1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/addrspace.h> 41 #include <asm/bootinfo.h> 42 #include <asm/branch.h> 43 #include <asm/break.h> 44 #include <asm/cop2.h> 45 #include <asm/cpu.h> 46 #include <asm/cpu-type.h> 47 #include <asm/dsp.h> 48 #include <asm/fpu.h> 49 #include <asm/fpu_emulator.h> 50 #include <asm/idle.h> 51 #include <asm/mips-r2-to-r6-emul.h> 52 #include <asm/mipsregs.h> 53 #include <asm/mipsmtregs.h> 54 #include <asm/module.h> 55 #include <asm/msa.h> 56 #include <asm/pgtable.h> 57 #include <asm/ptrace.h> 58 #include <asm/sections.h> 59 #include <asm/tlbdebug.h> 60 #include <asm/traps.h> 61 #include <asm/uaccess.h> 62 #include <asm/watch.h> 63 #include <asm/mmu_context.h> 64 #include <asm/types.h> 65 #include <asm/stacktrace.h> 66 #include <asm/uasm.h> 67 68 extern void check_wait(void); 69 extern asmlinkage void rollback_handle_int(void); 70 extern asmlinkage void handle_int(void); 71 extern u32 handle_tlbl[]; 72 extern u32 handle_tlbs[]; 73 extern u32 handle_tlbm[]; 74 extern asmlinkage void handle_adel(void); 75 extern asmlinkage void handle_ades(void); 76 extern asmlinkage void handle_ibe(void); 77 extern asmlinkage void handle_dbe(void); 78 extern asmlinkage void handle_sys(void); 79 extern asmlinkage void handle_bp(void); 80 extern asmlinkage void handle_ri(void); 81 extern asmlinkage void handle_ri_rdhwr_vivt(void); 82 extern asmlinkage void handle_ri_rdhwr(void); 83 extern asmlinkage void handle_cpu(void); 84 extern asmlinkage void handle_ov(void); 85 extern asmlinkage void handle_tr(void); 86 extern asmlinkage void handle_msa_fpe(void); 87 extern asmlinkage void handle_fpe(void); 88 extern asmlinkage void handle_ftlb(void); 89 extern asmlinkage void handle_msa(void); 90 extern asmlinkage void handle_mdmx(void); 91 extern asmlinkage void handle_watch(void); 92 extern asmlinkage void handle_mt(void); 93 extern asmlinkage void handle_dsp(void); 94 extern asmlinkage void handle_mcheck(void); 95 extern asmlinkage void handle_reserved(void); 96 extern void tlb_do_page_fault_0(void); 97 98 void (*board_be_init)(void); 99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 100 void (*board_nmi_handler_setup)(void); 101 void (*board_ejtag_handler_setup)(void); 102 void (*board_bind_eic_interrupt)(int irq, int regset); 103 void (*board_ebase_setup)(void); 104 void(*board_cache_error_setup)(void); 105 106 static void show_raw_backtrace(unsigned long reg29) 107 { 108 unsigned long *sp = (unsigned long *)(reg29 & ~3); 109 unsigned long addr; 110 111 printk("Call Trace:"); 112 #ifdef CONFIG_KALLSYMS 113 printk("\n"); 114 #endif 115 while (!kstack_end(sp)) { 116 unsigned long __user *p = 117 (unsigned long __user *)(unsigned long)sp++; 118 if (__get_user(addr, p)) { 119 printk(" (Bad stack address)"); 120 break; 121 } 122 if (__kernel_text_address(addr)) 123 print_ip_sym(addr); 124 } 125 printk("\n"); 126 } 127 128 #ifdef CONFIG_KALLSYMS 129 int raw_show_trace; 130 static int __init set_raw_show_trace(char *str) 131 { 132 raw_show_trace = 1; 133 return 1; 134 } 135 __setup("raw_show_trace", set_raw_show_trace); 136 #endif 137 138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 139 { 140 unsigned long sp = regs->regs[29]; 141 unsigned long ra = regs->regs[31]; 142 unsigned long pc = regs->cp0_epc; 143 144 if (!task) 145 task = current; 146 147 if (raw_show_trace || !__kernel_text_address(pc)) { 148 show_raw_backtrace(sp); 149 return; 150 } 151 printk("Call Trace:\n"); 152 do { 153 print_ip_sym(pc); 154 pc = unwind_stack(task, &sp, pc, &ra); 155 } while (pc); 156 printk("\n"); 157 } 158 159 /* 160 * This routine abuses get_user()/put_user() to reference pointers 161 * with at least a bit of error checking ... 162 */ 163 static void show_stacktrace(struct task_struct *task, 164 const struct pt_regs *regs) 165 { 166 const int field = 2 * sizeof(unsigned long); 167 long stackdata; 168 int i; 169 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 170 171 printk("Stack :"); 172 i = 0; 173 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 174 if (i && ((i % (64 / field)) == 0)) 175 printk("\n "); 176 if (i > 39) { 177 printk(" ..."); 178 break; 179 } 180 181 if (__get_user(stackdata, sp++)) { 182 printk(" (Bad stack address)"); 183 break; 184 } 185 186 printk(" %0*lx", field, stackdata); 187 i++; 188 } 189 printk("\n"); 190 show_backtrace(task, regs); 191 } 192 193 void show_stack(struct task_struct *task, unsigned long *sp) 194 { 195 struct pt_regs regs; 196 mm_segment_t old_fs = get_fs(); 197 if (sp) { 198 regs.regs[29] = (unsigned long)sp; 199 regs.regs[31] = 0; 200 regs.cp0_epc = 0; 201 } else { 202 if (task && task != current) { 203 regs.regs[29] = task->thread.reg29; 204 regs.regs[31] = 0; 205 regs.cp0_epc = task->thread.reg31; 206 #ifdef CONFIG_KGDB_KDB 207 } else if (atomic_read(&kgdb_active) != -1 && 208 kdb_current_regs) { 209 memcpy(®s, kdb_current_regs, sizeof(regs)); 210 #endif /* CONFIG_KGDB_KDB */ 211 } else { 212 prepare_frametrace(®s); 213 } 214 } 215 /* 216 * show_stack() deals exclusively with kernel mode, so be sure to access 217 * the stack in the kernel (not user) address space. 218 */ 219 set_fs(KERNEL_DS); 220 show_stacktrace(task, ®s); 221 set_fs(old_fs); 222 } 223 224 static void show_code(unsigned int __user *pc) 225 { 226 long i; 227 unsigned short __user *pc16 = NULL; 228 229 printk("\nCode:"); 230 231 if ((unsigned long)pc & 1) 232 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 233 for(i = -3 ; i < 6 ; i++) { 234 unsigned int insn; 235 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 236 printk(" (Bad address in epc)\n"); 237 break; 238 } 239 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 240 } 241 } 242 243 static void __show_regs(const struct pt_regs *regs) 244 { 245 const int field = 2 * sizeof(unsigned long); 246 unsigned int cause = regs->cp0_cause; 247 unsigned int exccode; 248 int i; 249 250 show_regs_print_info(KERN_DEFAULT); 251 252 /* 253 * Saved main processor registers 254 */ 255 for (i = 0; i < 32; ) { 256 if ((i % 4) == 0) 257 printk("$%2d :", i); 258 if (i == 0) 259 printk(" %0*lx", field, 0UL); 260 else if (i == 26 || i == 27) 261 printk(" %*s", field, ""); 262 else 263 printk(" %0*lx", field, regs->regs[i]); 264 265 i++; 266 if ((i % 4) == 0) 267 printk("\n"); 268 } 269 270 #ifdef CONFIG_CPU_HAS_SMARTMIPS 271 printk("Acx : %0*lx\n", field, regs->acx); 272 #endif 273 printk("Hi : %0*lx\n", field, regs->hi); 274 printk("Lo : %0*lx\n", field, regs->lo); 275 276 /* 277 * Saved cp0 registers 278 */ 279 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 280 (void *) regs->cp0_epc); 281 printk("ra : %0*lx %pS\n", field, regs->regs[31], 282 (void *) regs->regs[31]); 283 284 printk("Status: %08x ", (uint32_t) regs->cp0_status); 285 286 if (cpu_has_3kex) { 287 if (regs->cp0_status & ST0_KUO) 288 printk("KUo "); 289 if (regs->cp0_status & ST0_IEO) 290 printk("IEo "); 291 if (regs->cp0_status & ST0_KUP) 292 printk("KUp "); 293 if (regs->cp0_status & ST0_IEP) 294 printk("IEp "); 295 if (regs->cp0_status & ST0_KUC) 296 printk("KUc "); 297 if (regs->cp0_status & ST0_IEC) 298 printk("IEc "); 299 } else if (cpu_has_4kex) { 300 if (regs->cp0_status & ST0_KX) 301 printk("KX "); 302 if (regs->cp0_status & ST0_SX) 303 printk("SX "); 304 if (regs->cp0_status & ST0_UX) 305 printk("UX "); 306 switch (regs->cp0_status & ST0_KSU) { 307 case KSU_USER: 308 printk("USER "); 309 break; 310 case KSU_SUPERVISOR: 311 printk("SUPERVISOR "); 312 break; 313 case KSU_KERNEL: 314 printk("KERNEL "); 315 break; 316 default: 317 printk("BAD_MODE "); 318 break; 319 } 320 if (regs->cp0_status & ST0_ERL) 321 printk("ERL "); 322 if (regs->cp0_status & ST0_EXL) 323 printk("EXL "); 324 if (regs->cp0_status & ST0_IE) 325 printk("IE "); 326 } 327 printk("\n"); 328 329 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 330 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 331 332 if (1 <= exccode && exccode <= 5) 333 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 334 335 printk("PrId : %08x (%s)\n", read_c0_prid(), 336 cpu_name_string()); 337 } 338 339 /* 340 * FIXME: really the generic show_regs should take a const pointer argument. 