1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 #include <linux/interrupt.h> 25 #include <linux/ptrace.h> 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 #include <linux/kprobes.h> 29 #include <linux/notifier.h> 30 #include <linux/kdb.h> 31 #include <linux/irq.h> 32 #include <linux/perf_event.h> 33 34 #include <asm/bootinfo.h> 35 #include <asm/branch.h> 36 #include <asm/break.h> 37 #include <asm/cop2.h> 38 #include <asm/cpu.h> 39 #include <asm/dsp.h> 40 #include <asm/fpu.h> 41 #include <asm/fpu_emulator.h> 42 #include <asm/mipsregs.h> 43 #include <asm/mipsmtregs.h> 44 #include <asm/module.h> 45 #include <asm/pgtable.h> 46 #include <asm/ptrace.h> 47 #include <asm/sections.h> 48 #include <asm/system.h> 49 #include <asm/tlbdebug.h> 50 #include <asm/traps.h> 51 #include <asm/uaccess.h> 52 #include <asm/watch.h> 53 #include <asm/mmu_context.h> 54 #include <asm/types.h> 55 #include <asm/stacktrace.h> 56 #include <asm/uasm.h> 57 58 extern void check_wait(void); 59 extern asmlinkage void r4k_wait(void); 60 extern asmlinkage void rollback_handle_int(void); 61 extern asmlinkage void handle_int(void); 62 extern asmlinkage void handle_tlbm(void); 63 extern asmlinkage void handle_tlbl(void); 64 extern asmlinkage void handle_tlbs(void); 65 extern asmlinkage void handle_adel(void); 66 extern asmlinkage void handle_ades(void); 67 extern asmlinkage void handle_ibe(void); 68 extern asmlinkage void handle_dbe(void); 69 extern asmlinkage void handle_sys(void); 70 extern asmlinkage void handle_bp(void); 71 extern asmlinkage void handle_ri(void); 72 extern asmlinkage void handle_ri_rdhwr_vivt(void); 73 extern asmlinkage void handle_ri_rdhwr(void); 74 extern asmlinkage void handle_cpu(void); 75 extern asmlinkage void handle_ov(void); 76 extern asmlinkage void handle_tr(void); 77 extern asmlinkage void handle_fpe(void); 78 extern asmlinkage void handle_mdmx(void); 79 extern asmlinkage void handle_watch(void); 80 extern asmlinkage void handle_mt(void); 81 extern asmlinkage void handle_dsp(void); 82 extern asmlinkage void handle_mcheck(void); 83 extern asmlinkage void handle_reserved(void); 84 85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 86 struct mips_fpu_struct *ctx, int has_fpu, 87 void *__user *fault_addr); 88 89 void (*board_be_init)(void); 90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 91 void (*board_nmi_handler_setup)(void); 92 void (*board_ejtag_handler_setup)(void); 93 void (*board_bind_eic_interrupt)(int irq, int regset); 94 void (*board_ebase_setup)(void); 95 96 97 static void show_raw_backtrace(unsigned long reg29) 98 { 99 unsigned long *sp = (unsigned long *)(reg29 & ~3); 100 unsigned long addr; 101 102 printk("Call Trace:"); 103 #ifdef CONFIG_KALLSYMS 104 printk("\n"); 105 #endif 106 while (!kstack_end(sp)) { 107 unsigned long __user *p = 108 (unsigned long __user *)(unsigned long)sp++; 109 if (__get_user(addr, p)) { 110 printk(" (Bad stack address)"); 111 break; 112 } 113 if (__kernel_text_address(addr)) 114 print_ip_sym(addr); 115 } 116 printk("\n"); 117 } 118 119 #ifdef CONFIG_KALLSYMS 120 int raw_show_trace; 121 static int __init set_raw_show_trace(char *str) 122 { 123 raw_show_trace = 1; 124 return 1; 125 } 126 __setup("raw_show_trace", set_raw_show_trace); 127 #endif 128 129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 130 { 131 unsigned long sp = regs->regs[29]; 132 unsigned long ra = regs->regs[31]; 133 unsigned long pc = regs->cp0_epc; 134 135 if (raw_show_trace || !__kernel_text_address(pc)) { 136 show_raw_backtrace(sp); 137 return; 138 } 139 printk("Call Trace:\n"); 140 do { 141 print_ip_sym(pc); 142 pc = unwind_stack(task, &sp, pc, &ra); 143 } while (pc); 144 printk("\n"); 145 } 146 147 /* 148 * This routine abuses get_user()/put_user() to reference pointers 149 * with at least a bit of error checking ... 150 */ 151 static void show_stacktrace(struct task_struct *task, 152 const struct pt_regs *regs) 153 { 154 const int field = 2 * sizeof(unsigned long); 155 long stackdata; 156 int i; 157 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 158 159 printk("Stack :"); 160 i = 0; 161 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 162 if (i && ((i % (64 / field)) == 0)) 163 printk("\n "); 164 if (i > 39) { 165 printk(" ..."); 166 break; 167 } 168 169 if (__get_user(stackdata, sp++)) { 170 printk(" (Bad stack address)"); 171 break; 172 } 173 174 printk(" %0*lx", field, stackdata); 175 i++; 176 } 177 printk("\n"); 178 show_backtrace(task, regs); 179 } 180 181 void show_stack(struct task_struct *task, unsigned long *sp) 182 { 183 struct pt_regs regs; 184 if (sp) { 185 regs.regs[29] = (unsigned long)sp; 186 regs.regs[31] = 0; 187 regs.cp0_epc = 0; 188 } else { 189 if (task && task != current) { 190 regs.regs[29] = task->thread.reg29; 191 regs.regs[31] = 0; 192 regs.cp0_epc = task->thread.reg31; 193 #ifdef CONFIG_KGDB_KDB 194 } else if (atomic_read(&kgdb_active) != -1 && 195 kdb_current_regs) { 196 memcpy(®s, kdb_current_regs, sizeof(regs)); 197 #endif /* CONFIG_KGDB_KDB */ 198 } else { 199 prepare_frametrace(®s); 200 } 201 } 202 show_stacktrace(task, ®s); 203 } 204 205 /* 206 * The architecture-independent dump_stack generator 207 */ 208 void dump_stack(void) 209 { 210 struct pt_regs regs; 211 212 prepare_frametrace(®s); 213 show_backtrace(current, ®s); 214 } 215 216 EXPORT_SYMBOL(dump_stack); 217 218 static void show_code(unsigned int __user *pc) 219 { 220 long i; 221 unsigned short __user *pc16 = NULL; 222 223 printk("\nCode:"); 224 225 if ((unsigned long)pc & 1) 226 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 227 for(i = -3 ; i < 6 ; i++) { 228 unsigned int insn; 229 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 230 printk(" (Bad address in epc)\n"); 231 break; 232 } 233 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 234 } 235 } 236 237 static void __show_regs(const struct pt_regs *regs) 238 { 239 const int field = 2 * sizeof(unsigned long); 240 unsigned int cause = regs->cp0_cause; 241 int i; 242 243 printk("Cpu %d\n", smp_processor_id()); 244 245 /* 246 * Saved main