); 2284 set_except_vector(2, handle_tlbl); 2285 set_except_vector(3, handle_tlbs); 2286 2287 set_except_vector(4, handle_adel); 2288 set_except_vector(5, handle_ades); 2289 2290 set_except_vector(6, handle_ibe); 2291 set_except_vector(7, handle_dbe); 2292 2293 set_except_vector(8, handle_sys); 2294 set_except_vector(9, handle_bp); 2295 set_except_vector(10, rdhwr_noopt ? handle_ri : 2296 (cpu_has_vtag_icache ? 2297 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2298 set_except_vector(11, handle_cpu); 2299 set_except_vector(12, handle_ov); 2300 set_except_vector(13, handle_tr); 2301 set_except_vector(14, handle_msa_fpe); 2302 2303 if (current_cpu_type() == CPU_R6000 || 2304 current_cpu_type() == CPU_R6000A) { 2305 /* 2306 * The R6000 is the only R-series CPU that features a machine 2307 * check exception (similar to the R4000 cache error) and 2308 * unaligned ldc1/sdc1 exception. The handlers have not been 2309 * written yet. Well, anyway there is no R6000 machine on the 2310 * current list of targets for Linux/MIPS. 2311 * (Duh, crap, there is someone with a triple R6k machine) 2312 */ 2313 //set_except_vector(14, handle_mc); 2314 //set_except_vector(15, handle_ndc); 2315 } 2316 2317 2318 if (board_nmi_handler_setup) 2319 board_nmi_handler_setup(); 2320 2321 if (cpu_has_fpu && !cpu_has_nofpuex) 2322 set_except_vector(15, handle_fpe); 2323 2324 set_except_vector(16, handle_ftlb); 2325 2326 if (cpu_has_rixiex) { 2327 set_except_vector(19, tlb_do_page_fault_0); 2328 set_except_vector(20, tlb_do_page_fault_0); 2329 } 2330 2331 set_except_vector(21, handle_msa); 2332 set_except_vector(22, handle_mdmx); 2333 2334 if (cpu_has_mcheck) 2335 set_except_vector(24, handle_mcheck); 2336 2337 if (cpu_has_mipsmt) 2338 set_except_vector(25, handle_mt); 2339 2340 set_except_vector(26, handle_dsp); 2341 2342 if (board_cache_error_setup) 2343 board_cache_error_setup(); 2344 2345 if (cpu_has_vce) 2346 /* Special exception: R4[04]00 uses also the divec space. */ 2347 set_handler(0x180, &except_vec3_r4000, 0x100); 2348 else if (cpu_has_4kex) 2349 set_handler(0x180, &except_vec3_generic, 0x80); 2350 else 2351 set_handler(0x080, &except_vec3_generic, 0x80); 2352 2353 local_flush_icache_range(ebase, ebase + 0x400); 2354 2355 sort_extable(__start___dbe_table, __stop___dbe_table); 2356 2357 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2358 } 2359 2360 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2361 void *v) 2362 { 2363 switch (cmd) { 2364 case CPU_PM_ENTER_FAILED: 2365 case CPU_PM_EXIT: 2366 configure_status(); 2367 configure_hwrena(); 2368 configure_exception_vector(); 2369 2370 /* Restore register with CPU number for TLB handlers */ 2371 TLBMISS_HANDLER_RESTORE(); 2372 2373 break; 2374 } 2375 2376 return NOTIFY_OK; 2377 } 2378 2379 static struct notifier_block trap_pm_notifier_block = { 2380 .notifier_call = trap_pm_notifier, 2381 }; 2382 2383 static int __init trap_pm_init(void) 2384 { 2385 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2386 } 2387 arch_initcall(trap_pm_init); 2388