341 */ 342 void show_regs(struct pt_regs *regs) 343 { 344 __show_regs((struct pt_regs *)regs); 345 } 346 347 void show_registers(struct pt_regs *regs) 348 { 349 const int field = 2 * sizeof(unsigned long); 350 mm_segment_t old_fs = get_fs(); 351 352 __show_regs(regs); 353 print_modules(); 354 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 355 current->comm, current->pid, current_thread_info(), current, 356 field, current_thread_info()->tp_value); 357 if (cpu_has_userlocal) { 358 unsigned long tls; 359 360 tls = read_c0_userlocal(); 361 if (tls != current_thread_info()->tp_value) 362 printk("*HwTLS: %0*lx\n", field, tls); 363 } 364 365 if (!user_mode(regs)) 366 /* Necessary for getting the correct stack content */ 367 set_fs(KERNEL_DS); 368 show_stacktrace(current, regs); 369 show_code((unsigned int __user *) regs->cp0_epc); 370 printk("\n"); 371 set_fs(old_fs); 372 } 373 374 static DEFINE_RAW_SPINLOCK(die_lock); 375 376 void __noreturn die(const char *str, struct pt_regs *regs) 377 { 378 static int die_counter; 379 int sig = SIGSEGV; 380 381 oops_enter(); 382 383 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 384 SIGSEGV) == NOTIFY_STOP) 385 sig = 0; 386 387 console_verbose(); 388 raw_spin_lock_irq(&die_lock); 389 bust_spinlocks(1); 390 391 printk("%s[#%d]:\n", str, ++die_counter); 392 show_registers(regs); 393 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 394 raw_spin_unlock_irq(&die_lock); 395 396 oops_exit(); 397 398 if (in_interrupt()) 399 panic("Fatal exception in interrupt"); 400 401 if (panic_on_oops) { 402 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 403 ssleep(5); 404 panic("Fatal exception"); 405 } 406 407 if (regs && kexec_should_crash(current)) 408 crash_kexec(regs); 409 410 do_exit(sig); 411 } 412 413 extern struct exception_table_entry __start___dbe_table[]; 414 extern struct exception_table_entry __stop___dbe_table[]; 415 416 __asm__( 417 " .section __dbe_table, \"a\"\n" 418 " .previous \n"); 419 420 /* Given an address, look for it in the exception tables. */ 421 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 422 { 423 const struct exception_table_entry *e; 424 425 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 426 if (!e) 427 e = search_module_dbetables(addr); 428 return e; 429 } 430 431 asmlinkage void do_be(struct pt_regs *regs) 432 { 433 const int field = 2 * sizeof(unsigned long); 434 const struct exception_table_entry *fixup = NULL; 435 int data = regs->cp0_cause & 4; 436 int action = MIPS_BE_FATAL; 437 enum ctx_state prev_state; 438 439 prev_state = exception_enter(); 440 /* XXX For now. Fixme, this searches the wrong table ... */ 441 if (data && !user_mode(regs)) 442 fixup = search_dbe_tables(exception_epc(regs)); 443 444 if (fixup) 445 action = MIPS_BE_FIXUP; 446 447 if (board_be_handler) 448 action = board_be_handler(regs, fixup != NULL); 449 450 switch (action) { 451 case MIPS_BE_DISCARD: 452 goto out; 453 case MIPS_BE_FIXUP: 454 if (fixup) { 455 regs->cp0_epc = fixup->nextinsn; 456 goto out; 457 } 458 break; 459 default: 460 break; 461 } 462 463 /* 464 * Assume it would be too dangerous to continue ... 465 */ 466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 467 data ? "Data" : "Instruction", 468 field, regs->cp0_epc, field, regs->regs[31]); 469 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 470 SIGBUS) == NOTIFY_STOP) 471 goto out; 472 473 die_if_kernel("Oops", regs); 474 force_sig(SIGBUS, current); 475 476 out: 477 exception_exit(prev_state); 478 } 479 480 /* 481 * ll/sc, rdhwr, sync emulation 482 */ 483 484 #define OPCODE 0xfc000000 485 #define BASE 0x03e00000 486 #define RT 0x001f0000 487 #define OFFSET 0x0000ffff 488 #define LL 0xc0000000 489 #define SC 0xe0000000 490 #define SPEC0 0x00000000 491 #define SPEC3 0x7c000000 492 #define RD 0x0000f800 493 #define FUNC 0x0000003f 494 #define SYNC 0x0000000f 495 #define RDHWR 0x0000003b 496 497 /* microMIPS definitions */ 498 #define MM_POOL32A_FUNC 0xfc00ffff 499 #define MM_RDHWR 0x00006b3c 500 #define MM_RS 0x001f0000 501 #define MM_RT 0x03e00000 502 503 /* 504 * The ll_bit is cleared by r*_switch.S 505 */ 506 507 unsigned int ll_bit; 508 struct task_struct *ll_task; 509 510 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 511 { 512 unsigned long value, __user *vaddr; 513 long offset; 514 515 /* 516 * analyse the ll instruction that just caused a ri exception 517 * and put the referenced address to addr. 518 */ 519 520 /* sign extend offset */ 521 offset = opcode & OFFSET; 522 offset <<= 16; 523 offset >>= 16; 524 525 vaddr = (unsigned long __user *) 526 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 527 528 if ((unsigned long)vaddr & 3) 529 return SIGBUS; 530 if (get_user(value, vaddr)) 531 return SIGSEGV; 532 533 preempt_disable(); 534 535 if (ll_task == NULL || ll_task == current) { 536 ll_bit = 1; 537 } else { 538 ll_bit = 0; 539 } 540 ll_task = current; 541 542 preempt_enable(); 543 544 regs->regs[(opcode & RT) >> 16] = value; 545 546 return 0; 547 } 548 549 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 550 { 551 unsigned long __user *vaddr; 552 unsigned long reg; 553 long offset; 554 555 /* 556 * analyse the sc instruction that just caused a ri exception 557 * and put the referenced address to addr. 558 */ 559 560 /* sign extend offset */ 561 offset = opcode & OFFSET; 562 offset <<= 16; 563 offset >>= 16; 564 565 vaddr = (unsigned long __user *) 566 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 567 reg = (opcode & RT) >> 16; 568 569 if ((unsigned long)vaddr & 3) 570 return SIGBUS; 571 572 preempt_disable(); 573 574 if (ll_bit == 0 || ll_task != current) { 575 regs->regs[reg] = 0; 576 preempt_enable(); 577 return 0; 578 } 579 580 preempt_enable(); 581 582 if (put_user(regs->regs[reg], vaddr)) 583 return SIGSEGV; 584 585 regs->regs[reg] = 1; 586 587 return 0; 588 } 589 590 /* 591 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 592 * opcodes are supposed to result in coprocessor unusable exceptions if 593 * executed on ll/sc-less processors. That's the theory. In practice a 594 * few processors such as NEC's VR4100 throw reserved instruction exceptions 595 * instead, so we're doing the emulation thing in both exception handlers. 596 */ 597 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 598 { 599 if ((opcode & OPCODE) == LL) { 600 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 601 1, regs, 0); 602 return simulate_ll(regs, opcode); 603 } 604 if ((opcode & OPCODE) == SC) { 605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 606 1, regs, 0); 607 return simulate_sc(regs, opcode); 608 } 609 610 return -1; /* Must be something else ... */ 611 } 612 613 /* 614 * Simulate trapping 'rdhwr' instructions to provide user accessible 615 * registers not implemented in hardware. 