processor registers 247 */ 248 for (i = 0; i < 32; ) { 249 if ((i % 4) == 0) 250 printk("$%2d :", i); 251 if (i == 0) 252 printk(" %0*lx", field, 0UL); 253 else if (i == 26 || i == 27) 254 printk(" %*s", field, ""); 255 else 256 printk(" %0*lx", field, regs->regs[i]); 257 258 i++; 259 if ((i % 4) == 0) 260 printk("\n"); 261 } 262 263 #ifdef CONFIG_CPU_HAS_SMARTMIPS 264 printk("Acx : %0*lx\n", field, regs->acx); 265 #endif 266 printk("Hi : %0*lx\n", field, regs->hi); 267 printk("Lo : %0*lx\n", field, regs->lo); 268 269 /* 270 * Saved cp0 registers 271 */ 272 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 273 (void *) regs->cp0_epc); 274 printk(" %s\n", print_tainted()); 275 printk("ra : %0*lx %pS\n", field, regs->regs[31], 276 (void *) regs->regs[31]); 277 278 printk("Status: %08x ", (uint32_t) regs->cp0_status); 279 280 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 281 if (regs->cp0_status & ST0_KUO) 282 printk("KUo "); 283 if (regs->cp0_status & ST0_IEO) 284 printk("IEo "); 285 if (regs->cp0_status & ST0_KUP) 286 printk("KUp "); 287 if (regs->cp0_status & ST0_IEP) 288 printk("IEp "); 289 if (regs->cp0_status & ST0_KUC) 290 printk("KUc "); 291 if (regs->cp0_status & ST0_IEC) 292 printk("IEc "); 293 } else { 294 if (regs->cp0_status & ST0_KX) 295 printk("KX "); 296 if (regs->cp0_status & ST0_SX) 297 printk("SX "); 298 if (regs->cp0_status & ST0_UX) 299 printk("UX "); 300 switch (regs->cp0_status & ST0_KSU) { 301 case KSU_USER: 302 printk("USER "); 303 break; 304 case KSU_SUPERVISOR: 305 printk("SUPERVISOR "); 306 break; 307 case KSU_KERNEL: 308 printk("KERNEL "); 309 break; 310 default: 311 printk("BAD_MODE "); 312 break; 313 } 314 if (regs->cp0_status & ST0_ERL) 315 printk("ERL "); 316 if (regs->cp0_status & ST0_EXL) 317 printk("EXL "); 318 if (regs->cp0_status & ST0_IE) 319 printk("IE "); 320 } 321 printk("\n"); 322 323 printk("Cause : %08x\n", cause); 324 325 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 326 if (1 <= cause && cause <= 5) 327 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 328 329 printk("PrId : %08x (%s)\n", read_c0_prid(), 330 cpu_name_string()); 331 } 332 333 /* 334 * FIXME: really the generic show_regs should take a const pointer argument. 335 */ 336 void show_regs(struct pt_regs *regs) 337 { 338 __show_regs((struct pt_regs *)regs); 339 } 340 341 void show_registers(struct pt_regs *regs) 342 { 343 const int field = 2 * sizeof(unsigned long); 344 345 __show_regs(regs); 346 print_modules(); 347 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 348 current->comm, current->pid, current_thread_info(), current, 349 field, current_thread_info()->tp_value); 350 if (cpu_has_userlocal) { 351 unsigned long tls; 352 353 tls = read_c0_userlocal(); 354 if (tls != current_thread_info()->tp_value) 355 printk("*HwTLS: %0*lx\n", field, tls); 356 } 357 358 show_stacktrace(current, regs); 359 show_code((unsigned int __user *) regs->cp0_epc); 360 printk("\n"); 361 } 362 363 static int regs_to_trapnr(struct pt_regs *regs) 364 { 365 return (regs->cp0_cause >> 2) & 0x1f; 366 } 367 368 static DEFINE_RAW_SPINLOCK(die_lock); 369 370 void __noreturn die(const char *str, struct pt_regs *regs) 371 { 372 static int die_counter; 373 int sig = SIGSEGV; 374 #ifdef CONFIG_MIPS_MT_SMTC 375 unsigned long dvpret; 376 #endif /* CONFIG_MIPS_MT_SMTC */ 377 378 oops_enter(); 379 380 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP) 381 sig = 0; 382 383 console_verbose(); 384 raw_spin_lock_irq(&die_lock); 385 #ifdef CONFIG_MIPS_MT_SMTC 386 dvpret = dvpe(); 387 #endif /* CONFIG_MIPS_MT_SMTC */ 388 bust_spinlocks(1); 389 #ifdef CONFIG_MIPS_MT_SMTC 390 mips_mt_regdump(dvpret); 391 #endif /* CONFIG_MIPS_MT_SMTC */ 392 393 printk("%s[#%d]:\n", str, ++die_counter); 394 show_registers(regs); 395 add_taint(TAINT_DIE); 396 raw_spin_unlock_irq(&die_lock); 397 398 oops_exit(); 399 400 if (in_interrupt()) 401 panic("Fatal exception in interrupt"); 402 403 if (panic_on_oops) { 404 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 405 ssleep(5); 406 panic("Fatal exception"); 407 } 408 409 do_exit(sig); 410 } 411 412 extern struct exception_table_entry __start___dbe_table[]; 413 extern struct exception_table_entry __stop___dbe_table[]; 414 415 __asm__( 416 " .section __dbe_table, \"a\"\n" 417 " .previous \n"); 418 419 /* Given an address, look for it in the exception tables. */ 420 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 421 { 422 const struct exception_table_entry *e; 423 424 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 425 if (!e) 426 e = search_module_dbetables(addr); 427 return e; 428 } 429 430 asmlinkage void do_be(struct pt_regs *regs) 431 { 432 const int field = 2 * sizeof(unsigned long); 433 const struct exception_table_entry *fixup = NULL; 434 int data = regs->cp0_cause & 4; 435 int action = MIPS_BE_FATAL; 436 437 /* XXX For now. Fixme, this searches the wrong table ... */ 438 if (data && !user_mode(regs)) 439 fixup = search_dbe_tables(exception_epc(regs)); 440 441 if (fixup) 442 action = MIPS_BE_FIXUP; 443 444 if (board_be_handler) 445 action = board_be_handler(regs, fixup != NULL); 446 447 switch (action) { 448 case MIPS_BE_DISCARD: 449 return; 450 case MIPS_BE_FIXUP: 451 if (fixup) { 452 regs->cp0_epc = fixup->nextinsn; 453 return; 454 } 455 break; 456 default: 457 break; 458 } 459 460 /* 461 * Assume it would be too dangerous to continue ... 