xref: /linux/arch/mips/kernel/traps.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
13  */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/notifier.h>
29 
30 #include <asm/bootinfo.h>
31 #include <asm/branch.h>
32 #include <asm/break.h>
33 #include <asm/cop2.h>
34 #include <asm/cpu.h>
35 #include <asm/dsp.h>
36 #include <asm/fpu.h>
37 #include <asm/fpu_emulator.h>
38 #include <asm/mipsregs.h>
39 #include <asm/mipsmtregs.h>
40 #include <asm/module.h>
41 #include <asm/pgtable.h>
42 #include <asm/ptrace.h>
43 #include <asm/sections.h>
44 #include <asm/system.h>
45 #include <asm/tlbdebug.h>
46 #include <asm/traps.h>
47 #include <asm/uaccess.h>
48 #include <asm/watch.h>
49 #include <asm/mmu_context.h>
50 #include <asm/types.h>
51 #include <asm/stacktrace.h>
52 #include <asm/irq.h>
53 #include <asm/uasm.h>
54 
55 extern void check_wait(void);
56 extern asmlinkage void r4k_wait(void);
57 extern asmlinkage void rollback_handle_int(void);
58 extern asmlinkage void handle_int(void);
59 extern asmlinkage void handle_tlbm(void);
60 extern asmlinkage void handle_tlbl(void);
61 extern asmlinkage void handle_tlbs(void);
62 extern asmlinkage void handle_adel(void);
63 extern asmlinkage void handle_ades(void);
64 extern asmlinkage void handle_ibe(void);
65 extern asmlinkage void handle_dbe(void);
66 extern asmlinkage void handle_sys(void);
67 extern asmlinkage void handle_bp(void);
68 extern asmlinkage void handle_ri(void);
69 extern asmlinkage void handle_ri_rdhwr_vivt(void);
70 extern asmlinkage void handle_ri_rdhwr(void);
71 extern asmlinkage void handle_cpu(void);
72 extern asmlinkage void handle_ov(void);
73 extern asmlinkage void handle_tr(void);
74 extern asmlinkage void handle_fpe(void);
75 extern asmlinkage void handle_mdmx(void);
76 extern asmlinkage void handle_watch(void);
77 extern asmlinkage void handle_mt(void);
78 extern asmlinkage void handle_dsp(void);
79 extern asmlinkage void handle_mcheck(void);
80 extern asmlinkage void handle_reserved(void);
81 
82 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
83 	struct mips_fpu_struct *ctx, int has_fpu);
84 
85 void (*board_be_init)(void);
86 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
87 void (*board_nmi_handler_setup)(void);
88 void (*board_ejtag_handler_setup)(void);
89 void (*board_bind_eic_interrupt)(int irq, int regset);
90 
91 
92 static void show_raw_backtrace(unsigned long reg29)
93 {
94 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
95 	unsigned long addr;
96 
97 	printk("Call Trace:");
98 #ifdef CONFIG_KALLSYMS
99 	printk("\n");
100 #endif
101 	while (!kstack_end(sp)) {
102 		unsigned long __user *p =
103 			(unsigned long __user *)(unsigned long)sp++;
104 		if (__get_user(addr, p)) {
105 			printk(" (Bad stack address)");
106 			break;
107 		}
108 		if (__kernel_text_address(addr))
109 			print_ip_sym(addr);
110 	}
111 	printk("\n");
112 }
113 
114 #ifdef CONFIG_KALLSYMS
115 int raw_show_trace;
116 static int __init set_raw_show_trace(char *str)
117 {
118 	raw_show_trace = 1;
119 	return 1;
120 }
121 __setup("raw_show_trace", set_raw_show_trace);
122 #endif
123 
124 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
125 {
126 	unsigned long sp = regs->regs[29];
127 	unsigned long ra = regs->regs[31];
128 	unsigned long pc = regs->cp0_epc;
129 
130 	if (raw_show_trace || !__kernel_text_address(pc)) {
131 		show_raw_backtrace(sp);
132 		return;
133 	}
134 	printk("Call Trace:\n");
135 	do {
136 		print_ip_sym(pc);
137 		pc = unwind_stack(task, &sp, pc, &ra);
138 	} while (pc);
139 	printk("\n");
140 }
141 
142 /*
143  * This routine abuses get_user()/put_user() to reference pointers
144  * with at least a bit of error checking ...
145  */
146 static void show_stacktrace(struct task_struct *task,
147 	const struct pt_regs *regs)
148 {
149 	const int field = 2 * sizeof(unsigned long);
150 	long stackdata;
151 	int i;
152 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
153 
154 	printk("Stack :");
155 	i = 0;
156 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
157 		if (i && ((i % (64 / field)) == 0))
158 			printk("\n       ");
159 		if (i > 39) {
160 			printk(" ...");
161 			break;
162 		}
163 
164 		if (__get_user(stackdata, sp++)) {
165 			printk(" (Bad stack address)");
166 			break;
167 		}
168 
169 		printk(" %0*lx", field, stackdata);
170 		i++;
171 	}
172 	printk("\n");
173 	show_backtrace(task, regs);
174 }
175 
176 void show_stack(struct task_struct *task, unsigned long *sp)
177 {
178 	struct pt_regs regs;
179 	if (sp) {
180 		regs.regs[29] = (unsigned long)sp;
181 		regs.regs[31] = 0;
182 		regs.cp0_epc = 0;
183 	} else {
184 		if (task && task != current) {
185 			regs.regs[29] = task->thread.reg29;
186 			regs.regs[31] = 0;
187 			regs.cp0_epc = task->thread.reg31;
188 		} else {
189 			prepare_frametrace(&regs);
190 		}
191 	}
192 	show_stacktrace(task, &regs);
193 }
194 
195 /*
196  * The architecture-independent dump_stack generator
197  */
198 void dump_stack(void)
199 {
200 	struct pt_regs regs;
201 
202 	prepare_frametrace(&regs);
203 	show_backtrace(current, &regs);
204 }
205 
206 EXPORT_SYMBOL(dump_stack);
207 
208 static void show_code(unsigned int __user *pc)
209 {
210 	long i;
211 	unsigned short __user *pc16 = NULL;
212 
213 	printk("\nCode:");
214 
215 	if ((unsigned long)pc & 1)
216 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
217 	for(i = -3 ; i < 6 ; i++) {
218 		unsigned int insn;
219 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
220 			printk(" (Bad address in epc)\n");
221 			break;
222 		}
223 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
224 	}
225 }
226 
