xref: /linux/arch/mips/kernel/traps.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 #include <linux/irq.h>
32 #include <linux/perf_event.h>
33 
34 #include <asm/bootinfo.h>
35 #include <asm/branch.h>
36 #include <asm/break.h>
37 #include <asm/cop2.h>
38 #include <asm/cpu.h>
39 #include <asm/dsp.h>
40 #include <asm/fpu.h>
41 #include <asm/fpu_emulator.h>
42 #include <asm/mipsregs.h>
43 #include <asm/mipsmtregs.h>
44 #include <asm/module.h>
45 #include <asm/pgtable.h>
46 #include <asm/ptrace.h>
47 #include <asm/sections.h>
48 #include <asm/system.h>
49 #include <asm/tlbdebug.h>
50 #include <asm/traps.h>
51 #include <asm/uaccess.h>
52 #include <asm/watch.h>
53 #include <asm/mmu_context.h>
54 #include <asm/types.h>
55 #include <asm/stacktrace.h>
56 #include <asm/uasm.h>
57 
58 extern void check_wait(void);
59 extern asmlinkage void r4k_wait(void);
60 extern asmlinkage void rollback_handle_int(void);
61 extern asmlinkage void handle_int(void);
62 extern asmlinkage void handle_tlbm(void);
63 extern asmlinkage void handle_tlbl(void);
64 extern asmlinkage void handle_tlbs(void);
65 extern asmlinkage void handle_adel(void);
66 extern asmlinkage void handle_ades(void);
67 extern asmlinkage void handle_ibe(void);
68 extern asmlinkage void handle_dbe(void);
69 extern asmlinkage void handle_sys(void);
70 extern asmlinkage void handle_bp(void);
71 extern asmlinkage void handle_ri(void);
72 extern asmlinkage void handle_ri_rdhwr_vivt(void);
73 extern asmlinkage void handle_ri_rdhwr(void);
74 extern asmlinkage void handle_cpu(void);
75 extern asmlinkage void handle_ov(void);
76 extern asmlinkage void handle_tr(void);
77 extern asmlinkage void handle_fpe(void);
78 extern asmlinkage void handle_mdmx(void);
79 extern asmlinkage void handle_watch(void);
80 extern asmlinkage void handle_mt(void);
81 extern asmlinkage void handle_dsp(void);
82 extern asmlinkage void handle_mcheck(void);
83 extern asmlinkage void handle_reserved(void);
84 
85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 				    struct mips_fpu_struct *ctx, int has_fpu,
87 				    void *__user *fault_addr);
88 
89 void (*board_be_init)(void);
90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91 void (*board_nmi_handler_setup)(void);
92 void (*board_ejtag_handler_setup)(void);
93 void (*board_bind_eic_interrupt)(int irq, int regset);
94 void (*board_ebase_setup)(void);
95 
96 
97 static void show_raw_backtrace(unsigned long reg29)
98 {
99 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
100 	unsigned long addr;
101 
102 	printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
104 	printk("\n");
105 #endif
106 	while (!kstack_end(sp)) {
107 		unsigned long __user *p =
108 			(unsigned long __user *)(unsigned long)sp++;
109 		if (__get_user(addr, p)) {
110 			printk(" (Bad stack address)");
111 			break;
112 		}
113 		if (__kernel_text_address(addr))
114 			print_ip_sym(addr);
115 	}
116 	printk("\n");
117 }
118 
119 #ifdef CONFIG_KALLSYMS
120 int raw_show_trace;
121 static int __init set_raw_show_trace(char *str)
122 {
123 	raw_show_trace = 1;
124 	return 1;
125 }
126 __setup("raw_show_trace", set_raw_show_trace);
127 #endif
128 
129 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
130 {
131 	unsigned long sp = regs->regs[29];
132 	unsigned long ra = regs->regs[31];
133 	unsigned long pc = regs->cp0_epc;
134 
135 	if (raw_show_trace || !__kernel_text_address(pc)) {
136 		show_raw_backtrace(sp);
137 		return;
138 	}
139 	printk("Call Trace:\n");
140 	do {
141 		print_ip_sym(pc);
142 		pc = unwind_stack(task, &sp, pc, &ra);
143 	} while (pc);
144 	printk("\n");
145 }
146 
147 /*
148  * This routine abuses get_user()/put_user() to reference pointers
149  * with at least a bit of error checking ...
150  */
151 static void show_stacktrace(struct task_struct *task,
152 	const struct pt_regs *regs)
153 {
154 	const int field = 2 * sizeof(unsigned long);
155 	long stackdata;
156 	int i;
157 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
158 
159 	printk("Stack :");
160 	i = 0;
161 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
162 		if (i && ((i % (64 / field)) == 0))
163 			printk("\n       ");
164 		if (i > 39) {
165 			printk(" ...");
166 			break;
167 		}
168 
169 		if (__get_user(stackdata, sp++)) {
170 			printk(" (Bad stack address)");
171 			break;
172 		}
173 
174 		printk(" %0*lx", field, stackdata);
175 		i++;
176 	}
177 	printk("\n");
178 	show_backtrace(task, regs);
179 }
180 
181 void show_stack(struct task_struct *task, unsigned long *sp)
182 {
183 	struct pt_regs regs;
184 	if (sp) {
185 		regs.regs[29] = (unsigned long)sp;
186 		regs.regs[31] = 0;
187 		regs.cp0_epc = 0;
188 	} else {
189 		if (task && task != current) {
190 			regs.regs[29] = task->thread.reg29;
191 			regs.regs[31] = 0;
192 			regs.cp0_epc = task->thread.reg31;
193 #ifdef CONFIG_KGDB_KDB
194 		} else if (atomic_read(&kgdb_active) != -1 &&
195 			   kdb_current_regs) {
196 			memcpy(&regs, kdb_current_regs, sizeof(regs));
197 #endif /* CONFIG_KGDB_KDB */
198 		} else {
199 			prepare_frametrace(&regs);
200 		}
201 	}
202 	show_stacktrace(task, &regs);
203 }
204 
205 /*
206  * The architecture-independent dump_stack generator
207  */
208 void dump_stack(void)
209 {
210 	struct pt_regs regs;
211 
212 	prepare_frametrace(&regs);
213 	show_backtrace(current, &regs);
214 }
215 
216 EXPORT_SYMBOL(dump_stack);
217 
218 static void show_code(unsigned int __user *pc)
219 {
220 	long i;
221 	unsigned short __user *pc16 = NULL;
222 
223 	printk("\nCode:");
224 
225 	if ((unsigned long)pc & 1)
226 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
227 	for(i = -3 ; i < 6 ; i++) {
228 		unsigned int insn;
229 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
230 			printk(" (Bad address in epc)\n");
231 			break;
232 		}
233 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
234 	}
235 }
236 
237 static void __show_regs(const struct pt_regs *regs)