462 */ 463 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 464 data ? "Data" : "Instruction", 465 field, regs->cp0_epc, field, regs->regs[31]); 466 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS) 467 == NOTIFY_STOP) 468 return; 469 470 die_if_kernel("Oops", regs); 471 force_sig(SIGBUS, current); 472 } 473 474 /* 475 * ll/sc, rdhwr, sync emulation 476 */ 477 478 #define OPCODE 0xfc000000 479 #define BASE 0x03e00000 480 #define RT 0x001f0000 481 #define OFFSET 0x0000ffff 482 #define LL 0xc0000000 483 #define SC 0xe0000000 484 #define SPEC0 0x00000000 485 #define SPEC3 0x7c000000 486 #define RD 0x0000f800 487 #define FUNC 0x0000003f 488 #define SYNC 0x0000000f 489 #define RDHWR 0x0000003b 490 491 /* 492 * The ll_bit is cleared by r*_switch.S 493 */ 494 495 unsigned int ll_bit; 496 struct task_struct *ll_task; 497 498 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 499 { 500 unsigned long value, __user *vaddr; 501 long offset; 502 503 /* 504 * analyse the ll instruction that just caused a ri exception 505 * and put the referenced address to addr. 506 */ 507 508 /* sign extend offset */ 509 offset = opcode & OFFSET; 510 offset <<= 16; 511 offset >>= 16; 512 513 vaddr = (unsigned long __user *) 514 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 515 516 if ((unsigned long)vaddr & 3) 517 return SIGBUS; 518 if (get_user(value, vaddr)) 519 return SIGSEGV; 520 521 preempt_disable(); 522 523 if (ll_task == NULL || ll_task == current) { 524 ll_bit = 1; 525 } else { 526 ll_bit = 0; 527 } 528 ll_task = current; 529 530 preempt_enable(); 531 532 regs->regs[(opcode & RT) >> 16] = value; 533 534 return 0; 535 } 536 537 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 538 { 539 unsigned long __user *vaddr; 540 unsigned long reg; 541 long offset; 542 543 /* 544 * analyse the sc instruction that just caused a ri exception 545 * and put the referenced address to addr. 546 */ 547 548 /* sign extend offset */ 549 offset = opcode & OFFSET; 550 offset <<= 16; 551 offset >>= 16; 552 553 vaddr = (unsigned long __user *) 554 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 555 reg = (opcode & RT) >> 16; 556 557 if ((unsigned long)vaddr & 3) 558 return SIGBUS; 559 560 preempt_disable(); 561 562 if (ll_bit == 0 || ll_task != current) { 563 regs->regs[reg] = 0; 564 preempt_enable(); 565 return 0; 566 } 567 568 preempt_enable(); 569 570 if (put_user(regs->regs[reg], vaddr)) 571 return SIGSEGV; 572 573 regs->regs[reg] = 1; 574 575 return 0; 576 } 577 578 /* 579 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 580 * opcodes are supposed to result in coprocessor unusable exceptions if 581 * executed on ll/sc-less processors. That's the theory. In practice a 582 * few processors such as NEC's VR4100 throw reserved instruction exceptions 583 * instead, so we're doing the emulation thing in both exception handlers. 584 */ 585 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 586 { 587 if ((opcode & OPCODE) == LL) { 588 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 589 1, regs, 0); 590 return simulate_ll(regs, opcode); 591 } 592 if ((opcode & OPCODE) == SC) { 593 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 594 1, regs, 0); 595 return simulate_sc(regs, opcode); 596 } 597 598 return -1; /* Must be something else ... */ 599 } 600 601 /* 602 * Simulate trapping 'rdhwr' instructions to provide user accessible 603 * registers not implemented in hardware. 604 */ 605 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 606 { 607 struct thread_info *ti = task_thread_info(current); 608 609 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 610 int rd = (opcode & RD) >> 11; 611 int rt = (opcode & RT) >> 16; 612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 613 1, regs, 0); 614 switch (rd) { 615 case 0: /* CPU number */ 616 regs->regs[rt] = smp_processor_id(); 617 return 0; 618 case 1: /* SYNCI length */ 619 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 620 current_cpu_data.icache.linesz); 621 return 0; 622 case 2: /* Read count register */ 623 regs->regs[rt] = read_c0_count(); 624 return 0; 625 case 3: /* Count register resolution */ 626 switch (current_cpu_data.cputype) { 627 case CPU_20KC: 628 case CPU_25KF: 629 regs->regs[rt] = 1; 630 break; 631 default: 632 regs->regs[rt] = 2; 633 } 634 return 0; 635 case 29: 636 regs->regs[rt] = ti->tp_value; 637 return 0; 638 default: 639 return -1; 640 } 641 } 642 643 /* Not ours. */ 644 return -1; 645 } 646 647 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 648 { 649 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 650 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 651 1, regs, 0); 652 return 0; 653 } 654 655 return -1; /* Must be something else ... */ 656 } 657 658 asmlinkage void do_ov(struct pt_regs *regs) 659 { 660 siginfo_t info; 661 662 die_if_kernel("Integer overflow", regs); 663 664 info.si_code = FPE_INTOVF; 665 info.si_signo = SIGFPE; 666 info.si_errno = 0; 667 info.si_addr = (void __user *) regs->cp0_epc; 668 force_sig_info(SIGFPE, &info, current); 669 } 670 671 static int process_fpemu_return(int sig, void __user *fault_addr) 672 { 673 if (sig == SIGSEGV || sig == SIGBUS) { 674 struct siginfo si = {0}; 675 si.si_addr = fault_addr; 676 si.si_signo = sig; 677 if (sig == SIGSEGV) { 678 if (find_vma(current->mm, (unsigned long)fault_addr)) 679 si.si_code = SEGV_ACCERR; 680 else 681 si.si_code = SEGV_MAPERR; 682 } else { 683 si.si_code = BUS_ADRERR; 684 } 685 force_sig_info(sig, &si, current); 686 return 1; 687 } else if (sig) { 688 force_sig(sig, current); 689 return 1; 690 } else { 691 return 0; 692 } 693 } 694 695 /* 696 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 697 */ 698 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 699 { 700 siginfo_t info = {0}; 701 702 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE) 703 == NOTIFY_STOP) 704 return; 705 die_if_kernel("FP exception in kernel code", regs); 706 707 if (fcr31 & FPU_CSR_UNI_X) { 708 int sig; 709 void __user *fault_addr = NULL; 710 711 /* 712 * Unimplemented operation exception. If we've got the full 713 * software emulator on-board, let's use it... 714 * 715 * Force FPU to dump state into task/thread context. We're 716 * moving a lot of data here for what is probably a single 717 * instruction, but the alternative is to pre-decode the FP 718 * register operands before invoking the emulator, which seems 719 * a bit extreme for what should be an infrequent event. 720 */ 721 /* Ensure 'resume' not overwrite saved fp context again. */ 722 lose_fpu(1); 723 724 /* Run the emulator */ 725 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 726 &fault_addr); 727 728 /* 729 * We can't allow the emulated instruction to leave any of 730 * the cause bit set in $fcr31. 