616 */ 617 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 618 { 619 struct thread_info *ti = task_thread_info(current); 620 621 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 622 1, regs, 0); 623 switch (rd) { 624 case 0: /* CPU number */ 625 regs->regs[rt] = smp_processor_id(); 626 return 0; 627 case 1: /* SYNCI length */ 628 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 629 current_cpu_data.icache.linesz); 630 return 0; 631 case 2: /* Read count register */ 632 regs->regs[rt] = read_c0_count(); 633 return 0; 634 case 3: /* Count register resolution */ 635 switch (current_cpu_type()) { 636 case CPU_20KC: 637 case CPU_25KF: 638 regs->regs[rt] = 1; 639 break; 640 default: 641 regs->regs[rt] = 2; 642 } 643 return 0; 644 case 29: 645 regs->regs[rt] = ti->tp_value; 646 return 0; 647 default: 648 return -1; 649 } 650 } 651 652 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 653 { 654 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 655 int rd = (opcode & RD) >> 11; 656 int rt = (opcode & RT) >> 16; 657 658 simulate_rdhwr(regs, rd, rt); 659 return 0; 660 } 661 662 /* Not ours. */ 663 return -1; 664 } 665 666 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 667 { 668 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 669 int rd = (opcode & MM_RS) >> 16; 670 int rt = (opcode & MM_RT) >> 21; 671 simulate_rdhwr(regs, rd, rt); 672 return 0; 673 } 674 675 /* Not ours. */ 676 return -1; 677 } 678 679 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 680 { 681 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 682 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 683 1, regs, 0); 684 return 0; 685 } 686 687 return -1; /* Must be something else ... */ 688 } 689 690 asmlinkage void do_ov(struct pt_regs *regs) 691 { 692 enum ctx_state prev_state; 693 siginfo_t info; 694 695 prev_state = exception_enter(); 696 die_if_kernel("Integer overflow", regs); 697 698 info.si_code = FPE_INTOVF; 699 info.si_signo = SIGFPE; 700 info.si_errno = 0; 701 info.si_addr = (void __user *) regs->cp0_epc; 702 force_sig_info(SIGFPE, &info, current); 703 exception_exit(prev_state); 704 } 705 706 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 707 { 708 struct siginfo si = { 0 }; 709 710 switch (sig) { 711 case 0: 712 return 0; 713 714 case SIGFPE: 715 si.si_addr = fault_addr; 716 si.si_signo = sig; 717 /* 718 * Inexact can happen together with Overflow or Underflow. 719 * Respect the mask to deliver the correct exception. 720 */ 721 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 722 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 723 if (fcr31 & FPU_CSR_INV_X) 724 si.si_code = FPE_FLTINV; 725 else if (fcr31 & FPU_CSR_DIV_X) 726 si.si_code = FPE_FLTDIV; 727 else if (fcr31 & FPU_CSR_OVF_X) 728 si.si_code = FPE_FLTOVF; 729 else if (fcr31 & FPU_CSR_UDF_X) 730 si.si_code = FPE_FLTUND; 731 else if (fcr31 & FPU_CSR_INE_X) 732 si.si_code = FPE_FLTRES; 733 else 734 si.si_code = __SI_FAULT; 735 force_sig_info(sig, &si, current); 736 return 1; 737 738 case SIGBUS: 739 si.si_addr = fault_addr; 740 si.si_signo = sig; 741 si.si_code = BUS_ADRERR; 742 force_sig_info(sig, &si, current); 743 return 1; 744 745 case SIGSEGV: 746 si.si_addr = fault_addr; 747 si.si_signo = sig; 748 down_read(¤t->mm->mmap_sem); 749 if (find_vma(current->mm, (unsigned long)fault_addr)) 750 si.si_code = SEGV_ACCERR; 751 else 752 si.si_code = SEGV_MAPERR; 753 up_read(¤t->mm->mmap_sem); 754 force_sig_info(sig, &si, current); 755 return 1; 756 757 default: 758 force_sig(sig, current); 759 return 1; 760 } 761 } 762 763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 764 unsigned long old_epc, unsigned long old_ra) 765 { 766 union mips_instruction inst = { .word = opcode }; 767 void __user *fault_addr; 768 unsigned long fcr31; 769 int sig; 770 771 /* If it's obviously not an FP instruction, skip it */ 772 switch (inst.i_format.opcode) { 773 case cop1_op: 774 case cop1x_op: 775 case lwc1_op: 776 case ldc1_op: 777 case swc1_op: 778 case sdc1_op: 779 break; 780 781 default: 782 return -1; 783 } 784 785 /* 786 * do_ri skipped over the instruction via compute_return_epc, undo 787 * that for the FPU emulator. 788 */ 789 regs->cp0_epc = old_epc; 790 regs->regs[31] = old_ra; 791 792 /* Save the FP context to struct thread_struct */ 793 lose_fpu(1); 794 795 /* Run the emulator */ 796 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 797 &fault_addr); 798 fcr31 = current->thread.fpu.fcr31; 799 800 /* 801 * We can't allow the emulated instruction to leave any of 802 * the cause bits set in $fcr31. 803 */ 804 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 805 806 /* Restore the hardware register state */ 807 own_fpu(1); 808 809 /* Send a signal if required. */ 810 process_fpemu_return(sig, fault_addr, fcr31); 811 812 return 0; 813 } 814 815 /* 816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 817 */ 818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 819 { 820 enum ctx_state prev_state; 821 void __user *fault_addr; 822 int sig; 823 824 prev_state = exception_enter(); 825 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 826 SIGFPE) == NOTIFY_STOP) 827 goto out; 828 829 /* Clear FCSR.Cause before enabling interrupts */ 830 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 831 local_irq_enable(); 832 833 die_if_kernel("FP exception in kernel code", regs); 834 835 if (fcr31 & FPU_CSR_UNI_X) { 836 /* 837 * Unimplemented operation exception. If we've got the full 838 * software emulator on-board, let's use it... 839 * 840 * Force FPU to dump state into task/thread context. We're 841 * moving a lot of data here for what is probably a single 842 * instruction, but the alternative is to pre-decode the FP 843 * register operands before invoking the emulator, which seems 844 * a bit extreme for what should be an infrequent event. 845 */ 846 /* Ensure 'resume' not overwrite saved fp context again. */ 847 lose_fpu(1); 848 849 /* Run the emulator */ 850 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 851 &fault_addr); 852 fcr31 = current->thread.fpu.fcr31; 853 854 /* 855 * We can't allow the emulated instruction to leave any of 856 * the cause bits set in $fcr31. 857 */ 858 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 859 860 /* Restore the hardware register state */ 861 own_fpu(1); /* Using the FPU again. */ 862 } else { 863 sig = SIGFPE; 864 fault_addr = (void __user *) regs->cp0_epc; 865 } 866 867 /* Send a signal if required. */ 868 process_fpemu_return(sig, fault_addr, fcr31); 869 870 out: 871 exception_exit(prev_state); 872 } 873 874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 875 const char *str) 876 { 877 siginfo_t info; 878 char b[40]; 879 880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 881 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 882 SIGTRAP) == NOTIFY_STOP) 883 return; 884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 885 886 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 887 SIGTRAP) == NOTIFY_STOP) 888 return; 889 890 /* 891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 892 * insns, even for trap and break codes that indicate arithmetic 893 * failures. Weird ... 894 * But should we continue the brokenness??? --macro 895 */ 896 switch (code) { 897 case BRK_OVERFLOW: 898 case BRK_DIVZERO: 899 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 900 die_if_kernel(b, regs); 901 if (code == BRK_DIVZERO) 902 info.si_code = FPE_INTDIV; 903 else 904 info.si_code = FPE_INTOVF; 905 info.si_signo = SIGFPE; 906 info.si_errno = 0; 907 info.si_addr = (void __user *) regs->cp0_epc; 908 force_sig_info(SIGFPE, &info, current); 909 break; 910 case BRK_BUG: 911 die_if_kernel("Kernel bug detected", regs); 912 force_sig(SIGTRAP, current); 913 break; 914 case BRK_MEMU: 915 /* 916 * This breakpoint code is used by the FPU emulator to retake 917 * control of the CPU after executing the instruction from the 918 * delay slot of an emulated branch. 919 * 920 * Terminate if exception was recognized as a delay slot return 921 * otherwise handle as normal. 922 */ 923 if (do_dsemulret(regs)) 924 return; 925 926 die_if_kernel("Math emu break/trap", regs); 927 force_sig(SIGTRAP, current); 928 break; 929 default: 930 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 931 die_if_kernel(b, regs); 932 force_sig(SIGTRAP, current); 933 } 934 } 935 936 asmlinkage void do_bp(struct pt_regs *regs) 937 { 938 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 939 unsigned int opcode, bcode; 940 enum ctx_state prev_state; 941 mm_segment_t seg; 942 943 seg = get_fs(); 944 if (!user_mode(regs)) 945 set_fs(KERNEL_DS); 946 947 prev_state = exception_enter(); 948 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 949 if (get_isa16_mode(regs->cp0_epc)) { 950 u16 instr[2]; 951 952 if (__get_user(instr[0], (u16 __user *)epc)) 953 goto out_sigsegv; 954 955 if (!cpu_has_mmips) { 956 /* MIPS16e mode */ 957 bcode = (instr[0] >> 5) & 0x3f; 958 } else if (mm_insn_16bit(instr[0])) { 959 /* 16-bit microMIPS BREAK */ 960 bcode = instr[0] & 0xf; 961 } else { 962 /* 32-bit microMIPS BREAK */ 963 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 964 goto out_sigsegv; 965 opcode = (instr[0] << 16) | instr[1]; 966 bcode = (opcode >> 6) & ((1 << 20) - 1); 967 } 968 } else { 969 if (__get_user(opcode, (unsigned int __user *)epc)) 970 goto out_sigsegv; 971 bcode = (opcode >> 6) & ((1 << 20) - 1); 972 } 973 974 /* 975 * There is the ancient bug in the MIPS assemblers that the break 976 * code starts left to bit 16 instead to bit 6 in the opcode. 