238 {
239 	const int field = 2 * sizeof(unsigned long);
240 	unsigned int cause = regs->cp0_cause;
241 	int i;
242 
243 	printk("Cpu %d\n", smp_processor_id());
244 
245 	/*
246 	 * Saved main processor registers
247 	 */
248 	for (i = 0; i < 32; ) {
249 		if ((i % 4) == 0)
250 			printk("$%2d   :", i);
251 		if (i == 0)
252 			printk(" %0*lx", field, 0UL);
253 		else if (i == 26 || i == 27)
254 			printk(" %*s", field, "");
255 		else
256 			printk(" %0*lx", field, regs->regs[i]);
257 
258 		i++;
259 		if ((i % 4) == 0)
260 			printk("\n");
261 	}
262 
263 #ifdef CONFIG_CPU_HAS_SMARTMIPS
264 	printk("Acx    : %0*lx\n", field, regs->acx);
265 #endif
266 	printk("Hi    : %0*lx\n", field, regs->hi);
267 	printk("Lo    : %0*lx\n", field, regs->lo);
268 
269 	/*
270 	 * Saved cp0 registers
271 	 */
272 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
273 	       (void *) regs->cp0_epc);
274 	printk("    %s\n", print_tainted());
275 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
276 	       (void *) regs->regs[31]);
277 
278 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
279 
280 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
281 		if (regs->cp0_status & ST0_KUO)
282 			printk("KUo ");
283 		if (regs->cp0_status & ST0_IEO)
284 			printk("IEo ");
285 		if (regs->cp0_status & ST0_KUP)
286 			printk("KUp ");
287 		if (regs->cp0_status & ST0_IEP)
288 			printk("IEp ");
289 		if (regs->cp0_status & ST0_KUC)
290 			printk("KUc ");
291 		if (regs->cp0_status & ST0_IEC)
292 			printk("IEc ");
293 	} else {
294 		if (regs->cp0_status & ST0_KX)
295 			printk("KX ");
296 		if (regs->cp0_status & ST0_SX)
297 			printk("SX ");
298 		if (regs->cp0_status & ST0_UX)
299 			printk("UX ");
300 		switch (regs->cp0_status & ST0_KSU) {
301 		case KSU_USER:
302 			printk("USER ");
303 			break;
304 		case KSU_SUPERVISOR:
305 			printk("SUPERVISOR ");
306 			break;
307 		case KSU_KERNEL:
308 			printk("KERNEL ");
309 			break;
310 		default:
311 			printk("BAD_MODE ");
312 			break;
313 		}
314 		if (regs->cp0_status & ST0_ERL)
315 			printk("ERL ");
316 		if (regs->cp0_status & ST0_EXL)
317 			printk("EXL ");
318 		if (regs->cp0_status & ST0_IE)
319 			printk("IE ");
320 	}
321 	printk("\n");
322 
323 	printk("Cause : %08x\n", cause);
324 
325 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
326 	if (1 <= cause && cause <= 5)
327 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
328 
329 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
330 	       cpu_name_string());
331 }
332 
333 /*
334  * FIXME: really the generic show_regs should take a const pointer argument.
335  */
336 void show_regs(struct pt_regs *regs)
337 {
338 	__show_regs((struct pt_regs *)regs);
339 }
340 
341 void show_registers(struct pt_regs *regs)
342 {
343 	const int field = 2 * sizeof(unsigned long);
344 
345 	__show_regs(regs);
346 	print_modules();
347 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
348 	       current->comm, current->pid, current_thread_info(), current,
349 	      field, current_thread_info()->tp_value);
350 	if (cpu_has_userlocal) {
351 		unsigned long tls;
352 
353 		tls = read_c0_userlocal();
354 		if (tls != current_thread_info()->tp_value)
355 			printk("*HwTLS: %0*lx\n", field, tls);
356 	}
357 
358 	show_stacktrace(current, regs);
359 	show_code((unsigned int __user *) regs->cp0_epc);
360 	printk("\n");
361 }
362 
363 static int regs_to_trapnr(struct pt_regs *regs)
364 {
365 	return (regs->cp0_cause >> 2) & 0x1f;
366 }
367 
368 static DEFINE_RAW_SPINLOCK(die_lock);
369 
370 void __noreturn die(const char *str, struct pt_regs *regs)
371 {
372 	static int die_counter;
373 	int sig = SIGSEGV;
374 #ifdef CONFIG_MIPS_MT_SMTC
375 	unsigned long dvpret;
376 #endif /* CONFIG_MIPS_MT_SMTC */
377 
378 	oops_enter();
379 
380 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
381 		sig = 0;
382 
383 	console_verbose();
384 	raw_spin_lock_irq(&die_lock);
385 #ifdef CONFIG_MIPS_MT_SMTC
386 	dvpret = dvpe();
387 #endif /* CONFIG_MIPS_MT_SMTC */
388 	bust_spinlocks(1);
389 #ifdef CONFIG_MIPS_MT_SMTC
390 	mips_mt_regdump(dvpret);
391 #endif /* CONFIG_MIPS_MT_SMTC */
392 
393 	printk("%s[#%d]:\n", str, ++die_counter);
394 	show_registers(regs);
395 	add_taint(TAINT_DIE);
396 	raw_spin_unlock_irq(&die_lock);
397 
398 	oops_exit();
399 
400 	if (in_interrupt())
401 		panic("Fatal exception in interrupt");
402 
403 	if (panic_on_oops) {
404 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
405 		ssleep(5);
406 		panic("Fatal exception");
407 	}
408 
409 	do_exit(sig);
410 }
411 
412 extern struct exception_table_entry __start___dbe_table[];
413 extern struct exception_table_entry __stop___dbe_table[];
414 
415 __asm__(
416 "	.section	__dbe_table, \"a\"\n"
417 "	.previous			\n");
418 
419 /* Given an address, look for it in the exception tables. */
420 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
421 {
422 	const struct exception_table_entry *e;
423 
424 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
425 	if (!e)
426 		e = search_module_dbetables(addr);
427 	return e;
428 }
429 
430 asmlinkage void do_be(struct pt_regs *regs)
431 {
432 	const int field = 2 * sizeof(unsigned long);
433 	const struct exception_table_entry *fixup = NULL;
434 	int data = regs->cp0_cause & 4;
435 	int action = MIPS_BE_FATAL;
436 
437 	/* XXX For now.  Fixme, this searches the wrong table ...  */
438 	if (data && !user_mode(regs))
439 		fixup = search_dbe_tables(exception_epc(regs));
440 
441 	if (fixup)
442 		action = MIPS_BE_FIXUP;
443 
444 	if (board_be_handler)
445 		action = board_be_handler(regs, fixup != NULL);
446 
447 	switch (action) {
448 	case MIPS_BE_DISCARD:
449 		return;
450 	case MIPS_BE_FIXUP:
451 		if (fixup) {
452 			regs->cp0_epc = fixup->nextinsn;
453 			return;
454 		}
455 		break;
456 	default:
457 		break;
458 	}
459 
460 	/*
461 	 * Assume it would be too dangerous to continue ...