731 */ 732 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 733 734 /* Restore the hardware register state */ 735 own_fpu(1); /* Using the FPU again. */ 736 737 /* If something went wrong, signal */ 738 process_fpemu_return(sig, fault_addr); 739 740 return; 741 } else if (fcr31 & FPU_CSR_INV_X) 742 info.si_code = FPE_FLTINV; 743 else if (fcr31 & FPU_CSR_DIV_X) 744 info.si_code = FPE_FLTDIV; 745 else if (fcr31 & FPU_CSR_OVF_X) 746 info.si_code = FPE_FLTOVF; 747 else if (fcr31 & FPU_CSR_UDF_X) 748 info.si_code = FPE_FLTUND; 749 else if (fcr31 & FPU_CSR_INE_X) 750 info.si_code = FPE_FLTRES; 751 else 752 info.si_code = __SI_FAULT; 753 info.si_signo = SIGFPE; 754 info.si_errno = 0; 755 info.si_addr = (void __user *) regs->cp0_epc; 756 force_sig_info(SIGFPE, &info, current); 757 } 758 759 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 760 const char *str) 761 { 762 siginfo_t info; 763 char b[40]; 764 765 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 766 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 767 return; 768 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 769 770 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 771 return; 772 773 /* 774 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 775 * insns, even for trap and break codes that indicate arithmetic 776 * failures. Weird ... 777 * But should we continue the brokenness??? --macro 778 */ 779 switch (code) { 780 case BRK_OVERFLOW: 781 case BRK_DIVZERO: 782 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 783 die_if_kernel(b, regs); 784 if (code == BRK_DIVZERO) 785 info.si_code = FPE_INTDIV; 786 else 787 info.si_code = FPE_INTOVF; 788 info.si_signo = SIGFPE; 789 info.si_errno = 0; 790 info.si_addr = (void __user *) regs->cp0_epc; 791 force_sig_info(SIGFPE, &info, current); 792 break; 793 case BRK_BUG: 794 die_if_kernel("Kernel bug detected", regs); 795 force_sig(SIGTRAP, current); 796 break; 797 case BRK_MEMU: 798 /* 799 * Address errors may be deliberately induced by the FPU 800 * emulator to retake control of the CPU after executing the 801 * instruction in the delay slot of an emulated branch. 802 * 803 * Terminate if exception was recognized as a delay slot return 804 * otherwise handle as normal. 805 */ 806 if (do_dsemulret(regs)) 807 return; 808 809 die_if_kernel("Math emu break/trap", regs); 810 force_sig(SIGTRAP, current); 811 break; 812 default: 813 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 814 die_if_kernel(b, regs); 815 force_sig(SIGTRAP, current); 816 } 817 } 818 819 asmlinkage void do_bp(struct pt_regs *regs) 820 { 821 unsigned int opcode, bcode; 822 823 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 824 goto out_sigsegv; 825 826 /* 827 * There is the ancient bug in the MIPS assemblers that the break 828 * code starts left to bit 16 instead to bit 6 in the opcode. 829 * Gas is bug-compatible, but not always, grrr... 830 * We handle both cases with a simple heuristics. --macro 831 */ 832 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 833 if (bcode >= (1 << 10)) 834 bcode >>= 10; 835 836 /* 837 * notify the kprobe handlers, if instruction is likely to 838 * pertain to them. 839 */ 840 switch (bcode) { 841 case BRK_KPROBE_BP: 842 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 843 return; 844 else 845 break; 846 case BRK_KPROBE_SSTEPBP: 847 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 848 return; 849 else 850 break; 851 default: 852 break; 853 } 854 855 do_trap_or_bp(regs, bcode, "Break"); 856 return; 857 858 out_sigsegv: 859 force_sig(SIGSEGV, current); 860 } 861 862 asmlinkage void do_tr(struct pt_regs *regs) 863 { 864 unsigned int opcode, tcode = 0; 865 866 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 867 goto out_sigsegv; 868 869 /* Immediate versions don't provide a code. */ 870 if (!(opcode & OPCODE)) 871 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 872 873 do_trap_or_bp(regs, tcode, "Trap"); 874 return; 875 876 out_sigsegv: 877 force_sig(SIGSEGV, current); 878 } 879 880 asmlinkage void do_ri(struct pt_regs *regs) 881 { 882 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 883 unsigned long old_epc = regs->cp0_epc; 884 unsigned int opcode = 0; 885 int status = -1; 886 887 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL) 888 == NOTIFY_STOP) 889 return; 890 891 die_if_kernel("Reserved instruction in kernel code", regs); 892 893 if (unlikely(compute_return_epc(regs) < 0)) 894 return; 895 896 if (unlikely(get_user(opcode, epc) < 0)) 897 status = SIGSEGV; 898 899 if (!cpu_has_llsc && status < 0) 900 status = simulate_llsc(regs, opcode); 901 902 if (status < 0) 903 status = simulate_rdhwr(regs, opcode); 904 905 if (status < 0) 906 status = simulate_sync(regs, opcode); 907 908 if (status < 0) 909 status = SIGILL; 910 911 if (unlikely(status > 0)) { 912 regs->cp0_epc = old_epc; /* Undo skip-over. */ 913 force_sig(status, current); 914 } 915 } 916 917 /* 918 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 919 * emulated more than some threshold number of instructions, force migration to 920 * a "CPU" that has FP support. 921 */ 922 static void mt_ase_fp_affinity(void) 923 { 924 #ifdef CONFIG_MIPS_MT_FPAFF 925 if (mt_fpemul_threshold > 0 && 926 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 927 /* 928 * If there's no FPU present, or if the application has already 929 * restricted the allowed set to exclude any CPUs with FPUs, 930 * we'll skip the procedure. 931 */ 932 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 933 cpumask_t tmask; 934 935 current->thread.user_cpus_allowed 936 = current->cpus_allowed; 937 cpus_and(tmask, current->cpus_allowed, 938 mt_fpu_cpumask); 939 set_cpus_allowed_ptr(current, &tmask); 940 set_thread_flag(TIF_FPUBOUND); 941 } 942 } 943 #endif /* CONFIG_MIPS_MT_FPAFF */ 944 } 945 946 /* 947 * No lock; only written during early bootup by CPU 0. 