227 static void __show_regs(const struct pt_regs *regs)
228 {
229 	const int field = 2 * sizeof(unsigned long);
230 	unsigned int cause = regs->cp0_cause;
231 	int i;
232 
233 	printk("Cpu %d\n", smp_processor_id());
234 
235 	/*
236 	 * Saved main processor registers
237 	 */
238 	for (i = 0; i < 32; ) {
239 		if ((i % 4) == 0)
240 			printk("$%2d   :", i);
241 		if (i == 0)
242 			printk(" %0*lx", field, 0UL);
243 		else if (i == 26 || i == 27)
244 			printk(" %*s", field, "");
245 		else
246 			printk(" %0*lx", field, regs->regs[i]);
247 
248 		i++;
249 		if ((i % 4) == 0)
250 			printk("\n");
251 	}
252 
253 #ifdef CONFIG_CPU_HAS_SMARTMIPS
254 	printk("Acx    : %0*lx\n", field, regs->acx);
255 #endif
256 	printk("Hi    : %0*lx\n", field, regs->hi);
257 	printk("Lo    : %0*lx\n", field, regs->lo);
258 
259 	/*
260 	 * Saved cp0 registers
261 	 */
262 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
263 	       (void *) regs->cp0_epc);
264 	printk("    %s\n", print_tainted());
265 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
266 	       (void *) regs->regs[31]);
267 
268 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
269 
270 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
271 		if (regs->cp0_status & ST0_KUO)
272 			printk("KUo ");
273 		if (regs->cp0_status & ST0_IEO)
274 			printk("IEo ");
275 		if (regs->cp0_status & ST0_KUP)
276 			printk("KUp ");
277 		if (regs->cp0_status & ST0_IEP)
278 			printk("IEp ");
279 		if (regs->cp0_status & ST0_KUC)
280 			printk("KUc ");
281 		if (regs->cp0_status & ST0_IEC)
282 			printk("IEc ");
283 	} else {
284 		if (regs->cp0_status & ST0_KX)
285 			printk("KX ");
286 		if (regs->cp0_status & ST0_SX)
287 			printk("SX ");
288 		if (regs->cp0_status & ST0_UX)
289 			printk("UX ");
290 		switch (regs->cp0_status & ST0_KSU) {
291 		case KSU_USER:
292 			printk("USER ");
293 			break;
294 		case KSU_SUPERVISOR:
295 			printk("SUPERVISOR ");
296 			break;
297 		case KSU_KERNEL:
298 			printk("KERNEL ");
299 			break;
300 		default:
301 			printk("BAD_MODE ");
302 			break;
303 		}
304 		if (regs->cp0_status & ST0_ERL)
305 			printk("ERL ");
306 		if (regs->cp0_status & ST0_EXL)
307 			printk("EXL ");
308 		if (regs->cp0_status & ST0_IE)
309 			printk("IE ");
310 	}
311 	printk("\n");
312 
313 	printk("Cause : %08x\n", cause);
314 
315 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
316 	if (1 <= cause && cause <= 5)
317 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
318 
319 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
320 	       cpu_name_string());
321 }
322 
323 /*
324  * FIXME: really the generic show_regs should take a const pointer argument.
325  */
326 void show_regs(struct pt_regs *regs)
327 {
328 	__show_regs((struct pt_regs *)regs);
329 }
330 
331 void show_registers(const struct pt_regs *regs)
332 {
333 	const int field = 2 * sizeof(unsigned long);
334 
335 	__show_regs(regs);
336 	print_modules();
337 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
338 	       current->comm, current->pid, current_thread_info(), current,
339 	      field, current_thread_info()->tp_value);
340 	if (cpu_has_userlocal) {
341 		unsigned long tls;
342 
343 		tls = read_c0_userlocal();
344 		if (tls != current_thread_info()->tp_value)
345 			printk("*HwTLS: %0*lx\n", field, tls);
346 	}
347 
348 	show_stacktrace(current, regs);
349 	show_code((unsigned int __user *) regs->cp0_epc);
350 	printk("\n");
351 }
352 
353 static DEFINE_SPINLOCK(die_lock);
354 
355 void __noreturn die(const char * str, const struct pt_regs * regs)
356 {
357 	static int die_counter;
358 #ifdef CONFIG_MIPS_MT_SMTC
359 	unsigned long dvpret = dvpe();
360 #endif /* CONFIG_MIPS_MT_SMTC */
361 
362 	console_verbose();
363 	spin_lock_irq(&die_lock);
364 	bust_spinlocks(1);
365 #ifdef CONFIG_MIPS_MT_SMTC
366 	mips_mt_regdump(dvpret);
367 #endif /* CONFIG_MIPS_MT_SMTC */
368 	printk("%s[#%d]:\n", str, ++die_counter);
369 	show_registers(regs);
370 	add_taint(TAINT_DIE);
371 	spin_unlock_irq(&die_lock);
372 
373 	if (in_interrupt())
374 		panic("Fatal exception in interrupt");
375 
376 	if (panic_on_oops) {
377 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
378 		ssleep(5);
379 		panic("Fatal exception");
380 	}
381 
382 	do_exit(SIGSEGV);
383 }
384 
385 extern struct exception_table_entry __start___dbe_table[];
386 extern struct exception_table_entry __stop___dbe_table[];
387 
388 __asm__(
389 "	.section	__dbe_table, \"a\"\n"
390 "	.previous			\n");
391 
392 /* Given an address, look for it in the exception tables. */
393 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
394 {
395 	const struct exception_table_entry *e;
396 
397 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
398 	if (!e)
399 		e = search_module_dbetables(addr);
400 	return e;
401 }
402 
403 asmlinkage void do_be(struct pt_regs *regs)
404 {
405 	const int field = 2 * sizeof(unsigned long);
406 	const struct exception_table_entry *fixup = NULL;
407 	int data = regs->cp0_cause & 4;
408 	int action = MIPS_BE_FATAL;
409 
410 	/* XXX For now.  Fixme, this searches the wrong table ...  */
411 	if (data && !user_mode(regs))
412 		fixup = search_dbe_tables(exception_epc(regs));
413 
414 	if (fixup)
415 		action = MIPS_BE_FIXUP;
416 
417 	if (board_be_handler)
418 		action = board_be_handler(regs, fixup != NULL);
419 
420 	switch (action) {
421 	case MIPS_BE_DISCARD:
422 		return;
423 	case MIPS_BE_FIXUP:
424 		if (fixup) {
425 			regs->cp0_epc = fixup->nextinsn;
426 			return;
427 		}
428 		break;
429 	default:
430 		break;
431 	}
432 
433 	/*
434 	 * Assume it would be too dangerous to continue ...
