xref: /linux/arch/mips/kernel/traps.c (revision a99237afc12ba697159ca313525dc390737dd52f)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 
204 	regs.cp0_status = KSU_KERNEL;
205 	if (sp) {
206 		regs.regs[29] = (unsigned long)sp;
207 		regs.regs[31] = 0;
208 		regs.cp0_epc = 0;
209 	} else {
210 		if (task && task != current) {
211 			regs.regs[29] = task->thread.reg29;
212 			regs.regs[31] = 0;
213 			regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 		} else if (atomic_read(&kgdb_active) != -1 &&
216 			   kdb_current_regs) {
217 			memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 		} else {
220 			prepare_frametrace(&regs);
221 		}
222 	}
223 	/*
224 	 * show_stack() deals exclusively with kernel mode, so be sure to access
225 	 * the stack in the kernel (not user) address space.
226 	 */
227 	set_fs(KERNEL_DS);
228 	show_stacktrace(task, &regs);
229 	set_fs(old_fs);
230 }
231 
232 static void show_code(unsigned int __user *pc)
233 {
234 	long i;
235 	unsigned short __user *pc16 = NULL;
236 
237 	printk("Code:");
238 
239 	if ((unsigned long)pc & 1)
240 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 	for(i = -3 ; i < 6 ; i++) {
242 		unsigned int insn;
243 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 			pr_cont(" (Bad address in epc)\n");
245 			break;
246 		}
247 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 	}
249 	pr_cont("\n");
250 }
251 
252 static void __show_regs(const struct pt_regs *regs)
253 {
254 	const int field = 2 * sizeof(unsigned long);
255 	unsigned int cause = regs->cp0_cause;
256 	unsigned int exccode;
257 	int i;
258 
259 	show_regs_print_info(KERN_DEFAULT);
260 
261 	/*
262 	 * Saved main processor registers
263 	 */
264 	for (i = 0; i < 32; ) {
265 		if ((i % 4) == 0)
266 			printk("$%2d   :", i);
267 		if (i == 0)
268 			pr_cont(" %0*lx", field, 0UL);
269 		else if (i == 26 || i == 27)
270 			pr_cont(" %*s", field, "");
271 		else
272 			pr_cont(" %0*lx", field, regs->regs[i]);
273 
274 		i++;
275 		if ((i % 4) == 0)
276 			pr_cont("\n");
277 	}
278 
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 	printk("Acx    : %0*lx\n", field, regs->acx);
281 #endif
282 	printk("Hi    : %0*lx\n", field, regs->hi);
283 	printk("Lo    : %0*lx\n", field, regs->lo);
284 
285 	/*
286 	 * Saved cp0 registers
287 	 */
288 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
289 	       (void *) regs->cp0_epc);
290 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
291 	       (void *) regs->regs[31]);
292 
293 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
294 
295 	if (cpu_has_3kex) {
296 		if (regs->cp0_status & ST0_KUO)
297 			pr_cont("KUo ");
298 		if (regs->cp0_status & ST0_IEO)
299 			pr_cont("IEo ");
300 		if (regs->cp0_status & ST0_KUP)
301 			pr_cont("KUp ");
302 		if (regs->cp0_status & ST0_IEP)
303 			pr_cont("IEp ");
304 		if (regs->cp0_status & ST0_KUC)
305 			pr_cont("KUc ");
306 		if (regs->cp0_status & ST0_IEC)
307 			pr_cont("IEc ");
308 	} else if (cpu_has_4kex) {
309 		if (regs->cp0_status & ST0_KX)
310 			pr_cont("KX ");
311 		if (regs->cp0_status & ST0_SX)
312 			pr_cont("SX ");
313 		if (regs->cp0_status & ST0_UX)
314 			pr_cont("UX ");
315 		switch (regs->cp0_status & ST0_KSU) {
316 		case KSU_USER:
317 			pr_cont("USER ");
318 			break;
319 		case KSU_SUPERVISOR:
320 			pr_cont("SUPERVISOR ");
321 			break;
322 		case KSU_KERNEL:
323 			pr_cont("KERNEL ");
324 			break;
325 		default:
326 			pr_cont("BAD_MODE ");
327 			break;
328 		}
329 		if (regs->cp0_status & ST0_ERL)
330 			pr_cont("ERL ");
331 		if (regs->cp0_status & ST0_EXL)
332 			pr_cont("EXL ");
333 		if (regs->cp0_status & ST0_IE)
334 			pr_cont("IE ");
335 	}
336 	pr_cont("\n");
337 
338 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340 
341 	if (1 <= exccode && exccode <= 5)
342 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343 
344 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
345 	       cpu_name_string());
346 }
347 
348 /*
349  * FIXME: really the generic show_regs should take a const pointer argument.
350  */
351 void show_regs(struct pt_regs *regs)
352 {
353 	__show_regs((struct pt_regs *)regs);
354 	dump_stack();
355 }
356 
357 void show_registers(struct pt_regs *regs)
358 {
359 	const int field = 2 * sizeof(unsigned long);
360 	mm_segment_t old_fs = get_fs();
361 
362 	__show_regs(regs);
363 	print_modules();
364 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
365 	       current->comm, current->pid, current_thread_info(), current,
366 	      field, current_thread_info()->tp_value);
367 	if (cpu_has_userlocal) {
368 		unsigned long tls;
369 
370 		tls = read_c0_userlocal();
371 		if (tls != current_thread_info()->tp_value)
372 			printk("*HwTLS: %0*lx\n", field, tls);
373 	}
374 
375 	if (!user_mode(regs))
376 		/* Necessary for getting the correct stack content */
377 		set_fs(KERNEL_DS);
378 	show_stacktrace(current, regs);
379 	show_code((unsigned int __user *) regs->cp0_epc);
380 	printk("\n");
381 	set_fs(old_fs);
382 }
383 
384 static DEFINE_RAW_SPINLOCK(die_lock);
385 
386 void __noreturn die(const char *str, struct pt_regs *regs)
387 {
388 	static int die_counter;
389 	int sig = SIGSEGV;
390 
391 	oops_enter();
392 
393 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
394 		       SIGSEGV) == NOTIFY_STOP)
395 		sig = 0;
396 
397 	console_verbose();
398 	raw_spin_lock_irq(&die_lock);
399 	bust_spinlocks(1);
400 
401 	printk("%s[#%d]:\n", str, ++die_counter);
402 	show_registers(regs);
403 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
404 	raw_spin_unlock_irq(&die_lock);
405 
406 	oops_exit();
407 
408 	if (in_interrupt())
409 		panic("Fatal exception in interrupt");
410 
411 	if (panic_on_oops)
412 		panic("Fatal exception");
413 
414 	if (regs && kexec_should_crash(current))
415 		crash_kexec(regs);
416 
417 	do_exit(sig);
418 }
419 
420 extern struct exception_table_entry __start___dbe_table[];
421 extern struct exception_table_entry __stop___dbe_table[];
422 
423 __asm__(
424 "	.section	__dbe_table, \"a\"\n"
425 "	.previous			\n");
426 
427 /* Given an address, look for it in the exception tables. */
428 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
429 {
430 	const struct exception_table_entry *e;
431 
432 	e = search_extable(__start___dbe_table,
433 			   __stop___dbe_table - __start___dbe_table, addr);
434 	if (!e)
435 		e = search_module_dbetables(addr);
436 	return e;
437 }
438 
439 asmlinkage void do_be(struct pt_regs *regs)
440 {
441 	const int field = 2 * sizeof(unsigned long);
442 	const struct exception_table_entry *fixup = NULL;
443 	int data = regs->cp0_cause & 4;
444 	int action = MIPS_BE_FATAL;
445 	enum ctx_state prev_state;
446 
447 	prev_state = exception_enter();
448 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
449 	if (data && !user_mode(regs))
450 		fixup = search_dbe_tables(exception_epc(regs));
451 
452 	if (fixup)
453 		action = MIPS_BE_FIXUP;
454 
455 	if (board_be_handler)
456 		action = board_be_handler(regs, fixup != NULL);
457 	else
458 		mips_cm_error_report();
459 
460 	switch (action) {
461 	case MIPS_BE_DISCARD:
462 		goto out;
463 	case MIPS_BE_FIXUP:
464 		if (fixup) {
465 			regs->cp0_epc = fixup->nextinsn;
466 			goto out;
467 		}
468 		break;
469 	default:
470 		break;
471 	}
472 
473 	/*
474 	 * Assume it would be too dangerous to continue ...