462 	 */
463 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 	       data ? "Data" : "Instruction",
465 	       field, regs->cp0_epc, field, regs->regs[31]);
466 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
467 	    == NOTIFY_STOP)
468 		return;
469 
470 	die_if_kernel("Oops", regs);
471 	force_sig(SIGBUS, current);
472 }
473 
474 /*
475  * ll/sc, rdhwr, sync emulation
476  */
477 
478 #define OPCODE 0xfc000000
479 #define BASE   0x03e00000
480 #define RT     0x001f0000
481 #define OFFSET 0x0000ffff
482 #define LL     0xc0000000
483 #define SC     0xe0000000
484 #define SPEC0  0x00000000
485 #define SPEC3  0x7c000000
486 #define RD     0x0000f800
487 #define FUNC   0x0000003f
488 #define SYNC   0x0000000f
489 #define RDHWR  0x0000003b
490 
491 /*
492  * The ll_bit is cleared by r*_switch.S
493  */
494 
495 unsigned int ll_bit;
496 struct task_struct *ll_task;
497 
498 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
499 {
500 	unsigned long value, __user *vaddr;
501 	long offset;
502 
503 	/*
504 	 * analyse the ll instruction that just caused a ri exception
505 	 * and put the referenced address to addr.
506 	 */
507 
508 	/* sign extend offset */
509 	offset = opcode & OFFSET;
510 	offset <<= 16;
511 	offset >>= 16;
512 
513 	vaddr = (unsigned long __user *)
514 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
515 
516 	if ((unsigned long)vaddr & 3)
517 		return SIGBUS;
518 	if (get_user(value, vaddr))
519 		return SIGSEGV;
520 
521 	preempt_disable();
522 
523 	if (ll_task == NULL || ll_task == current) {
524 		ll_bit = 1;
525 	} else {
526 		ll_bit = 0;
527 	}
528 	ll_task = current;
529 
530 	preempt_enable();
531 
532 	regs->regs[(opcode & RT) >> 16] = value;
533 
534 	return 0;
535 }
536 
537 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
538 {
539 	unsigned long __user *vaddr;
540 	unsigned long reg;
541 	long offset;
542 
543 	/*
544 	 * analyse the sc instruction that just caused a ri exception
545 	 * and put the referenced address to addr.
546 	 */
547 
548 	/* sign extend offset */
549 	offset = opcode & OFFSET;
550 	offset <<= 16;
551 	offset >>= 16;
552 
553 	vaddr = (unsigned long __user *)
554 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
555 	reg = (opcode & RT) >> 16;
556 
557 	if ((unsigned long)vaddr & 3)
558 		return SIGBUS;
559 
560 	preempt_disable();
561 
562 	if (ll_bit == 0 || ll_task != current) {
563 		regs->regs[reg] = 0;
564 		preempt_enable();
565 		return 0;
566 	}
567 
568 	preempt_enable();
569 
570 	if (put_user(regs->regs[reg], vaddr))
571 		return SIGSEGV;
572 
573 	regs->regs[reg] = 1;
574 
575 	return 0;
576 }
577 
578 /*
579  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
580  * opcodes are supposed to result in coprocessor unusable exceptions if
581  * executed on ll/sc-less processors.  That's the theory.  In practice a
582  * few processors such as NEC's VR4100 throw reserved instruction exceptions
583  * instead, so we're doing the emulation thing in both exception handlers.
584  */
585 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
586 {
587 	if ((opcode & OPCODE) == LL) {
588 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
589 				1, regs, 0);
590 		return simulate_ll(regs, opcode);
591 	}
592 	if ((opcode & OPCODE) == SC) {
593 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
594 				1, regs, 0);
595 		return simulate_sc(regs, opcode);
596 	}
597 
598 	return -1;			/* Must be something else ... */
599 }
600 
601 /*
602  * Simulate trapping 'rdhwr' instructions to provide user accessible
603  * registers not implemented in hardware.
604  */
605 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
606 {
607 	struct thread_info *ti = task_thread_info(current);
608 
609 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
610 		int rd = (opcode & RD) >> 11;
611 		int rt = (opcode & RT) >> 16;
612 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 				1, regs, 0);
614 		switch (rd) {
615 		case 0:		/* CPU number */
616 			regs->regs[rt] = smp_processor_id();
617 			return 0;
618 		case 1:		/* SYNCI length */
619 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
620 					     current_cpu_data.icache.linesz);
621 			return 0;
622 		case 2:		/* Read count register */
623 			regs->regs[rt] = read_c0_count();
624 			return 0;
625 		case 3:		/* Count register resolution */
626 			switch (current_cpu_data.cputype) {
627 			case CPU_20KC:
628 			case CPU_25KF:
629 				regs->regs[rt] = 1;
630 				break;
631 			default:
632 				regs->regs[rt] = 2;
633 			}
634 			return 0;
635 		case 29:
636 			regs->regs[rt] = ti->tp_value;
637 			return 0;
638 		default:
639 			return -1;
640 		}
641 	}
642 
643 	/* Not ours.  */
644 	return -1;
645 }
646 
647 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
648 {
649 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
650 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
651 				1, regs, 0);
652 		return 0;
653 	}
654 
655 	return -1;			/* Must be something else ... */
656 }
657 
658 asmlinkage void do_ov(struct pt_regs *regs)
659 {
660 	siginfo_t info;
661 
662 	die_if_kernel("Integer overflow", regs);
663 
664 	info.si_code = FPE_INTOVF;
665 	info.si_signo = SIGFPE;
666 	info.si_errno = 0;
667 	info.si_addr = (void __user *) regs->cp0_epc;
668 	force_sig_info(SIGFPE, &info, current);
669 }
670 
671 static int process_fpemu_return(int sig, void __user *fault_addr)
672 {
673 	if (sig == SIGSEGV || sig == SIGBUS) {
674 		struct siginfo si = {0};
675 		si.si_addr = fault_addr;
676 		si.si_signo = sig;
677 		if (sig == SIGSEGV) {
678 			if (find_vma(current->mm, (unsigned long)fault_addr))
679 				si.si_code = SEGV_ACCERR;
680 			else
681 				si.si_code = SEGV_MAPERR;
682 		} else {
683 			si.si_code = BUS_ADRERR;
684 		}
685 		force_sig_info(sig, &si, current);
686 		return 1;
687 	} else if (sig) {
688 		force_sig(sig, current);
689 		return 1;
690 	} else {
691 		return 0;
692 	}
693 }
694 
695 /*
696  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
697  */
698 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
699 {
700 	siginfo_t info = {0};
701 
702 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
703 	    == NOTIFY_STOP)
704 		return;
705 	die_if_kernel("FP exception in kernel code", regs);
706 
707 	if (fcr31 & FPU_CSR_UNI_X) {
708 		int sig;
709 		void __user *fault_addr = NULL;
710 
711 		/*
712 		 * Unimplemented operation exception.  If we've got the full
713 		 * software emulator on-board, let's use it...
714 		 *
715 		 * Force FPU to dump state into task/thread context.  We're
716 		 * moving a lot of data here for what is probably a single
717 		 * instruction, but the alternative is to pre-decode the FP
718 		 * register operands before invoking the emulator, which seems
719 		 * a bit extreme for what should be an infrequent event.
720 		 */
721 		/* Ensure 'resume' not overwrite saved fp context again. */
722 		lose_fpu(1);
723 
724 		/* Run the emulator */
725 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
726 					       &fault_addr);
727 
728 		/*
729 		 * We can't allow the emulated instruction to leave any of
730 		 * the cause bit set in $fcr31.