435 	 */
436 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
437 	       data ? "Data" : "Instruction",
438 	       field, regs->cp0_epc, field, regs->regs[31]);
439 	if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
440 	    == NOTIFY_STOP)
441 		return;
442 
443 	die_if_kernel("Oops", regs);
444 	force_sig(SIGBUS, current);
445 }
446 
447 /*
448  * ll/sc, rdhwr, sync emulation
449  */
450 
451 #define OPCODE 0xfc000000
452 #define BASE   0x03e00000
453 #define RT     0x001f0000
454 #define OFFSET 0x0000ffff
455 #define LL     0xc0000000
456 #define SC     0xe0000000
457 #define SPEC0  0x00000000
458 #define SPEC3  0x7c000000
459 #define RD     0x0000f800
460 #define FUNC   0x0000003f
461 #define SYNC   0x0000000f
462 #define RDHWR  0x0000003b
463 
464 /*
465  * The ll_bit is cleared by r*_switch.S
466  */
467 
468 unsigned int ll_bit;
469 struct task_struct *ll_task;
470 
471 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
472 {
473 	unsigned long value, __user *vaddr;
474 	long offset;
475 
476 	/*
477 	 * analyse the ll instruction that just caused a ri exception
478 	 * and put the referenced address to addr.
479 	 */
480 
481 	/* sign extend offset */
482 	offset = opcode & OFFSET;
483 	offset <<= 16;
484 	offset >>= 16;
485 
486 	vaddr = (unsigned long __user *)
487 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
488 
489 	if ((unsigned long)vaddr & 3)
490 		return SIGBUS;
491 	if (get_user(value, vaddr))
492 		return SIGSEGV;
493 
494 	preempt_disable();
495 
496 	if (ll_task == NULL || ll_task == current) {
497 		ll_bit = 1;
498 	} else {
499 		ll_bit = 0;
500 	}
501 	ll_task = current;
502 
503 	preempt_enable();
504 
505 	regs->regs[(opcode & RT) >> 16] = value;
506 
507 	return 0;
508 }
509 
510 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
511 {
512 	unsigned long __user *vaddr;
513 	unsigned long reg;
514 	long offset;
515 
516 	/*
517 	 * analyse the sc instruction that just caused a ri exception
518 	 * and put the referenced address to addr.
519 	 */
520 
521 	/* sign extend offset */
522 	offset = opcode & OFFSET;
523 	offset <<= 16;
524 	offset >>= 16;
525 
526 	vaddr = (unsigned long __user *)
527 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
528 	reg = (opcode & RT) >> 16;
529 
530 	if ((unsigned long)vaddr & 3)
531 		return SIGBUS;
532 
533 	preempt_disable();
534 
535 	if (ll_bit == 0 || ll_task != current) {
536 		regs->regs[reg] = 0;
537 		preempt_enable();
538 		return 0;
539 	}
540 
541 	preempt_enable();
542 
543 	if (put_user(regs->regs[reg], vaddr))
544 		return SIGSEGV;
545 
546 	regs->regs[reg] = 1;
547 
548 	return 0;
549 }
550 
551 /*
552  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
553  * opcodes are supposed to result in coprocessor unusable exceptions if
554  * executed on ll/sc-less processors.  That's the theory.  In practice a
555  * few processors such as NEC's VR4100 throw reserved instruction exceptions
556  * instead, so we're doing the emulation thing in both exception handlers.
557  */
558 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
559 {
560 	if ((opcode & OPCODE) == LL)
561 		return simulate_ll(regs, opcode);
562 	if ((opcode & OPCODE) == SC)
563 		return simulate_sc(regs, opcode);
564 
565 	return -1;			/* Must be something else ... */
566 }
567 
568 /*
569  * Simulate trapping 'rdhwr' instructions to provide user accessible
570  * registers not implemented in hardware.
571  */
572 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
573 {
574 	struct thread_info *ti = task_thread_info(current);
575 
576 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
577 		int rd = (opcode & RD) >> 11;
578 		int rt = (opcode & RT) >> 16;
579 		switch (rd) {
580 		case 0:		/* CPU number */
581 			regs->regs[rt] = smp_processor_id();
582 			return 0;
583 		case 1:		/* SYNCI length */
584 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
585 					     current_cpu_data.icache.linesz);
586 			return 0;
587 		case 2:		/* Read count register */
588 			regs->regs[rt] = read_c0_count();
589 			return 0;
590 		case 3:		/* Count register resolution */
591 			switch (current_cpu_data.cputype) {
592 			case CPU_20KC:
593 			case CPU_25KF:
594 				regs->regs[rt] = 1;
595 				break;
596 			default:
597 				regs->regs[rt] = 2;
598 			}
599 			return 0;
600 		case 29:
601 			regs->regs[rt] = ti->tp_value;
602 			return 0;
603 		default:
604 			return -1;
605 		}
606 	}
607 
608 	/* Not ours.  */
609 	return -1;
610 }
611 
612 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
613 {
614 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
615 		return 0;
616 
617 	return -1;			/* Must be something else ... */
618 }
619 
620 asmlinkage void do_ov(struct pt_regs *regs)
621 {
622 	siginfo_t info;
623 
624 	die_if_kernel("Integer overflow", regs);
625 
626 	info.si_code = FPE_INTOVF;
627 	info.si_signo = SIGFPE;
628 	info.si_errno = 0;
629 	info.si_addr = (void __user *) regs->cp0_epc;
630 	force_sig_info(SIGFPE, &info, current);
631 }
632 
633 /*
634  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
635  */
636 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
637 {
638 	siginfo_t info;
639 
640 	if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
641 	    == NOTIFY_STOP)
642 		return;
643 	die_if_kernel("FP exception in kernel code", regs);
644 
645 	if (fcr31 & FPU_CSR_UNI_X) {
646 		int sig;
647 
648 		/*
649 		 * Unimplemented operation exception.  If we've got the full
650 		 * software emulator on-board, let's use it...
651 		 *
652 		 * Force FPU to dump state into task/thread context.  We're
653 		 * moving a lot of data here for what is probably a single
654 		 * instruction, but the alternative is to pre-decode the FP
655 		 * register operands before invoking the emulator, which seems
656 		 * a bit extreme for what should be an infrequent event.
657 		 */
658 		/* Ensure 'resume' not overwrite saved fp context again. */
659 		lose_fpu(1);
660 
661 		/* Run the emulator */
662 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
663 
664 		/*
665 		 * We can't allow the emulated instruction to leave any of
666 		 * the cause bit set in $fcr31.
667 		 */
668 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
669 
670 		/* Restore the hardware register state */
671 		own_fpu(1);	/* Using the FPU again.  */
672 
673 		/* If something went wrong, signal */
674 		if (sig)
675 			force_sig(sig, current);
676 
677 		return;
678 	} else if (fcr31 & FPU_CSR_INV_X)
679 		info.si_code = FPE_FLTINV;
680 	else if (fcr31 & FPU_CSR_DIV_X)
681 		info.si_code = FPE_FLTDIV;
682 	else if (fcr31 & FPU_CSR_OVF_X)
683 		info.si_code = FPE_FLTOVF;
684 	else if (fcr31 & FPU_CSR_UDF_X)
685 		info.si_code = FPE_FLTUND;
686 	else if (fcr31 & FPU_CSR_INE_X)
687 		info.si_code = FPE_FLTRES;
688 	else
689 		info.si_code = __SI_FAULT;
690 	info.si_signo = SIGFPE;
691 	info.si_errno = 0;
692 	info.si_addr = (void __user *) regs->cp0_epc;
693 	force_sig_info(SIGFPE, &info, current);
694 }
695 
696 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
697 	const char *str)
698 {
699 	siginfo_t info;
700 	char b[40];
701 
702 	if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
703 		return;
704 
705 	/*
706 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
707 	 * insns, even for trap and break codes that indicate arithmetic
708 	 * failures.  Weird ...
