1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 #include <linux/interrupt.h> 25 #include <linux/ptrace.h> 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 #include <linux/notifier.h> 29 30 #include <asm/bootinfo.h> 31 #include <asm/branch.h> 32 #include <asm/break.h> 33 #include <asm/cop2.h> 34 #include <asm/cpu.h> 35 #include <asm/dsp.h> 36 #include <asm/fpu.h> 37 #include <asm/fpu_emulator.h> 38 #include <asm/mipsregs.h> 39 #include <asm/mipsmtregs.h> 40 #include <asm/module.h> 41 #include <asm/pgtable.h> 42 #include <asm/ptrace.h> 43 #include <asm/sections.h> 44 #include <asm/system.h> 45 #include <asm/tlbdebug.h> 46 #include <asm/traps.h> 47 #include <asm/uaccess.h> 48 #include <asm/watch.h> 49 #include <asm/mmu_context.h> 50 #include <asm/types.h> 51 #include <asm/stacktrace.h> 52 #include <asm/irq.h> 53 #include <asm/uasm.h> 54 55 extern void check_wait(void); 56 extern asmlinkage void r4k_wait(void); 57 extern asmlinkage void rollback_handle_int(void); 58 extern asmlinkage void handle_int(void); 59 extern asmlinkage void handle_tlbm(void); 60 extern asmlinkage void handle_tlbl(void); 61 extern asmlinkage void handle_tlbs(void); 62 extern asmlinkage void handle_adel(void); 63 extern asmlinkage void handle_ades(void); 64 extern asmlinkage void handle_ibe(void); 65 extern asmlinkage void handle_dbe(void); 66 extern asmlinkage void handle_sys(void); 67 extern asmlinkage void handle_bp(void); 68 extern asmlinkage void handle_ri(void); 69 extern asmlinkage void handle_ri_rdhwr_vivt(void); 70 extern asmlinkage void handle_ri_rdhwr(void); 71 extern asmlinkage void handle_cpu(void); 72 extern asmlinkage void handle_ov(void); 73 extern asmlinkage void handle_tr(void); 74 extern asmlinkage void handle_fpe(void); 75 extern asmlinkage void handle_mdmx(void); 76 extern asmlinkage void handle_watch(void); 77 extern asmlinkage void handle_mt(void); 78 extern asmlinkage void handle_dsp(void); 79 extern asmlinkage void handle_mcheck(void); 80 extern asmlinkage void handle_reserved(void); 81 82 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 83 struct mips_fpu_struct *ctx, int has_fpu); 84 85 void (*board_be_init)(void); 86 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 87 void (*board_nmi_handler_setup)(void); 88 void (*board_ejtag_handler_setup)(void); 89 void (*board_bind_eic_interrupt)(int irq, int regset); 90 91 92 static void show_raw_backtrace(unsigned long reg29) 93 { 94 unsigned long *sp = (unsigned long *)(reg29 & ~3); 95 unsigned long addr; 96 97 printk("Call Trace:"); 98 #ifdef CONFIG_KALLSYMS 99 printk("\n"); 100 #endif 101 while (!kstack_end(sp)) { 102 unsigned long __user *p = 103 (unsigned long __user *)(unsigned long)sp++; 104 if (__get_user(addr, p)) { 105 printk(" (Bad stack address)"); 106 break; 107 } 108 if (__kernel_text_address(addr)) 109 print_ip_sym(addr); 110 } 111 printk("\n"); 112 } 113 114 #ifdef CONFIG_KALLSYMS 115 int raw_show_trace; 116 static int __init set_raw_show_trace(char *str) 117 { 118 raw_show_trace = 1; 119 return 1; 120 } 121 __setup("raw_show_trace", set_raw_show_trace); 122 #endif 123 124 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 125 { 126 unsigned long sp = regs->regs[29]; 127 unsigned long ra = regs->regs[31]; 128 unsigned long pc = regs->cp0_epc; 129 130 if (raw_show_trace || !__kernel_text_address(pc)) { 131 show_raw_backtrace(sp); 132 return; 133 } 134 printk("Call Trace:\n"); 135 do { 136 print_ip_sym(pc); 137 pc = unwind_stack(task, &sp, pc, &ra); 138 } while (pc); 139 printk("\n"); 140 } 141 142 /* 143 * This routine abuses get_user()/put_user() to reference pointers 144 * with at least a bit of error checking ... 145 */ 146 static void show_stacktrace(struct task_struct *task, 147 const struct pt_regs *regs) 148 { 149 const int field = 2 * sizeof(unsigned long); 150 long stackdata; 151 int i; 152 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 153 154 printk("Stack :"); 155 i = 0; 156 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 157 if (i && ((i % (64 / field)) == 0)) 158 printk("\n "); 159 if (i > 39) { 160 printk(" ..."); 161 break; 162 } 163 164 if (__get_user(stackdata, sp++)) { 165 printk(" (Bad stack address)"); 166 break; 167 } 168 169 printk(" %0*lx", field, stackdata); 170 i++; 171 } 172 printk("\n"); 173 show_backtrace(task, regs); 174 } 175 176 void show_stack(struct task_struct *task, unsigned long *sp) 177 { 178 struct pt_regs regs; 179 if (sp) { 180 regs.regs[29] = (unsigned long)sp; 181 regs.regs[31] = 0; 182 regs.cp0_epc = 0; 183 } else { 184 if (task && task != current) { 185 regs.regs[29] = task->thread.reg29; 186 regs.regs[31] = 0; 187 regs.cp0_epc = task->thread.reg31; 188 } else { 189 prepare_frametrace(®s); 190 } 191 } 192 show_stacktrace(task, ®s); 193 } 194 195 /* 196 * The architecture-independent dump_stack generator 197 */ 198 void dump_stack(void) 199 { 200 struct pt_regs regs; 201 202 prepare_frametrace(®s); 203 show_backtrace(current, ®s); 204 } 205 206 EXPORT_SYMBOL(dump_stack); 207 208 static void show_code(unsigned int __user *pc) 209 { 210 long i; 211 unsigned short __user *pc16 = NULL; 212 213 printk("\nCode:"); 214 215 if ((unsigned long)pc & 1) 216 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 217 for(i = -3 ; i < 6 ; i++) { 218 unsigned int insn; 219 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 220 printk(" (Bad address in epc)\n"); 221 break; 222 } 223 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 224 } 225 } 226 227 static void __show_regs(const struct pt_regs *regs) 228 { 229 const int field = 2 * sizeof(unsigned long); 230 unsigned int cause = regs->cp0_cause; 231 int i; 232 233 printk("Cpu %d\n", smp_processor_id()); 234 235 /* 236 * Saved main processor registers 237 */ 238 for (i = 0; i < 32; ) { 239 if ((i % 4) == 0) 240 printk("$%2d :", i); 241 if (i == 0) 242 printk(" %0*lx", field, 0UL); 243 else if (i == 26 || i == 27) 244 printk(" %*s", field, ""); 245 else 246 printk(" %0*lx", field, regs->regs[i]); 247 248 i++; 249 if ((i % 4) == 0) 250 printk("\n"); 251 } 252 253 #ifdef CONFIG_CPU_HAS_SMARTMIPS 254 printk("Acx : %0*lx\n", field, regs->acx); 255 #endif 256 printk("Hi : %0*lx\n", field, regs->hi); 257 printk("Lo : %0*lx\n", field, regs->lo); 258 259 /* 260 * Saved cp0 registers 261 */ 262 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 263 (void *) regs->cp0_epc); 264 printk(" %s\n", print_tainted()); 265 printk("ra : %0*lx %pS\n", field, regs->regs[31], 266 (void *) regs->regs[31]); 267 268 printk("Status: %08x ", (uint32_t) regs->cp0_status); 269 270 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 271 if (regs->cp0_status & ST0_KUO) 272 printk("KUo "); 273 if (regs->cp0_status & ST0_IEO) 274 printk("IEo "); 275 if (regs->cp0_status & ST0_KUP) 276 printk("KUp "); 277 if (regs->cp0_status & ST0_IEP) 278 printk("IEp "); 279 if (regs->cp0_status & ST0_KUC) 280 printk("KUc "); 281 if (regs->cp0_status & ST0_IEC) 282 printk("IEc "); 283 } else { 284 if (regs->cp0_status & ST0_KX) 285 printk("KX "); 286 if (regs->cp0_status & ST0_SX) 287 printk("SX "); 288 if (regs->cp0_status & ST0_UX) 289 printk("UX "); 290 switch (regs->cp0_status & ST0_KSU) { 291 case KSU_USER: 292 printk("USER "); 293 break; 294 case KSU_SUPERVISOR: 295 printk("SUPERVISOR "); 296 break; 297 case KSU_KERNEL: 298 printk("KERNEL "); 299 break; 300 default: 301 printk("BAD_MODE "); 302 break; 303 } 304 if (regs->cp0_status & ST0_ERL) 305 printk("ERL "); 306 if (regs->cp0_status & ST0_EXL) 307 printk("EXL "); 308 if (regs->cp0_status & ST0_IE) 309 printk("IE "); 310 } 311 printk("\n"); 312 313 printk("Cause : %08x\n", cause); 314 315 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 316 if (1 <= cause && cause <= 5) 317 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 318 319 printk("PrId : %08x (%s)\n", read_c0_prid(), 320 cpu_name_string()); 321 } 322 323 /* 324 * FIXME: really the generic show_regs should take a const pointer argument. 325 */ 326 void show_regs(struct pt_regs *regs) 327 { 328 __show_regs((struct pt_regs *)regs); 329 } 330 331 void show_registers(const struct pt_regs *regs) 332 { 333 const int field = 2 * sizeof(unsigned long); 334 335 __show_regs(regs); 336 print_modules(); 337 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 338 current->comm, current->pid, current_thread_info(), current, 339 field, current_thread_info()->tp_value); 340 if (cpu_has_userlocal) { 341 unsigned long tls; 342 343 tls = read_c0_userlocal(); 344 if (tls != current_thread_info()->tp_value) 345 printk("*HwTLS: %0*lx\n", field, tls); 346 } 347 348 show_stacktrace(current, regs); 349 show_code((unsigned int __user *) regs->cp0_epc); 350 printk("\n"); 351 } 352 353 static DEFINE_SPINLOCK(die_lock); 354 355 void __noreturn die(const char * str, const struct pt_regs * regs) 356 { 357 static int die_counter; 358 #ifdef CONFIG_MIPS_MT_SMTC 359 unsigned long dvpret = dvpe(); 360 #endif /* CONFIG_MIPS_MT_SMTC */ 361 362 console_verbose(); 363 spin_lock_irq(&die_lock); 364 bust_spinlocks(1); 365 #ifdef CONFIG_MIPS_MT_SMTC 366 mips_mt_regdump(dvpret); 367 #endif /* CONFIG_MIPS_MT_SMTC */ 368 printk("%s[#%d]:\n", str, ++die_counter); 369 show_registers(regs); 370 add_taint(TAINT_DIE); 371 spin_unlock_irq(&die_lock); 372 373 if (in_interrupt()) 374 panic("Fatal exception in interrupt"); 375 376 if (panic_on_oops) { 377 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 378 ssleep(5); 379 panic("Fatal exception"); 380 } 381 382 do_exit(SIGSEGV); 383 } 384 385 extern struct exception_table_entry __start___dbe_table[]; 386 extern struct exception_table_entry __stop___dbe_table[]; 387 388 __asm__( 389 " .section __dbe_table, \"a\"\n" 390 " .previous \n"); 391 392 /* Given an address, look for it in the exception tables. */ 393 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 394 { 395 const struct exception_table_entry *e; 396 397 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 398 if (!e) 399 e = search_module_dbetables(addr); 400 return e; 401 } 402 403 asmlinkage void do_be(struct pt_regs *regs) 404 { 405 const int field = 2 * sizeof(unsigned long); 406 const struct exception_table_entry *fixup = NULL; 407 int data = regs->cp0_cause & 4; 408 int action = MIPS_BE_FATAL; 409 410 /* XXX For now. Fixme, this searches the wrong table ... */ 411 if (data && !user_mode(regs)) 412 fixup = search_dbe_tables(exception_epc(regs)); 413 414 if (fixup) 415 action = MIPS_BE_FIXUP; 416 417 if (board_be_handler) 418 action = board_be_handler(regs, fixup != NULL); 419 420 switch (action) { 421 case MIPS_BE_DISCARD: 422 return; 423 case MIPS_BE_FIXUP: 424 if (fixup) { 425 regs->cp0_epc = fixup->nextinsn; 426 return; 427 } 428 break; 429 default: 430 break; 431 } 432 433 /* 434 * Assume it would be too dangerous to continue ... 