731 		 */
732 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
733 
734 		/* Restore the hardware register state */
735 		own_fpu(1);	/* Using the FPU again.  */
736 
737 		/* If something went wrong, signal */
738 		process_fpemu_return(sig, fault_addr);
739 
740 		return;
741 	} else if (fcr31 & FPU_CSR_INV_X)
742 		info.si_code = FPE_FLTINV;
743 	else if (fcr31 & FPU_CSR_DIV_X)
744 		info.si_code = FPE_FLTDIV;
745 	else if (fcr31 & FPU_CSR_OVF_X)
746 		info.si_code = FPE_FLTOVF;
747 	else if (fcr31 & FPU_CSR_UDF_X)
748 		info.si_code = FPE_FLTUND;
749 	else if (fcr31 & FPU_CSR_INE_X)
750 		info.si_code = FPE_FLTRES;
751 	else
752 		info.si_code = __SI_FAULT;
753 	info.si_signo = SIGFPE;
754 	info.si_errno = 0;
755 	info.si_addr = (void __user *) regs->cp0_epc;
756 	force_sig_info(SIGFPE, &info, current);
757 }
758 
759 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
760 	const char *str)
761 {
762 	siginfo_t info;
763 	char b[40];
764 
765 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
766 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
767 		return;
768 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
769 
770 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
771 		return;
772 
773 	/*
774 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
775 	 * insns, even for trap and break codes that indicate arithmetic
776 	 * failures.  Weird ...
777 	 * But should we continue the brokenness???  --macro
778 	 */
779 	switch (code) {
780 	case BRK_OVERFLOW:
781 	case BRK_DIVZERO:
782 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
783 		die_if_kernel(b, regs);
784 		if (code == BRK_DIVZERO)
785 			info.si_code = FPE_INTDIV;
786 		else
787 			info.si_code = FPE_INTOVF;
788 		info.si_signo = SIGFPE;
789 		info.si_errno = 0;
790 		info.si_addr = (void __user *) regs->cp0_epc;
791 		force_sig_info(SIGFPE, &info, current);
792 		break;
793 	case BRK_BUG:
794 		die_if_kernel("Kernel bug detected", regs);
795 		force_sig(SIGTRAP, current);
796 		break;
797 	case BRK_MEMU:
798 		/*
799 		 * Address errors may be deliberately induced by the FPU
800 		 * emulator to retake control of the CPU after executing the
801 		 * instruction in the delay slot of an emulated branch.
802 		 *
803 		 * Terminate if exception was recognized as a delay slot return
804 		 * otherwise handle as normal.
805 		 */
806 		if (do_dsemulret(regs))
807 			return;
808 
809 		die_if_kernel("Math emu break/trap", regs);
810 		force_sig(SIGTRAP, current);
811 		break;
812 	default:
813 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
814 		die_if_kernel(b, regs);
815 		force_sig(SIGTRAP, current);
816 	}
817 }
818 
819 asmlinkage void do_bp(struct pt_regs *regs)
820 {
821 	unsigned int opcode, bcode;
822 
823 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
824 		goto out_sigsegv;
825 
826 	/*
827 	 * There is the ancient bug in the MIPS assemblers that the break
828 	 * code starts left to bit 16 instead to bit 6 in the opcode.
829 	 * Gas is bug-compatible, but not always, grrr...
830 	 * We handle both cases with a simple heuristics.  --macro
831 	 */
832 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
833 	if (bcode >= (1 << 10))
834 		bcode >>= 10;
835 
836 	/*
837 	 * notify the kprobe handlers, if instruction is likely to
838 	 * pertain to them.
839 	 */
840 	switch (bcode) {
841 	case BRK_KPROBE_BP:
842 		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
843 			return;
844 		else
845 			break;
846 	case BRK_KPROBE_SSTEPBP:
847 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
848 			return;
849 		else
850 			break;
851 	default:
852 		break;
853 	}
854 
855 	do_trap_or_bp(regs, bcode, "Break");
856 	return;
857 
858 out_sigsegv:
859 	force_sig(SIGSEGV, current);
860 }
861 
862 asmlinkage void do_tr(struct pt_regs *regs)
863 {
864 	unsigned int opcode, tcode = 0;
865 
866 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
867 		goto out_sigsegv;
868 
869 	/* Immediate versions don't provide a code.  */
870 	if (!(opcode & OPCODE))
871 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
872 
873 	do_trap_or_bp(regs, tcode, "Trap");
874 	return;
875 
876 out_sigsegv:
877 	force_sig(SIGSEGV, current);
878 }
879 
880 asmlinkage void do_ri(struct pt_regs *regs)
881 {
882 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
883 	unsigned long old_epc = regs->cp0_epc;
884 	unsigned int opcode = 0;
885 	int status = -1;
886 
887 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
888 	    == NOTIFY_STOP)
889 		return;
890 
891 	die_if_kernel("Reserved instruction in kernel code", regs);
892 
893 	if (unlikely(compute_return_epc(regs) < 0))
894 		return;
895 
896 	if (unlikely(get_user(opcode, epc) < 0))
897 		status = SIGSEGV;
898 
899 	if (!cpu_has_llsc && status < 0)
900 		status = simulate_llsc(regs, opcode);
901 
902 	if (status < 0)
903 		status = simulate_rdhwr(regs, opcode);
904 
905 	if (status < 0)
906 		status = simulate_sync(regs, opcode);
907 
908 	if (status < 0)
909 		status = SIGILL;
910 
911 	if (unlikely(status > 0)) {
912 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
913 		force_sig(status, current);
914 	}
915 }
916 
917 /*
918  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
919  * emulated more than some threshold number of instructions, force migration to
920  * a "CPU" that has FP support.
921  */
922 static void mt_ase_fp_affinity(void)
923 {
924 #ifdef CONFIG_MIPS_MT_FPAFF
925 	if (mt_fpemul_threshold > 0 &&
926 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
927 		/*
928 		 * If there's no FPU present, or if the application has already
929 		 * restricted the allowed set to exclude any CPUs with FPUs,
930 		 * we'll skip the procedure.
931 		 */
932 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
933 			cpumask_t tmask;
934 
935 			current->thread.user_cpus_allowed
936 				= current->cpus_allowed;
937 			cpus_and(tmask, current->cpus_allowed,
938 				mt_fpu_cpumask);
939 			set_cpus_allowed_ptr(current, &tmask);
940 			set_thread_flag(TIF_FPUBOUND);
941 		}
942 	}
943 #endif /* CONFIG_MIPS_MT_FPAFF */
944 }
945 
946 /*
947  * No lock; only written during early bootup by CPU 0.