709 	 * But should we continue the brokenness???  --macro
710 	 */
711 	switch (code) {
712 	case BRK_OVERFLOW:
713 	case BRK_DIVZERO:
714 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
715 		die_if_kernel(b, regs);
716 		if (code == BRK_DIVZERO)
717 			info.si_code = FPE_INTDIV;
718 		else
719 			info.si_code = FPE_INTOVF;
720 		info.si_signo = SIGFPE;
721 		info.si_errno = 0;
722 		info.si_addr = (void __user *) regs->cp0_epc;
723 		force_sig_info(SIGFPE, &info, current);
724 		break;
725 	case BRK_BUG:
726 		die_if_kernel("Kernel bug detected", regs);
727 		force_sig(SIGTRAP, current);
728 		break;
729 	case BRK_MEMU:
730 		/*
731 		 * Address errors may be deliberately induced by the FPU
732 		 * emulator to retake control of the CPU after executing the
733 		 * instruction in the delay slot of an emulated branch.
734 		 *
735 		 * Terminate if exception was recognized as a delay slot return
736 		 * otherwise handle as normal.
737 		 */
738 		if (do_dsemulret(regs))
739 			return;
740 
741 		die_if_kernel("Math emu break/trap", regs);
742 		force_sig(SIGTRAP, current);
743 		break;
744 	default:
745 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
746 		die_if_kernel(b, regs);
747 		force_sig(SIGTRAP, current);
748 	}
749 }
750 
751 asmlinkage void do_bp(struct pt_regs *regs)
752 {
753 	unsigned int opcode, bcode;
754 
755 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
756 		goto out_sigsegv;
757 
758 	/*
759 	 * There is the ancient bug in the MIPS assemblers that the break
760 	 * code starts left to bit 16 instead to bit 6 in the opcode.
761 	 * Gas is bug-compatible, but not always, grrr...
762 	 * We handle both cases with a simple heuristics.  --macro
763 	 */
764 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
765 	if (bcode >= (1 << 10))
766 		bcode >>= 10;
767 
768 	do_trap_or_bp(regs, bcode, "Break");
769 	return;
770 
771 out_sigsegv:
772 	force_sig(SIGSEGV, current);
773 }
774 
775 asmlinkage void do_tr(struct pt_regs *regs)
776 {
777 	unsigned int opcode, tcode = 0;
778 
779 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
780 		goto out_sigsegv;
781 
782 	/* Immediate versions don't provide a code.  */
783 	if (!(opcode & OPCODE))
784 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
785 
786 	do_trap_or_bp(regs, tcode, "Trap");
787 	return;
788 
789 out_sigsegv:
790 	force_sig(SIGSEGV, current);
791 }
792 
793 asmlinkage void do_ri(struct pt_regs *regs)
794 {
795 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
796 	unsigned long old_epc = regs->cp0_epc;
797 	unsigned int opcode = 0;
798 	int status = -1;
799 
800 	if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
801 	    == NOTIFY_STOP)
802 		return;
803 
804 	die_if_kernel("Reserved instruction in kernel code", regs);
805 
806 	if (unlikely(compute_return_epc(regs) < 0))
807 		return;
808 
809 	if (unlikely(get_user(opcode, epc) < 0))
810 		status = SIGSEGV;
811 
812 	if (!cpu_has_llsc && status < 0)
813 		status = simulate_llsc(regs, opcode);
814 
815 	if (status < 0)
816 		status = simulate_rdhwr(regs, opcode);
817 
818 	if (status < 0)
819 		status = simulate_sync(regs, opcode);
820 
821 	if (status < 0)
822 		status = SIGILL;
823 
824 	if (unlikely(status > 0)) {
825 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
826 		force_sig(status, current);
827 	}
828 }
829 
830 /*
831  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
832  * emulated more than some threshold number of instructions, force migration to
833  * a "CPU" that has FP support.
834  */
835 static void mt_ase_fp_affinity(void)
836 {
837 #ifdef CONFIG_MIPS_MT_FPAFF
838 	if (mt_fpemul_threshold > 0 &&
839 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
840 		/*
841 		 * If there's no FPU present, or if the application has already
842 		 * restricted the allowed set to exclude any CPUs with FPUs,
843 		 * we'll skip the procedure.
844 		 */
845 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
846 			cpumask_t tmask;
847 
848 			current->thread.user_cpus_allowed
849 				= current->cpus_allowed;
850 			cpus_and(tmask, current->cpus_allowed,
851 				mt_fpu_cpumask);
852 			set_cpus_allowed(current, tmask);
853 			set_thread_flag(TIF_FPUBOUND);
854 		}
855 	}
856 #endif /* CONFIG_MIPS_MT_FPAFF */
857 }
858 
859 /*
860  * No lock; only written during early bootup by CPU 0.