435 */ 436 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 437 data ? "Data" : "Instruction", 438 field, regs->cp0_epc, field, regs->regs[31]); 439 if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0) 440 == NOTIFY_STOP) 441 return; 442 443 die_if_kernel("Oops", regs); 444 force_sig(SIGBUS, current); 445 } 446 447 /* 448 * ll/sc, rdhwr, sync emulation 449 */ 450 451 #define OPCODE 0xfc000000 452 #define BASE 0x03e00000 453 #define RT 0x001f0000 454 #define OFFSET 0x0000ffff 455 #define LL 0xc0000000 456 #define SC 0xe0000000 457 #define SPEC0 0x00000000 458 #define SPEC3 0x7c000000 459 #define RD 0x0000f800 460 #define FUNC 0x0000003f 461 #define SYNC 0x0000000f 462 #define RDHWR 0x0000003b 463 464 /* 465 * The ll_bit is cleared by r*_switch.S 466 */ 467 468 unsigned int ll_bit; 469 struct task_struct *ll_task; 470 471 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 472 { 473 unsigned long value, __user *vaddr; 474 long offset; 475 476 /* 477 * analyse the ll instruction that just caused a ri exception 478 * and put the referenced address to addr. 479 */ 480 481 /* sign extend offset */ 482 offset = opcode & OFFSET; 483 offset <<= 16; 484 offset >>= 16; 485 486 vaddr = (unsigned long __user *) 487 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 488 489 if ((unsigned long)vaddr & 3) 490 return SIGBUS; 491 if (get_user(value, vaddr)) 492 return SIGSEGV; 493 494 preempt_disable(); 495 496 if (ll_task == NULL || ll_task == current) { 497 ll_bit = 1; 498 } else { 499 ll_bit = 0; 500 } 501 ll_task = current; 502 503 preempt_enable(); 504 505 regs->regs[(opcode & RT) >> 16] = value; 506 507 return 0; 508 } 509 510 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 511 { 512 unsigned long __user *vaddr; 513 unsigned long reg; 514 long offset; 515 516 /* 517 * analyse the sc instruction that just caused a ri exception 518 * and put the referenced address to addr. 519 */ 520 521 /* sign extend offset */ 522 offset = opcode & OFFSET; 523 offset <<= 16; 524 offset >>= 16; 525 526 vaddr = (unsigned long __user *) 527 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 528 reg = (opcode & RT) >> 16; 529 530 if ((unsigned long)vaddr & 3) 531 return SIGBUS; 532 533 preempt_disable(); 534 535 if (ll_bit == 0 || ll_task != current) { 536 regs->regs[reg] = 0; 537 preempt_enable(); 538 return 0; 539 } 540 541 preempt_enable(); 542 543 if (put_user(regs->regs[reg], vaddr)) 544 return SIGSEGV; 545 546 regs->regs[reg] = 1; 547 548 return 0; 549 } 550 551 /* 552 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 553 * opcodes are supposed to result in coprocessor unusable exceptions if 554 * executed on ll/sc-less processors. That's the theory. In practice a 555 * few processors such as NEC's VR4100 throw reserved instruction exceptions 556 * instead, so we're doing the emulation thing in both exception handlers. 557 */ 558 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 559 { 560 if ((opcode & OPCODE) == LL) 561 return simulate_ll(regs, opcode); 562 if ((opcode & OPCODE) == SC) 563 return simulate_sc(regs, opcode); 564 565 return -1; /* Must be something else ... */ 566 } 567 568 /* 569 * Simulate trapping 'rdhwr' instructions to provide user accessible 570 * registers not implemented in hardware. 571 */ 572 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 573 { 574 struct thread_info *ti = task_thread_info(current); 575 576 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 577 int rd = (opcode & RD) >> 11; 578 int rt = (opcode & RT) >> 16; 579 switch (rd) { 580 case 0: /* CPU number */ 581 regs->regs[rt] = smp_processor_id(); 582 return 0; 583 case 1: /* SYNCI length */ 584 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 585 current_cpu_data.icache.linesz); 586 return 0; 587 case 2: /* Read count register */ 588 regs->regs[rt] = read_c0_count(); 589 return 0; 590 case 3: /* Count register resolution */ 591 switch (current_cpu_data.cputype) { 592 case CPU_20KC: 593 case CPU_25KF: 594 regs->regs[rt] = 1; 595 break; 596 default: 597 regs->regs[rt] = 2; 598 } 599 return 0; 600 case 29: 601 regs->regs[rt] = ti->tp_value; 602 return 0; 603 default: 604 return -1; 605 } 606 } 607 608 /* Not ours. */ 609 return -1; 610 } 611 612 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 613 { 614 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) 615 return 0; 616 617 return -1; /* Must be something else ... */ 618 } 619 620 asmlinkage void do_ov(struct pt_regs *regs) 621 { 622 siginfo_t info; 623 624 die_if_kernel("Integer overflow", regs); 625 626 info.si_code = FPE_INTOVF; 627 info.si_signo = SIGFPE; 628 info.si_errno = 0; 629 info.si_addr = (void __user *) regs->cp0_epc; 630 force_sig_info(SIGFPE, &info, current); 631 } 632 633 /* 634 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 635 */ 636 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 637 { 638 siginfo_t info; 639 640 if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0) 641 == NOTIFY_STOP) 642 return; 643 die_if_kernel("FP exception in kernel code", regs); 644 645 if (fcr31 & FPU_CSR_UNI_X) { 646 int sig; 647 648 /* 649 * Unimplemented operation exception. If we've got the full 650 * software emulator on-board, let's use it... 651 * 652 * Force FPU to dump state into task/thread context. We're 653 * moving a lot of data here for what is probably a single 654 * instruction, but the alternative is to pre-decode the FP 655 * register operands before invoking the emulator, which seems 656 * a bit extreme for what should be an infrequent event. 657 */ 658 /* Ensure 'resume' not overwrite saved fp context again. */ 659 lose_fpu(1); 660 661 /* Run the emulator */ 662 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1); 663 664 /* 665 * We can't allow the emulated instruction to leave any of 666 * the cause bit set in $fcr31. 667 */ 668 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 669 670 /* Restore the hardware register state */ 671 own_fpu(1); /* Using the FPU again. */ 672 673 /* If something went wrong, signal */ 674 if (sig) 675 force_sig(sig, current); 676 677 return; 678 } else if (fcr31 & FPU_CSR_INV_X) 679 info.si_code = FPE_FLTINV; 680 else if (fcr31 & FPU_CSR_DIV_X) 681 info.si_code = FPE_FLTDIV; 682 else if (fcr31 & FPU_CSR_OVF_X) 683 info.si_code = FPE_FLTOVF; 684 else if (fcr31 & FPU_CSR_UDF_X) 685 info.si_code = FPE_FLTUND; 686 else if (fcr31 & FPU_CSR_INE_X) 687 info.si_code = FPE_FLTRES; 688 else 689 info.si_code = __SI_FAULT; 690 info.si_signo = SIGFPE; 691 info.si_errno = 0; 692 info.si_addr = (void __user *) regs->cp0_epc; 693 force_sig_info(SIGFPE, &info, current); 694 } 695 696 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 697 const char *str) 698 { 699 siginfo_t info; 700 char b[40]; 701 702 if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP) 703 return; 704 705 /* 706 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 707 * insns, even for trap and break codes that indicate arithmetic 708 * failures. Weird ... 