475 	 */
476 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
477 	       data ? "Data" : "Instruction",
478 	       field, regs->cp0_epc, field, regs->regs[31]);
479 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
480 		       SIGBUS) == NOTIFY_STOP)
481 		goto out;
482 
483 	die_if_kernel("Oops", regs);
484 	force_sig(SIGBUS, current);
485 
486 out:
487 	exception_exit(prev_state);
488 }
489 
490 /*
491  * ll/sc, rdhwr, sync emulation
492  */
493 
494 #define OPCODE 0xfc000000
495 #define BASE   0x03e00000
496 #define RT     0x001f0000
497 #define OFFSET 0x0000ffff
498 #define LL     0xc0000000
499 #define SC     0xe0000000
500 #define SPEC0  0x00000000
501 #define SPEC3  0x7c000000
502 #define RD     0x0000f800
503 #define FUNC   0x0000003f
504 #define SYNC   0x0000000f
505 #define RDHWR  0x0000003b
506 
507 /*  microMIPS definitions   */
508 #define MM_POOL32A_FUNC 0xfc00ffff
509 #define MM_RDHWR        0x00006b3c
510 #define MM_RS           0x001f0000
511 #define MM_RT           0x03e00000
512 
513 /*
514  * The ll_bit is cleared by r*_switch.S
515  */
516 
517 unsigned int ll_bit;
518 struct task_struct *ll_task;
519 
520 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
521 {
522 	unsigned long value, __user *vaddr;
523 	long offset;
524 
525 	/*
526 	 * analyse the ll instruction that just caused a ri exception
527 	 * and put the referenced address to addr.
528 	 */
529 
530 	/* sign extend offset */
531 	offset = opcode & OFFSET;
532 	offset <<= 16;
533 	offset >>= 16;
534 
535 	vaddr = (unsigned long __user *)
536 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
537 
538 	if ((unsigned long)vaddr & 3)
539 		return SIGBUS;
540 	if (get_user(value, vaddr))
541 		return SIGSEGV;
542 
543 	preempt_disable();
544 
545 	if (ll_task == NULL || ll_task == current) {
546 		ll_bit = 1;
547 	} else {
548 		ll_bit = 0;
549 	}
550 	ll_task = current;
551 
552 	preempt_enable();
553 
554 	regs->regs[(opcode & RT) >> 16] = value;
555 
556 	return 0;
557 }
558 
559 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
560 {
561 	unsigned long __user *vaddr;
562 	unsigned long reg;
563 	long offset;
564 
565 	/*
566 	 * analyse the sc instruction that just caused a ri exception
567 	 * and put the referenced address to addr.
568 	 */
569 
570 	/* sign extend offset */
571 	offset = opcode & OFFSET;
572 	offset <<= 16;
573 	offset >>= 16;
574 
575 	vaddr = (unsigned long __user *)
576 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
577 	reg = (opcode & RT) >> 16;
578 
579 	if ((unsigned long)vaddr & 3)
580 		return SIGBUS;
581 
582 	preempt_disable();
583 
584 	if (ll_bit == 0 || ll_task != current) {
585 		regs->regs[reg] = 0;
586 		preempt_enable();
587 		return 0;
588 	}
589 
590 	preempt_enable();
591 
592 	if (put_user(regs->regs[reg], vaddr))
593 		return SIGSEGV;
594 
595 	regs->regs[reg] = 1;
596 
597 	return 0;
598 }
599 
600 /*
601  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
602  * opcodes are supposed to result in coprocessor unusable exceptions if
603  * executed on ll/sc-less processors.  That's the theory.  In practice a
604  * few processors such as NEC's VR4100 throw reserved instruction exceptions
605  * instead, so we're doing the emulation thing in both exception handlers.
606  */
607 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
608 {
609 	if ((opcode & OPCODE) == LL) {
610 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
611 				1, regs, 0);
612 		return simulate_ll(regs, opcode);
613 	}
614 	if ((opcode & OPCODE) == SC) {
615 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616 				1, regs, 0);
617 		return simulate_sc(regs, opcode);
618 	}
619 
620 	return -1;			/* Must be something else ... */
621 }
622 
623 /*
624  * Simulate trapping 'rdhwr' instructions to provide user accessible
625  * registers not implemented in hardware.
626  */
627 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
628 {
629 	struct thread_info *ti = task_thread_info(current);
630 
631 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
632 			1, regs, 0);
633 	switch (rd) {
634 	case MIPS_HWR_CPUNUM:		/* CPU number */
635 		regs->regs[rt] = smp_processor_id();
636 		return 0;
637 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
638 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
639 				     current_cpu_data.icache.linesz);
640 		return 0;
641 	case MIPS_HWR_CC:		/* Read count register */
642 		regs->regs[rt] = read_c0_count();
643 		return 0;
644 	case MIPS_HWR_CCRES:		/* Count register resolution */
645 		switch (current_cpu_type()) {
646 		case CPU_20KC:
647 		case CPU_25KF:
648 			regs->regs[rt] = 1;
649 			break;
650 		default:
651 			regs->regs[rt] = 2;
652 		}
653 		return 0;
654 	case MIPS_HWR_ULR:		/* Read UserLocal register */
655 		regs->regs[rt] = ti->tp_value;
656 		return 0;
657 	default:
658 		return -1;
659 	}
660 }
661 
662 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
663 {
664 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
665 		int rd = (opcode & RD) >> 11;
666 		int rt = (opcode & RT) >> 16;
667 
668 		simulate_rdhwr(regs, rd, rt);
669 		return 0;
670 	}
671 
672 	/* Not ours.  */
673 	return -1;
674 }
675 
676 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
677 {
678 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
679 		int rd = (opcode & MM_RS) >> 16;
680 		int rt = (opcode & MM_RT) >> 21;
681 		simulate_rdhwr(regs, rd, rt);
682 		return 0;
683 	}
684 
685 	/* Not ours.  */
686 	return -1;
687 }
688 
689 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
690 {
691 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
692 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
693 				1, regs, 0);
694 		return 0;
695 	}
696 
697 	return -1;			/* Must be something else ... */
698 }
699 
700 asmlinkage void do_ov(struct pt_regs *regs)
701 {
702 	enum ctx_state prev_state;
703 
704 	prev_state = exception_enter();
705 	die_if_kernel("Integer overflow", regs);
706 
707 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
708 	exception_exit(prev_state);
709 }
710 
711 /*
712  * Send SIGFPE according to FCSR Cause bits, which must have already
713  * been masked against Enable bits.  This is impotant as Inexact can
714  * happen together with Overflow or Underflow, and `ptrace' can set
715  * any bits.
716  */
717 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
718 		     struct task_struct *tsk)
719 {
720 	int si_code = FPE_FLTUNK;
721 
722 	if (fcr31 & FPU_CSR_INV_X)
723 		si_code = FPE_FLTINV;
724 	else if (fcr31 & FPU_CSR_DIV_X)
725 		si_code = FPE_FLTDIV;
726 	else if (fcr31 & FPU_CSR_OVF_X)
727 		si_code = FPE_FLTOVF;
728 	else if (fcr31 & FPU_CSR_UDF_X)
729 		si_code = FPE_FLTUND;
730 	else if (fcr31 & FPU_CSR_INE_X)
731 		si_code = FPE_FLTRES;
732 
733 	force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
734 }
735 
736 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
737 {
738 	int si_code;
739 	struct vm_area_struct *vma;
740 
741 	switch (sig) {
742 	case 0:
743 		return 0;
744 
745 	case SIGFPE:
746 		force_fcr31_sig(fcr31, fault_addr, current);
747 		return 1;
748 
749 	case SIGBUS:
750 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
751 		return 1;
752 
753 	case SIGSEGV:
754 		down_read(&current->mm->mmap_sem);
755 		vma = find_vma(current->mm, (unsigned long)fault_addr);
756 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
757 			si_code = SEGV_ACCERR;
758 		else
759 			si_code = SEGV_MAPERR;
760 		up_read(&current->mm->mmap_sem);
761 		force_sig_fault(SIGSEGV, si_code, fault_addr, current);
762 		return 1;
763 
764 	default:
765 		force_sig(sig, current);
766 		return 1;
767 	}
768 }
769 
770 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
771 		       unsigned long old_epc, unsigned long old_ra)
772 {
773 	union mips_instruction inst = { .word = opcode };
774 	void __user *fault_addr;
775 	unsigned long fcr31;
776 	int sig;
777 
778 	/* If it's obviously not an FP instruction, skip it */
779 	switch (inst.i_format.opcode) {
780 	case cop1_op:
781 	case cop1x_op:
782 	case lwc1_op:
783 	case ldc1_op:
784 	case swc1_op:
785 	case sdc1_op:
786 		break;
787 
788 	default:
789 		return -1;
790 	}
791 
792 	/*
793 	 * do_ri skipped over the instruction via compute_return_epc, undo
794 	 * that for the FPU emulator.
795 	 */
796 	regs->cp0_epc = old_epc;
797 	regs->regs[31] = old_ra;
798 
799 	/* Save the FP context to struct thread_struct */
800 	lose_fpu(1);
801 
802 	/* Run the emulator */
803 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 				       &fault_addr);
805 
806 	/*
807 	 * We can't allow the emulated instruction to leave any
808 	 * enabled Cause bits set in $fcr31.