948 */ 949 static RAW_NOTIFIER_HEAD(cu2_chain); 950 951 int __ref register_cu2_notifier(struct notifier_block *nb) 952 { 953 return raw_notifier_chain_register(&cu2_chain, nb); 954 } 955 956 int cu2_notifier_call_chain(unsigned long val, void *v) 957 { 958 return raw_notifier_call_chain(&cu2_chain, val, v); 959 } 960 961 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 962 void *data) 963 { 964 struct pt_regs *regs = data; 965 966 switch (action) { 967 default: 968 die_if_kernel("Unhandled kernel unaligned access or invalid " 969 "instruction", regs); 970 /* Fall through */ 971 972 case CU2_EXCEPTION: 973 force_sig(SIGILL, current); 974 } 975 976 return NOTIFY_OK; 977 } 978 979 asmlinkage void do_cpu(struct pt_regs *regs) 980 { 981 unsigned int __user *epc; 982 unsigned long old_epc; 983 unsigned int opcode; 984 unsigned int cpid; 985 int status; 986 unsigned long __maybe_unused flags; 987 988 die_if_kernel("do_cpu invoked from kernel context!", regs); 989 990 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 991 992 switch (cpid) { 993 case 0: 994 epc = (unsigned int __user *)exception_epc(regs); 995 old_epc = regs->cp0_epc; 996 opcode = 0; 997 status = -1; 998 999 if (unlikely(compute_return_epc(regs) < 0)) 1000 return; 1001 1002 if (unlikely(get_user(opcode, epc) < 0)) 1003 status = SIGSEGV; 1004 1005 if (!cpu_has_llsc && status < 0) 1006 status = simulate_llsc(regs, opcode); 1007 1008 if (status < 0) 1009 status = simulate_rdhwr(regs, opcode); 1010 1011 if (status < 0) 1012 status = SIGILL; 1013 1014 if (unlikely(status > 0)) { 1015 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1016 force_sig(status, current); 1017 } 1018 1019 return; 1020 1021 case 1: 1022 if (used_math()) /* Using the FPU again. */ 1023 own_fpu(1); 1024 else { /* First time FPU user. */ 1025 init_fpu(); 1026 set_used_math(); 1027 } 1028 1029 if (!raw_cpu_has_fpu) { 1030 int sig; 1031 void __user *fault_addr = NULL; 1032 sig = fpu_emulator_cop1Handler(regs, 1033 ¤t->thread.fpu, 1034 0, &fault_addr); 1035 if (!process_fpemu_return(sig, fault_addr)) 1036 mt_ase_fp_affinity(); 1037 } 1038 1039 return; 1040 1041 case 2: 1042 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1043 return; 1044 1045 case 3: 1046 break; 1047 } 1048 1049 force_sig(SIGILL, current); 1050 } 1051 1052 asmlinkage void do_mdmx(struct pt_regs *regs) 1053 { 1054 force_sig(SIGILL, current); 1055 } 1056 1057 /* 1058 * Called with interrupts disabled. 1059 */ 1060 asmlinkage void do_watch(struct pt_regs *regs) 1061 { 1062 u32 cause; 1063 1064 /* 1065 * Clear WP (bit 22) bit of cause register so we don't loop 1066 * forever. 1067 */ 1068 cause = read_c0_cause(); 1069 cause &= ~(1 << 22); 1070 write_c0_cause(cause); 1071 1072 /* 1073 * If the current thread has the watch registers loaded, save 1074 * their values and send SIGTRAP. Otherwise another thread 1075 * left the registers set, clear them and continue. 1076 */ 1077 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1078 mips_read_watch_registers(); 1079 local_irq_enable(); 1080 force_sig(SIGTRAP, current); 1081 } else { 1082 mips_clear_watch_registers(); 1083 local_irq_enable(); 1084 } 1085 } 1086 1087 asmlinkage void do_mcheck(struct pt_regs *regs) 1088 { 1089 const int field = 2 * sizeof(unsigned long); 1090 int multi_match = regs->cp0_status & ST0_TS; 1091 1092 show_regs(regs); 1093 1094 if (multi_match) { 1095 printk("Index : %0x\n", read_c0_index()); 1096 printk("Pagemask: %0x\n", read_c0_pagemask()); 1097 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1098 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1099 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1100 printk("\n"); 1101 dump_tlb_all(); 1102 } 1103 1104 show_code((unsigned int __user *) regs->cp0_epc); 1105 1106 /* 1107 * Some chips may have other causes of machine check (e.g. SB1 1108 * graduation timer) 1109 */ 1110 panic("Caught Machine Check exception - %scaused by multiple " 1111 "matching entries in the TLB.", 1112 (multi_match) ? "" : "not "); 1113 } 1114 1115 asmlinkage void do_mt(struct pt_regs *regs) 1116 { 1117 int subcode; 1118 1119 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1120 >> VPECONTROL_EXCPT_SHIFT; 1121 switch (subcode) { 1122 case 0: 1123 printk(KERN_DEBUG "Thread Underflow\n"); 1124 break; 1125 case 1: 1126 printk(KERN_DEBUG "Thread Overflow\n"); 1127 break; 1128 case 2: 1129 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1130 break; 1131 case 3: 1132 printk(KERN_DEBUG "Gating Storage Exception\n"); 1133 break; 1134 case 4: 1135 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1136 break; 1137 case 5: 1138 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n"); 1139 break; 1140 default: 1141 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1142 subcode); 1143 break; 1144 } 1145 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1146 1147 force_sig(SIGILL, current); 1148 } 1149 1150 1151 asmlinkage void do_dsp(struct pt_regs *regs) 1152 { 1153 if (cpu_has_dsp) 1154 panic("Unexpected DSP exception"); 1155 1156 force_sig(SIGILL, current); 1157 } 1158 1159 asmlinkage void do_reserved(struct pt_regs *regs) 1160 { 1161 /* 1162 * Game over - no way to handle this if it ever occurs. Most probably 1163 * caused by a new unknown cpu type or after another deadly 1164 * hard/software error. 