709 * But should we continue the brokenness??? --macro 710 */ 711 switch (code) { 712 case BRK_OVERFLOW: 713 case BRK_DIVZERO: 714 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 715 die_if_kernel(b, regs); 716 if (code == BRK_DIVZERO) 717 info.si_code = FPE_INTDIV; 718 else 719 info.si_code = FPE_INTOVF; 720 info.si_signo = SIGFPE; 721 info.si_errno = 0; 722 info.si_addr = (void __user *) regs->cp0_epc; 723 force_sig_info(SIGFPE, &info, current); 724 break; 725 case BRK_BUG: 726 die_if_kernel("Kernel bug detected", regs); 727 force_sig(SIGTRAP, current); 728 break; 729 case BRK_MEMU: 730 /* 731 * Address errors may be deliberately induced by the FPU 732 * emulator to retake control of the CPU after executing the 733 * instruction in the delay slot of an emulated branch. 734 * 735 * Terminate if exception was recognized as a delay slot return 736 * otherwise handle as normal. 737 */ 738 if (do_dsemulret(regs)) 739 return; 740 741 die_if_kernel("Math emu break/trap", regs); 742 force_sig(SIGTRAP, current); 743 break; 744 default: 745 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 746 die_if_kernel(b, regs); 747 force_sig(SIGTRAP, current); 748 } 749 } 750 751 asmlinkage void do_bp(struct pt_regs *regs) 752 { 753 unsigned int opcode, bcode; 754 755 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 756 goto out_sigsegv; 757 758 /* 759 * There is the ancient bug in the MIPS assemblers that the break 760 * code starts left to bit 16 instead to bit 6 in the opcode. 761 * Gas is bug-compatible, but not always, grrr... 762 * We handle both cases with a simple heuristics. --macro 763 */ 764 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 765 if (bcode >= (1 << 10)) 766 bcode >>= 10; 767 768 do_trap_or_bp(regs, bcode, "Break"); 769 return; 770 771 out_sigsegv: 772 force_sig(SIGSEGV, current); 773 } 774 775 asmlinkage void do_tr(struct pt_regs *regs) 776 { 777 unsigned int opcode, tcode = 0; 778 779 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 780 goto out_sigsegv; 781 782 /* Immediate versions don't provide a code. */ 783 if (!(opcode & OPCODE)) 784 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 785 786 do_trap_or_bp(regs, tcode, "Trap"); 787 return; 788 789 out_sigsegv: 790 force_sig(SIGSEGV, current); 791 } 792 793 asmlinkage void do_ri(struct pt_regs *regs) 794 { 795 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 796 unsigned long old_epc = regs->cp0_epc; 797 unsigned int opcode = 0; 798 int status = -1; 799 800 if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0) 801 == NOTIFY_STOP) 802 return; 803 804 die_if_kernel("Reserved instruction in kernel code", regs); 805 806 if (unlikely(compute_return_epc(regs) < 0)) 807 return; 808 809 if (unlikely(get_user(opcode, epc) < 0)) 810 status = SIGSEGV; 811 812 if (!cpu_has_llsc && status < 0) 813 status = simulate_llsc(regs, opcode); 814 815 if (status < 0) 816 status = simulate_rdhwr(regs, opcode); 817 818 if (status < 0) 819 status = simulate_sync(regs, opcode); 820 821 if (status < 0) 822 status = SIGILL; 823 824 if (unlikely(status > 0)) { 825 regs->cp0_epc = old_epc; /* Undo skip-over. */ 826 force_sig(status, current); 827 } 828 } 829 830 /* 831 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 832 * emulated more than some threshold number of instructions, force migration to 833 * a "CPU" that has FP support. 834 */ 835 static void mt_ase_fp_affinity(void) 836 { 837 #ifdef CONFIG_MIPS_MT_FPAFF 838 if (mt_fpemul_threshold > 0 && 839 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 840 /* 841 * If there's no FPU present, or if the application has already 842 * restricted the allowed set to exclude any CPUs with FPUs, 843 * we'll skip the procedure. 844 */ 845 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 846 cpumask_t tmask; 847 848 current->thread.user_cpus_allowed 849 = current->cpus_allowed; 850 cpus_and(tmask, current->cpus_allowed, 851 mt_fpu_cpumask); 852 set_cpus_allowed(current, tmask); 853 set_thread_flag(TIF_FPUBOUND); 854 } 855 } 856 #endif /* CONFIG_MIPS_MT_FPAFF */ 857 } 858 859 /* 860 * No lock; only written during early bootup by CPU 0. 861 */ 862 static RAW_NOTIFIER_HEAD(cu2_chain); 863 864 int __ref register_cu2_notifier(struct notifier_block *nb) 865 { 866 return raw_notifier_chain_register(&cu2_chain, nb); 867 } 868 869 int cu2_notifier_call_chain(unsigned long val, void *v) 870 { 871 return raw_notifier_call_chain(&cu2_chain, val, v); 872 } 873 874 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 875 void *data) 876 { 877 struct pt_regs *regs = data; 878 879 switch (action) { 880 default: 881 die_if_kernel("Unhandled kernel unaligned access or invalid " 882 "instruction", regs); 883 /* Fall through */ 884 885 case CU2_EXCEPTION: 886 force_sig(SIGILL, current); 887 } 888 889 return NOTIFY_OK; 890 } 891 892 static struct notifier_block default_cu2_notifier = { 893 .notifier_call = default_cu2_call, 894 .priority = 0x80000000, /* Run last */ 895 }; 896 897 asmlinkage void do_cpu(struct pt_regs *regs) 898 { 899 unsigned int __user *epc; 900 unsigned long old_epc; 901 unsigned int opcode; 902 unsigned int cpid; 903 int status; 904 unsigned long __maybe_unused flags; 905 906 die_if_kernel("do_cpu invoked from kernel