809 	 */
810 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
811 	current->thread.fpu.fcr31 &= ~fcr31;
812 
813 	/* Restore the hardware register state */
814 	own_fpu(1);
815 
816 	/* Send a signal if required.  */
817 	process_fpemu_return(sig, fault_addr, fcr31);
818 
819 	return 0;
820 }
821 
822 /*
823  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
824  */
825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
826 {
827 	enum ctx_state prev_state;
828 	void __user *fault_addr;
829 	int sig;
830 
831 	prev_state = exception_enter();
832 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
833 		       SIGFPE) == NOTIFY_STOP)
834 		goto out;
835 
836 	/* Clear FCSR.Cause before enabling interrupts */
837 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
838 	local_irq_enable();
839 
840 	die_if_kernel("FP exception in kernel code", regs);
841 
842 	if (fcr31 & FPU_CSR_UNI_X) {
843 		/*
844 		 * Unimplemented operation exception.  If we've got the full
845 		 * software emulator on-board, let's use it...
846 		 *
847 		 * Force FPU to dump state into task/thread context.  We're
848 		 * moving a lot of data here for what is probably a single
849 		 * instruction, but the alternative is to pre-decode the FP
850 		 * register operands before invoking the emulator, which seems
851 		 * a bit extreme for what should be an infrequent event.
852 		 */
853 		/* Ensure 'resume' not overwrite saved fp context again. */
854 		lose_fpu(1);
855 
856 		/* Run the emulator */
857 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
858 					       &fault_addr);
859 
860 		/*
861 		 * We can't allow the emulated instruction to leave any
862 		 * enabled Cause bits set in $fcr31.
863 		 */
864 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
865 		current->thread.fpu.fcr31 &= ~fcr31;
866 
867 		/* Restore the hardware register state */
868 		own_fpu(1);	/* Using the FPU again.	 */
869 	} else {
870 		sig = SIGFPE;
871 		fault_addr = (void __user *) regs->cp0_epc;
872 	}
873 
874 	/* Send a signal if required.  */
875 	process_fpemu_return(sig, fault_addr, fcr31);
876 
877 out:
878 	exception_exit(prev_state);
879 }
880 
881 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
882 	const char *str)
883 {
884 	char b[40];
885 
886 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
887 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
888 			 SIGTRAP) == NOTIFY_STOP)
889 		return;
890 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
891 
892 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
893 		       SIGTRAP) == NOTIFY_STOP)
894 		return;
895 
896 	/*
897 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
898 	 * insns, even for trap and break codes that indicate arithmetic
899 	 * failures.  Weird ...
900 	 * But should we continue the brokenness???  --macro
901 	 */
902 	switch (code) {
903 	case BRK_OVERFLOW:
904 	case BRK_DIVZERO:
905 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
906 		die_if_kernel(b, regs);
907 		force_sig_fault(SIGFPE,
908 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
909 				(void __user *) regs->cp0_epc, current);
910 		break;
911 	case BRK_BUG:
912 		die_if_kernel("Kernel bug detected", regs);
913 		force_sig(SIGTRAP, current);
914 		break;
915 	case BRK_MEMU:
916 		/*
917 		 * This breakpoint code is used by the FPU emulator to retake
918 		 * control of the CPU after executing the instruction from the
919 		 * delay slot of an emulated branch.
920 		 *
921 		 * Terminate if exception was recognized as a delay slot return
922 		 * otherwise handle as normal.
923 		 */
924 		if (do_dsemulret(regs))
925 			return;
926 
927 		die_if_kernel("Math emu break/trap", regs);
928 		force_sig(SIGTRAP, current);
929 		break;
930 	default:
931 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
932 		die_if_kernel(b, regs);
933 		if (si_code) {
934 			force_sig_fault(SIGTRAP, si_code, NULL,	current);
935 		} else {
936 			force_sig(SIGTRAP, current);
937 		}
938 	}
939 }
940 
941 asmlinkage void do_bp(struct pt_regs *regs)
942 {
943 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
944 	unsigned int opcode, bcode;
945 	enum ctx_state prev_state;
946 	mm_segment_t seg;
947 
948 	seg = get_fs();
949 	if (!user_mode(regs))
950 		set_fs(KERNEL_DS);
951 
952 	prev_state = exception_enter();
953 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
954 	if (get_isa16_mode(regs->cp0_epc)) {
955 		u16 instr[2];
956 
957 		if (__get_user(instr[0], (u16 __user *)epc))
958 			goto out_sigsegv;
959 
960 		if (!cpu_has_mmips) {
961 			/* MIPS16e mode */
962 			bcode = (instr[0] >> 5) & 0x3f;
963 		} else if (mm_insn_16bit(instr[0])) {
964 			/* 16-bit microMIPS BREAK */
965 			bcode = instr[0] & 0xf;
966 		} else {
967 			/* 32-bit microMIPS BREAK */
968 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
969 				goto out_sigsegv;
970 			opcode = (instr[0] << 16) | instr[1];
971 			bcode = (opcode >> 6) & ((1 << 20) - 1);
972 		}
973 	} else {
974 		if (__get_user(opcode, (unsigned int __user *)epc))
975 			goto out_sigsegv;
976 		bcode = (opcode >> 6) & ((1 << 20) - 1);
977 	}
978 
979 	/*
980 	 * There is the ancient bug in the MIPS assemblers that the break
981 	 * code starts left to bit 16 instead to bit 6 in the opcode.
982 	 * Gas is bug-compatible, but not always, grrr...
983 	 * We handle both cases with a simple heuristics.  --macro
984 	 */
985 	if (bcode >= (1 << 10))
986 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
987 
988 	/*
989 	 * notify the kprobe handlers, if instruction is likely to
990 	 * pertain to them.
991 	 */
992 	switch (bcode) {
993 	case BRK_UPROBE:
994 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
995 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
996 			goto out;
997 		else
998 			break;
999 	case BRK_UPROBE_XOL:
1000 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1001 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1002 			goto out;
1003 		else
1004 			break;
1005 	case BRK_KPROBE_BP:
1006 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1007 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1008 			goto out;
1009 		else
1010 			break;
1011 	case BRK_KPROBE_SSTEPBP:
1012 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1013 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1014 			goto out;
1015 		else
1016 			break;
1017 	default:
1018 		break;
1019 	}
1020 
1021 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1022 
1023 out:
1024 	set_fs(seg);
1025 	exception_exit(prev_state);
1026 	return;
1027 
1028 out_sigsegv:
1029 	force_sig(SIGSEGV, current);
1030 	goto out;
1031 }
1032 
1033 asmlinkage void do_tr(struct pt_regs *regs)
1034 {
1035 	u32 opcode, tcode = 0;
1036 	enum ctx_state prev_state;
1037 	u16 instr[2];
1038 	mm_segment_t seg;
1039 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1040 
1041 	seg = get_fs();
1042 	if (!user_mode(regs))
1043 		set_fs(get_ds());
1044 
1045 	prev_state = exception_enter();
1046 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1047 	if (get_isa16_mode(regs->cp0_epc)) {
1048 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1049 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1050 			goto out_sigsegv;
1051 		opcode = (instr[0] << 16) | instr[1];
1052 		/* Immediate versions don't provide a code.  */
1053 		if (!(opcode & OPCODE))
1054 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1055 	} else {
1056 		if (__get_user(opcode, (u32 __user *)epc))
1057 			goto out_sigsegv;
1058 		/* Immediate versions don't provide a code.  */
1059 		if (!(opcode & OPCODE))
1060 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1061 	}
1062 
1063 	do_trap_or_bp(regs, tcode, 0, "Trap");
1064 
1065 out:
1066 	set_fs(seg);
1067 	exception_exit(prev_state);
1068 	return;
1069 
1070 out_sigsegv:
1071 	force_sig(SIGSEGV, current);
1072 	goto out;
1073 }
1074 
1075 asmlinkage void do_ri(struct pt_regs *regs)
1076 {
1077 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1078 	unsigned long old_epc = regs->cp0_epc;
1079 	unsigned long old31 = regs->regs[31];
1080 	enum ctx_state prev_state;
1081 	unsigned int opcode = 0;
1082 	int status = -1;
1083 
1084 	/*
1085 	 * Avoid any kernel code. Just emulate the R2 instruction
1086 	 * as quickly as possible.