977 * Gas is bug-compatible, but not always, grrr... 978 * We handle both cases with a simple heuristics. --macro 979 */ 980 if (bcode >= (1 << 10)) 981 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 982 983 /* 984 * notify the kprobe handlers, if instruction is likely to 985 * pertain to them. 986 */ 987 switch (bcode) { 988 case BRK_UPROBE: 989 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 990 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 991 goto out; 992 else 993 break; 994 case BRK_UPROBE_XOL: 995 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 996 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 997 goto out; 998 else 999 break; 1000 case BRK_KPROBE_BP: 1001 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1002 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1003 goto out; 1004 else 1005 break; 1006 case BRK_KPROBE_SSTEPBP: 1007 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1009 goto out; 1010 else 1011 break; 1012 default: 1013 break; 1014 } 1015 1016 do_trap_or_bp(regs, bcode, "Break"); 1017 1018 out: 1019 set_fs(seg); 1020 exception_exit(prev_state); 1021 return; 1022 1023 out_sigsegv: 1024 force_sig(SIGSEGV, current); 1025 goto out; 1026 } 1027 1028 asmlinkage void do_tr(struct pt_regs *regs) 1029 { 1030 u32 opcode, tcode = 0; 1031 enum ctx_state prev_state; 1032 u16 instr[2]; 1033 mm_segment_t seg; 1034 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1035 1036 seg = get_fs(); 1037 if (!user_mode(regs)) 1038 set_fs(get_ds()); 1039 1040 prev_state = exception_enter(); 1041 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1042 if (get_isa16_mode(regs->cp0_epc)) { 1043 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1044 __get_user(instr[1], (u16 __user *)(epc + 2))) 1045 goto out_sigsegv; 1046 opcode = (instr[0] << 16) | instr[1]; 1047 /* Immediate versions don't provide a code. */ 1048 if (!(opcode & OPCODE)) 1049 tcode = (opcode >> 12) & ((1 << 4) - 1); 1050 } else { 1051 if (__get_user(opcode, (u32 __user *)epc)) 1052 goto out_sigsegv; 1053 /* Immediate versions don't provide a code. */ 1054 if (!(opcode & OPCODE)) 1055 tcode = (opcode >> 6) & ((1 << 10) - 1); 1056 } 1057 1058 do_trap_or_bp(regs, tcode, "Trap"); 1059 1060 out: 1061 set_fs(seg); 1062 exception_exit(prev_state); 1063 return; 1064 1065 out_sigsegv: 1066 force_sig(SIGSEGV, current); 1067 goto out; 1068 } 1069 1070 asmlinkage void do_ri(struct pt_regs *regs) 1071 { 1072 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1073 unsigned long old_epc = regs->cp0_epc; 1074 unsigned long old31 = regs->regs[31]; 1075 enum ctx_state prev_state; 1076 unsigned int opcode = 0; 1077 int status = -1; 1078 1079 /* 1080 * Avoid any kernel code. Just emulate the R2 instruction 1081 * as quickly as possible. 1082 */ 1083 if (mipsr2_emulation && cpu_has_mips_r6 && 1084 likely(user_mode(regs)) && 1085 likely(get_user(opcode, epc) >= 0)) { 1086 unsigned long fcr31 = 0; 1087 1088 status = mipsr2_decoder(regs, opcode, &fcr31); 1089 switch (status) { 1090 case 0: 1091 case SIGEMT: 1092 task_thread_info(current)->r2_emul_return = 1; 1093 return; 1094 case SIGILL: 1095 goto no_r2_instr; 1096 default: 1097 process_fpemu_return(status, 1098 ¤t->thread.cp0_baduaddr, 1099 fcr31); 1100 task_thread_info(current)->r2_emul_return = 1; 1101 return; 1102 } 1103 } 1104 1105 no_r2_instr: 1106 1107 prev_state = exception_enter(); 1108 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1109 1110 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1111 SIGILL) == NOTIFY_STOP) 1112 goto out; 1113 1114 die_if_kernel("Reserved instruction in kernel code", regs); 1115 1116 if (unlikely(compute_return_epc(regs) < 0)) 1117 goto out; 1118 1119 if (get_isa16_mode(regs->cp0_epc)) { 1120 unsigned short mmop[2] = { 0 }; 1121 1122 if (unlikely(get_user(mmop[0], epc) < 0)) 1123 status = SIGSEGV; 1124 if (unlikely(get_user(mmop[1], epc) < 0)) 1125 status = SIGSEGV; 1126 opcode = (mmop[0] << 16) | mmop[1]; 1127 1128 if (status < 0) 1129 status = simulate_rdhwr_mm(regs, opcode); 1130 } else { 1131 if (unlikely(get_user(opcode, epc) < 0)) 1132 status = SIGSEGV; 1133 1134 if (!cpu_has_llsc && status < 0) 1135 status = simulate_llsc(regs, opcode); 1136 1137 if (status < 0) 1138 status = simulate_rdhwr_normal(regs, opcode); 1139 1140 if (status < 0) 1141 status = simulate_sync(regs, opcode); 1142 1143 if (status < 0) 1144 status = simulate_fp(regs, opcode, old_epc, old31); 1145 } 1146 1147 if (status < 0) 1148 status = SIGILL; 1149 1150 if (unlikely(status > 0)) { 1151 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1152 regs->regs[31] = old31; 1153 force_sig(status, current); 1154 } 1155 1156 out: 1157 exception_exit(prev_state); 1158 } 1159 1160 /* 1161 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1162 * emulated more than some threshold number of instructions, force migration to 1163 * a "CPU" that has FP support. 1164 */ 1165 static void mt_ase_fp_affinity(void) 1166 { 1167 #ifdef CONFIG_MIPS_MT_FPAFF 1168 if (mt_fpemul_threshold > 0 && 1169 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1170 /* 1171 * If there's no FPU present, or if the application has already 1172 * restricted the allowed set to exclude any CPUs with FPUs, 1173 * we'll skip the procedure. 1174 */ 1175 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1176 cpumask_t tmask; 1177 1178 current->thread.user_cpus_allowed 1179 = current->cpus_allowed; 1180 cpumask_and(&tmask, ¤t->cpus_allowed, 1181 &mt_fpu_cpumask); 1182 set_cpus_allowed_ptr(current, &tmask); 1183 set_thread_flag(TIF_FPUBOUND); 1184 } 1185 } 1186 #endif /* CONFIG_MIPS_MT_FPAFF */ 1187 } 1188 1189 /* 1190 * No lock; only written during early bootup by CPU 0. 1191 */ 1192 static RAW_NOTIFIER_HEAD(cu2_chain); 1193 1194 int __ref register_cu2_notifier(struct notifier_block *nb) 1195 { 1196 return raw_notifier_chain_register(&cu2_chain, nb); 1197 } 1198 1199 int cu2_notifier_call_chain(unsigned long val, void *v) 1200 { 1201 return raw_notifier_call_chain(&cu2_chain, val, v); 1202 } 1203 1204 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1205 void *data) 1206 { 1207 struct pt_regs *regs = data; 1208 1209 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1210 "instruction", regs); 1211 force_sig(SIGILL, current); 1212 1213 return NOTIFY_OK; 1214 } 1215 1216 static int wait_on_fp_mode_switch(atomic_t *p) 1217 { 1218 /* 1219 * The FP mode for this task is currently being switched. That may 1220 * involve modifications to the format of this tasks FP context which 1221 * make it unsafe to proceed with execution for the moment. Instead, 1222 * schedule some other task. 1223 */ 1224 schedule(); 1225 return 0; 1226 } 1227 1228 static int enable_restore_fp_context(int msa) 1229 { 1230 int err, was_fpu_owner, prior_msa; 1231 1232 /* 1233 * If an FP mode switch is currently underway, wait for it to 1234 * complete before proceeding. 1235 */ 1236 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1237 wait_on_fp_mode_switch, TASK_KILLABLE); 1238 1239 if (!used_math()) { 1240 /* First time FP context user. */ 1241 preempt_disable(); 1242 err = init_fpu(); 1243 if (msa && !err) { 1244 enable_msa(); 1245 _init_msa_upper(); 1246 set_thread_flag(TIF_USEDMSA); 1247 set_thread_flag(TIF_MSA_CTX_LIVE); 1248 } 1249 preempt_enable(); 1250 if (!err) 1251 set_used_math(); 1252 return err; 1253 } 1254 1255 /* 1256 * This task has formerly used the FP context. 