context!", regs); 907 908 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 909 910 switch (cpid) { 911 case 0: 912 epc = (unsigned int __user *)exception_epc(regs); 913 old_epc = regs->cp0_epc; 914 opcode = 0; 915 status = -1; 916 917 if (unlikely(compute_return_epc(regs) < 0)) 918 return; 919 920 if (unlikely(get_user(opcode, epc) < 0)) 921 status = SIGSEGV; 922 923 if (!cpu_has_llsc && status < 0) 924 status = simulate_llsc(regs, opcode); 925 926 if (status < 0) 927 status = simulate_rdhwr(regs, opcode); 928 929 if (status < 0) 930 status = SIGILL; 931 932 if (unlikely(status > 0)) { 933 regs->cp0_epc = old_epc; /* Undo skip-over. */ 934 force_sig(status, current); 935 } 936 937 return; 938 939 case 1: 940 if (used_math()) /* Using the FPU again. */ 941 own_fpu(1); 942 else { /* First time FPU user. */ 943 init_fpu(); 944 set_used_math(); 945 } 946 947 if (!raw_cpu_has_fpu) { 948 int sig; 949 sig = fpu_emulator_cop1Handler(regs, 950 ¤t->thread.fpu, 0); 951 if (sig) 952 force_sig(sig, current); 953 else 954 mt_ase_fp_affinity(); 955 } 956 957 return; 958 959 case 2: 960 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 961 break; 962 963 case 3: 964 break; 965 } 966 967 force_sig(SIGILL, current); 968 } 969 970 asmlinkage void do_mdmx(struct pt_regs *regs) 971 { 972 force_sig(SIGILL, current); 973 } 974 975 /* 976 * Called with interrupts disabled. 977 */ 978 asmlinkage void do_watch(struct pt_regs *regs) 979 { 980 u32 cause; 981 982 /* 983 * Clear WP (bit 22) bit of cause register so we don't loop 984 * forever. 985 */ 986 cause = read_c0_cause(); 987 cause &= ~(1 << 22); 988 write_c0_cause(cause); 989 990 /* 991 * If the current thread has the watch registers loaded, save 992 * their values and send SIGTRAP. Otherwise another thread 993 * left the registers set, clear them and continue. 994 */ 995 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 996 mips_read_watch_registers(); 997 local_irq_enable(); 998 force_sig(SIGTRAP, current); 999 } else { 1000 mips_clear_watch_registers(); 1001 local_irq_enable(); 1002 } 1003 } 1004 1005 asmlinkage void do_mcheck(struct pt_regs *regs) 1006 { 1007 const int field = 2 * sizeof(unsigned long); 1008 int multi_match = regs->cp0_status & ST0_TS; 1009 1010 show_regs(regs); 1011 1012 if (multi_match) { 1013 printk("Index : %0x\n", read_c0_index()); 1014 printk("Pagemask: %0x\n", read_c0_pagemask()); 1015 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1016 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1017 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1018 printk("\n"); 1019 dump_tlb_all(); 1020 } 1021 1022 show_code((unsigned int __user *) regs->cp0_epc); 1023 1024 /* 1025 * Some chips may have other causes of machine check (e.g. SB1 1026 * graduation timer) 1027 */ 1028 panic("Caught Machine Check exception - %scaused by multiple " 1029 "matching entries in the TLB.", 1030 (multi_match) ? "" : "not "); 1031 } 1032 1033 asmlinkage void do_mt(struct pt_regs *regs) 1034 { 1035 int subcode; 1036 1037 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1038 >> VPECONTROL_EXCPT_SHIFT; 1039 switch (subcode) { 1040 case 0: 1041 printk(KERN_DEBUG "Thread Underflow\n"); 1042 break; 1043 case 1: 1044 printk(KERN_DEBUG "Thread Overflow\n"); 1045 break; 1046 case 2: 1047 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1048 break; 1049 case 3: 1050 printk(KERN_DEBUG "Gating Storage Exception\n"); 1051 break; 1052 case 4: 1053 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1054 break; 1055 case 5: 1056 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n"); 1057 break; 1058 default: 1059 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1060 subcode); 1061 break; 1062 } 1063 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1064 1065 force_sig(SIGILL, current); 1066 } 1067 1068 1069 asmlinkage void do_dsp(struct pt_regs *regs) 1070 { 1071 if (cpu_has_dsp) 1072 panic("Unexpected DSP exception\n"); 1073 1074 force_sig(SIGILL, current); 1075 } 1076 1077 asmlinkage void do_reserved(struct pt_regs *regs) 1078 { 1079 /* 1080 * Game over - no way to handle this if it ever occurs. Most probably 1081 * caused by a new unknown cpu type or after another deadly 1082 * hard/software error. 1083 */ 1084 show_regs(regs); 1085 panic("Caught reserved exception %ld - should not happen.", 1086 (regs->cp0_cause & 0x7f) >> 2); 1087 } 1088 1089 static int __initdata l1parity = 1; 1090 static int __init nol1parity(char *s) 1091 { 1092 l1parity = 0; 1093 return 1; 1094 } 1095 __setup("nol1par", nol1parity); 1096 static int __initdata l2parity = 1; 1097 static int __init nol2parity(char *s) 1098 { 1099 l2parity = 0; 1100 return 1; 1101 } 1102 __setup("nol2par", nol2parity); 1103 1104 /* 1105 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1106 * it different ways. 1107 */ 1108 static inline void parity_protection_init(void) 1109 { 1110 switch (current_cpu_type()) { 1111 case CPU_24K: 1112 case CPU_34K: 1113 case CPU_74K: 1114 case CPU_1004K: 1115 { 1116 #define ERRCTL_PE 0x80000000 1117 #define ERRCTL_L2P 0x00800000 1118 unsigned long errctl; 1119 unsigned int l1parity_present, l2parity_present; 1120 1121 errctl = read_c0_ecc(); 1122 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1123 1124 /* probe L1 parity support */ 1125 write_c0_ecc(errctl | ERRCTL_PE); 1126 back_to_back_c0_hazard(); 1127 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1128 1129 /* probe L2 parity support */ 1130 write_c0_ecc(errctl|ERRCTL_L2P); 1131 back_to_back_c0_hazard(); 1132 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1133 1134 if (l1parity_present && l2parity_present) { 1135 if (l1parity) 1136 errctl |= ERRCTL_PE; 1137 if (l1parity ^ l2parity) 1138 errctl |= ERRCTL_L2P; 1139 } else if (l1parity_present) { 1140 if (l1parity) 1141 errctl |= ERRCTL_PE; 1142 } else if (l2parity_present) { 1143 if (l2parity) 1144 errctl |= ERRCTL_L2P; 1145 } else { 1146 /* No parity available */ 1147 } 1148 1149 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1150 1151 write_c0_ecc(errctl); 1152 back_to_back_c0_hazard(); 1153 errctl = read_c0_ecc(); 1154 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1155 1156 if (l1parity_present) 1157 printk(KERN_INFO "Cache parity protection %sabled\n", 1158 (errctl & ERRCTL_PE) ? "en" : "dis"); 1159 1160 if (l2parity_present) { 1161 if (l1parity_present && l1parity) 1162 errctl ^= ERRCTL_L2P; 1163 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1164 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1165 } 1166 } 1167 break; 1168 1169 case CPU_5KC: 1170 write_c0_ecc(0x80000000); 1171 back_to_back_c0_hazard(); 1172 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1173 printk(KERN_INFO "Cache parity protection %sabled\n", 1174 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1175 break; 1176 case CPU_20KC: 1177 case CPU_25KF: 1178 /* Clear the DE bit (bit 16) in the c0_status register. */ 1179 printk(KERN_INFO "Enable cache parity protection for " 1180 "MIPS 20KC/25KF CPUs.\n"); 1181 clear_c0_status(ST0_DE); 1182 break; 1183 default: 1184 break; 1185 } 1186 } 1187 1188 asmlinkage void cache_parity_error(void) 1189 { 1190 const int field = 2 * sizeof(unsigned long); 1191 unsigned int reg_val; 1192 1193 /* For the moment, report the problem and hang. */ 1194 printk("Cache error exception:\n"); 1195 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1196 reg_val = read_c0_cacheerr(); 1197 printk("c0_cacheerr == %08x\n", reg_val); 1198 1199 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1200 reg_val & (1<<30) ? "secondary" : "primary", 1201 reg_val & (1<<31) ? "data" : "insn"); 1202 printk("Error bits: %s%s%s%s%s%s%s\n", 1203 reg_val & (1<<29) ? "ED " : "", 1204 reg_val & (1<<28) ? "ET " : "", 1205 reg_val & (1<<26) ? "EE " : "", 1206 reg_val & (1<<25) ? "EB " : "", 1207 reg_val & (1<<24) ? "EI " : "", 1208 reg_val & (1<<23) ? "E1 " : "", 1209 reg_val & (1<<22) ? "E0 " : ""); 1210 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1211 1212 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1213 if (reg_val & (1<<22)) 1214 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1215 1216 if (reg_val & (1<<23)) 1217 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1218 #endif 1219 1220 panic("Can't handle the cache error!"); 1221 } 1222 1223 /* 1224 * SDBBP EJTAG debug exception handler. 1225 * We skip the instruction and return to the next instruction. 1226 */ 1227 void ejtag_exception_handler(struct pt_regs *regs) 1228 { 1229 const int field = 2 * sizeof(unsigned long); 1230 unsigned long depc, old_epc; 1231 unsigned int debug; 1232 1233 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1234 depc = read_c0_depc(); 1235 debug = read_c0_debug(); 1236 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1237 if (debug & 0x80000000) { 1238 /* 1239 * In branch delay slot. 1240 * We cheat a little bit here and use EPC to calculate the 1241 * debug return address (DEPC). EPC is restored after the 1242 * calculation. 1243 */ 1244 old_epc = regs->cp0_epc; 1245 regs->cp0_epc = depc; 1246 __compute_return_epc(regs); 1247 depc = regs->cp0_epc; 1248 regs->cp0_epc = old_epc; 1249 } else 1250 depc += 4; 1251 write_c0_depc(depc); 1252 1253 #if 0 1254 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1255 write_c0_debug(debug | 0x100); 1256 #endif 1257 } 1258 1259 /* 1260 * NMI exception handler. 1261 */ 1262 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs) 1263 { 1264 bust_spinlocks(1); 1265 printk("NMI taken!!!!\n"); 1266 die("NMI", regs); 1267 } 1268 1269 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1270 1271 unsigned long ebase; 1272 unsigned long exception_handlers[32]; 1273 unsigned long vi_handlers[64]; 1274 1275 void __init *set_except_vector(int n, void *addr) 1276 { 1277 unsigned long handler = (unsigned long) addr; 1278 unsigned long old_handler = exception_handlers[n]; 1279 1280 exception_handlers[n] = handler; 1281 if (n == 0 && cpu_has_divec) { 1282 unsigned long jump_mask = ~((1 << 28) - 1); 1283 u32 *buf = (u32 *)(ebase + 0x200); 1284 unsigned int k0 = 26; 1285 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1286 uasm_i_j(&buf, handler & ~jump_mask); 1287 uasm_i_nop(&buf); 1288 } else { 1289 UASM_i_LA(&buf, k0, handler); 1290 uasm_i_jr(&buf, k0); 1291 uasm_i_nop(&buf); 1292 } 1293 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1294 } 1295 return (void *)old_handler; 1296 } 1297 1298 static asmlinkage void do_default_vi(void) 1299 { 1300 show_regs(get_irq_regs()); 1301 panic("Caught unexpected vectored interrupt."); 1302 } 1303 1304 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1305 { 1306 unsigned long handler; 1307 unsigned long old_handler = vi_handlers[n]; 1308 int srssets = current_cpu_data.srsets; 1309 u32 *w; 1310 unsigned char *b; 1311 1312 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1313 1314 if (addr == NULL) { 1315 handler = (unsigned long) do_default_vi; 1316 srs = 0; 1317 } else 1318 handler = (unsigned long) addr; 1319 vi_handlers[n] = (unsigned long) addr; 1320 1321 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1322 1323 if (srs >= srssets) 1324 panic("Shadow register set %d not supported", srs); 1325 1326 if (cpu_has_veic) { 1327 if (board_bind_eic_interrupt) 1328 board_bind_eic_interrupt(n, srs); 1329 } else if (cpu_has_vint) { 1330 /* SRSMap is only defined if shadow sets are implemented */ 1331 if (srssets > 1) 1332 change_c0_srsmap(0xf << n*4, srs << n*4); 1333 } 1334 1335 if (srs == 0) { 1336 /* 1337 * If no shadow set is selected then use the default handler 1338 * that does normal register saving and a standard interrupt exit 1339 */ 1340 1341 extern char except_vec_vi, except_vec_vi_lui; 1342 extern char except_vec_vi_ori, except_vec_vi_end; 1343 extern char rollback_except_vec_vi; 1344 char *vec_start = (cpu_wait == r4k_wait) ? 