1087 	 */
1088 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1089 	    likely(user_mode(regs)) &&
1090 	    likely(get_user(opcode, epc) >= 0)) {
1091 		unsigned long fcr31 = 0;
1092 
1093 		status = mipsr2_decoder(regs, opcode, &fcr31);
1094 		switch (status) {
1095 		case 0:
1096 		case SIGEMT:
1097 			return;
1098 		case SIGILL:
1099 			goto no_r2_instr;
1100 		default:
1101 			process_fpemu_return(status,
1102 					     &current->thread.cp0_baduaddr,
1103 					     fcr31);
1104 			return;
1105 		}
1106 	}
1107 
1108 no_r2_instr:
1109 
1110 	prev_state = exception_enter();
1111 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1112 
1113 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1114 		       SIGILL) == NOTIFY_STOP)
1115 		goto out;
1116 
1117 	die_if_kernel("Reserved instruction in kernel code", regs);
1118 
1119 	if (unlikely(compute_return_epc(regs) < 0))
1120 		goto out;
1121 
1122 	if (!get_isa16_mode(regs->cp0_epc)) {
1123 		if (unlikely(get_user(opcode, epc) < 0))
1124 			status = SIGSEGV;
1125 
1126 		if (!cpu_has_llsc && status < 0)
1127 			status = simulate_llsc(regs, opcode);
1128 
1129 		if (status < 0)
1130 			status = simulate_rdhwr_normal(regs, opcode);
1131 
1132 		if (status < 0)
1133 			status = simulate_sync(regs, opcode);
1134 
1135 		if (status < 0)
1136 			status = simulate_fp(regs, opcode, old_epc, old31);
1137 	} else if (cpu_has_mmips) {
1138 		unsigned short mmop[2] = { 0 };
1139 
1140 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1141 			status = SIGSEGV;
1142 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1143 			status = SIGSEGV;
1144 		opcode = mmop[0];
1145 		opcode = (opcode << 16) | mmop[1];
1146 
1147 		if (status < 0)
1148 			status = simulate_rdhwr_mm(regs, opcode);
1149 	}
1150 
1151 	if (status < 0)
1152 		status = SIGILL;
1153 
1154 	if (unlikely(status > 0)) {
1155 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1156 		regs->regs[31] = old31;
1157 		force_sig(status, current);
1158 	}
1159 
1160 out:
1161 	exception_exit(prev_state);
1162 }
1163 
1164 /*
1165  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1166  * emulated more than some threshold number of instructions, force migration to
1167  * a "CPU" that has FP support.
1168  */
1169 static void mt_ase_fp_affinity(void)
1170 {
1171 #ifdef CONFIG_MIPS_MT_FPAFF
1172 	if (mt_fpemul_threshold > 0 &&
1173 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1174 		/*
1175 		 * If there's no FPU present, or if the application has already
1176 		 * restricted the allowed set to exclude any CPUs with FPUs,
1177 		 * we'll skip the procedure.
1178 		 */
1179 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1180 			cpumask_t tmask;
1181 
1182 			current->thread.user_cpus_allowed
1183 				= current->cpus_allowed;
1184 			cpumask_and(&tmask, &current->cpus_allowed,
1185 				    &mt_fpu_cpumask);
1186 			set_cpus_allowed_ptr(current, &tmask);
1187 			set_thread_flag(TIF_FPUBOUND);
1188 		}
1189 	}
1190 #endif /* CONFIG_MIPS_MT_FPAFF */
1191 }
1192 
1193 /*
1194  * No lock; only written during early bootup by CPU 0.
1195  */
1196 static RAW_NOTIFIER_HEAD(cu2_chain);
1197 
1198 int __ref register_cu2_notifier(struct notifier_block *nb)
1199 {
1200 	return raw_notifier_chain_register(&cu2_chain, nb);
1201 }
1202 
1203 int cu2_notifier_call_chain(unsigned long val, void *v)
1204 {
1205 	return raw_notifier_call_chain(&cu2_chain, val, v);
1206 }
1207 
1208 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1209 	void *data)
1210 {
1211 	struct pt_regs *regs = data;
1212 
1213 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1214 			      "instruction", regs);
1215 	force_sig(SIGILL, current);
1216 
1217 	return NOTIFY_OK;
1218 }
1219 
1220 static int enable_restore_fp_context(int msa)
1221 {
1222 	int err, was_fpu_owner, prior_msa;
1223 
1224 	if (!used_math()) {
1225 		/* First time FP context user. */
1226 		preempt_disable();
1227 		err = init_fpu();
1228 		if (msa && !err) {
1229 			enable_msa();
1230 			init_msa_upper();
1231 			set_thread_flag(TIF_USEDMSA);
1232 			set_thread_flag(TIF_MSA_CTX_LIVE);
1233 		}
1234 		preempt_enable();
1235 		if (!err)
1236 			set_used_math();
1237 		return err;
1238 	}
1239 
1240 	/*
1241 	 * This task has formerly used the FP context.
1242 	 *
1243 	 * If this thread has no live MSA vector context then we can simply
1244 	 * restore the scalar FP context. If it has live MSA vector context
1245 	 * (that is, it has or may have used MSA since last performing a
1246 	 * function call) then we'll need to restore the vector context. This
1247 	 * applies even if we're currently only executing a scalar FP
1248 	 * instruction. This is because if we were to later execute an MSA
1249 	 * instruction then we'd either have to:
1250 	 *
1251 	 *  - Restore the vector context & clobber any registers modified by
1252 	 *    scalar FP instructions between now & then.
1253 	 *
1254 	 * or
1255 	 *
1256 	 *  - Not restore the vector context & lose the most significant bits
1257 	 *    of all vector registers.
1258 	 *
1259 	 * Neither of those options is acceptable. We cannot restore the least
1260 	 * significant bits of the registers now & only restore the most
1261 	 * significant bits later because the most significant bits of any
1262 	 * vector registers whose aliased FP register is modified now will have
1263 	 * been zeroed. We'd have no way to know that when restoring the vector
1264 	 * context & thus may load an outdated value for the most significant
1265 	 * bits of a vector register.
1266 	 */
1267 	if (!msa && !thread_msa_context_live())
1268 		return own_fpu(1);
1269 
1270 	/*
1271 	 * This task is using or has previously used MSA. Thus we require
1272 	 * that Status.FR == 1.
1273 	 */
1274 	preempt_disable();
1275 	was_fpu_owner = is_fpu_owner();
1276 	err = own_fpu_inatomic(0);
1277 	if (err)
1278 		goto out;
1279 
1280 	enable_msa();
1281 	write_msa_csr(current->thread.fpu.msacsr);
1282 	set_thread_flag(TIF_USEDMSA);
1283 
1284 	/*
1285 	 * If this is the first time that the task is using MSA and it has
1286 	 * previously used scalar FP in this time slice then we already nave
1287 	 * FP context which we shouldn't clobber. We do however need to clear
1288 	 * the upper 64b of each vector register so that this task has no
1289 	 * opportunity to see data left behind by another.
1290 	 */
1291 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1292 	if (!prior_msa && was_fpu_owner) {
1293 		init_msa_upper();
1294 
1295 		goto out;
1296 	}
1297 
1298 	if (!prior_msa) {
1299 		/*
1300 		 * Restore the least significant 64b of each vector register
1301 		 * from the existing scalar FP context.
1302 		 */
1303 		_restore_fp(current);
1304 
1305 		/*
1306 		 * The task has not formerly used MSA, so clear the upper 64b
1307 		 * of each vector register such that it cannot see data left
1308 		 * behind by another task.
1309 		 */
1310 		init_msa_upper();
1311 	} else {
1312 		/* We need to restore the vector context. */
1313 		restore_msa(current);
1314 
1315 		/* Restore the scalar FP control & status register */
1316 		if (!was_fpu_owner)
1317 			write_32bit_cp1_register(CP1_STATUS,
1318 						 current->thread.fpu.fcr31);
1319 	}
1320 
1321 out:
1322 	preempt_enable();
1323 
1324 	return 0;
1325 }
1326 
1327 asmlinkage void do_cpu(struct pt_regs *regs)
1328 {
1329 	enum ctx_state prev_state;
1330 	unsigned int __user *epc;
1331 	unsigned long old_epc, old31;
1332 	void __user *fault_addr;
1333 	unsigned int opcode;
1334 	unsigned long fcr31;
1335 	unsigned int cpid;
1336 	int status, err;
1337 	int sig;
1338 
1339 	prev_state = exception_enter();
1340 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1341 
1342 	if (cpid != 2)
1343 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1344 
1345 	switch (cpid) {
1346 	case 0:
1347 		epc = (unsigned int __user *)exception_epc(regs);
1348 		old_epc = regs->cp0_epc;
1349 		old31 = regs->regs[31];
1350 		opcode = 0;
1351 		status = -1;
1352 
1353 		if (unlikely(compute_return_epc(regs) < 0))
1354 			break;
1355 
1356 		if (!get_isa16_mode(regs->cp0_epc)) {
1357 			if (unlikely(get_user(opcode, epc) < 0))
1358 				status = SIGSEGV;
1359 
1360 			if (!cpu_has_llsc && status < 0)
1361 				status = simulate_llsc(regs, opcode);
1362 		}
1363 
1364 		if (status < 0)
1365 			status = SIGILL;
1366 
1367 		if (unlikely(status > 0)) {
1368 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1369 			regs->regs[31] = old31;
1370 			force_sig(status, current);
1371 		}
1372 
1373 		break;
1374 
1375 	case 3:
1376 		/*
1377 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1378 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1379 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1380 		 * up the space has been reused for COP1X instructions, that
1381 		 * are enabled by the CP0.Status.CU1 bit and consequently
1382 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1383 		 * exceptions.  Some FPU-less processors that implement one
1384 		 * of these ISAs however use this code erroneously for COP1X
1385 		 * instructions.  Therefore we redirect this trap to the FP
1386 		 * emulator too.