1165 */ 1166 show_regs(regs); 1167 panic("Caught reserved exception %ld - should not happen.", 1168 (regs->cp0_cause & 0x7f) >> 2); 1169 } 1170 1171 static int __initdata l1parity = 1; 1172 static int __init nol1parity(char *s) 1173 { 1174 l1parity = 0; 1175 return 1; 1176 } 1177 __setup("nol1par", nol1parity); 1178 static int __initdata l2parity = 1; 1179 static int __init nol2parity(char *s) 1180 { 1181 l2parity = 0; 1182 return 1; 1183 } 1184 __setup("nol2par", nol2parity); 1185 1186 /* 1187 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1188 * it different ways. 1189 */ 1190 static inline void parity_protection_init(void) 1191 { 1192 switch (current_cpu_type()) { 1193 case CPU_24K: 1194 case CPU_34K: 1195 case CPU_74K: 1196 case CPU_1004K: 1197 { 1198 #define ERRCTL_PE 0x80000000 1199 #define ERRCTL_L2P 0x00800000 1200 unsigned long errctl; 1201 unsigned int l1parity_present, l2parity_present; 1202 1203 errctl = read_c0_ecc(); 1204 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1205 1206 /* probe L1 parity support */ 1207 write_c0_ecc(errctl | ERRCTL_PE); 1208 back_to_back_c0_hazard(); 1209 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1210 1211 /* probe L2 parity support */ 1212 write_c0_ecc(errctl|ERRCTL_L2P); 1213 back_to_back_c0_hazard(); 1214 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1215 1216 if (l1parity_present && l2parity_present) { 1217 if (l1parity) 1218 errctl |= ERRCTL_PE; 1219 if (l1parity ^ l2parity) 1220 errctl |= ERRCTL_L2P; 1221 } else if (l1parity_present) { 1222 if (l1parity) 1223 errctl |= ERRCTL_PE; 1224 } else if (l2parity_present) { 1225 if (l2parity) 1226 errctl |= ERRCTL_L2P; 1227 } else { 1228 /* No parity available */ 1229 } 1230 1231 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1232 1233 write_c0_ecc(errctl); 1234 back_to_back_c0_hazard(); 1235 errctl = read_c0_ecc(); 1236 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1237 1238 if (l1parity_present) 1239 printk(KERN_INFO "Cache parity protection %sabled\n", 1240 (errctl & ERRCTL_PE) ? "en" : "dis"); 1241 1242 if (l2parity_present) { 1243 if (l1parity_present && l1parity) 1244 errctl ^= ERRCTL_L2P; 1245 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1246 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1247 } 1248 } 1249 break; 1250 1251 case CPU_5KC: 1252 write_c0_ecc(0x80000000); 1253 back_to_back_c0_hazard(); 1254 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1255 printk(KERN_INFO "Cache parity protection %sabled\n", 1256 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1257 break; 1258 case CPU_20KC: 1259 case CPU_25KF: 1260 /* Clear the DE bit (bit 16) in the c0_status register. */ 1261 printk(KERN_INFO "Enable cache parity protection for " 1262 "MIPS 20KC/25KF CPUs.\n"); 1263 clear_c0_status(ST0_DE); 1264 break; 1265 default: 1266 break; 1267 } 1268 } 1269 1270 asmlinkage void cache_parity_error(void) 1271 { 1272 const int field = 2 * sizeof(unsigned long); 1273 unsigned int reg_val; 1274 1275 /* For the moment, report the problem and hang. */ 1276 printk("Cache error exception:\n"); 1277 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1278 reg_val = read_c0_cacheerr(); 1279 printk("c0_cacheerr == %08x\n", reg_val); 1280 1281 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1282 reg_val & (1<<30) ? "secondary" : "primary", 1283 reg_val & (1<<31) ? "data" : "insn"); 1284 printk("Error bits: %s%s%s%s%s%s%s\n", 1285 reg_val & (1<<29) ? "ED " : "", 1286 reg_val & (1<<28) ? "ET " : "", 1287 reg_val & (1<<26) ? "EE " : "", 1288 reg_val & (1<<25) ? "EB " : "", 1289 reg_val & (1<<24) ? "EI " : "", 1290 reg_val & (1<<23) ? "E1 " : "", 1291 reg_val & (1<<22) ? "E0 " : ""); 1292 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1293 1294 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1295 if (reg_val & (1<<22)) 1296 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1297 1298 if (reg_val & (1<<23)) 1299 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1300 #endif 1301 1302 panic("Can't handle the cache error!"); 1303 } 1304 1305 /* 1306 * SDBBP EJTAG debug exception handler. 1307 * We skip the instruction and return to the next instruction. 1308 */ 1309 void ejtag_exception_handler(struct pt_regs *regs) 1310 { 1311 const int field = 2 * sizeof(unsigned long); 1312 unsigned long depc, old_epc; 1313 unsigned int debug; 1314 1315 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1316 depc = read_c0_depc(); 1317 debug = read_c0_debug(); 1318 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1319 if (debug & 0x80000000) { 1320 /* 1321 * In branch delay slot. 1322 * We cheat a little bit here and use EPC to calculate the 1323 * debug return address (DEPC). EPC is restored after the 1324 * calculation. 1325 */ 1326 old_epc = regs->cp0_epc; 1327 regs->cp0_epc = depc; 1328 __compute_return_epc(regs); 1329 depc = regs->cp0_epc; 1330 regs->cp0_epc = old_epc; 1331 } else 1332 depc += 4; 1333 write_c0_depc(depc); 1334 1335 #if 0 1336 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1337 write_c0_debug(debug | 0x100); 1338 #endif 1339 } 1340 1341 /* 1342 * NMI exception handler. 1343 * No lock; only written during early bootup by CPU 0. 1344 */ 1345 static RAW_NOTIFIER_HEAD(nmi_chain); 1346 1347 int register_nmi_notifier(struct notifier_block *nb) 1348 { 1349 return raw_notifier_chain_register(&nmi_chain, nb); 1350 } 1351 1352 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1353 { 1354 raw_notifier_call_chain(&nmi_chain, 0, regs); 1355 bust_spinlocks(1); 1356 printk("NMI taken!!!!\n"); 1357 die("NMI", regs); 1358 } 1359 1360 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1361 1362 unsigned long ebase; 1363 unsigned long exception_handlers[32]; 1364 unsigned long vi_handlers[64]; 1365 1366 void __init *set_except_vector(int n, void *addr) 1367 { 1368 unsigned long handler = (unsigned long) addr; 1369 unsigned long old_handler = exception_handlers[n]; 1370 1371 exception_handlers[n] = handler; 1372 if (n == 0 && cpu_has_divec) { 1373 unsigned long jump_mask = ~((1 << 28) - 1); 1374 u32 *buf = (u32 *)(ebase + 0x200); 1375 unsigned int k0 = 26; 1376 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1377 uasm_i_j(&buf, handler & ~jump_mask); 1378 uasm_i_nop(&buf); 1379 } else { 1380 UASM_i_LA(&buf, k0, handler); 1381 uasm_i_jr(&buf, k0); 1382 uasm_i_nop(&buf); 1383 } 1384 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1385 } 1386 return (void *)old_handler; 1387 } 1388 1389 static asmlinkage void do_default_vi(void) 1390 { 1391 show_regs(get_irq_regs()); 1392 panic("Caught unexpected vectored interrupt."); 1393 } 1394 1395 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1396 { 1397 unsigned long handler; 1398 unsigned long old_handler = vi_handlers[n]; 1399 int srssets = current_cpu_data.srsets; 1400 u32 *w; 1401 unsigned char *b; 1402 1403 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1404 1405 if (addr == NULL) { 1406 