1257 * 1258 * If this thread has no live MSA vector context then we can simply 1259 * restore the scalar FP context. If it has live MSA vector context 1260 * (that is, it has or may have used MSA since last performing a 1261 * function call) then we'll need to restore the vector context. This 1262 * applies even if we're currently only executing a scalar FP 1263 * instruction. This is because if we were to later execute an MSA 1264 * instruction then we'd either have to: 1265 * 1266 * - Restore the vector context & clobber any registers modified by 1267 * scalar FP instructions between now & then. 1268 * 1269 * or 1270 * 1271 * - Not restore the vector context & lose the most significant bits 1272 * of all vector registers. 1273 * 1274 * Neither of those options is acceptable. We cannot restore the least 1275 * significant bits of the registers now & only restore the most 1276 * significant bits later because the most significant bits of any 1277 * vector registers whose aliased FP register is modified now will have 1278 * been zeroed. We'd have no way to know that when restoring the vector 1279 * context & thus may load an outdated value for the most significant 1280 * bits of a vector register. 1281 */ 1282 if (!msa && !thread_msa_context_live()) 1283 return own_fpu(1); 1284 1285 /* 1286 * This task is using or has previously used MSA. Thus we require 1287 * that Status.FR == 1. 1288 */ 1289 preempt_disable(); 1290 was_fpu_owner = is_fpu_owner(); 1291 err = own_fpu_inatomic(0); 1292 if (err) 1293 goto out; 1294 1295 enable_msa(); 1296 write_msa_csr(current->thread.fpu.msacsr); 1297 set_thread_flag(TIF_USEDMSA); 1298 1299 /* 1300 * If this is the first time that the task is using MSA and it has 1301 * previously used scalar FP in this time slice then we already nave 1302 * FP context which we shouldn't clobber. We do however need to clear 1303 * the upper 64b of each vector register so that this task has no 1304 * opportunity to see data left behind by another. 1305 */ 1306 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1307 if (!prior_msa && was_fpu_owner) { 1308 _init_msa_upper(); 1309 1310 goto out; 1311 } 1312 1313 if (!prior_msa) { 1314 /* 1315 * Restore the least significant 64b of each vector register 1316 * from the existing scalar FP context. 1317 */ 1318 _restore_fp(current); 1319 1320 /* 1321 * The task has not formerly used MSA, so clear the upper 64b 1322 * of each vector register such that it cannot see data left 1323 * behind by another task. 1324 */ 1325 _init_msa_upper(); 1326 } else { 1327 /* We need to restore the vector context. */ 1328 restore_msa(current); 1329 1330 /* Restore the scalar FP control & status register */ 1331 if (!was_fpu_owner) 1332 write_32bit_cp1_register(CP1_STATUS, 1333 current->thread.fpu.fcr31); 1334 } 1335 1336 out: 1337 preempt_enable(); 1338 1339 return 0; 1340 } 1341 1342 asmlinkage void do_cpu(struct pt_regs *regs) 1343 { 1344 enum ctx_state prev_state; 1345 unsigned int __user *epc; 1346 unsigned long old_epc, old31; 1347 void __user *fault_addr; 1348 unsigned int opcode; 1349 unsigned long fcr31; 1350 unsigned int cpid; 1351 int status, err; 1352 unsigned long __maybe_unused flags; 1353 int sig; 1354 1355 prev_state = exception_enter(); 1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1357 1358 if (cpid != 2) 1359 die_if_kernel("do_cpu invoked from kernel context!", regs); 1360 1361 switch (cpid) { 1362 case 0: 1363 epc = (unsigned int __user *)exception_epc(regs); 1364 old_epc = regs->cp0_epc; 1365 old31 = regs->regs[31]; 1366 opcode = 0; 1367 status = -1; 1368 1369 if (unlikely(compute_return_epc(regs) < 0)) 1370 break; 1371 1372 if (get_isa16_mode(regs->cp0_epc)) { 1373 unsigned short mmop[2] = { 0 }; 1374 1375 if (unlikely(get_user(mmop[0], epc) < 0)) 1376 status = SIGSEGV; 1377 if (unlikely(get_user(mmop[1], epc) < 0)) 1378 status = SIGSEGV; 1379 opcode = (mmop[0] << 16) | mmop[1]; 1380 1381 if (status < 0) 1382 status = simulate_rdhwr_mm(regs, opcode); 1383 } else { 1384 if (unlikely(get_user(opcode, epc) < 0)) 1385 status = SIGSEGV; 1386 1387 if (!cpu_has_llsc && status < 0) 1388 status = simulate_llsc(regs, opcode); 1389 1390 if (status < 0) 1391 status = simulate_rdhwr_normal(regs, opcode); 1392 } 1393 1394 if (status < 0) 1395 status = SIGILL; 1396 1397 if (unlikely(status > 0)) { 1398 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1399 regs->regs[31] = old31; 1400 force_sig(status, current); 1401 } 1402 1403 break; 1404 1405 case 3: 1406 /* 1407 * The COP3 opcode space and consequently the CP0.Status.CU3 1408 * bit and the CP0.Cause.CE=3 encoding have been removed as 1409 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1410 * up the space has been reused for COP1X instructions, that 1411 * are enabled by the CP0.Status.CU1 bit and consequently 1412 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1413 * exceptions. Some FPU-less processors that implement one 1414 * of these ISAs however use this code erroneously for COP1X 1415 * instructions. Therefore we redirect this trap to the FP 1416 * emulator too. 1417 */ 1418 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1419 force_sig(SIGILL, current); 1420 break; 1421 } 1422 /* Fall through. */ 1423 1424 case 1: 1425 err = enable_restore_fp_context(0); 1426 1427 if (raw_cpu_has_fpu && !err) 1428 break; 1429 1430 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1431 &fault_addr); 1432 fcr31 = current->thread.fpu.fcr31; 1433 1434 /* 1435 * We can't allow the emulated instruction to leave 1436 * any of the cause bits set in $fcr31. 1437 */ 1438 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1439 1440 /* Send a signal if required. */ 1441 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1442 mt_ase_fp_affinity(); 1443 1444 break; 1445 1446 case 2: 1447 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1448 break; 1449 } 1450 1451 exception_exit(prev_state); 1452 } 1453 1454 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1455 { 1456 enum ctx_state prev_state; 1457 1458 prev_state = exception_enter(); 1459 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1460 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1461 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1462 goto out; 1463 1464 /* Clear MSACSR.Cause before enabling interrupts */ 1465 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1466 local_irq_enable(); 1467 1468 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1469 force_sig(SIGFPE, current); 1470 out: 1471 exception_exit(prev_state); 1472 } 1473 1474 asmlinkage void do_msa(struct pt_regs *regs) 1475 { 1476 enum ctx_state prev_state; 1477 int err; 1478 1479 prev_state = exception_enter(); 1480 1481 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1482 force_sig(SIGILL, current); 1483 goto out; 1484 } 1485 1486 die_if_kernel("do_msa invoked from kernel context!", regs); 1487 1488 err = enable_restore_fp_context(1); 1489 if (err) 1490 force_sig(SIGILL, current); 1491 out: 1492 exception_exit(prev_state); 1493 } 1494 1495 asmlinkage void do_mdmx(struct pt_regs *regs) 1496 { 1497 enum ctx_state prev_state; 1498 1499 prev_state = exception_enter(); 1500 force_sig(SIGILL, current); 1501 exception_exit(prev_state); 1502 } 1503 1504 /* 1505 * Called with interrupts disabled. 1506 */ 1507 asmlinkage void do_watch(struct pt_regs *regs) 1508 { 1509 enum ctx_state prev_state; 1510 u32 cause; 1511 1512 prev_state = exception_enter(); 1513 /* 1514 * Clear WP (bit 22) bit of cause register so we don't loop 1515 * forever. 1516 */ 1517 cause = read_c0_cause(); 1518 cause &= ~(1 << 22); 1519 write_c0_cause(cause); 1520 1521 /* 1522 * If the current thread has the watch registers loaded, save 1523 * their values and send SIGTRAP. Otherwise another thread 1524 * left the registers set, clear them and continue. 