1387 		 */
1388 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1389 			force_sig(SIGILL, current);
1390 			break;
1391 		}
1392 		/* Fall through.  */
1393 
1394 	case 1:
1395 		err = enable_restore_fp_context(0);
1396 
1397 		if (raw_cpu_has_fpu && !err)
1398 			break;
1399 
1400 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1401 					       &fault_addr);
1402 
1403 		/*
1404 		 * We can't allow the emulated instruction to leave
1405 		 * any enabled Cause bits set in $fcr31.
1406 		 */
1407 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1408 		current->thread.fpu.fcr31 &= ~fcr31;
1409 
1410 		/* Send a signal if required.  */
1411 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1412 			mt_ase_fp_affinity();
1413 
1414 		break;
1415 
1416 	case 2:
1417 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1418 		break;
1419 	}
1420 
1421 	exception_exit(prev_state);
1422 }
1423 
1424 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1425 {
1426 	enum ctx_state prev_state;
1427 
1428 	prev_state = exception_enter();
1429 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1430 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1431 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1432 		goto out;
1433 
1434 	/* Clear MSACSR.Cause before enabling interrupts */
1435 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1436 	local_irq_enable();
1437 
1438 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1439 	force_sig(SIGFPE, current);
1440 out:
1441 	exception_exit(prev_state);
1442 }
1443 
1444 asmlinkage void do_msa(struct pt_regs *regs)
1445 {
1446 	enum ctx_state prev_state;
1447 	int err;
1448 
1449 	prev_state = exception_enter();
1450 
1451 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1452 		force_sig(SIGILL, current);
1453 		goto out;
1454 	}
1455 
1456 	die_if_kernel("do_msa invoked from kernel context!", regs);
1457 
1458 	err = enable_restore_fp_context(1);
1459 	if (err)
1460 		force_sig(SIGILL, current);
1461 out:
1462 	exception_exit(prev_state);
1463 }
1464 
1465 asmlinkage void do_mdmx(struct pt_regs *regs)
1466 {
1467 	enum ctx_state prev_state;
1468 
1469 	prev_state = exception_enter();
1470 	force_sig(SIGILL, current);
1471 	exception_exit(prev_state);
1472 }
1473 
1474 /*
1475  * Called with interrupts disabled.
1476  */
1477 asmlinkage void do_watch(struct pt_regs *regs)
1478 {
1479 	enum ctx_state prev_state;
1480 
1481 	prev_state = exception_enter();
1482 	/*
1483 	 * Clear WP (bit 22) bit of cause register so we don't loop
1484 	 * forever.
1485 	 */
1486 	clear_c0_cause(CAUSEF_WP);
1487 
1488 	/*
1489 	 * If the current thread has the watch registers loaded, save
1490 	 * their values and send SIGTRAP.  Otherwise another thread
1491 	 * left the registers set, clear them and continue.
1492 	 */
1493 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1494 		mips_read_watch_registers();
1495 		local_irq_enable();
1496 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
1497 	} else {
1498 		mips_clear_watch_registers();
1499 		local_irq_enable();
1500 	}
1501 	exception_exit(prev_state);
1502 }
1503 
1504 asmlinkage void do_mcheck(struct pt_regs *regs)
1505 {
1506 	int multi_match = regs->cp0_status & ST0_TS;
1507 	enum ctx_state prev_state;
1508 	mm_segment_t old_fs = get_fs();
1509 
1510 	prev_state = exception_enter();
1511 	show_regs(regs);
1512 
1513 	if (multi_match) {
1514 		dump_tlb_regs();
1515 		pr_info("\n");
1516 		dump_tlb_all();
1517 	}
1518 
1519 	if (!user_mode(regs))
1520 		set_fs(KERNEL_DS);
1521 
1522 	show_code((unsigned int __user *) regs->cp0_epc);
1523 
1524 	set_fs(old_fs);
1525 
1526 	/*
1527 	 * Some chips may have other causes of machine check (e.g. SB1
1528 	 * graduation timer)
1529 	 */
1530 	panic("Caught Machine Check exception - %scaused by multiple "
1531 	      "matching entries in the TLB.",
1532 	      (multi_match) ? "" : "not ");
1533 }
1534 
1535 asmlinkage void do_mt(struct pt_regs *regs)
1536 {
1537 	int subcode;
1538 
1539 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1540 			>> VPECONTROL_EXCPT_SHIFT;
1541 	switch (subcode) {
1542 	case 0:
1543 		printk(KERN_DEBUG "Thread Underflow\n");
1544 		break;
1545 	case 1:
1546 		printk(KERN_DEBUG "Thread Overflow\n");
1547 		break;
1548 	case 2:
1549 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1550 		break;
1551 	case 3:
1552 		printk(KERN_DEBUG "Gating Storage Exception\n");
1553 		break;
1554 	case 4:
1555 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1556 		break;
1557 	case 5:
1558 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1559 		break;
1560 	default:
1561 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1562 			subcode);
1563 		break;
1564 	}
1565 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1566 
1567 	force_sig(SIGILL, current);
1568 }
1569 
1570 
1571 asmlinkage void do_dsp(struct pt_regs *regs)
1572 {
1573 	if (cpu_has_dsp)
1574 		panic("Unexpected DSP exception");
1575 
1576 	force_sig(SIGILL, current);
1577 }
1578 
1579 asmlinkage void do_reserved(struct pt_regs *regs)
1580 {
1581 	/*
1582 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1583 	 * caused by a new unknown cpu type or after another deadly
1584 	 * hard/software error.
1585 	 */
1586 	show_regs(regs);
1587 	panic("Caught reserved exception %ld - should not happen.",
1588 	      (regs->cp0_cause & 0x7f) >> 2);
1589 }
1590 
1591 static int __initdata l1parity = 1;
1592 static int __init nol1parity(char *s)
1593 {
1594 	l1parity = 0;
1595 	return 1;
1596 }
1597 __setup("nol1par", nol1parity);
1598 static int __initdata l2parity = 1;
1599 static int __init nol2parity(char *s)
1600 {
1601 	l2parity = 0;
1602 	return 1;
1603 }
1604 __setup("nol2par", nol2parity);
1605 
1606 /*
1607  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1608  * it different ways.
1609  */
1610 static inline void parity_protection_init(void)
1611 {
1612 #define ERRCTL_PE	0x80000000
1613 #define ERRCTL_L2P	0x00800000
1614 
1615 	if (mips_cm_revision() >= CM_REV_CM3) {
1616 		ulong gcr_ectl, cp0_ectl;
1617 
1618 		/*
1619 		 * With CM3 systems we need to ensure that the L1 & L2
1620 		 * parity enables are set to the same value, since this
1621 		 * is presumed by the hardware engineers.
1622 		 *
1623 		 * If the user disabled either of L1 or L2 ECC checking,
1624 		 * disable both.
1625 		 */
1626 		l1parity &= l2parity;
1627 		l2parity &= l1parity;
1628 
1629 		/* Probe L1 ECC support */
1630 		cp0_ectl = read_c0_ecc();
1631 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1632 		back_to_back_c0_hazard();
1633 		cp0_ectl = read_c0_ecc();
1634 
1635 		/* Probe L2 ECC support */
1636 		gcr_ectl = read_gcr_err_control();
1637 
1638 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1639 		    !(cp0_ectl & ERRCTL_PE)) {
1640 			/*
1641 			 * One of L1 or L2 ECC checking isn't supported,
1642 			 * so we cannot enable either.