handler = (unsigned long) do_default_vi; 1407 srs = 0; 1408 } else 1409 handler = (unsigned long) addr; 1410 vi_handlers[n] = (unsigned long) addr; 1411 1412 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1413 1414 if (srs >= srssets) 1415 panic("Shadow register set %d not supported", srs); 1416 1417 if (cpu_has_veic) { 1418 if (board_bind_eic_interrupt) 1419 board_bind_eic_interrupt(n, srs); 1420 } else if (cpu_has_vint) { 1421 /* SRSMap is only defined if shadow sets are implemented */ 1422 if (srssets > 1) 1423 change_c0_srsmap(0xf << n*4, srs << n*4); 1424 } 1425 1426 if (srs == 0) { 1427 /* 1428 * If no shadow set is selected then use the default handler 1429 * that does normal register saving and a standard interrupt exit 1430 */ 1431 1432 extern char except_vec_vi, except_vec_vi_lui; 1433 extern char except_vec_vi_ori, except_vec_vi_end; 1434 extern char rollback_except_vec_vi; 1435 char *vec_start = (cpu_wait == r4k_wait) ? 1436 &rollback_except_vec_vi : &except_vec_vi; 1437 #ifdef CONFIG_MIPS_MT_SMTC 1438 /* 1439 * We need to provide the SMTC vectored interrupt handler 1440 * not only with the address of the handler, but with the 1441 * Status.IM bit to be masked before going there. 1442 */ 1443 extern char except_vec_vi_mori; 1444 const int mori_offset = &except_vec_vi_mori - vec_start; 1445 #endif /* CONFIG_MIPS_MT_SMTC */ 1446 const int handler_len = &except_vec_vi_end - vec_start; 1447 const int lui_offset = &except_vec_vi_lui - vec_start; 1448 const int ori_offset = &except_vec_vi_ori - vec_start; 1449 1450 if (handler_len > VECTORSPACING) { 1451 /* 1452 * Sigh... panicing won't help as the console 1453 * is probably not configured :( 1454 */ 1455 panic("VECTORSPACING too small"); 1456 } 1457 1458 memcpy(b, vec_start, handler_len); 1459 #ifdef CONFIG_MIPS_MT_SMTC 1460 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1461 1462 w = (u32 *)(b + mori_offset); 1463 *w = (*w & 0xffff0000) | (0x100 << n); 1464 #endif /* CONFIG_MIPS_MT_SMTC */ 1465 w = (u32 *)(b + lui_offset); 1466 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1467 w = (u32 *)(b + ori_offset); 1468 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1469 local_flush_icache_range((unsigned long)b, 1470 (unsigned long)(b+handler_len)); 1471 } 1472 else { 1473 /* 1474 * In other cases jump directly to the interrupt handler 1475 * 1476 * It is the handlers responsibility to save registers if required 1477 * (eg hi/lo) and return from the exception using "eret" 1478 */ 1479 w = (u32 *)b; 1480 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1481 *w = 0; 1482 local_flush_icache_range((unsigned long)b, 1483 (unsigned long)(b+8)); 1484 } 1485 1486 return (void *)old_handler; 1487 } 1488 1489 void *set_vi_handler(int n, vi_handler_t addr) 1490 { 1491 return set_vi_srs_handler(n, addr, 0); 1492 } 1493 1494 extern void cpu_cache_init(void); 1495 extern void tlb_init(void); 1496 extern void flush_tlb_handlers(void); 1497 1498 /* 1499 * Timer interrupt 1500 */ 1501 int cp0_compare_irq; 1502 int cp0_compare_irq_shift; 1503 1504 /* 1505 * Performance counter IRQ or -1 if shared with timer 1506 */ 1507 int cp0_perfcount_irq; 1508 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1509 1510 static int __cpuinitdata noulri; 1511 1512 static int __init ulri_disable(char *s) 1513 { 1514 pr_info("Disabling ulri\n"); 1515 noulri = 1; 1516 1517 return 1; 1518 } 1519 __setup("noulri", ulri_disable); 1520 1521 void __cpuinit per_cpu_trap_init(void) 1522 { 1523 unsigned int cpu = smp_processor_id(); 1524 unsigned int status_set = ST0_CU0; 1525 unsigned int hwrena = cpu_hwrena_impl_bits; 1526 #ifdef CONFIG_MIPS_MT_SMTC 1527 int secondaryTC = 0; 1528 int bootTC = (cpu == 0); 1529 1530 /* 1531 * Only do per_cpu_trap_init() for first TC of Each VPE. 1532 * Note that this hack assumes that the SMTC init code 1533 * assigns TCs consecutively and in ascending order. 1534 */ 1535 1536 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1537 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1538 secondaryTC = 1; 1539 #endif /* CONFIG_MIPS_MT_SMTC */ 1540 1541 /* 1542 * Disable coprocessors and select 32-bit or 64-bit addressing 1543 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1544 * flag that some firmware may have left set and the TS bit (for 1545 * IP27). Set XX for ISA IV code to work. 1546 */ 1547 #ifdef CONFIG_64BIT 1548 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1549 #endif 1550 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1551 status_set |= ST0_XX; 1552 if (cpu_has_dsp) 1553 status_set |= ST0_MX; 1554 1555 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1556 status_set); 1557 1558 if (cpu_has_mips_r2) 1559 hwrena |= 0x0000000f; 1560 1561 if (!noulri && cpu_has_userlocal) 1562 hwrena |= (1 << 29); 1563 1564 if (hwrena) 1565 write_c0_hwrena(hwrena); 1566 1567 #ifdef CONFIG_MIPS_MT_SMTC 1568 if (!secondaryTC) { 1569 #endif /* CONFIG_MIPS_MT_SMTC */ 1570 1571 if (cpu_has_veic || cpu_has_vint) { 1572 unsigned long sr = set_c0_status(ST0_BEV); 1573 write_c0_ebase(ebase); 1574 write_c0_status(sr); 1575 /* Setting vector spacing enables EI/VI mode */ 1576 change_c0_intctl(0x3e0, VECTORSPACING); 1577 } 1578 if (cpu_has_divec) { 1579 if (cpu_has_mipsmt) { 1580 unsigned int vpflags = dvpe(); 1581 set_c0_cause(CAUSEF_IV); 1582 evpe(vpflags); 1583 } else 1584 set_c0_cause(CAUSEF_IV); 1585 } 1586 1587 /* 1588 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1589 * 1590 * o read IntCtl.IPTI to determine the timer interrupt 1591 * o read IntCtl.IPPCI to determine the performance counter interrupt 1592 */ 1593 if (cpu_has_mips_r2) { 1594 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1595 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1596 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1597 if (cp0_perfcount_irq == cp0_compare_irq) 1598 cp0_perfcount_irq = -1; 1599 } else { 1600 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1601 cp0_compare_irq_shift = cp0_compare_irq; 1602 cp0_perfcount_irq = -1; 1603 } 1604 1605 #ifdef CONFIG_MIPS_MT_SMTC 1606 } 1607 #endif /* CONFIG_MIPS_MT_SMTC */ 1608 1609 if (!cpu_data[cpu].asid_cache) 1610 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1611 1612 atomic_inc(&init_mm.mm_count); 1613 current->active_mm = &init_mm; 1614 BUG_ON(current->mm); 1615 enter_lazy_tlb(&init_mm, current); 1616 1617 #ifdef CONFIG_MIPS_MT_SMTC 1618 if (bootTC) { 1619 #endif /* CONFIG_MIPS_MT_SMTC */ 1620 cpu_cache_init(); 1621 tlb_init(); 1622 #ifdef CONFIG_MIPS_MT_SMTC 1623 } else if (!secondaryTC) { 1624 /* 1625 * First TC in non-boot VPE must do subset of tlb_init() 1626 * for MMU countrol registers. 