948  */
949 static RAW_NOTIFIER_HEAD(cu2_chain);
950 
951 int __ref register_cu2_notifier(struct notifier_block *nb)
952 {
953 	return raw_notifier_chain_register(&cu2_chain, nb);
954 }
955 
956 int cu2_notifier_call_chain(unsigned long val, void *v)
957 {
958 	return raw_notifier_call_chain(&cu2_chain, val, v);
959 }
960 
961 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
962         void *data)
963 {
964 	struct pt_regs *regs = data;
965 
966 	switch (action) {
967 	default:
968 		die_if_kernel("Unhandled kernel unaligned access or invalid "
969 			      "instruction", regs);
970 		/* Fall through  */
971 
972 	case CU2_EXCEPTION:
973 		force_sig(SIGILL, current);
974 	}
975 
976 	return NOTIFY_OK;
977 }
978 
979 asmlinkage void do_cpu(struct pt_regs *regs)
980 {
981 	unsigned int __user *epc;
982 	unsigned long old_epc;
983 	unsigned int opcode;
984 	unsigned int cpid;
985 	int status;
986 	unsigned long __maybe_unused flags;
987 
988 	die_if_kernel("do_cpu invoked from kernel context!", regs);
989 
990 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
991 
992 	switch (cpid) {
993 	case 0:
994 		epc = (unsigned int __user *)exception_epc(regs);
995 		old_epc = regs->cp0_epc;
996 		opcode = 0;
997 		status = -1;
998 
999 		if (unlikely(compute_return_epc(regs) < 0))
1000 			return;
1001 
1002 		if (unlikely(get_user(opcode, epc) < 0))
1003 			status = SIGSEGV;
1004 
1005 		if (!cpu_has_llsc && status < 0)
1006 			status = simulate_llsc(regs, opcode);
1007 
1008 		if (status < 0)
1009 			status = simulate_rdhwr(regs, opcode);
1010 
1011 		if (status < 0)
1012 			status = SIGILL;
1013 
1014 		if (unlikely(status > 0)) {
1015 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1016 			force_sig(status, current);
1017 		}
1018 
1019 		return;
1020 
1021 	case 1:
1022 		if (used_math())	/* Using the FPU again.  */
1023 			own_fpu(1);
1024 		else {			/* First time FPU user.  */
1025 			init_fpu();
1026 			set_used_math();
1027 		}
1028 
1029 		if (!raw_cpu_has_fpu) {
1030 			int sig;
1031 			void __user *fault_addr = NULL;
1032 			sig = fpu_emulator_cop1Handler(regs,
1033 						       &current->thread.fpu,
1034 						       0, &fault_addr);
1035 			if (!process_fpemu_return(sig, fault_addr))
1036 				mt_ase_fp_affinity();
1037 		}
1038 
1039 		return;
1040 
1041 	case 2:
1042 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1043 		return;
1044 
1045 	case 3:
1046 		break;
1047 	}
1048 
1049 	force_sig(SIGILL, current);
1050 }
1051 
1052 asmlinkage void do_mdmx(struct pt_regs *regs)
1053 {
1054 	force_sig(SIGILL, current);
1055 }
1056 
1057 /*
1058  * Called with interrupts disabled.
1059  */
1060 asmlinkage void do_watch(struct pt_regs *regs)
1061 {
1062 	u32 cause;
1063 
1064 	/*
1065 	 * Clear WP (bit 22) bit of cause register so we don't loop
1066 	 * forever.
1067 	 */
1068 	cause = read_c0_cause();
1069 	cause &= ~(1 << 22);
1070 	write_c0_cause(cause);
1071 
1072 	/*
1073 	 * If the current thread has the watch registers loaded, save
1074 	 * their values and send SIGTRAP.  Otherwise another thread
1075 	 * left the registers set, clear them and continue.
1076 	 */
1077 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1078 		mips_read_watch_registers();
1079 		local_irq_enable();
1080 		force_sig(SIGTRAP, current);
1081 	} else {
1082 		mips_clear_watch_registers();
1083 		local_irq_enable();
1084 	}
1085 }
1086 
1087 asmlinkage void do_mcheck(struct pt_regs *regs)
1088 {
1089 	const int field = 2 * sizeof(unsigned long);
1090 	int multi_match = regs->cp0_status & ST0_TS;
1091 
1092 	show_regs(regs);
1093 
1094 	if (multi_match) {
1095 		printk("Index   : %0x\n", read_c0_index());
1096 		printk("Pagemask: %0x\n", read_c0_pagemask());
1097 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1098 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1099 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1100 		printk("\n");
1101 		dump_tlb_all();
1102 	}
1103 
1104 	show_code((unsigned int __user *) regs->cp0_epc);
1105 
1106 	/*
1107 	 * Some chips may have other causes of machine check (e.g. SB1
1108 	 * graduation timer)
1109 	 */
1110 	panic("Caught Machine Check exception - %scaused by multiple "
1111 	      "matching entries in the TLB.",
1112 	      (multi_match) ? "" : "not ");
1113 }
1114 
1115 asmlinkage void do_mt(struct pt_regs *regs)
1116 {
1117 	int subcode;
1118 
1119 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1120 			>> VPECONTROL_EXCPT_SHIFT;
1121 	switch (subcode) {
1122 	case 0:
1123 		printk(KERN_DEBUG "Thread Underflow\n");
1124 		break;
1125 	case 1:
1126 		printk(KERN_DEBUG "Thread Overflow\n");
1127 		break;
1128 	case 2:
1129 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1130 		break;
1131 	case 3:
1132 		printk(KERN_DEBUG "Gating Storage Exception\n");
1133 		break;
1134 	case 4:
1135 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1136 		break;
1137 	case 5:
1138 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1139 		break;
1140 	default:
1141 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1142 			subcode);
1143 		break;
1144 	}
1145 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1146 
1147 	force_sig(SIGILL, current);
1148 }
1149 
1150 
1151 asmlinkage void do_dsp(struct pt_regs *regs)
1152 {
1153 	if (cpu_has_dsp)
1154 		panic("Unexpected DSP exception");
1155 
1156 	force_sig(SIGILL, current);
1157 }
1158 
1159 asmlinkage void do_reserved(struct pt_regs *regs)
1160 {
1161 	/*
1162 	 * Game over - no way to handle this if it ever occurs.  Most probably
1163 	 * caused by a new unknown cpu type or after another deadly
1164 	 * hard/software error.
1165 	 */
1166 	show_regs(regs);
1167 	panic("Caught reserved exception %ld - should not happen.",
1168 	      (regs->cp0_cause & 0x7f) >> 2);
1169 }
1170 
1171 static int __initdata l1parity = 1;
1172 static int __init nol1parity(char *s)
1173 {
1174 	l1parity = 0;
1175 	return 1;
1176 }
1177 __setup("nol1par", nol1parity);
1178 static int __initdata l2parity = 1;
1179 static int __init nol2parity(char *s)
1180 {
1181 	l2parity = 0;
1182 	return 1;
1183 }
1184 __setup("nol2par", nol2parity);
1185 
1186 /*
1187  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1188  * it different ways.