1643 			 */
1644 			l1parity = l2parity = 0;
1645 		}
1646 
1647 		/* Configure L1 ECC checking */
1648 		if (l1parity)
1649 			cp0_ectl |= ERRCTL_PE;
1650 		else
1651 			cp0_ectl &= ~ERRCTL_PE;
1652 		write_c0_ecc(cp0_ectl);
1653 		back_to_back_c0_hazard();
1654 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1655 
1656 		/* Configure L2 ECC checking */
1657 		if (l2parity)
1658 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1659 		else
1660 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1661 		write_gcr_err_control(gcr_ectl);
1662 		gcr_ectl = read_gcr_err_control();
1663 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1664 		WARN_ON(!!gcr_ectl != l2parity);
1665 
1666 		pr_info("Cache parity protection %sabled\n",
1667 			l1parity ? "en" : "dis");
1668 		return;
1669 	}
1670 
1671 	switch (current_cpu_type()) {
1672 	case CPU_24K:
1673 	case CPU_34K:
1674 	case CPU_74K:
1675 	case CPU_1004K:
1676 	case CPU_1074K:
1677 	case CPU_INTERAPTIV:
1678 	case CPU_PROAPTIV:
1679 	case CPU_P5600:
1680 	case CPU_QEMU_GENERIC:
1681 	case CPU_P6600:
1682 		{
1683 			unsigned long errctl;
1684 			unsigned int l1parity_present, l2parity_present;
1685 
1686 			errctl = read_c0_ecc();
1687 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1688 
1689 			/* probe L1 parity support */
1690 			write_c0_ecc(errctl | ERRCTL_PE);
1691 			back_to_back_c0_hazard();
1692 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1693 
1694 			/* probe L2 parity support */
1695 			write_c0_ecc(errctl|ERRCTL_L2P);
1696 			back_to_back_c0_hazard();
1697 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1698 
1699 			if (l1parity_present && l2parity_present) {
1700 				if (l1parity)
1701 					errctl |= ERRCTL_PE;
1702 				if (l1parity ^ l2parity)
1703 					errctl |= ERRCTL_L2P;
1704 			} else if (l1parity_present) {
1705 				if (l1parity)
1706 					errctl |= ERRCTL_PE;
1707 			} else if (l2parity_present) {
1708 				if (l2parity)
1709 					errctl |= ERRCTL_L2P;
1710 			} else {
1711 				/* No parity available */
1712 			}
1713 
1714 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1715 
1716 			write_c0_ecc(errctl);
1717 			back_to_back_c0_hazard();
1718 			errctl = read_c0_ecc();
1719 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1720 
1721 			if (l1parity_present)
1722 				printk(KERN_INFO "Cache parity protection %sabled\n",
1723 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1724 
1725 			if (l2parity_present) {
1726 				if (l1parity_present && l1parity)
1727 					errctl ^= ERRCTL_L2P;
1728 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1729 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1730 			}
1731 		}
1732 		break;
1733 
1734 	case CPU_5KC:
1735 	case CPU_5KE:
1736 	case CPU_LOONGSON1:
1737 		write_c0_ecc(0x80000000);
1738 		back_to_back_c0_hazard();
1739 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1740 		printk(KERN_INFO "Cache parity protection %sabled\n",
1741 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1742 		break;
1743 	case CPU_20KC:
1744 	case CPU_25KF:
1745 		/* Clear the DE bit (bit 16) in the c0_status register. */
1746 		printk(KERN_INFO "Enable cache parity protection for "
1747 		       "MIPS 20KC/25KF CPUs.\n");
1748 		clear_c0_status(ST0_DE);
1749 		break;
1750 	default:
1751 		break;
1752 	}
1753 }
1754 
1755 asmlinkage void cache_parity_error(void)
1756 {
1757 	const int field = 2 * sizeof(unsigned long);
1758 	unsigned int reg_val;
1759 
1760 	/* For the moment, report the problem and hang. */
1761 	printk("Cache error exception:\n");
1762 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1763 	reg_val = read_c0_cacheerr();
1764 	printk("c0_cacheerr == %08x\n", reg_val);
1765 
1766 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1767 	       reg_val & (1<<30) ? "secondary" : "primary",
1768 	       reg_val & (1<<31) ? "data" : "insn");
1769 	if ((cpu_has_mips_r2_r6) &&
1770 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1771 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1772 			reg_val & (1<<29) ? "ED " : "",
1773 			reg_val & (1<<28) ? "ET " : "",
1774 			reg_val & (1<<27) ? "ES " : "",
1775 			reg_val & (1<<26) ? "EE " : "",
1776 			reg_val & (1<<25) ? "EB " : "",
1777 			reg_val & (1<<24) ? "EI " : "",
1778 			reg_val & (1<<23) ? "E1 " : "",
1779 			reg_val & (1<<22) ? "E0 " : "");
1780 	} else {
1781 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1782 			reg_val & (1<<29) ? "ED " : "",
1783 			reg_val & (1<<28) ? "ET " : "",
1784 			reg_val & (1<<26) ? "EE " : "",
1785 			reg_val & (1<<25) ? "EB " : "",
1786 			reg_val & (1<<24) ? "EI " : "",
1787 			reg_val & (1<<23) ? "E1 " : "",
1788 			reg_val & (1<<22) ? "E0 " : "");
1789 	}
1790 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1791 
1792 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1793 	if (reg_val & (1<<22))
1794 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1795 
1796 	if (reg_val & (1<<23))
1797 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1798 #endif
1799 
1800 	panic("Can't handle the cache error!");
1801 }
1802 
1803 asmlinkage void do_ftlb(void)
1804 {
1805 	const int field = 2 * sizeof(unsigned long);
1806 	unsigned int reg_val;
1807 
1808 	/* For the moment, report the problem and hang. */
1809 	if ((cpu_has_mips_r2_r6) &&
1810 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1811 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1812 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1813 		       read_c0_ecc());
1814 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1815 		reg_val = read_c0_cacheerr();
1816 		pr_err("c0_cacheerr == %08x\n", reg_val);
1817 
1818 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1819 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1820 		} else {
1821 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1822 			       reg_val & (1<<30) ? "secondary" : "primary",
1823 			       reg_val & (1<<31) ? "data" : "insn");
1824 		}
1825 	} else {
1826 		pr_err("FTLB error exception\n");
1827 	}
1828 	/* Just print the cacheerr bits for now */
1829 	cache_parity_error();
1830 }
1831 
1832 /*
1833  * SDBBP EJTAG debug exception handler.
1834  * We skip the instruction and return to the next instruction.
1835  */
1836 void ejtag_exception_handler(struct pt_regs *regs)
1837 {
1838 	const int field = 2 * sizeof(unsigned long);
1839 	unsigned long depc, old_epc, old_ra;
1840 	unsigned int debug;
1841 
1842 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1843 	depc = read_c0_depc();
1844 	debug = read_c0_debug();
1845 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1846 	if (debug & 0x80000000) {
1847 		/*
1848 		 * In branch delay slot.
1849 		 * We cheat a little bit here and use EPC to calculate the
1850 		 * debug return address (DEPC). EPC is restored after the
1851 		 * calculation.
1852 		 */
1853 		old_epc = regs->cp0_epc;
1854 		old_ra = regs->regs[31];
1855 		regs->cp0_epc = depc;
1856 		compute_return_epc(regs);
1857 		depc = regs->cp0_epc;
1858 		regs->cp0_epc = old_epc;
1859 		regs->regs[31] = old_ra;
1860 	} else
1861 		depc += 4;
1862 	write_c0_depc(depc);
1863 
1864 #if 0
1865 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1866 	write_c0_debug(debug | 0x100);
1867 #endif
1868 }
1869 
1870 /*
1871  * NMI exception handler.
1872  * No lock; only written during early bootup by CPU 0.
1873  */
1874 static RAW_NOTIFIER_HEAD(nmi_chain);
1875 
1876 int register_nmi_notifier(struct notifier_block *nb)
1877 {
1878 	return raw_notifier_chain_register(&nmi_chain, nb);
1879 }
1880 
1881 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1882 {
1883 	char str[100];
1884 
1885 	nmi_enter();
1886 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1887 	bust_spinlocks(1);
1888 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1889 		 smp_processor_id(), regs->cp0_epc);
1890 	regs->cp0_epc = read_c0_errorepc();
1891 	die(str, regs);
1892 	nmi_exit();
1893 }
1894 
1895 #define VECTORSPACING 0x100	/* for EI/VI mode */
1896 
1897 unsigned long ebase;
1898 EXPORT_SYMBOL_GPL(ebase);
1899 unsigned long exception_handlers[32];
1900 unsigned long vi_handlers[64];
1901 
1902 void __init *set_except_vector(int n, void *addr)
1903 {
1904 	unsigned long handler = (unsigned long) addr;
1905 	unsigned long old_handler;
1906 
1907 #ifdef CONFIG_CPU_MICROMIPS
1908 	/*
1909 	 * Only the TLB handlers are cache aligned with an even
1910 	 * address. All other handlers are on an odd address and
1911 	 * require no modification. Otherwise, MIPS32 mode will
1912 	 * be entered when handling any TLB exceptions. That
1913 	 * would be bad...since we must stay in microMIPS mode.