861  */
862 static RAW_NOTIFIER_HEAD(cu2_chain);
863 
864 int __ref register_cu2_notifier(struct notifier_block *nb)
865 {
866 	return raw_notifier_chain_register(&cu2_chain, nb);
867 }
868 
869 int cu2_notifier_call_chain(unsigned long val, void *v)
870 {
871 	return raw_notifier_call_chain(&cu2_chain, val, v);
872 }
873 
874 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
875         void *data)
876 {
877 	struct pt_regs *regs = data;
878 
879 	switch (action) {
880 	default:
881 		die_if_kernel("Unhandled kernel unaligned access or invalid "
882 			      "instruction", regs);
883 		/* Fall through  */
884 
885 	case CU2_EXCEPTION:
886 		force_sig(SIGILL, current);
887 	}
888 
889 	return NOTIFY_OK;
890 }
891 
892 static struct notifier_block default_cu2_notifier = {
893 	.notifier_call	= default_cu2_call,
894 	.priority	= 0x80000000,		/* Run last  */
895 };
896 
897 asmlinkage void do_cpu(struct pt_regs *regs)
898 {
899 	unsigned int __user *epc;
900 	unsigned long old_epc;
901 	unsigned int opcode;
902 	unsigned int cpid;
903 	int status;
904 	unsigned long __maybe_unused flags;
905 
906 	die_if_kernel("do_cpu invoked from kernel context!", regs);
907 
908 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
909 
910 	switch (cpid) {
911 	case 0:
912 		epc = (unsigned int __user *)exception_epc(regs);
913 		old_epc = regs->cp0_epc;
914 		opcode = 0;
915 		status = -1;
916 
917 		if (unlikely(compute_return_epc(regs) < 0))
918 			return;
919 
920 		if (unlikely(get_user(opcode, epc) < 0))
921 			status = SIGSEGV;
922 
923 		if (!cpu_has_llsc && status < 0)
924 			status = simulate_llsc(regs, opcode);
925 
926 		if (status < 0)
927 			status = simulate_rdhwr(regs, opcode);
928 
929 		if (status < 0)
930 			status = SIGILL;
931 
932 		if (unlikely(status > 0)) {
933 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
934 			force_sig(status, current);
935 		}
936 
937 		return;
938 
939 	case 1:
940 		if (used_math())	/* Using the FPU again.  */
941 			own_fpu(1);
942 		else {			/* First time FPU user.  */
943 			init_fpu();
944 			set_used_math();
945 		}
946 
947 		if (!raw_cpu_has_fpu) {
948 			int sig;
949 			sig = fpu_emulator_cop1Handler(regs,
950 						&current->thread.fpu, 0);
951 			if (sig)
952 				force_sig(sig, current);
953 			else
954 				mt_ase_fp_affinity();
955 		}
956 
957 		return;
958 
959 	case 2:
960 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
961 		break;
962 
963 	case 3:
964 		break;
965 	}
966 
967 	force_sig(SIGILL, current);
968 }
969 
970 asmlinkage void do_mdmx(struct pt_regs *regs)
971 {
972 	force_sig(SIGILL, current);
973 }
974 
975 /*
976  * Called with interrupts disabled.
977  */
978 asmlinkage void do_watch(struct pt_regs *regs)
979 {
980 	u32 cause;
981 
982 	/*
983 	 * Clear WP (bit 22) bit of cause register so we don't loop
984 	 * forever.
985 	 */
986 	cause = read_c0_cause();
987 	cause &= ~(1 << 22);
988 	write_c0_cause(cause);
989 
990 	/*
991 	 * If the current thread has the watch registers loaded, save
992 	 * their values and send SIGTRAP.  Otherwise another thread
993 	 * left the registers set, clear them and continue.
994 	 */
995 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
996 		mips_read_watch_registers();
997 		local_irq_enable();
998 		force_sig(SIGTRAP, current);
999 	} else {
1000 		mips_clear_watch_registers();
1001 		local_irq_enable();
1002 	}
1003 }
1004 
1005 asmlinkage void do_mcheck(struct pt_regs *regs)
1006 {
1007 	const int field = 2 * sizeof(unsigned long);
1008 	int multi_match = regs->cp0_status & ST0_TS;
1009 
1010 	show_regs(regs);
1011 
1012 	if (multi_match) {
1013 		printk("Index   : %0x\n", read_c0_index());
1014 		printk("Pagemask: %0x\n", read_c0_pagemask());
1015 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1016 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1017 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1018 		printk("\n");
1019 		dump_tlb_all();
1020 	}
1021 
1022 	show_code((unsigned int __user *) regs->cp0_epc);
1023 
1024 	/*
1025 	 * Some chips may have other causes of machine check (e.g. SB1
1026 	 * graduation timer)
1027 	 */
1028 	panic("Caught Machine Check exception - %scaused by multiple "
1029 	      "matching entries in the TLB.",
1030 	      (multi_match) ? "" : "not ");
1031 }
1032 
1033 asmlinkage void do_mt(struct pt_regs *regs)
1034 {
1035 	int subcode;
1036 
1037 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1038 			>> VPECONTROL_EXCPT_SHIFT;
1039 	switch (subcode) {
1040 	case 0:
1041 		printk(KERN_DEBUG "Thread Underflow\n");
1042 		break;
1043 	case 1:
1044 		printk(KERN_DEBUG "Thread Overflow\n");
1045 		break;
1046 	case 2:
1047 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1048 		break;
1049 	case 3:
1050 		printk(KERN_DEBUG "Gating Storage Exception\n");
1051 		break;
1052 	case 4:
1053 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1054 		break;
1055 	case 5:
1056 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1057 		break;
1058 	default:
1059 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1060 			subcode);
1061 		break;
1062 	}
1063 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1064 
1065 	force_sig(SIGILL, current);
1066 }
1067 
1068 
1069 asmlinkage void do_dsp(struct pt_regs *regs)
1070 {
1071 	if (cpu_has_dsp)
1072 		panic("Unexpected DSP exception\n");
1073 
1074 	force_sig(SIGILL, current);
1075 }
1076 
1077 asmlinkage void do_reserved(struct pt_regs *regs)
1078 {
1079 	/*
1080 	 * Game over - no way to handle this if it ever occurs.  Most probably
1081 	 * caused by a new unknown cpu type or after another deadly
1082 	 * hard/software error.
1083 	 */
1084 	show_regs(regs);
1085 	panic("Caught reserved exception %ld - should not happen.",
1086 	      (regs->cp0_cause & 0x7f) >> 2);
1087 }
1088 
1089 static int __initdata l1parity = 1;
1090 static int __init nol1parity(char *s)
1091 {
1092 	l1parity = 0;
1093 	return 1;
1094 }
1095 __setup("nol1par", nol1parity);
1096 static int __initdata l2parity = 1;
1097 static int __init nol2parity(char *s)
1098 {
1099 	l2parity = 0;
1100 	return 1;
1101 }
1102 __setup("nol2par", nol2parity);
1103 
1104 /*
1105  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1106  * it different ways.