1627 */ 1628 write_c0_pagemask(PM_DEFAULT_MASK); 1629 write_c0_wired(0); 1630 } 1631 #endif /* CONFIG_MIPS_MT_SMTC */ 1632 TLBMISS_HANDLER_SETUP(); 1633 } 1634 1635 /* Install CPU exception handler */ 1636 void __init set_handler(unsigned long offset, void *addr, unsigned long size) 1637 { 1638 memcpy((void *)(ebase + offset), addr, size); 1639 local_flush_icache_range(ebase + offset, ebase + offset + size); 1640 } 1641 1642 static char panic_null_cerr[] __cpuinitdata = 1643 "Trying to set NULL cache error exception handler"; 1644 1645 /* 1646 * Install uncached CPU exception handler. 1647 * This is suitable only for the cache error exception which is the only 1648 * exception handler that is being run uncached. 1649 */ 1650 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1651 unsigned long size) 1652 { 1653 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1654 1655 if (!addr) 1656 panic(panic_null_cerr); 1657 1658 memcpy((void *)(uncached_ebase + offset), addr, size); 1659 } 1660 1661 static int __initdata rdhwr_noopt; 1662 static int __init set_rdhwr_noopt(char *str) 1663 { 1664 rdhwr_noopt = 1; 1665 return 1; 1666 } 1667 1668 __setup("rdhwr_noopt", set_rdhwr_noopt); 1669 1670 void __init trap_init(void) 1671 { 1672 extern char except_vec3_generic, except_vec3_r4000; 1673 extern char except_vec4; 1674 unsigned long i; 1675 int rollback; 1676 1677 check_wait(); 1678 rollback = (cpu_wait == r4k_wait); 1679 1680 #if defined(CONFIG_KGDB) 1681 if (kgdb_early_setup) 1682 return; /* Already done */ 1683 #endif 1684 1685 if (cpu_has_veic || cpu_has_vint) { 1686 unsigned long size = 0x200 + VECTORSPACING*64; 1687 ebase = (unsigned long) 1688 __alloc_bootmem(size, 1 << fls(size), 0); 1689 } else { 1690 ebase = CKSEG0; 1691 if (cpu_has_mips_r2) 1692 ebase += (read_c0_ebase() & 0x3ffff000); 1693 } 1694 1695 if (board_ebase_setup) 1696 board_ebase_setup(); 1697 per_cpu_trap_init(); 1698 1699 /* 1700 * Copy the generic exception handlers to their final destination. 1701 * This will be overriden later as suitable for a particular 1702 * configuration. 1703 */ 1704 set_handler(0x180, &except_vec3_generic, 0x80); 1705 1706 /* 1707 * Setup default vectors 1708 */ 1709 for (i = 0; i <= 31; i++) 1710 set_except_vector(i, handle_reserved); 1711 1712 /* 1713 * Copy the EJTAG debug exception vector handler code to it's final 1714 * destination. 1715 */ 1716 if (cpu_has_ejtag && board_ejtag_handler_setup) 1717 board_ejtag_handler_setup(); 1718 1719 /* 1720 * Only some CPUs have the watch exceptions. 1721 */ 1722 if (cpu_has_watch) 1723 set_except_vector(23, handle_watch); 1724 1725 /* 1726 * Initialise interrupt handlers 1727 */ 1728 if (cpu_has_veic || cpu_has_vint) { 1729 int nvec = cpu_has_veic ? 64 : 8; 1730 for (i = 0; i < nvec; i++) 1731 set_vi_handler(i, NULL); 1732 } 1733 else if (cpu_has_divec) 1734 set_handler(0x200, &except_vec4, 0x8); 1735 1736 /* 1737 * Some CPUs can enable/disable for cache parity detection, but does 1738 * it different ways. 1739 */ 1740 parity_protection_init(); 1741 1742 /* 1743 * The Data Bus Errors / Instruction Bus Errors are signaled 1744 * by external hardware. Therefore these two exceptions 1745 * may have board specific handlers. 1746 */ 1747 if (board_be_init) 1748 board_be_init(); 1749 1750 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1751 set_except_vector(1, handle_tlbm); 1752 set_except_vector(2, handle_tlbl); 1753 set_except_vector(3, handle_tlbs); 1754 1755 set_except_vector(4, handle_adel); 1756 set_except_vector(5, handle_ades); 1757 1758 set_except_vector(6, handle_ibe); 1759 set_except_vector(7, handle_dbe); 1760 1761 set_except_vector(8, handle_sys); 1762 set_except_vector(9, handle_bp); 1763 set_except_vector(10, rdhwr_noopt ? handle_ri : 1764 (cpu_has_vtag_icache ? 1765 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1766 set_except_vector(11, handle_cpu); 1767 set_except_vector(12, handle_ov); 1768 set_except_vector(13, handle_tr); 1769 1770 if (current_cpu_type() == CPU_R6000 || 1771 current_cpu_type() == CPU_R6000A) { 1772 /* 1773 * The R6000 is the only R-series CPU that features a machine 1774 * check exception (similar to the R4000 cache error) and 1775 * unaligned ldc1/sdc1 exception. The handlers have not been 1776 * written yet. Well, anyway there is no R6000 machine on the 1777 * current list of targets for Linux/MIPS. 1778 * (Duh, crap, there is someone with a triple R6k machine) 1779 */ 1780 //set_except_vector(14, handle_mc); 1781 //set_except_vector(15, handle_ndc); 1782 } 1783 1784 1785 if (board_nmi_handler_setup) 1786 board_nmi_handler_setup(); 1787 1788 if (cpu_has_fpu && !cpu_has_nofpuex) 1789 set_except_vector(15, handle_fpe); 1790 1791 set_except_vector(22, handle_mdmx); 1792 1793 if (cpu_has_mcheck) 1794 set_except_vector(24, handle_mcheck); 1795 1796 if (cpu_has_mipsmt) 1797 set_except_vector(25, handle_mt); 1798 1799 set_except_vector(26, handle_dsp); 1800 1801 if (cpu_has_vce) 1802 /* Special exception: R4[04]00 uses also the divec space. */ 1803 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1804 else if (cpu_has_4kex) 1805 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1806 else 1807 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1808 1809 local_flush_icache_range(ebase, ebase + 0x400); 1810 flush_tlb_handlers(); 1811 1812 sort_extable(__start___dbe_table, __stop___dbe_table); 1813 1814 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 1815 } 1816