1914 	 */
1915 	if (!(handler & 0x1))
1916 		handler |= 1;
1917 #endif
1918 	old_handler = xchg(&exception_handlers[n], handler);
1919 
1920 	if (n == 0 && cpu_has_divec) {
1921 #ifdef CONFIG_CPU_MICROMIPS
1922 		unsigned long jump_mask = ~((1 << 27) - 1);
1923 #else
1924 		unsigned long jump_mask = ~((1 << 28) - 1);
1925 #endif
1926 		u32 *buf = (u32 *)(ebase + 0x200);
1927 		unsigned int k0 = 26;
1928 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1929 			uasm_i_j(&buf, handler & ~jump_mask);
1930 			uasm_i_nop(&buf);
1931 		} else {
1932 			UASM_i_LA(&buf, k0, handler);
1933 			uasm_i_jr(&buf, k0);
1934 			uasm_i_nop(&buf);
1935 		}
1936 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1937 	}
1938 	return (void *)old_handler;
1939 }
1940 
1941 static void do_default_vi(void)
1942 {
1943 	show_regs(get_irq_regs());
1944 	panic("Caught unexpected vectored interrupt.");
1945 }
1946 
1947 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1948 {
1949 	unsigned long handler;
1950 	unsigned long old_handler = vi_handlers[n];
1951 	int srssets = current_cpu_data.srsets;
1952 	u16 *h;
1953 	unsigned char *b;
1954 
1955 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1956 
1957 	if (addr == NULL) {
1958 		handler = (unsigned long) do_default_vi;
1959 		srs = 0;
1960 	} else
1961 		handler = (unsigned long) addr;
1962 	vi_handlers[n] = handler;
1963 
1964 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1965 
1966 	if (srs >= srssets)
1967 		panic("Shadow register set %d not supported", srs);
1968 
1969 	if (cpu_has_veic) {
1970 		if (board_bind_eic_interrupt)
1971 			board_bind_eic_interrupt(n, srs);
1972 	} else if (cpu_has_vint) {
1973 		/* SRSMap is only defined if shadow sets are implemented */
1974 		if (srssets > 1)
1975 			change_c0_srsmap(0xf << n*4, srs << n*4);
1976 	}
1977 
1978 	if (srs == 0) {
1979 		/*
1980 		 * If no shadow set is selected then use the default handler
1981 		 * that does normal register saving and standard interrupt exit
1982 		 */
1983 		extern char except_vec_vi, except_vec_vi_lui;
1984 		extern char except_vec_vi_ori, except_vec_vi_end;
1985 		extern char rollback_except_vec_vi;
1986 		char *vec_start = using_rollback_handler() ?
1987 			&rollback_except_vec_vi : &except_vec_vi;
1988 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1989 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1990 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1991 #else
1992 		const int lui_offset = &except_vec_vi_lui - vec_start;
1993 		const int ori_offset = &except_vec_vi_ori - vec_start;
1994 #endif
1995 		const int handler_len = &except_vec_vi_end - vec_start;
1996 
1997 		if (handler_len > VECTORSPACING) {
1998 			/*
1999 			 * Sigh... panicing won't help as the console
2000 			 * is probably not configured :(
2001 			 */
2002 			panic("VECTORSPACING too small");
2003 		}
2004 
2005 		set_handler(((unsigned long)b - ebase), vec_start,
2006 #ifdef CONFIG_CPU_MICROMIPS
2007 				(handler_len - 1));
2008 #else
2009 				handler_len);
2010 #endif
2011 		h = (u16 *)(b + lui_offset);
2012 		*h = (handler >> 16) & 0xffff;
2013 		h = (u16 *)(b + ori_offset);
2014 		*h = (handler & 0xffff);
2015 		local_flush_icache_range((unsigned long)b,
2016 					 (unsigned long)(b+handler_len));
2017 	}
2018 	else {
2019 		/*
2020 		 * In other cases jump directly to the interrupt handler. It
2021 		 * is the handler's responsibility to save registers if required
2022 		 * (eg hi/lo) and return from the exception using "eret".
2023 		 */
2024 		u32 insn;
2025 
2026 		h = (u16 *)b;
2027 		/* j handler */
2028 #ifdef CONFIG_CPU_MICROMIPS
2029 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2030 #else
2031 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2032 #endif
2033 		h[0] = (insn >> 16) & 0xffff;
2034 		h[1] = insn & 0xffff;
2035 		h[2] = 0;
2036 		h[3] = 0;
2037 		local_flush_icache_range((unsigned long)b,
2038 					 (unsigned long)(b+8));
2039 	}
2040 
2041 	return (void *)old_handler;
2042 }
2043 
2044 void *set_vi_handler(int n, vi_handler_t addr)
2045 {
2046 	return set_vi_srs_handler(n, addr, 0);
2047 }
2048 
2049 extern void tlb_init(void);
2050 
2051 /*
2052  * Timer interrupt
2053  */
2054 int cp0_compare_irq;
2055 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2056 int cp0_compare_irq_shift;
2057 
2058 /*
2059  * Performance counter IRQ or -1 if shared with timer
2060  */
2061 int cp0_perfcount_irq;
2062 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2063 
2064 /*
2065  * Fast debug channel IRQ or -1 if not present
2066  */
2067 int cp0_fdc_irq;
2068 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2069 
2070 static int noulri;
2071 
2072 static int __init ulri_disable(char *s)
2073 {
2074 	pr_info("Disabling ulri\n");
2075 	noulri = 1;
2076 
2077 	return 1;
2078 }
2079 __setup("noulri", ulri_disable);
2080 
2081 /* configure STATUS register */
2082 static void configure_status(void)
2083 {
2084 	/*
2085 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2086 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2087 	 * flag that some firmware may have left set and the TS bit (for
2088 	 * IP27).  Set XX for ISA IV code to work.
2089 	 */
2090 	unsigned int status_set = ST0_CU0;
2091 #ifdef CONFIG_64BIT
2092 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2093 #endif
2094 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2095 		status_set |= ST0_XX;
2096 	if (cpu_has_dsp)
2097 		status_set |= ST0_MX;
2098 
2099 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2100 			 status_set);
2101 }
2102 
2103 unsigned int hwrena;
2104 EXPORT_SYMBOL_GPL(hwrena);
2105 
2106 /* configure HWRENA register */
2107 static void configure_hwrena(void)
2108 {
2109 	hwrena = cpu_hwrena_impl_bits;
2110 
2111 	if (cpu_has_mips_r2_r6)
2112 		hwrena |= MIPS_HWRENA_CPUNUM |
2113 			  MIPS_HWRENA_SYNCISTEP |
2114 			  MIPS_HWRENA_CC |
2115 			  MIPS_HWRENA_CCRES;
2116 
2117 	if (!noulri && cpu_has_userlocal)
2118 		hwrena |= MIPS_HWRENA_ULR;
2119 
2120 	if (hwrena)
2121 		write_c0_hwrena(hwrena);
2122 }
2123 
2124 static void configure_exception_vector(void)
2125 {
2126 	if (cpu_has_veic || cpu_has_vint) {
2127 		unsigned long sr = set_c0_status(ST0_BEV);
2128 		/* If available, use WG to set top bits of EBASE */
2129 		if (cpu_has_ebase_wg) {
2130 #ifdef CONFIG_64BIT
2131 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2132 #else
2133 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2134 #endif
2135 		}
2136 		write_c0_ebase(ebase);
2137 		write_c0_status(sr);
2138 		/* Setting vector spacing enables EI/VI mode  */
2139 		change_c0_intctl(0x3e0, VECTORSPACING);
2140 	}
2141 	if (cpu_has_divec) {
2142 		if (cpu_has_mipsmt) {
2143 			unsigned int vpflags = dvpe();
2144 			set_c0_cause(CAUSEF_IV);
2145 			evpe(vpflags);
2146 		} else
2147 			set_c0_cause(CAUSEF_IV);
2148 	}
2149 }
2150 
2151 void per_cpu_trap_init(bool is_boot_cpu)
2152 {
2153 	unsigned int cpu = smp_processor_id();
2154 
2155 	configure_status();
2156 	configure_hwrena();
2157 
2158 	configure_exception_vector();
2159 
2160 	/*
2161 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2162 	 *
2163 	 *  o read IntCtl.IPTI to determine the timer interrupt
2164 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2165 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2166 	 */
2167 	if (cpu_has_mips_r2_r6) {
2168 		/*
2169 		 * We shouldn't trust a secondary core has a sane EBASE register
2170 		 * so use the one calculated by the boot CPU.