1345 &rollback_except_vec_vi : &except_vec_vi; 1346 #ifdef CONFIG_MIPS_MT_SMTC 1347 /* 1348 * We need to provide the SMTC vectored interrupt handler 1349 * not only with the address of the handler, but with the 1350 * Status.IM bit to be masked before going there. 1351 */ 1352 extern char except_vec_vi_mori; 1353 const int mori_offset = &except_vec_vi_mori - vec_start; 1354 #endif /* CONFIG_MIPS_MT_SMTC */ 1355 const int handler_len = &except_vec_vi_end - vec_start; 1356 const int lui_offset = &except_vec_vi_lui - vec_start; 1357 const int ori_offset = &except_vec_vi_ori - vec_start; 1358 1359 if (handler_len > VECTORSPACING) { 1360 /* 1361 * Sigh... panicing won't help as the console 1362 * is probably not configured :( 1363 */ 1364 panic("VECTORSPACING too small"); 1365 } 1366 1367 memcpy(b, vec_start, handler_len); 1368 #ifdef CONFIG_MIPS_MT_SMTC 1369 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1370 1371 w = (u32 *)(b + mori_offset); 1372 *w = (*w & 0xffff0000) | (0x100 << n); 1373 #endif /* CONFIG_MIPS_MT_SMTC */ 1374 w = (u32 *)(b + lui_offset); 1375 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1376 w = (u32 *)(b + ori_offset); 1377 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1378 local_flush_icache_range((unsigned long)b, 1379 (unsigned long)(b+handler_len)); 1380 } 1381 else { 1382 /* 1383 * In other cases jump directly to the interrupt handler 1384 * 1385 * It is the handlers responsibility to save registers if required 1386 * (eg hi/lo) and return from the exception using "eret" 1387 */ 1388 w = (u32 *)b; 1389 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1390 *w = 0; 1391 local_flush_icache_range((unsigned long)b, 1392 (unsigned long)(b+8)); 1393 } 1394 1395 return (void *)old_handler; 1396 } 1397 1398 void *set_vi_handler(int n, vi_handler_t addr) 1399 { 1400 return set_vi_srs_handler(n, addr, 0); 1401 } 1402 1403 extern void cpu_cache_init(void); 1404 extern void tlb_init(void); 1405 extern void flush_tlb_handlers(void); 1406 1407 /* 1408 * Timer interrupt 1409 */ 1410 int cp0_compare_irq; 1411 int cp0_compare_irq_shift; 1412 1413 /* 1414 * Performance counter IRQ or -1 if shared with timer 1415 */ 1416 int cp0_perfcount_irq; 1417 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1418 1419 static int __cpuinitdata noulri; 1420 1421 static int __init ulri_disable(char *s) 1422 { 1423 pr_info("Disabling ulri\n"); 1424 noulri = 1; 1425 1426 return 1; 1427 } 1428 __setup("noulri", ulri_disable); 1429 1430 void __cpuinit per_cpu_trap_init(void) 1431 { 1432 unsigned int cpu = smp_processor_id(); 1433 unsigned int status_set = ST0_CU0; 1434 #ifdef CONFIG_MIPS_MT_SMTC 1435 int secondaryTC = 0; 1436 int bootTC = (cpu == 0); 1437 1438 /* 1439 * Only do per_cpu_trap_init() for first TC of Each VPE. 1440 * Note that this hack assumes that the SMTC init code 1441 * assigns TCs consecutively and in ascending order. 1442 */ 1443 1444 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1445 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1446 secondaryTC = 1; 1447 #endif /* CONFIG_MIPS_MT_SMTC */ 1448 1449 /* 1450 * Disable coprocessors and select 32-bit or 64-bit addressing 1451 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1452 * flag that some firmware may have left set and the TS bit (for 1453 * IP27). Set XX for ISA IV code to work. 1454 */ 1455 #ifdef CONFIG_64BIT 1456 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1457 #endif 1458 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1459 status_set |= ST0_XX; 1460 if (cpu_has_dsp) 1461 status_set |= ST0_MX; 1462 1463 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1464 status_set); 1465 1466 if (cpu_has_mips_r2) { 1467 unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits; 1468 1469 if (!noulri && cpu_has_userlocal) 1470 enable |= (1 << 29); 1471 1472 write_c0_hwrena(enable); 1473 } 1474 1475 #ifdef CONFIG_MIPS_MT_SMTC 1476 if (!secondaryTC) { 1477 #endif /* CONFIG_MIPS_MT_SMTC */ 1478 1479 if (cpu_has_veic || cpu_has_vint) { 1480 unsigned long sr = set_c0_status(ST0_BEV); 1481 write_c0_ebase(ebase); 1482 write_c0_status(sr); 1483 /* Setting vector spacing enables EI/VI mode */ 1484 change_c0_intctl(0x3e0, VECTORSPACING); 1485 } 1486 if (cpu_has_divec) { 1487 if (cpu_has_mipsmt) { 1488 unsigned int vpflags = dvpe(); 1489 set_c0_cause(CAUSEF_IV); 1490 evpe(vpflags); 1491 } else 1492 set_c0_cause(CAUSEF_IV); 1493 } 1494 1495 /* 1496 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1497 * 1498 * o read IntCtl.IPTI to determine the timer interrupt 1499 * o read IntCtl.IPPCI to determine the performance counter interrupt 1500 */ 1501 if (cpu_has_mips_r2) { 1502 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1503 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1504 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1505 if (cp0_perfcount_irq == cp0_compare_irq) 1506 cp0_perfcount_irq = -1; 1507 } else { 1508 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1509 cp0_compare_irq_shift = cp0_compare_irq; 1510 cp0_perfcount_irq = -1; 1511 } 1512 1513 #ifdef CONFIG_MIPS_MT_SMTC 1514 } 1515 #endif /* CONFIG_MIPS_MT_SMTC */ 1516 1517 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1518 TLBMISS_HANDLER_SETUP(); 1519 1520 atomic_inc(&init_mm.mm_count); 1521 current->active_mm = &init_mm; 1522 BUG_ON(current->mm); 1523 enter_lazy_tlb(&init_mm, current); 1524 1525 #ifdef CONFIG_MIPS_MT_SMTC 1526 if (bootTC) { 1527 #endif /* CONFIG_MIPS_MT_SMTC */ 1528 cpu_cache_init(); 1529 tlb_init(); 1530 #ifdef CONFIG_MIPS_MT_SMTC 1531 } else if (!secondaryTC) { 1532 /* 1533 * First TC in non-boot VPE must do subset of tlb_init() 1534 * for MMU countrol registers. 