1189  */
1190 static inline void parity_protection_init(void)
1191 {
1192 	switch (current_cpu_type()) {
1193 	case CPU_24K:
1194 	case CPU_34K:
1195 	case CPU_74K:
1196 	case CPU_1004K:
1197 		{
1198 #define ERRCTL_PE	0x80000000
1199 #define ERRCTL_L2P	0x00800000
1200 			unsigned long errctl;
1201 			unsigned int l1parity_present, l2parity_present;
1202 
1203 			errctl = read_c0_ecc();
1204 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1205 
1206 			/* probe L1 parity support */
1207 			write_c0_ecc(errctl | ERRCTL_PE);
1208 			back_to_back_c0_hazard();
1209 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1210 
1211 			/* probe L2 parity support */
1212 			write_c0_ecc(errctl|ERRCTL_L2P);
1213 			back_to_back_c0_hazard();
1214 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1215 
1216 			if (l1parity_present && l2parity_present) {
1217 				if (l1parity)
1218 					errctl |= ERRCTL_PE;
1219 				if (l1parity ^ l2parity)
1220 					errctl |= ERRCTL_L2P;
1221 			} else if (l1parity_present) {
1222 				if (l1parity)
1223 					errctl |= ERRCTL_PE;
1224 			} else if (l2parity_present) {
1225 				if (l2parity)
1226 					errctl |= ERRCTL_L2P;
1227 			} else {
1228 				/* No parity available */
1229 			}
1230 
1231 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1232 
1233 			write_c0_ecc(errctl);
1234 			back_to_back_c0_hazard();
1235 			errctl = read_c0_ecc();
1236 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1237 
1238 			if (l1parity_present)
1239 				printk(KERN_INFO "Cache parity protection %sabled\n",
1240 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1241 
1242 			if (l2parity_present) {
1243 				if (l1parity_present && l1parity)
1244 					errctl ^= ERRCTL_L2P;
1245 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1246 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1247 			}
1248 		}
1249 		break;
1250 
1251 	case CPU_5KC:
1252 		write_c0_ecc(0x80000000);
1253 		back_to_back_c0_hazard();
1254 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1255 		printk(KERN_INFO "Cache parity protection %sabled\n",
1256 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1257 		break;
1258 	case CPU_20KC:
1259 	case CPU_25KF:
1260 		/* Clear the DE bit (bit 16) in the c0_status register. */
1261 		printk(KERN_INFO "Enable cache parity protection for "
1262 		       "MIPS 20KC/25KF CPUs.\n");
1263 		clear_c0_status(ST0_DE);
1264 		break;
1265 	default:
1266 		break;
1267 	}
1268 }
1269 
1270 asmlinkage void cache_parity_error(void)
1271 {
1272 	const int field = 2 * sizeof(unsigned long);
1273 	unsigned int reg_val;
1274 
1275 	/* For the moment, report the problem and hang. */
1276 	printk("Cache error exception:\n");
1277 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1278 	reg_val = read_c0_cacheerr();
1279 	printk("c0_cacheerr == %08x\n", reg_val);
1280 
1281 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1282 	       reg_val & (1<<30) ? "secondary" : "primary",
1283 	       reg_val & (1<<31) ? "data" : "insn");
1284 	printk("Error bits: %s%s%s%s%s%s%s\n",
1285 	       reg_val & (1<<29) ? "ED " : "",
1286 	       reg_val & (1<<28) ? "ET " : "",
1287 	       reg_val & (1<<26) ? "EE " : "",
1288 	       reg_val & (1<<25) ? "EB " : "",
1289 	       reg_val & (1<<24) ? "EI " : "",
1290 	       reg_val & (1<<23) ? "E1 " : "",
1291 	       reg_val & (1<<22) ? "E0 " : "");
1292 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1293 
1294 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1295 	if (reg_val & (1<<22))
1296 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1297 
1298 	if (reg_val & (1<<23))
1299 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1300 #endif
1301 
1302 	panic("Can't handle the cache error!");
1303 }
1304 
1305 /*
1306  * SDBBP EJTAG debug exception handler.
1307  * We skip the instruction and return to the next instruction.
1308  */
1309 void ejtag_exception_handler(struct pt_regs *regs)
1310 {
1311 	const int field = 2 * sizeof(unsigned long);
1312 	unsigned long depc, old_epc;
1313 	unsigned int debug;
1314 
1315 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1316 	depc = read_c0_depc();
1317 	debug = read_c0_debug();
1318 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1319 	if (debug & 0x80000000) {
1320 		/*
1321 		 * In branch delay slot.
1322 		 * We cheat a little bit here and use EPC to calculate the
1323 		 * debug return address (DEPC). EPC is restored after the
1324 		 * calculation.
1325 		 */
1326 		old_epc = regs->cp0_epc;
1327 		regs->cp0_epc = depc;
1328 		__compute_return_epc(regs);
1329 		depc = regs->cp0_epc;
1330 		regs->cp0_epc = old_epc;
1331 	} else
1332 		depc += 4;
1333 	write_c0_depc(depc);
1334 
1335 #if 0
1336 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1337 	write_c0_debug(debug | 0x100);
1338 #endif
1339 }
1340 
1341 /*
1342  * NMI exception handler.
1343  * No lock; only written during early bootup by CPU 0.
1344  */
1345 static RAW_NOTIFIER_HEAD(nmi_chain);
1346 
1347 int register_nmi_notifier(struct notifier_block *nb)
1348 {
1349 	return raw_notifier_chain_register(&nmi_chain, nb);
1350 }
1351 
1352 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1353 {
1354 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1355 	bust_spinlocks(1);
1356 	printk("NMI taken!!!!\n");
1357 	die("NMI", regs);
1358 }
1359 
1360 #define VECTORSPACING 0x100	/* for EI/VI mode */
1361 
1362 unsigned long ebase;
1363 unsigned long exception_handlers[32];
1364 unsigned long vi_handlers[64];
1365 
1366 void __init *set_except_vector(int n, void *addr)
1367 {
1368 	unsigned long handler = (unsigned long) addr;
1369 	unsigned long old_handler = exception_handlers[n];
1370 
1371 	exception_handlers[n] = handler;
1372 	if (n == 0 && cpu_has_divec) {
1373 		unsigned long jump_mask = ~((1 << 28) - 1);
1374 		u32 *buf = (u32 *)(ebase + 0x200);
1375 		unsigned int k0 = 26;
1376 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1377 			uasm_i_j(&buf, handler & ~jump_mask);
1378 			uasm_i_nop(&buf);
1379 		} else {
1380 			UASM_i_LA(&buf, k0, handler);
1381 			uasm_i_jr(&buf, k0);
1382 			uasm_i_nop(&buf);
1383 		}
1384 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1385 	}
1386 	return (void *)old_handler;
1387 }
1388 
1389 static asmlinkage void do_default_vi(void)
1390 {
1391 	show_regs(get_irq_regs());
1392 	panic("Caught unexpected vectored interrupt.");
1393 }
1394 
1395 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1396 {
1397 	unsigned long handler;
1398 	unsigned long old_handler = vi_handlers[n];
1399 	int srssets = current_cpu_data.srsets;
1400 	u32 *w;
1401 	unsigned char *b;
1402 
1403 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1404 
1405 	if (addr == NULL) {
1406 		handler = (unsigned long) do_default_vi;
1407 		srs = 0;
1408 	} else
1409 		handler = (unsigned long) addr;
1410 	vi_handlers[n] = (unsigned long) addr;
1411 
1412 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1413 
1414 	if (srs >= srssets)
1415 		panic("Shadow register set %d not supported", srs);
1416 
1417 	if (cpu_has_veic) {
1418 		if (board_bind_eic_interrupt)
1419 			board_bind_eic_interrupt(n, srs);
1420 	} else if (cpu_has_vint) {
1421 		/* SRSMap is only defined if shadow sets are implemented */
1422 		if (srssets > 1)
1423 			change_c0_srsmap(0xf << n*4, srs << n*4);
1424 	}
1425 
1426 	if (srs == 0) {
1427 		/*
1428 		 * If no shadow set is selected then use the default handler
1429 		 * that does normal register saving and a standard interrupt exit
1430 		 */
1431 
1432 		extern char except_vec_vi, except_vec_vi_lui;
1433 		extern char except_vec_vi_ori, except_vec_vi_end;
1434 		extern char rollback_except_vec_vi;
1435 		char *vec_start = (cpu_wait == r4k_wait) ?