1107  */
1108 static inline void parity_protection_init(void)
1109 {
1110 	switch (current_cpu_type()) {
1111 	case CPU_24K:
1112 	case CPU_34K:
1113 	case CPU_74K:
1114 	case CPU_1004K:
1115 		{
1116 #define ERRCTL_PE	0x80000000
1117 #define ERRCTL_L2P	0x00800000
1118 			unsigned long errctl;
1119 			unsigned int l1parity_present, l2parity_present;
1120 
1121 			errctl = read_c0_ecc();
1122 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1123 
1124 			/* probe L1 parity support */
1125 			write_c0_ecc(errctl | ERRCTL_PE);
1126 			back_to_back_c0_hazard();
1127 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1128 
1129 			/* probe L2 parity support */
1130 			write_c0_ecc(errctl|ERRCTL_L2P);
1131 			back_to_back_c0_hazard();
1132 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1133 
1134 			if (l1parity_present && l2parity_present) {
1135 				if (l1parity)
1136 					errctl |= ERRCTL_PE;
1137 				if (l1parity ^ l2parity)
1138 					errctl |= ERRCTL_L2P;
1139 			} else if (l1parity_present) {
1140 				if (l1parity)
1141 					errctl |= ERRCTL_PE;
1142 			} else if (l2parity_present) {
1143 				if (l2parity)
1144 					errctl |= ERRCTL_L2P;
1145 			} else {
1146 				/* No parity available */
1147 			}
1148 
1149 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1150 
1151 			write_c0_ecc(errctl);
1152 			back_to_back_c0_hazard();
1153 			errctl = read_c0_ecc();
1154 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1155 
1156 			if (l1parity_present)
1157 				printk(KERN_INFO "Cache parity protection %sabled\n",
1158 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1159 
1160 			if (l2parity_present) {
1161 				if (l1parity_present && l1parity)
1162 					errctl ^= ERRCTL_L2P;
1163 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1164 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1165 			}
1166 		}
1167 		break;
1168 
1169 	case CPU_5KC:
1170 		write_c0_ecc(0x80000000);
1171 		back_to_back_c0_hazard();
1172 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1173 		printk(KERN_INFO "Cache parity protection %sabled\n",
1174 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1175 		break;
1176 	case CPU_20KC:
1177 	case CPU_25KF:
1178 		/* Clear the DE bit (bit 16) in the c0_status register. */
1179 		printk(KERN_INFO "Enable cache parity protection for "
1180 		       "MIPS 20KC/25KF CPUs.\n");
1181 		clear_c0_status(ST0_DE);
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 }
1187 
1188 asmlinkage void cache_parity_error(void)
1189 {
1190 	const int field = 2 * sizeof(unsigned long);
1191 	unsigned int reg_val;
1192 
1193 	/* For the moment, report the problem and hang. */
1194 	printk("Cache error exception:\n");
1195 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1196 	reg_val = read_c0_cacheerr();
1197 	printk("c0_cacheerr == %08x\n", reg_val);
1198 
1199 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1200 	       reg_val & (1<<30) ? "secondary" : "primary",
1201 	       reg_val & (1<<31) ? "data" : "insn");
1202 	printk("Error bits: %s%s%s%s%s%s%s\n",
1203 	       reg_val & (1<<29) ? "ED " : "",
1204 	       reg_val & (1<<28) ? "ET " : "",
1205 	       reg_val & (1<<26) ? "EE " : "",
1206 	       reg_val & (1<<25) ? "EB " : "",
1207 	       reg_val & (1<<24) ? "EI " : "",
1208 	       reg_val & (1<<23) ? "E1 " : "",
1209 	       reg_val & (1<<22) ? "E0 " : "");
1210 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1211 
1212 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1213 	if (reg_val & (1<<22))
1214 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1215 
1216 	if (reg_val & (1<<23))
1217 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1218 #endif
1219 
1220 	panic("Can't handle the cache error!");
1221 }
1222 
1223 /*
1224  * SDBBP EJTAG debug exception handler.
1225  * We skip the instruction and return to the next instruction.
1226  */
1227 void ejtag_exception_handler(struct pt_regs *regs)
1228 {
1229 	const int field = 2 * sizeof(unsigned long);
1230 	unsigned long depc, old_epc;
1231 	unsigned int debug;
1232 
1233 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1234 	depc = read_c0_depc();
1235 	debug = read_c0_debug();
1236 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1237 	if (debug & 0x80000000) {
1238 		/*
1239 		 * In branch delay slot.
1240 		 * We cheat a little bit here and use EPC to calculate the
1241 		 * debug return address (DEPC). EPC is restored after the
1242 		 * calculation.
1243 		 */
1244 		old_epc = regs->cp0_epc;
1245 		regs->cp0_epc = depc;
1246 		__compute_return_epc(regs);
1247 		depc = regs->cp0_epc;
1248 		regs->cp0_epc = old_epc;
1249 	} else
1250 		depc += 4;
1251 	write_c0_depc(depc);
1252 
1253 #if 0
1254 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1255 	write_c0_debug(debug | 0x100);
1256 #endif
1257 }
1258 
1259 /*
1260  * NMI exception handler.
1261  */
1262 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1263 {
1264 	bust_spinlocks(1);
1265 	printk("NMI taken!!!!\n");
1266 	die("NMI", regs);
1267 }
1268 
1269 #define VECTORSPACING 0x100	/* for EI/VI mode */
1270 
1271 unsigned long ebase;
1272 unsigned long exception_handlers[32];
1273 unsigned long vi_handlers[64];
1274 
1275 void __init *set_except_vector(int n, void *addr)
1276 {
1277 	unsigned long handler = (unsigned long) addr;
1278 	unsigned long old_handler = exception_handlers[n];
1279 
1280 	exception_handlers[n] = handler;
1281 	if (n == 0 && cpu_has_divec) {
1282 		unsigned long jump_mask = ~((1 << 28) - 1);
1283 		u32 *buf = (u32 *)(ebase + 0x200);
1284 		unsigned int k0 = 26;
1285 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1286 			uasm_i_j(&buf, handler & ~jump_mask);
1287 			uasm_i_nop(&buf);
1288 		} else {
1289 			UASM_i_LA(&buf, k0, handler);
1290 			uasm_i_jr(&buf, k0);
1291 			uasm_i_nop(&buf);
1292 		}
1293 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1294 	}
1295 	return (void *)old_handler;
1296 }
1297 
1298 static asmlinkage void do_default_vi(void)
1299 {
1300 	show_regs(get_irq_regs());
1301 	panic("Caught unexpected vectored interrupt.");
1302 }
1303 
1304 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1305 {
1306 	unsigned long handler;
1307 	unsigned long old_handler = vi_handlers[n];
1308 	int srssets = current_cpu_data.srsets;
1309 	u32 *w;
1310 	unsigned char *b;
1311 
1312 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1313 
1314 	if (addr == NULL) {
1315 		handler = (unsigned long) do_default_vi;
1316 		srs = 0;
1317 	} else
1318 		handler = (unsigned long) addr;
1319 	vi_handlers[n] = (unsigned long) addr;
1320 
1321 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1322 
1323 	if (srs >= srssets)
1324 		panic("Shadow register set %d not supported", srs);
1325 
1326 	if (cpu_has_veic) {
1327 		if (board_bind_eic_interrupt)
1328 			board_bind_eic_interrupt(n, srs);
1329 	} else if (cpu_has_vint) {
1330 		/* SRSMap is only defined if shadow sets are implemented */
1331 		if (srssets > 1)
1332 			change_c0_srsmap(0xf << n*4, srs << n*4);
1333 	}
1334 
1335 	if (srs == 0) {
1336 		/*
1337 		 * If no shadow set is selected then use the default handler
1338 		 * that does normal register saving and a standard interrupt exit
1339 		 */
1340 
1341 		extern char except_vec_vi, except_vec_vi_lui;
1342 		extern char except_vec_vi_ori, except_vec_vi_end;
1343 		extern char rollback_except_vec_vi;
1344 		char *vec_start = (cpu_wait == r4k_wait) ?