2171 		 */
2172 		if (!is_boot_cpu) {
2173 			/* If available, use WG to set top bits of EBASE */
2174 			if (cpu_has_ebase_wg) {
2175 #ifdef CONFIG_64BIT
2176 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2177 #else
2178 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2179 #endif
2180 			}
2181 			write_c0_ebase(ebase);
2182 		}
2183 
2184 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2185 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2186 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2187 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2188 		if (!cp0_fdc_irq)
2189 			cp0_fdc_irq = -1;
2190 
2191 	} else {
2192 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2193 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2194 		cp0_perfcount_irq = -1;
2195 		cp0_fdc_irq = -1;
2196 	}
2197 
2198 	if (!cpu_data[cpu].asid_cache)
2199 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2200 
2201 	mmgrab(&init_mm);
2202 	current->active_mm = &init_mm;
2203 	BUG_ON(current->mm);
2204 	enter_lazy_tlb(&init_mm, current);
2205 
2206 	/* Boot CPU's cache setup in setup_arch(). */
2207 	if (!is_boot_cpu)
2208 		cpu_cache_init();
2209 	tlb_init();
2210 	TLBMISS_HANDLER_SETUP();
2211 }
2212 
2213 /* Install CPU exception handler */
2214 void set_handler(unsigned long offset, void *addr, unsigned long size)
2215 {
2216 #ifdef CONFIG_CPU_MICROMIPS
2217 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2218 #else
2219 	memcpy((void *)(ebase + offset), addr, size);
2220 #endif
2221 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2222 }
2223 
2224 static const char panic_null_cerr[] =
2225 	"Trying to set NULL cache error exception handler\n";
2226 
2227 /*
2228  * Install uncached CPU exception handler.
2229  * This is suitable only for the cache error exception which is the only
2230  * exception handler that is being run uncached.
2231  */
2232 void set_uncached_handler(unsigned long offset, void *addr,
2233 	unsigned long size)
2234 {
2235 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2236 
2237 	if (!addr)
2238 		panic(panic_null_cerr);
2239 
2240 	memcpy((void *)(uncached_ebase + offset), addr, size);
2241 }
2242 
2243 static int __initdata rdhwr_noopt;
2244 static int __init set_rdhwr_noopt(char *str)
2245 {
2246 	rdhwr_noopt = 1;
2247 	return 1;
2248 }
2249 
2250 __setup("rdhwr_noopt", set_rdhwr_noopt);
2251 
2252 void __init trap_init(void)
2253 {
2254 	extern char except_vec3_generic;
2255 	extern char except_vec4;
2256 	extern char except_vec3_r4000;
2257 	unsigned long i;
2258 
2259 	check_wait();
2260 
2261 	if (cpu_has_veic || cpu_has_vint) {
2262 		unsigned long size = 0x200 + VECTORSPACING*64;
2263 		phys_addr_t ebase_pa;
2264 
2265 		ebase = (unsigned long)
2266 			__alloc_bootmem(size, 1 << fls(size), 0);
2267 
2268 		/*
2269 		 * Try to ensure ebase resides in KSeg0 if possible.
2270 		 *
2271 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2272 		 * hitting a poorly defined exception base for Cache Errors.
2273 		 * The allocation is likely to be in the low 512MB of physical,
2274 		 * in which case we should be able to convert to KSeg0.
2275 		 *
2276 		 * EVA is special though as it allows segments to be rearranged
2277 		 * and to become uncached during cache error handling.
2278 		 */
2279 		ebase_pa = __pa(ebase);
2280 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2281 			ebase = CKSEG0ADDR(ebase_pa);
2282 	} else {
2283 		ebase = CAC_BASE;
2284 
2285 		if (cpu_has_mips_r2_r6) {
2286 			if (cpu_has_ebase_wg) {
2287 #ifdef CONFIG_64BIT
2288 				ebase = (read_c0_ebase_64() & ~0xfff);
2289 #else
2290 				ebase = (read_c0_ebase() & ~0xfff);
2291 #endif
2292 			} else {
2293 				ebase += (read_c0_ebase() & 0x3ffff000);
2294 			}
2295 		}
2296 	}
2297 
2298 	if (cpu_has_mmips) {
2299 		unsigned int config3 = read_c0_config3();
2300 
2301 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2302 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2303 		else
2304 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2305 	}
2306 
2307 	if (board_ebase_setup)
2308 		board_ebase_setup();
2309 	per_cpu_trap_init(true);
2310 
2311 	/*
2312 	 * Copy the generic exception handlers to their final destination.
2313 	 * This will be overridden later as suitable for a particular
2314 	 * configuration.
2315 	 */
2316 	set_handler(0x180, &except_vec3_generic, 0x80);
2317 
2318 	/*
2319 	 * Setup default vectors
2320 	 */
2321 	for (i = 0; i <= 31; i++)
2322 		set_except_vector(i, handle_reserved);
2323 
2324 	/*
2325 	 * Copy the EJTAG debug exception vector handler code to it's final
2326 	 * destination.
2327 	 */
2328 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2329 		board_ejtag_handler_setup();
2330 
2331 	/*
2332 	 * Only some CPUs have the watch exceptions.
2333 	 */
2334 	if (cpu_has_watch)
2335 		set_except_vector(EXCCODE_WATCH, handle_watch);
2336 
2337 	/*
2338 	 * Initialise interrupt handlers
2339 	 */
2340 	if (cpu_has_veic || cpu_has_vint) {
2341 		int nvec = cpu_has_veic ? 64 : 8;
2342 		for (i = 0; i < nvec; i++)
2343 			set_vi_handler(i, NULL);
2344 	}
2345 	else if (cpu_has_divec)
2346 		set_handler(0x200, &except_vec4, 0x8);
2347 
2348 	/*
2349 	 * Some CPUs can enable/disable for cache parity detection, but does
2350 	 * it different ways.
2351 	 */
2352 	parity_protection_init();
2353 
2354 	/*
2355 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2356 	 * by external hardware.  Therefore these two exceptions
2357 	 * may have board specific handlers.
2358 	 */
2359 	if (board_be_init)
2360 		board_be_init();
2361 
2362 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2363 					rollback_handle_int : handle_int);
2364 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2365 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2366 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2367 
2368 	set_except_vector(EXCCODE_ADEL, handle_adel);
2369 	set_except_vector(EXCCODE_ADES, handle_ades);
2370 
2371 	set_except_vector(EXCCODE_IBE, handle_ibe);
2372 	set_except_vector(EXCCODE_DBE, handle_dbe);
2373 
2374 	set_except_vector(EXCCODE_SYS, handle_sys);
2375 	set_except_vector(EXCCODE_BP, handle_bp);
2376 
2377 	if (rdhwr_noopt)
2378 		set_except_vector(EXCCODE_RI, handle_ri);
2379 	else {
2380 		if (cpu_has_vtag_icache)
2381 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2382 		else if (current_cpu_type() == CPU_LOONGSON3)
2383 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2384 		else
2385 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2386 	}
2387 
2388 	set_except_vector(EXCCODE_CPU, handle_cpu);
2389 	set_except_vector(EXCCODE_OV, handle_ov);
2390 	set_except_vector(EXCCODE_TR, handle_tr);
2391 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2392 
2393 	if (board_nmi_handler_setup)
2394 		board_nmi_handler_setup();
2395 
2396 	if (cpu_has_fpu && !cpu_has_nofpuex)
2397 		set_except_vector(EXCCODE_FPE, handle_fpe);
2398 
2399 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2400 
2401 	if (cpu_has_rixiex) {
2402 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2403 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2404 	}
2405 
2406 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2407 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2408 
2409 	if (cpu_has_mcheck)
2410 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2411 
2412 	if (cpu_has_mipsmt)
2413 		set_except_vector(EXCCODE_THREAD, handle_mt);
2414 
2415 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2416 
2417 	if (board_cache_error_setup)
2418 		board_cache_error_setup();
2419 
2420 	if (cpu_has_vce)
2421 		/* Special exception: R4[04]00 uses also the divec space. */
2422 		set_handler(0x180, &except_vec3_r4000, 0x100);
2423 	else if (cpu_has_4kex)
2424 		set_handler(0x180, &except_vec3_generic, 0x80);
2425 	else
2426 		set_handler(0x080, &except_vec3_generic, 0x80);
2427 
2428 	local_flush_icache_range(ebase, ebase + 0x400);
2429 
2430 	sort_extable(__start___dbe_table, __stop___dbe_table);
2431 
2432 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2433 }
2434 
2435 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2436 			    void *v)
2437 {
2438 	switch (cmd) {
2439 	case CPU_PM_ENTER_FAILED:
2440 	case CPU_PM_EXIT:
2441 		configure_status();
2442 		configure_hwrena();
2443 		configure_exception_vector();
2444 
2445 		/* Restore register with CPU number for TLB handlers */
2446 		TLBMISS_HANDLER_RESTORE();
2447 
2448 		break;
2449 	}
2450 
2451 	return NOTIFY_OK;
2452 }
2453 
2454 static struct notifier_block trap_pm_notifier_block = {
2455 	.notifier_call = trap_pm_notifier,
2456 };
2457 
2458 static int __init trap_pm_init(void)
2459 {
2460 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2461 }
2462 arch_initcall(trap_pm_init);
2463