1525 */ 1526 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1527 mips_read_watch_registers(); 1528 local_irq_enable(); 1529 force_sig(SIGTRAP, current); 1530 } else { 1531 mips_clear_watch_registers(); 1532 local_irq_enable(); 1533 } 1534 exception_exit(prev_state); 1535 } 1536 1537 asmlinkage void do_mcheck(struct pt_regs *regs) 1538 { 1539 int multi_match = regs->cp0_status & ST0_TS; 1540 enum ctx_state prev_state; 1541 mm_segment_t old_fs = get_fs(); 1542 1543 prev_state = exception_enter(); 1544 show_regs(regs); 1545 1546 if (multi_match) { 1547 dump_tlb_regs(); 1548 pr_info("\n"); 1549 dump_tlb_all(); 1550 } 1551 1552 if (!user_mode(regs)) 1553 set_fs(KERNEL_DS); 1554 1555 show_code((unsigned int __user *) regs->cp0_epc); 1556 1557 set_fs(old_fs); 1558 1559 /* 1560 * Some chips may have other causes of machine check (e.g. SB1 1561 * graduation timer) 1562 */ 1563 panic("Caught Machine Check exception - %scaused by multiple " 1564 "matching entries in the TLB.", 1565 (multi_match) ? "" : "not "); 1566 } 1567 1568 asmlinkage void do_mt(struct pt_regs *regs) 1569 { 1570 int subcode; 1571 1572 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1573 >> VPECONTROL_EXCPT_SHIFT; 1574 switch (subcode) { 1575 case 0: 1576 printk(KERN_DEBUG "Thread Underflow\n"); 1577 break; 1578 case 1: 1579 printk(KERN_DEBUG "Thread Overflow\n"); 1580 break; 1581 case 2: 1582 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1583 break; 1584 case 3: 1585 printk(KERN_DEBUG "Gating Storage Exception\n"); 1586 break; 1587 case 4: 1588 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1589 break; 1590 case 5: 1591 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1592 break; 1593 default: 1594 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1595 subcode); 1596 break; 1597 } 1598 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1599 1600 force_sig(SIGILL, current); 1601 } 1602 1603 1604 asmlinkage void do_dsp(struct pt_regs *regs) 1605 { 1606 if (cpu_has_dsp) 1607 panic("Unexpected DSP exception"); 1608 1609 force_sig(SIGILL, current); 1610 } 1611 1612 asmlinkage void do_reserved(struct pt_regs *regs) 1613 { 1614 /* 1615 * Game over - no way to handle this if it ever occurs. Most probably 1616 * caused by a new unknown cpu type or after another deadly 1617 * hard/software error. 1618 */ 1619 show_regs(regs); 1620 panic("Caught reserved exception %ld - should not happen.", 1621 (regs->cp0_cause & 0x7f) >> 2); 1622 } 1623 1624 static int __initdata l1parity = 1; 1625 static int __init nol1parity(char *s) 1626 { 1627 l1parity = 0; 1628 return 1; 1629 } 1630 __setup("nol1par", nol1parity); 1631 static int __initdata l2parity = 1; 1632 static int __init nol2parity(char *s) 1633 { 1634 l2parity = 0; 1635 return 1; 1636 } 1637 __setup("nol2par", nol2parity); 1638 1639 /* 1640 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1641 * it different ways. 1642 */ 1643 static inline void parity_protection_init(void) 1644 { 1645 switch (current_cpu_type()) { 1646 case CPU_24K: 1647 case CPU_34K: 1648 case CPU_74K: 1649 case CPU_1004K: 1650 case CPU_1074K: 1651 case CPU_INTERAPTIV: 1652 case CPU_PROAPTIV: 1653 case CPU_P5600: 1654 case CPU_QEMU_GENERIC: 1655 case CPU_I6400: 1656 { 1657 #define ERRCTL_PE 0x80000000 1658 #define ERRCTL_L2P 0x00800000 1659 unsigned long errctl; 1660 unsigned int l1parity_present, l2parity_present; 1661 1662 errctl = read_c0_ecc(); 1663 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1664 1665 /* probe L1 parity support */ 1666 write_c0_ecc(errctl | ERRCTL_PE); 1667 back_to_back_c0_hazard(); 1668 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1669 1670 /* probe L2 parity support */ 1671 write_c0_ecc(errctl|ERRCTL_L2P); 1672 back_to_back_c0_hazard(); 1673 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1674 1675 if (l1parity_present && l2parity_present) { 1676 if (l1parity) 1677 errctl |= ERRCTL_PE; 1678 if (l1parity ^ l2parity) 1679 errctl |= ERRCTL_L2P; 1680 } else if (l1parity_present) { 1681 if (l1parity) 1682 errctl |= ERRCTL_PE; 1683 } else if (l2parity_present) { 1684 if (l2parity) 1685 errctl |= ERRCTL_L2P; 1686 } else { 1687 /* No parity available */ 1688 } 1689 1690 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1691 1692 write_c0_ecc(errctl); 1693 back_to_back_c0_hazard(); 1694 errctl = read_c0_ecc(); 1695 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1696 1697 if (l1parity_present) 1698 printk(KERN_INFO "Cache parity protection %sabled\n", 1699 (errctl & ERRCTL_PE) ? "en" : "dis"); 1700 1701 if (l2parity_present) { 1702 if (l1parity_present && l1parity) 1703 errctl ^= ERRCTL_L2P; 1704 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1705 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1706 } 1707 } 1708 break; 1709 1710 case CPU_5KC: 1711 case CPU_5KE: 1712 case CPU_LOONGSON1: 1713 write_c0_ecc(0x80000000); 1714 back_to_back_c0_hazard(); 1715 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1716 printk(KERN_INFO "Cache parity protection %sabled\n", 1717 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1718 break; 1719 case CPU_20KC: 1720 case CPU_25KF: 1721 /* Clear the DE bit (bit 16) in the c0_status register. */ 1722 printk(KERN_INFO "Enable cache parity protection for " 1723 "MIPS 20KC/25KF CPUs.\n"); 1724 clear_c0_status(ST0_DE); 1725 break; 1726 default: 1727 break; 1728 } 1729 } 1730 1731 asmlinkage void cache_parity_error(void) 1732 { 1733 const int field = 2 * sizeof(unsigned long); 1734 unsigned int reg_val; 1735 1736 /* For the moment, report the problem and hang. */ 1737 printk("Cache error exception:\n"); 1738 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1739 reg_val = read_c0_cacheerr(); 1740 printk("c0_cacheerr == %08x\n", reg_val); 1741 1742 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1743 reg_val & (1<<30) ? "secondary" : "primary", 1744 reg_val & (1<<31) ? "data" : "insn"); 1745 if ((cpu_has_mips_r2_r6) && 1746 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1747 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1748 reg_val & (1<<29) ? "ED " : "", 1749 reg_val & (1<<28) ? "ET " : "", 1750 reg_val & (1<<27) ? "ES " : "", 1751 reg_val & (1<<26) ? "EE " : "", 1752 reg_val & (1<<25) ? "EB " : "", 1753 reg_val & (1<<24) ? "EI " : "", 1754 reg_val & (1<<23) ? "E1 " : "", 1755 reg_val & (1<<22) ? "E0 " : ""); 1756 } else { 1757 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1758 reg_val & (1<<29) ? "ED " : "", 1759 reg_val & (1<<28) ? "ET " : "", 1760 reg_val & (1<<26) ? "EE " : "", 1761 reg_val & (1<<25) ? "EB " : "", 1762 reg_val & (1<<24) ? "EI " : "", 1763 reg_val & (1<<23) ? "E1 " : "", 1764 reg_val & (1<<22) ? "E0 " : ""); 1765 } 1766 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1767 1768 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1769 if (reg_val & (1<<22)) 1770 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1771 1772 if (reg_val & (1<<23)) 1773 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1774 #endif 1775 1776 panic("Can't handle the cache error!"); 1777 } 1778 1779 asmlinkage void do_ftlb(void) 1780 { 1781 const int field = 2 * sizeof(unsigned long); 1782 unsigned int reg_val; 1783 1784 /* For the moment, report the problem and hang. */ 1785 if ((cpu_has_mips_r2_r6) && 1786 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1787 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1788 read_c0_ecc()); 1789 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1790 reg_val = read_c0_cacheerr(); 1791 pr_err("c0_cacheerr == %08x\n", reg_val); 1792 1793 if ((reg_val & 0xc0000000) == 0xc0000000) { 1794 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1795 } else { 1796 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1797 reg_val & (1<<30) ? "secondary" : "primary", 1798 reg_val & (1<<31) ? "data" : "insn"); 1799 } 1800 } else { 1801 pr_err("FTLB error exception\n"); 1802 } 1803 /* Just print the cacheerr bits for now */ 1804 cache_parity_error(); 1805 } 1806 1807 /* 1808 * SDBBP EJTAG debug exception handler. 1809 * We skip the instruction and return to the next instruction. 1810 */ 1811 void ejtag_exception_handler(struct pt_regs *regs) 1812 { 1813 const int field = 2 * sizeof(unsigned long); 1814 unsigned long depc, old_epc, old_ra; 1815 unsigned int debug; 1816 1817 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1818 depc = read_c0_depc(); 1819 debug = read_c0_debug(); 1820 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1821 if (debug & 0x80000000) { 1822 /* 1823 * In branch delay slot. 1824 * We cheat a little bit here and use EPC to calculate the 1825 * debug return address (DEPC). EPC is restored after the 1826 * calculation. 