1345 			&rollback_except_vec_vi : &except_vec_vi;
1346 #ifdef CONFIG_MIPS_MT_SMTC
1347 		/*
1348 		 * We need to provide the SMTC vectored interrupt handler
1349 		 * not only with the address of the handler, but with the
1350 		 * Status.IM bit to be masked before going there.
1351 		 */
1352 		extern char except_vec_vi_mori;
1353 		const int mori_offset = &except_vec_vi_mori - vec_start;
1354 #endif /* CONFIG_MIPS_MT_SMTC */
1355 		const int handler_len = &except_vec_vi_end - vec_start;
1356 		const int lui_offset = &except_vec_vi_lui - vec_start;
1357 		const int ori_offset = &except_vec_vi_ori - vec_start;
1358 
1359 		if (handler_len > VECTORSPACING) {
1360 			/*
1361 			 * Sigh... panicing won't help as the console
1362 			 * is probably not configured :(
1363 			 */
1364 			panic("VECTORSPACING too small");
1365 		}
1366 
1367 		memcpy(b, vec_start, handler_len);
1368 #ifdef CONFIG_MIPS_MT_SMTC
1369 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1370 
1371 		w = (u32 *)(b + mori_offset);
1372 		*w = (*w & 0xffff0000) | (0x100 << n);
1373 #endif /* CONFIG_MIPS_MT_SMTC */
1374 		w = (u32 *)(b + lui_offset);
1375 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1376 		w = (u32 *)(b + ori_offset);
1377 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1378 		local_flush_icache_range((unsigned long)b,
1379 					 (unsigned long)(b+handler_len));
1380 	}
1381 	else {
1382 		/*
1383 		 * In other cases jump directly to the interrupt handler
1384 		 *
1385 		 * It is the handlers responsibility to save registers if required
1386 		 * (eg hi/lo) and return from the exception using "eret"
1387 		 */
1388 		w = (u32 *)b;
1389 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1390 		*w = 0;
1391 		local_flush_icache_range((unsigned long)b,
1392 					 (unsigned long)(b+8));
1393 	}
1394 
1395 	return (void *)old_handler;
1396 }
1397 
1398 void *set_vi_handler(int n, vi_handler_t addr)
1399 {
1400 	return set_vi_srs_handler(n, addr, 0);
1401 }
1402 
1403 extern void cpu_cache_init(void);
1404 extern void tlb_init(void);
1405 extern void flush_tlb_handlers(void);
1406 
1407 /*
1408  * Timer interrupt
1409  */
1410 int cp0_compare_irq;
1411 int cp0_compare_irq_shift;
1412 
1413 /*
1414  * Performance counter IRQ or -1 if shared with timer
1415  */
1416 int cp0_perfcount_irq;
1417 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1418 
1419 static int __cpuinitdata noulri;
1420 
1421 static int __init ulri_disable(char *s)
1422 {
1423 	pr_info("Disabling ulri\n");
1424 	noulri = 1;
1425 
1426 	return 1;
1427 }
1428 __setup("noulri", ulri_disable);
1429 
1430 void __cpuinit per_cpu_trap_init(void)
1431 {
1432 	unsigned int cpu = smp_processor_id();
1433 	unsigned int status_set = ST0_CU0;
1434 #ifdef CONFIG_MIPS_MT_SMTC
1435 	int secondaryTC = 0;
1436 	int bootTC = (cpu == 0);
1437 
1438 	/*
1439 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1440 	 * Note that this hack assumes that the SMTC init code
1441 	 * assigns TCs consecutively and in ascending order.
1442 	 */
1443 
1444 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1445 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1446 		secondaryTC = 1;
1447 #endif /* CONFIG_MIPS_MT_SMTC */
1448 
1449 	/*
1450 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1451 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1452 	 * flag that some firmware may have left set and the TS bit (for
1453 	 * IP27).  Set XX for ISA IV code to work.
1454 	 */
1455 #ifdef CONFIG_64BIT
1456 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1457 #endif
1458 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1459 		status_set |= ST0_XX;
1460 	if (cpu_has_dsp)
1461 		status_set |= ST0_MX;
1462 
1463 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1464 			 status_set);
1465 
1466 	if (cpu_has_mips_r2) {
1467 		unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits;
1468 
1469 		if (!noulri && cpu_has_userlocal)
1470 			enable |= (1 << 29);
1471 
1472 		write_c0_hwrena(enable);
1473 	}
1474 
1475 #ifdef CONFIG_MIPS_MT_SMTC
1476 	if (!secondaryTC) {
1477 #endif /* CONFIG_MIPS_MT_SMTC */
1478 
1479 	if (cpu_has_veic || cpu_has_vint) {
1480 		unsigned long sr = set_c0_status(ST0_BEV);
1481 		write_c0_ebase(ebase);
1482 		write_c0_status(sr);
1483 		/* Setting vector spacing enables EI/VI mode  */
1484 		change_c0_intctl(0x3e0, VECTORSPACING);
1485 	}
1486 	if (cpu_has_divec) {
1487 		if (cpu_has_mipsmt) {
1488 			unsigned int vpflags = dvpe();
1489 			set_c0_cause(CAUSEF_IV);
1490 			evpe(vpflags);
1491 		} else
1492 			set_c0_cause(CAUSEF_IV);
1493 	}
1494 
1495 	/*
1496 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1497 	 *
1498 	 *  o read IntCtl.IPTI to determine the timer interrupt
1499 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
1500 	 */
1501 	if (cpu_has_mips_r2) {
1502 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1503 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1504 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1505 		if (cp0_perfcount_irq == cp0_compare_irq)
1506 			cp0_perfcount_irq = -1;
1507 	} else {
1508 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1509 		cp0_compare_irq_shift = cp0_compare_irq;
1510 		cp0_perfcount_irq = -1;
1511 	}
1512 
1513 #ifdef CONFIG_MIPS_MT_SMTC
1514 	}
1515 #endif /* CONFIG_MIPS_MT_SMTC */
1516 
1517 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1518 	TLBMISS_HANDLER_SETUP();
1519 
1520 	atomic_inc(&init_mm.mm_count);
1521 	current->active_mm = &init_mm;
1522 	BUG_ON(current->mm);
1523 	enter_lazy_tlb(&init_mm, current);
1524 
1525 #ifdef CONFIG_MIPS_MT_SMTC
1526 	if (bootTC) {
1527 #endif /* CONFIG_MIPS_MT_SMTC */
1528 		cpu_cache_init();
1529 		tlb_init();
1530 #ifdef CONFIG_MIPS_MT_SMTC
1531 	} else if (!secondaryTC) {
1532 		/*
1533 		 * First TC in non-boot VPE must do subset of tlb_init()
1534 		 * for MMU countrol registers.