1535 */ 1536 write_c0_pagemask(PM_DEFAULT_MASK); 1537 write_c0_wired(0); 1538 } 1539 #endif /* CONFIG_MIPS_MT_SMTC */ 1540 } 1541 1542 /* Install CPU exception handler */ 1543 void __init set_handler(unsigned long offset, void *addr, unsigned long size) 1544 { 1545 memcpy((void *)(ebase + offset), addr, size); 1546 local_flush_icache_range(ebase + offset, ebase + offset + size); 1547 } 1548 1549 static char panic_null_cerr[] __cpuinitdata = 1550 "Trying to set NULL cache error exception handler"; 1551 1552 /* 1553 * Install uncached CPU exception handler. 1554 * This is suitable only for the cache error exception which is the only 1555 * exception handler that is being run uncached. 1556 */ 1557 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1558 unsigned long size) 1559 { 1560 #ifdef CONFIG_32BIT 1561 unsigned long uncached_ebase = KSEG1ADDR(ebase); 1562 #endif 1563 #ifdef CONFIG_64BIT 1564 unsigned long uncached_ebase = TO_UNCAC(ebase); 1565 #endif 1566 1567 if (!addr) 1568 panic(panic_null_cerr); 1569 1570 memcpy((void *)(uncached_ebase + offset), addr, size); 1571 } 1572 1573 static int __initdata rdhwr_noopt; 1574 static int __init set_rdhwr_noopt(char *str) 1575 { 1576 rdhwr_noopt = 1; 1577 return 1; 1578 } 1579 1580 __setup("rdhwr_noopt", set_rdhwr_noopt); 1581 1582 void __init trap_init(void) 1583 { 1584 extern char except_vec3_generic, except_vec3_r4000; 1585 extern char except_vec4; 1586 unsigned long i; 1587 int rollback; 1588 1589 check_wait(); 1590 rollback = (cpu_wait == r4k_wait); 1591 1592 #if defined(CONFIG_KGDB) 1593 if (kgdb_early_setup) 1594 return; /* Already done */ 1595 #endif 1596 1597 if (cpu_has_veic || cpu_has_vint) { 1598 unsigned long size = 0x200 + VECTORSPACING*64; 1599 ebase = (unsigned long) 1600 __alloc_bootmem(size, 1 << fls(size), 0); 1601 } else { 1602 ebase = CKSEG0; 1603 if (cpu_has_mips_r2) 1604 ebase += (read_c0_ebase() & 0x3ffff000); 1605 } 1606 1607 per_cpu_trap_init(); 1608 1609 /* 1610 * Copy the generic exception handlers to their final destination. 1611 * This will be overriden later as suitable for a particular 1612 * configuration. 1613 */ 1614 set_handler(0x180, &except_vec3_generic, 0x80); 1615 1616 /* 1617 * Setup default vectors 1618 */ 1619 for (i = 0; i <= 31; i++) 1620 set_except_vector(i, handle_reserved); 1621 1622 /* 1623 * Copy the EJTAG debug exception vector handler code to it's final 1624 * destination. 1625 */ 1626 if (cpu_has_ejtag && board_ejtag_handler_setup) 1627 board_ejtag_handler_setup(); 1628 1629 /* 1630 * Only some CPUs have the watch exceptions. 1631 */ 1632 if (cpu_has_watch) 1633 set_except_vector(23, handle_watch); 1634 1635 /* 1636 * Initialise interrupt handlers 1637 */ 1638 if (cpu_has_veic || cpu_has_vint) { 1639 int nvec = cpu_has_veic ? 64 : 8; 1640 for (i = 0; i < nvec; i++) 1641 set_vi_handler(i, NULL); 1642 } 1643 else if (cpu_has_divec) 1644 set_handler(0x200, &except_vec4, 0x8); 1645 1646 /* 1647 * Some CPUs can enable/disable for cache parity detection, but does 1648 * it different ways. 1649 */ 1650 parity_protection_init(); 1651 1652 /* 1653 * The Data Bus Errors / Instruction Bus Errors are signaled 1654 * by external hardware. Therefore these two exceptions 1655 * may have board specific handlers. 1656 */ 1657 if (board_be_init) 1658 board_be_init(); 1659 1660 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1661 set_except_vector(1, handle_tlbm); 1662 set_except_vector(2, handle_tlbl); 1663 set_except_vector(3, handle_tlbs); 1664 1665 set_except_vector(4, handle_adel); 1666 set_except_vector(5, handle_ades); 1667 1668 set_except_vector(6, handle_ibe); 1669 set_except_vector(7, handle_dbe); 1670 1671 set_except_vector(8, handle_sys); 1672 set_except_vector(9, handle_bp); 1673 set_except_vector(10, rdhwr_noopt ? handle_ri : 1674 (cpu_has_vtag_icache ? 1675 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1676 set_except_vector(11, handle_cpu); 1677 set_except_vector(12, handle_ov); 1678 set_except_vector(13, handle_tr); 1679 1680 if (current_cpu_type() == CPU_R6000 || 1681 current_cpu_type() == CPU_R6000A) { 1682 /* 1683 * The R6000 is the only R-series CPU that features a machine 1684 * check exception (similar to the R4000 cache error) and 1685 * unaligned ldc1/sdc1 exception. The handlers have not been 1686 * written yet. Well, anyway there is no R6000 machine on the 1687 * current list of targets for Linux/MIPS. 1688 * (Duh, crap, there is someone with a triple R6k machine) 1689 */ 1690 //set_except_vector(14, handle_mc); 1691 //set_except_vector(15, handle_ndc); 1692 } 1693 1694 1695 if (board_nmi_handler_setup) 1696 board_nmi_handler_setup(); 1697 1698 if (cpu_has_fpu && !cpu_has_nofpuex) 1699 set_except_vector(15, handle_fpe); 1700 1701 set_except_vector(22, handle_mdmx); 1702 1703 if (cpu_has_mcheck) 1704 set_except_vector(24, handle_mcheck); 1705 1706 if (cpu_has_mipsmt) 1707 set_except_vector(25, handle_mt); 1708 1709 set_except_vector(26, handle_dsp); 1710 1711 if (cpu_has_vce) 1712 /* Special exception: R4[04]00 uses also the divec space. */ 1713 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1714 else if (cpu_has_4kex) 1715 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1716 else 1717 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1718 1719 local_flush_icache_range(ebase, ebase + 0x400); 1720 flush_tlb_handlers(); 1721 1722 sort_extable(__start___dbe_table, __stop___dbe_table); 1723 1724 register_cu2_notifier(&default_cu2_notifier); 1725 } 1726