1827 */ 1828 old_epc = regs->cp0_epc; 1829 old_ra = regs->regs[31]; 1830 regs->cp0_epc = depc; 1831 compute_return_epc(regs); 1832 depc = regs->cp0_epc; 1833 regs->cp0_epc = old_epc; 1834 regs->regs[31] = old_ra; 1835 } else 1836 depc += 4; 1837 write_c0_depc(depc); 1838 1839 #if 0 1840 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1841 write_c0_debug(debug | 0x100); 1842 #endif 1843 } 1844 1845 /* 1846 * NMI exception handler. 1847 * No lock; only written during early bootup by CPU 0. 1848 */ 1849 static RAW_NOTIFIER_HEAD(nmi_chain); 1850 1851 int register_nmi_notifier(struct notifier_block *nb) 1852 { 1853 return raw_notifier_chain_register(&nmi_chain, nb); 1854 } 1855 1856 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1857 { 1858 char str[100]; 1859 1860 nmi_enter(); 1861 raw_notifier_call_chain(&nmi_chain, 0, regs); 1862 bust_spinlocks(1); 1863 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1864 smp_processor_id(), regs->cp0_epc); 1865 regs->cp0_epc = read_c0_errorepc(); 1866 die(str, regs); 1867 nmi_exit(); 1868 } 1869 1870 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1871 1872 unsigned long ebase; 1873 unsigned long exception_handlers[32]; 1874 unsigned long vi_handlers[64]; 1875 1876 void __init *set_except_vector(int n, void *addr) 1877 { 1878 unsigned long handler = (unsigned long) addr; 1879 unsigned long old_handler; 1880 1881 #ifdef CONFIG_CPU_MICROMIPS 1882 /* 1883 * Only the TLB handlers are cache aligned with an even 1884 * address. All other handlers are on an odd address and 1885 * require no modification. Otherwise, MIPS32 mode will 1886 * be entered when handling any TLB exceptions. That 1887 * would be bad...since we must stay in microMIPS mode. 1888 */ 1889 if (!(handler & 0x1)) 1890 handler |= 1; 1891 #endif 1892 old_handler = xchg(&exception_handlers[n], handler); 1893 1894 if (n == 0 && cpu_has_divec) { 1895 #ifdef CONFIG_CPU_MICROMIPS 1896 unsigned long jump_mask = ~((1 << 27) - 1); 1897 #else 1898 unsigned long jump_mask = ~((1 << 28) - 1); 1899 #endif 1900 u32 *buf = (u32 *)(ebase + 0x200); 1901 unsigned int k0 = 26; 1902 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1903 uasm_i_j(&buf, handler & ~jump_mask); 1904 uasm_i_nop(&buf); 1905 } else { 1906 UASM_i_LA(&buf, k0, handler); 1907 uasm_i_jr(&buf, k0); 1908 uasm_i_nop(&buf); 1909 } 1910 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1911 } 1912 return (void *)old_handler; 1913 } 1914 1915 static void do_default_vi(void) 1916 { 1917 show_regs(get_irq_regs()); 1918 panic("Caught unexpected vectored interrupt."); 1919 } 1920 1921 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1922 { 1923 unsigned long handler; 1924 unsigned long old_handler = vi_handlers[n]; 1925 int srssets = current_cpu_data.srsets; 1926 u16 *h; 1927 unsigned char *b; 1928 1929 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1930 1931 if (addr == NULL) { 1932 handler = (unsigned long) do_default_vi; 1933 srs = 0; 1934 } else 1935 handler = (unsigned long) addr; 1936 vi_handlers[n] = handler; 1937 1938 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1939 1940 if (srs >= srssets) 1941 panic("Shadow register set %d not supported", srs); 1942 1943 if (cpu_has_veic) { 1944 if (board_bind_eic_interrupt) 1945 board_bind_eic_interrupt(n, srs); 1946 } else if (cpu_has_vint) { 1947 /* SRSMap is only defined if shadow sets are implemented */ 1948 if (srssets > 1) 1949 change_c0_srsmap(0xf << n*4, srs << n*4); 1950 } 1951 1952 if (srs == 0) { 1953 /* 1954 * If no shadow set is selected then use the default handler 1955 * that does normal register saving and standard interrupt exit 1956 */ 1957 extern char except_vec_vi, except_vec_vi_lui; 1958 extern char except_vec_vi_ori, except_vec_vi_end; 1959 extern char rollback_except_vec_vi; 1960 char *vec_start = using_rollback_handler() ? 1961 &rollback_except_vec_vi : &except_vec_vi; 1962 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1963 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1964 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1965 #else 1966 const int lui_offset = &except_vec_vi_lui - vec_start; 1967 const int ori_offset = &except_vec_vi_ori - vec_start; 1968 #endif 1969 const int handler_len = &except_vec_vi_end - vec_start; 1970 1971 if (handler_len > VECTORSPACING) { 1972 /* 1973 * Sigh... panicing won't help as the console 1974 * is probably not configured :( 1975 */ 1976 panic("VECTORSPACING too small"); 1977 } 1978 1979 set_handler(((unsigned long)b - ebase), vec_start, 1980 #ifdef CONFIG_CPU_MICROMIPS 1981 (handler_len - 1)); 1982 #else 1983 handler_len); 1984 #endif 1985 h = (u16 *)(b + lui_offset); 1986 *h = (handler >> 16) & 0xffff; 1987 h = (u16 *)(b + ori_offset); 1988 *h = (handler & 0xffff); 1989 local_flush_icache_range((unsigned long)b, 1990 (unsigned long)(b+handler_len)); 1991 } 1992 else { 1993 /* 1994 * In other cases jump directly to the interrupt handler. It 1995 * is the handler's responsibility to save registers if required 1996 * (eg hi/lo) and return from the exception using "eret". 1997 */ 1998 u32 insn; 1999 2000 h = (u16 *)b; 2001 /* j handler */ 2002 #ifdef CONFIG_CPU_MICROMIPS 2003 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2004 #else 2005 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2006 #endif 2007 h[0] = (insn >> 16) & 0xffff; 2008 h[1] = insn & 0xffff; 2009 h[2] = 0; 2010 h[3] = 0; 2011 local_flush_icache_range((unsigned long)b, 2012 (unsigned long)(b+8)); 2013 } 2014 2015 return (void *)old_handler; 2016 } 2017 2018 void *set_vi_handler(int n, vi_handler_t addr) 2019 { 2020 return set_vi_srs_handler(n, addr, 0); 2021 } 2022 2023 extern void tlb_init(void); 2024 2025 /* 2026 * Timer interrupt 2027 */ 2028 int cp0_compare_irq; 2029 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2030 int cp0_compare_irq_shift; 2031 2032 /* 2033 * Performance counter IRQ or -1 if shared with timer 2034 */ 2035 int cp0_perfcount_irq; 2036 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2037 2038 /* 2039 * Fast debug channel IRQ or -1 if not present 2040 */ 2041 int cp0_fdc_irq; 2042 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2043 2044 static int noulri; 2045 2046 static int __init ulri_disable(char *s) 2047 { 2048 pr_info("Disabling ulri\n"); 2049 noulri = 1; 2050 2051 return 1; 2052 } 2053 __setup("noulri", ulri_disable); 2054 2055 /* configure STATUS register */ 2056 static void configure_status(void) 2057 { 2058 /* 2059 * Disable coprocessors and select 32-bit or 64-bit addressing 2060 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2061 * flag that some firmware may have left set and the TS bit (for 2062 * IP27). Set XX for ISA IV code to work. 2063 */ 2064 unsigned int status_set = ST0_CU0; 2065 #ifdef CONFIG_64BIT 2066 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2067 #endif 2068 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2069 status_set |= ST0_XX; 2070 if (cpu_has_dsp) 2071 status_set |= ST0_MX; 2072 2073 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2074 status_set); 2075 } 2076 2077 /* configure HWRENA register */ 2078 static void configure_hwrena(void) 2079 { 2080 unsigned int hwrena = cpu_hwrena_impl_bits; 2081 2082 if (cpu_has_mips_r2_r6) 2083 hwrena |= 0x0000000f; 2084 2085 if (!noulri && cpu_has_userlocal) 2086 hwrena |= (1 << 29); 2087 2088 if (hwrena) 2089 write_c0_hwrena(hwrena); 2090 } 2091 2092 static void configure_exception_vector(void) 2093 { 2094 if (cpu_has_veic || cpu_has_vint) { 2095 unsigned long sr = set_c0_status(ST0_BEV); 2096 write_c0_ebase(ebase); 2097 write_c0_status(sr); 2098 /* Setting vector spacing enables EI/VI mode */ 2099 change_c0_intctl(0x3e0, VECTORSPACING); 2100 } 2101 if (cpu_has_divec) { 2102 if (cpu_has_mipsmt) { 2103 unsigned