1535 		 */
1536 		write_c0_pagemask(PM_DEFAULT_MASK);
1537 		write_c0_wired(0);
1538 	}
1539 #endif /* CONFIG_MIPS_MT_SMTC */
1540 }
1541 
1542 /* Install CPU exception handler */
1543 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1544 {
1545 	memcpy((void *)(ebase + offset), addr, size);
1546 	local_flush_icache_range(ebase + offset, ebase + offset + size);
1547 }
1548 
1549 static char panic_null_cerr[] __cpuinitdata =
1550 	"Trying to set NULL cache error exception handler";
1551 
1552 /*
1553  * Install uncached CPU exception handler.
1554  * This is suitable only for the cache error exception which is the only
1555  * exception handler that is being run uncached.
1556  */
1557 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1558 	unsigned long size)
1559 {
1560 #ifdef CONFIG_32BIT
1561 	unsigned long uncached_ebase = KSEG1ADDR(ebase);
1562 #endif
1563 #ifdef CONFIG_64BIT
1564 	unsigned long uncached_ebase = TO_UNCAC(ebase);
1565 #endif
1566 
1567 	if (!addr)
1568 		panic(panic_null_cerr);
1569 
1570 	memcpy((void *)(uncached_ebase + offset), addr, size);
1571 }
1572 
1573 static int __initdata rdhwr_noopt;
1574 static int __init set_rdhwr_noopt(char *str)
1575 {
1576 	rdhwr_noopt = 1;
1577 	return 1;
1578 }
1579 
1580 __setup("rdhwr_noopt", set_rdhwr_noopt);
1581 
1582 void __init trap_init(void)
1583 {
1584 	extern char except_vec3_generic, except_vec3_r4000;
1585 	extern char except_vec4;
1586 	unsigned long i;
1587 	int rollback;
1588 
1589 	check_wait();
1590 	rollback = (cpu_wait == r4k_wait);
1591 
1592 #if defined(CONFIG_KGDB)
1593 	if (kgdb_early_setup)
1594 		return;	/* Already done */
1595 #endif
1596 
1597 	if (cpu_has_veic || cpu_has_vint) {
1598 		unsigned long size = 0x200 + VECTORSPACING*64;
1599 		ebase = (unsigned long)
1600 			__alloc_bootmem(size, 1 << fls(size), 0);
1601 	} else {
1602 		ebase = CKSEG0;
1603 		if (cpu_has_mips_r2)
1604 			ebase += (read_c0_ebase() & 0x3ffff000);
1605 	}
1606 
1607 	per_cpu_trap_init();
1608 
1609 	/*
1610 	 * Copy the generic exception handlers to their final destination.
1611 	 * This will be overriden later as suitable for a particular
1612 	 * configuration.
1613 	 */
1614 	set_handler(0x180, &except_vec3_generic, 0x80);
1615 
1616 	/*
1617 	 * Setup default vectors
1618 	 */
1619 	for (i = 0; i <= 31; i++)
1620 		set_except_vector(i, handle_reserved);
1621 
1622 	/*
1623 	 * Copy the EJTAG debug exception vector handler code to it's final
1624 	 * destination.
1625 	 */
1626 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1627 		board_ejtag_handler_setup();
1628 
1629 	/*
1630 	 * Only some CPUs have the watch exceptions.
1631 	 */
1632 	if (cpu_has_watch)
1633 		set_except_vector(23, handle_watch);
1634 
1635 	/*
1636 	 * Initialise interrupt handlers
1637 	 */
1638 	if (cpu_has_veic || cpu_has_vint) {
1639 		int nvec = cpu_has_veic ? 64 : 8;
1640 		for (i = 0; i < nvec; i++)
1641 			set_vi_handler(i, NULL);
1642 	}
1643 	else if (cpu_has_divec)
1644 		set_handler(0x200, &except_vec4, 0x8);
1645 
1646 	/*
1647 	 * Some CPUs can enable/disable for cache parity detection, but does
1648 	 * it different ways.
1649 	 */
1650 	parity_protection_init();
1651 
1652 	/*
1653 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1654 	 * by external hardware.  Therefore these two exceptions
1655 	 * may have board specific handlers.
1656 	 */
1657 	if (board_be_init)
1658 		board_be_init();
1659 
1660 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1661 	set_except_vector(1, handle_tlbm);
1662 	set_except_vector(2, handle_tlbl);
1663 	set_except_vector(3, handle_tlbs);
1664 
1665 	set_except_vector(4, handle_adel);
1666 	set_except_vector(5, handle_ades);
1667 
1668 	set_except_vector(6, handle_ibe);
1669 	set_except_vector(7, handle_dbe);
1670 
1671 	set_except_vector(8, handle_sys);
1672 	set_except_vector(9, handle_bp);
1673 	set_except_vector(10, rdhwr_noopt ? handle_ri :
1674 			  (cpu_has_vtag_icache ?
1675 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1676 	set_except_vector(11, handle_cpu);
1677 	set_except_vector(12, handle_ov);
1678 	set_except_vector(13, handle_tr);
1679 
1680 	if (current_cpu_type() == CPU_R6000 ||
1681 	    current_cpu_type() == CPU_R6000A) {
1682 		/*
1683 		 * The R6000 is the only R-series CPU that features a machine
1684 		 * check exception (similar to the R4000 cache error) and
1685 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1686 		 * written yet.  Well, anyway there is no R6000 machine on the
1687 		 * current list of targets for Linux/MIPS.
1688 		 * (Duh, crap, there is someone with a triple R6k machine)
1689 		 */
1690 		//set_except_vector(14, handle_mc);
1691 		//set_except_vector(15, handle_ndc);
1692 	}
1693 
1694 
1695 	if (board_nmi_handler_setup)
1696 		board_nmi_handler_setup();
1697 
1698 	if (cpu_has_fpu && !cpu_has_nofpuex)
1699 		set_except_vector(15, handle_fpe);
1700 
1701 	set_except_vector(22, handle_mdmx);
1702 
1703 	if (cpu_has_mcheck)
1704 		set_except_vector(24, handle_mcheck);
1705 
1706 	if (cpu_has_mipsmt)
1707 		set_except_vector(25, handle_mt);
1708 
1709 	set_except_vector(26, handle_dsp);
1710 
1711 	if (cpu_has_vce)
1712 		/* Special exception: R4[04]00 uses also the divec space. */
1713 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1714 	else if (cpu_has_4kex)
1715 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1716 	else
1717 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1718 
1719 	local_flush_icache_range(ebase, ebase + 0x400);
1720 	flush_tlb_handlers();
1721 
1722 	sort_extable(__start___dbe_table, __stop___dbe_table);
1723 
1724 	register_cu2_notifier(&default_cu2_notifier);
1725 }
1726