1436 			&rollback_except_vec_vi : &except_vec_vi;
1437 #ifdef CONFIG_MIPS_MT_SMTC
1438 		/*
1439 		 * We need to provide the SMTC vectored interrupt handler
1440 		 * not only with the address of the handler, but with the
1441 		 * Status.IM bit to be masked before going there.
1442 		 */
1443 		extern char except_vec_vi_mori;
1444 		const int mori_offset = &except_vec_vi_mori - vec_start;
1445 #endif /* CONFIG_MIPS_MT_SMTC */
1446 		const int handler_len = &except_vec_vi_end - vec_start;
1447 		const int lui_offset = &except_vec_vi_lui - vec_start;
1448 		const int ori_offset = &except_vec_vi_ori - vec_start;
1449 
1450 		if (handler_len > VECTORSPACING) {
1451 			/*
1452 			 * Sigh... panicing won't help as the console
1453 			 * is probably not configured :(
1454 			 */
1455 			panic("VECTORSPACING too small");
1456 		}
1457 
1458 		memcpy(b, vec_start, handler_len);
1459 #ifdef CONFIG_MIPS_MT_SMTC
1460 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1461 
1462 		w = (u32 *)(b + mori_offset);
1463 		*w = (*w & 0xffff0000) | (0x100 << n);
1464 #endif /* CONFIG_MIPS_MT_SMTC */
1465 		w = (u32 *)(b + lui_offset);
1466 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1467 		w = (u32 *)(b + ori_offset);
1468 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1469 		local_flush_icache_range((unsigned long)b,
1470 					 (unsigned long)(b+handler_len));
1471 	}
1472 	else {
1473 		/*
1474 		 * In other cases jump directly to the interrupt handler
1475 		 *
1476 		 * It is the handlers responsibility to save registers if required
1477 		 * (eg hi/lo) and return from the exception using "eret"
1478 		 */
1479 		w = (u32 *)b;
1480 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1481 		*w = 0;
1482 		local_flush_icache_range((unsigned long)b,
1483 					 (unsigned long)(b+8));
1484 	}
1485 
1486 	return (void *)old_handler;
1487 }
1488 
1489 void *set_vi_handler(int n, vi_handler_t addr)
1490 {
1491 	return set_vi_srs_handler(n, addr, 0);
1492 }
1493 
1494 extern void cpu_cache_init(void);
1495 extern void tlb_init(void);
1496 extern void flush_tlb_handlers(void);
1497 
1498 /*
1499  * Timer interrupt
1500  */
1501 int cp0_compare_irq;
1502 int cp0_compare_irq_shift;
1503 
1504 /*
1505  * Performance counter IRQ or -1 if shared with timer
1506  */
1507 int cp0_perfcount_irq;
1508 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1509 
1510 static int __cpuinitdata noulri;
1511 
1512 static int __init ulri_disable(char *s)
1513 {
1514 	pr_info("Disabling ulri\n");
1515 	noulri = 1;
1516 
1517 	return 1;
1518 }
1519 __setup("noulri", ulri_disable);
1520 
1521 void __cpuinit per_cpu_trap_init(void)
1522 {
1523 	unsigned int cpu = smp_processor_id();
1524 	unsigned int status_set = ST0_CU0;
1525 	unsigned int hwrena = cpu_hwrena_impl_bits;
1526 #ifdef CONFIG_MIPS_MT_SMTC
1527 	int secondaryTC = 0;
1528 	int bootTC = (cpu == 0);
1529 
1530 	/*
1531 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1532 	 * Note that this hack assumes that the SMTC init code
1533 	 * assigns TCs consecutively and in ascending order.
1534 	 */
1535 
1536 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1537 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1538 		secondaryTC = 1;
1539 #endif /* CONFIG_MIPS_MT_SMTC */
1540 
1541 	/*
1542 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1543 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1544 	 * flag that some firmware may have left set and the TS bit (for
1545 	 * IP27).  Set XX for ISA IV code to work.
1546 	 */
1547 #ifdef CONFIG_64BIT
1548 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1549 #endif
1550 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1551 		status_set |= ST0_XX;
1552 	if (cpu_has_dsp)
1553 		status_set |= ST0_MX;
1554 
1555 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1556 			 status_set);
1557 
1558 	if (cpu_has_mips_r2)
1559 		hwrena |= 0x0000000f;
1560 
1561 	if (!noulri && cpu_has_userlocal)
1562 		hwrena |= (1 << 29);
1563 
1564 	if (hwrena)
1565 		write_c0_hwrena(hwrena);
1566 
1567 #ifdef CONFIG_MIPS_MT_SMTC
1568 	if (!secondaryTC) {
1569 #endif /* CONFIG_MIPS_MT_SMTC */
1570 
1571 	if (cpu_has_veic || cpu_has_vint) {
1572 		unsigned long sr = set_c0_status(ST0_BEV);
1573 		write_c0_ebase(ebase);
1574 		write_c0_status(sr);
1575 		/* Setting vector spacing enables EI/VI mode  */
1576 		change_c0_intctl(0x3e0, VECTORSPACING);
1577 	}
1578 	if (cpu_has_divec) {
1579 		if (cpu_has_mipsmt) {
1580 			unsigned int vpflags = dvpe();
1581 			set_c0_cause(CAUSEF_IV);
1582 			evpe(vpflags);
1583 		} else
1584 			set_c0_cause(CAUSEF_IV);
1585 	}
1586 
1587 	/*
1588 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1589 	 *
1590 	 *  o read IntCtl.IPTI to determine the timer interrupt
1591 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1592 	 */
1593 	if (cpu_has_mips_r2) {
1594 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1595 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1596 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1597 		if (cp0_perfcount_irq == cp0_compare_irq)
1598 			cp0_perfcount_irq = -1;
1599 	} else {
1600 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1601 		cp0_compare_irq_shift = cp0_compare_irq;
1602 		cp0_perfcount_irq = -1;
1603 	}
1604 
1605 #ifdef CONFIG_MIPS_MT_SMTC
1606 	}
1607 #endif /* CONFIG_MIPS_MT_SMTC */
1608 
1609 	if (!cpu_data[cpu].asid_cache)
1610 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1611 
1612 	atomic_inc(&init_mm.mm_count);
1613 	current->active_mm = &init_mm;
1614 	BUG_ON(current->mm);
1615 	enter_lazy_tlb(&init_mm, current);
1616 
1617 #ifdef CONFIG_MIPS_MT_SMTC
1618 	if (bootTC) {
1619 #endif /* CONFIG_MIPS_MT_SMTC */
1620 		cpu_cache_init();
1621 		tlb_init();
1622 #ifdef CONFIG_MIPS_MT_SMTC
1623 	} else if (!secondaryTC) {
1624 		/*
1625 		 * First TC in non-boot VPE must do subset of tlb_init()
1626 		 * for MMU countrol registers.