int vpflags = dvpe(); 2104 set_c0_cause(CAUSEF_IV); 2105 evpe(vpflags); 2106 } else 2107 set_c0_cause(CAUSEF_IV); 2108 } 2109 } 2110 2111 void per_cpu_trap_init(bool is_boot_cpu) 2112 { 2113 unsigned int cpu = smp_processor_id(); 2114 2115 configure_status(); 2116 configure_hwrena(); 2117 2118 configure_exception_vector(); 2119 2120 /* 2121 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2122 * 2123 * o read IntCtl.IPTI to determine the timer interrupt 2124 * o read IntCtl.IPPCI to determine the performance counter interrupt 2125 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2126 */ 2127 if (cpu_has_mips_r2_r6) { 2128 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2129 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2130 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2131 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2132 if (!cp0_fdc_irq) 2133 cp0_fdc_irq = -1; 2134 2135 } else { 2136 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2137 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2138 cp0_perfcount_irq = -1; 2139 cp0_fdc_irq = -1; 2140 } 2141 2142 if (!cpu_data[cpu].asid_cache) 2143 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2144 2145 atomic_inc(&init_mm.mm_count); 2146 current->active_mm = &init_mm; 2147 BUG_ON(current->mm); 2148 enter_lazy_tlb(&init_mm, current); 2149 2150 /* Boot CPU's cache setup in setup_arch(). */ 2151 if (!is_boot_cpu) 2152 cpu_cache_init(); 2153 tlb_init(); 2154 TLBMISS_HANDLER_SETUP(); 2155 } 2156 2157 /* Install CPU exception handler */ 2158 void set_handler(unsigned long offset, void *addr, unsigned long size) 2159 { 2160 #ifdef CONFIG_CPU_MICROMIPS 2161 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2162 #else 2163 memcpy((void *)(ebase + offset), addr, size); 2164 #endif 2165 local_flush_icache_range(ebase + offset, ebase + offset + size); 2166 } 2167 2168 static char panic_null_cerr[] = 2169 "Trying to set NULL cache error exception handler"; 2170 2171 /* 2172 * Install uncached CPU exception handler. 2173 * This is suitable only for the cache error exception which is the only 2174 * exception handler that is being run uncached. 2175 */ 2176 void set_uncached_handler(unsigned long offset, void *addr, 2177 unsigned long size) 2178 { 2179 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2180 2181 if (!addr) 2182 panic(panic_null_cerr); 2183 2184 memcpy((void *)(uncached_ebase + offset), addr, size); 2185 } 2186 2187 static int __initdata rdhwr_noopt; 2188 static int __init set_rdhwr_noopt(char *str) 2189 { 2190 rdhwr_noopt = 1; 2191 return 1; 2192 } 2193 2194 __setup("rdhwr_noopt", set_rdhwr_noopt); 2195 2196 void __init trap_init(void) 2197 { 2198 extern char except_vec3_generic; 2199 extern char except_vec4; 2200 extern char except_vec3_r4000; 2201 unsigned long i; 2202 2203 check_wait(); 2204 2205 if (cpu_has_veic || cpu_has_vint) { 2206 unsigned long size = 0x200 + VECTORSPACING*64; 2207 ebase = (unsigned long) 2208 __alloc_bootmem(size, 1 << fls(size), 0); 2209 } else { 2210 ebase = CAC_BASE; 2211 2212 if (cpu_has_mips_r2_r6) 2213 ebase += (read_c0_ebase() & 0x3ffff000); 2214 } 2215 2216 if (cpu_has_mmips) { 2217 unsigned int config3 = read_c0_config3(); 2218 2219 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2220 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2221 else 2222 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2223 } 2224 2225 if (board_ebase_setup) 2226 board_ebase_setup(); 2227 per_cpu_trap_init(true); 2228 2229 /* 2230 * Copy the generic exception handlers to their final destination. 2231 * This will be overriden later as suitable for a particular 2232 * configuration. 2233 */ 2234 set_handler(0x180, &except_vec3_generic, 0x80); 2235 2236 /* 2237 * Setup default vectors 2238 */ 2239 for (i = 0; i <= 31; i++) 2240 set_except_vector(i, handle_reserved); 2241 2242 /* 2243 * Copy the EJTAG debug exception vector handler code to it's final 2244 * destination. 2245 */ 2246 if (cpu_has_ejtag && board_ejtag_handler_setup) 2247 board_ejtag_handler_setup(); 2248 2249 /* 2250 * Only some CPUs have the watch exceptions. 2251 */ 2252 if (cpu_has_watch) 2253 set_except_vector(23, handle_watch); 2254 2255 /* 2256 * Initialise interrupt handlers 2257 */ 2258 if (cpu_has_veic || cpu_has_vint) { 2259 int nvec = cpu_has_veic ? 64 : 8; 2260 for (i = 0; i < nvec; i++) 2261 set_vi_handler(i, NULL); 2262 } 2263 else if (cpu_has_divec) 2264 set_handler(0x200, &except_vec4, 0x8); 2265 2266 /* 2267 * Some CPUs can enable/disable for cache parity detection, but does 2268 * it different ways. 2269 */ 2270 parity_protection_init(); 2271 2272 /* 2273 * The Data Bus Errors / Instruction Bus Errors are signaled 2274 * by external hardware. Therefore these two exceptions 2275 * may have board specific handlers. 2276 */ 2277 if (board_be_init) 2278 board_be_init(); 2279 2280 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2281 : handle_int); 2282 set_except_vector(1, handle_tlbm); 2283 set_except_vector(2, handle_tlbl); 2284 set_except_vector(3, handle_tlbs); 2285 2286 set_except_vector(4, handle_adel); 2287 set_except_vector(5, handle_ades); 2288 2289 set_except_vector(6, handle_ibe); 2290 set_except_vector(7, handle_dbe); 2291 2292 set_except_vector(8, handle_sys); 2293 set_except_vector(9, handle_bp); 2294 set_except_vector(10, rdhwr_noopt ? handle_ri : 2295 (cpu_has_vtag_icache ? 2296 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2297 set_except_vector(11, handle_cpu); 2298 set_except_vector(12, handle_ov); 2299 set_except_vector(13, handle_tr); 2300 set_except_vector(14, handle_msa_fpe); 2301 2302 if (current_cpu_type() == CPU_R6000 || 2303 current_cpu_type() == CPU_R6000A) { 2304 /* 2305 * The R6000 is the only R-series CPU that features a machine 2306 * check exception (similar to the R4000 cache error) and 2307 * unaligned ldc1/sdc1 exception. The handlers have not been 2308 * written yet. Well, anyway there is no R6000 machine on the 2309 * current list of targets for Linux/MIPS. 2310 * (Duh, crap, there is someone with a triple R6k machine) 2311 */ 2312 //set_except_vector(14, handle_mc); 2313 //set_except_vector(15, handle_ndc); 2314 } 2315 2316 2317 if (board_nmi_handler_setup) 2318 board_nmi_handler_setup(); 2319 2320 if (cpu_has_fpu && !cpu_has_nofpuex) 2321 set_except_vector(15, handle_fpe); 2322 2323 set_except_vector(16, handle_ftlb); 2324 2325 if (cpu_has_rixiex) { 2326 set_except_vector(19, tlb_do_page_fault_0); 2327 set_except_vector(20, tlb_do_page_fault_0); 2328 } 2329 2330 set_except_vector(21, handle_msa); 2331 set_except_vector(22, handle_mdmx); 2332 2333 if (cpu_has_mcheck) 2334 set_except_vector(24, handle_mcheck); 2335 2336 if (cpu_has_mipsmt) 2337 set_except_vector(25, handle_mt); 2338 2339 set_except_vector(26, handle_dsp); 2340 2341 if (board_cache_error_setup) 2342 board_cache_error_setup(); 2343 2344 if (cpu_has_vce) 2345 /* Special exception: R4[04]00 uses also the divec space. */ 2346 set_handler(0x180, &except_vec3_r4000, 0x100); 2347 else if (cpu_has_4kex) 2348 set_handler(0x180, &except_vec3_generic, 0x80); 2349 else 2350 set_handler(0x080, &except_vec3_generic, 0x80); 2351 2352 local_flush_icache_range(ebase, ebase + 0x400); 2353 2354 sort_extable(__start___dbe_table, __stop___dbe_table); 2355 2356 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2357 } 2358 2359 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2360 void *v) 2361 { 2362 switch (cmd) { 2363 case CPU_PM_ENTER_FAILED: 2364 case CPU_PM_EXIT: 2365 configure_status(); 2366 configure_hwrena(); 2367 configure_exception_vector(); 2368 2369 /* Restore register with CPU number for TLB handlers */ 2370 TLBMISS_HANDLER_RESTORE(); 2371 2372 break; 2373 } 2374 2375 return NOTIFY_OK; 2376 } 2377 2378 static struct notifier_block trap_pm_notifier_block = { 2379 .notifier_call = trap_pm_notifier, 2380 }; 2381 2382 static int __init trap_pm_init(void) 2383 { 2384 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2385 } 2386 arch_initcall(trap_pm_init); 2387