1627 		 */
1628 		write_c0_pagemask(PM_DEFAULT_MASK);
1629 		write_c0_wired(0);
1630 	}
1631 #endif /* CONFIG_MIPS_MT_SMTC */
1632 	TLBMISS_HANDLER_SETUP();
1633 }
1634 
1635 /* Install CPU exception handler */
1636 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1637 {
1638 	memcpy((void *)(ebase + offset), addr, size);
1639 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1640 }
1641 
1642 static char panic_null_cerr[] __cpuinitdata =
1643 	"Trying to set NULL cache error exception handler";
1644 
1645 /*
1646  * Install uncached CPU exception handler.
1647  * This is suitable only for the cache error exception which is the only
1648  * exception handler that is being run uncached.
1649  */
1650 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1651 	unsigned long size)
1652 {
1653 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1654 
1655 	if (!addr)
1656 		panic(panic_null_cerr);
1657 
1658 	memcpy((void *)(uncached_ebase + offset), addr, size);
1659 }
1660 
1661 static int __initdata rdhwr_noopt;
1662 static int __init set_rdhwr_noopt(char *str)
1663 {
1664 	rdhwr_noopt = 1;
1665 	return 1;
1666 }
1667 
1668 __setup("rdhwr_noopt", set_rdhwr_noopt);
1669 
1670 void __init trap_init(void)
1671 {
1672 	extern char except_vec3_generic, except_vec3_r4000;
1673 	extern char except_vec4;
1674 	unsigned long i;
1675 	int rollback;
1676 
1677 	check_wait();
1678 	rollback = (cpu_wait == r4k_wait);
1679 
1680 #if defined(CONFIG_KGDB)
1681 	if (kgdb_early_setup)
1682 		return;	/* Already done */
1683 #endif
1684 
1685 	if (cpu_has_veic || cpu_has_vint) {
1686 		unsigned long size = 0x200 + VECTORSPACING*64;
1687 		ebase = (unsigned long)
1688 			__alloc_bootmem(size, 1 << fls(size), 0);
1689 	} else {
1690 		ebase = CKSEG0;
1691 		if (cpu_has_mips_r2)
1692 			ebase += (read_c0_ebase() & 0x3ffff000);
1693 	}
1694 
1695 	if (board_ebase_setup)
1696 		board_ebase_setup();
1697 	per_cpu_trap_init();
1698 
1699 	/*
1700 	 * Copy the generic exception handlers to their final destination.
1701 	 * This will be overriden later as suitable for a particular
1702 	 * configuration.
1703 	 */
1704 	set_handler(0x180, &except_vec3_generic, 0x80);
1705 
1706 	/*
1707 	 * Setup default vectors
1708 	 */
1709 	for (i = 0; i <= 31; i++)
1710 		set_except_vector(i, handle_reserved);
1711 
1712 	/*
1713 	 * Copy the EJTAG debug exception vector handler code to it's final
1714 	 * destination.
1715 	 */
1716 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1717 		board_ejtag_handler_setup();
1718 
1719 	/*
1720 	 * Only some CPUs have the watch exceptions.
1721 	 */
1722 	if (cpu_has_watch)
1723 		set_except_vector(23, handle_watch);
1724 
1725 	/*
1726 	 * Initialise interrupt handlers
1727 	 */
1728 	if (cpu_has_veic || cpu_has_vint) {
1729 		int nvec = cpu_has_veic ? 64 : 8;
1730 		for (i = 0; i < nvec; i++)
1731 			set_vi_handler(i, NULL);
1732 	}
1733 	else if (cpu_has_divec)
1734 		set_handler(0x200, &except_vec4, 0x8);
1735 
1736 	/*
1737 	 * Some CPUs can enable/disable for cache parity detection, but does
1738 	 * it different ways.
1739 	 */
1740 	parity_protection_init();
1741 
1742 	/*
1743 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1744 	 * by external hardware.  Therefore these two exceptions
1745 	 * may have board specific handlers.
1746 	 */
1747 	if (board_be_init)
1748 		board_be_init();
1749 
1750 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1751 	set_except_vector(1, handle_tlbm);
1752 	set_except_vector(2, handle_tlbl);
1753 	set_except_vector(3, handle_tlbs);
1754 
1755 	set_except_vector(4, handle_adel);
1756 	set_except_vector(5, handle_ades);
1757 
1758 	set_except_vector(6, handle_ibe);
1759 	set_except_vector(7, handle_dbe);
1760 
1761 	set_except_vector(8, handle_sys);
1762 	set_except_vector(9, handle_bp);
1763 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1764 			  (cpu_has_vtag_icache ?
1765 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1766 	set_except_vector(11, handle_cpu);
1767 	set_except_vector(12, handle_ov);
1768 	set_except_vector(13, handle_tr);
1769 
1770 	if (current_cpu_type() == CPU_R6000 ||
1771 	    current_cpu_type() == CPU_R6000A) {
1772 		/*
1773 		 * The R6000 is the only R-series CPU that features a machine
1774 		 * check exception (similar to the R4000 cache error) and
1775 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1776 		 * written yet.  Well, anyway there is no R6000 machine on the
1777 		 * current list of targets for Linux/MIPS.
1778 		 * (Duh, crap, there is someone with a triple R6k machine)
1779 		 */
1780 		//set_except_vector(14, handle_mc);
1781 		//set_except_vector(15, handle_ndc);
1782 	}
1783 
1784 
1785 	if (board_nmi_handler_setup)
1786 		board_nmi_handler_setup();
1787 
1788 	if (cpu_has_fpu && !cpu_has_nofpuex)
1789 		set_except_vector(15, handle_fpe);
1790 
1791 	set_except_vector(22, handle_mdmx);
1792 
1793 	if (cpu_has_mcheck)
1794 		set_except_vector(24, handle_mcheck);
1795 
1796 	if (cpu_has_mipsmt)
1797 		set_except_vector(25, handle_mt);
1798 
1799 	set_except_vector(26, handle_dsp);
1800 
1801 	if (cpu_has_vce)
1802 		/* Special exception: R4[04]00 uses also the divec space. */
1803 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1804 	else if (cpu_has_4kex)
1805 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1806 	else
1807 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1808 
1809 	local_flush_icache_range(ebase, ebase + 0x400);
1810 	flush_tlb_handlers();
1811 
1812 	sort_extable(__start___dbe_table, __stop___dbe_table);
1813 
1814 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1815 }
1816