1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/extable.h> 25 #include <linux/mm.h> 26 #include <linux/sched.h> 27 #include <linux/smp.h> 28 #include <linux/spinlock.h> 29 #include <linux/kallsyms.h> 30 #include <linux/bootmem.h> 31 #include <linux/interrupt.h> 32 #include <linux/ptrace.h> 33 #include <linux/kgdb.h> 34 #include <linux/kdebug.h> 35 #include <linux/kprobes.h> 36 #include <linux/notifier.h> 37 #include <linux/kdb.h> 38 #include <linux/irq.h> 39 #include <linux/perf_event.h> 40 41 #include <asm/addrspace.h> 42 #include <asm/bootinfo.h> 43 #include <asm/branch.h> 44 #include <asm/break.h> 45 #include <asm/cop2.h> 46 #include <asm/cpu.h> 47 #include <asm/cpu-type.h> 48 #include <asm/dsp.h> 49 #include <asm/fpu.h> 50 #include <asm/fpu_emulator.h> 51 #include <asm/idle.h> 52 #include <asm/mips-cm.h> 53 #include <asm/mips-r2-to-r6-emul.h> 54 #include <asm/mipsregs.h> 55 #include <asm/mipsmtregs.h> 56 #include <asm/module.h> 57 #include <asm/msa.h> 58 #include <asm/pgtable.h> 59 #include <asm/ptrace.h> 60 #include <asm/sections.h> 61 #include <asm/siginfo.h> 62 #include <asm/tlbdebug.h> 63 #include <asm/traps.h> 64 #include <linux/uaccess.h> 65 #include <asm/watch.h> 66 #include <asm/mmu_context.h> 67 #include <asm/types.h> 68 #include <asm/stacktrace.h> 69 #include <asm/uasm.h> 70 71 extern void check_wait(void); 72 extern asmlinkage void rollback_handle_int(void); 73 extern asmlinkage void handle_int(void); 74 extern u32 handle_tlbl[]; 75 extern u32 handle_tlbs[]; 76 extern u32 handle_tlbm[]; 77 extern asmlinkage void handle_adel(void); 78 extern asmlinkage void handle_ades(void); 79 extern asmlinkage void handle_ibe(void); 80 extern asmlinkage void handle_dbe(void); 81 extern asmlinkage void handle_sys(void); 82 extern asmlinkage void handle_bp(void); 83 extern asmlinkage void handle_ri(void); 84 extern asmlinkage void handle_ri_rdhwr_vivt(void); 85 extern asmlinkage void handle_ri_rdhwr(void); 86 extern asmlinkage void handle_cpu(void); 87 extern asmlinkage void handle_ov(void); 88 extern asmlinkage void handle_tr(void); 89 extern asmlinkage void handle_msa_fpe(void); 90 extern asmlinkage void handle_fpe(void); 91 extern asmlinkage void handle_ftlb(void); 92 extern asmlinkage void handle_msa(void); 93 extern asmlinkage void handle_mdmx(void); 94 extern asmlinkage void handle_watch(void); 95 extern asmlinkage void handle_mt(void); 96 extern asmlinkage void handle_dsp(void); 97 extern asmlinkage void handle_mcheck(void); 98 extern asmlinkage void handle_reserved(void); 99 extern void tlb_do_page_fault_0(void); 100 101 void (*board_be_init)(void); 102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 103 void (*board_nmi_handler_setup)(void); 104 void (*board_ejtag_handler_setup)(void); 105 void (*board_bind_eic_interrupt)(int irq, int regset); 106 void (*board_ebase_setup)(void); 107 void(*board_cache_error_setup)(void); 108 109 static void show_raw_backtrace(unsigned long reg29) 110 { 111 unsigned long *sp = (unsigned long *)(reg29 & ~3); 112 unsigned long addr; 113 114 printk("Call Trace:"); 115 #ifdef CONFIG_KALLSYMS 116 printk("\n"); 117 #endif 118 while (!kstack_end(sp)) { 119 unsigned long __user *p = 120 (unsigned long __user *)(unsigned long)sp++; 121 if (__get_user(addr, p)) { 122 printk(" (Bad stack address)"); 123 break; 124 } 125 if (__kernel_text_address(addr)) 126 print_ip_sym(addr); 127 } 128 printk("\n"); 129 } 130 131 #ifdef CONFIG_KALLSYMS 132 int raw_show_trace; 133 static int __init set_raw_show_trace(char *str) 134 { 135 raw_show_trace = 1; 136 return 1; 137 } 138 __setup("raw_show_trace", set_raw_show_trace); 139 #endif 140 141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 142 { 143 unsigned long sp = regs->regs[29]; 144 unsigned long ra = regs->regs[31]; 145 unsigned long pc = regs->cp0_epc; 146 147 if (!task) 148 task = current; 149 150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 151 show_raw_backtrace(sp); 152 return; 153 } 154 printk("Call Trace:\n"); 155 do { 156 print_ip_sym(pc); 157 pc = unwind_stack(task, &sp, pc, &ra); 158 } while (pc); 159 pr_cont("\n"); 160 } 161 162 /* 163 * This routine abuses get_user()/put_user() to reference pointers 164 * with at least a bit of error checking ... 165 */ 166 static void show_stacktrace(struct task_struct *task, 167 const struct pt_regs *regs) 168 { 169 const int field = 2 * sizeof(unsigned long); 170 long stackdata; 171 int i; 172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 173 174 printk("Stack :"); 175 i = 0; 176 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 177 if (i && ((i % (64 / field)) == 0)) { 178 pr_cont("\n"); 179 printk(" "); 180 } 181 if (i > 39) { 182 pr_cont(" ..."); 183 break; 184 } 185 186 if (__get_user(stackdata, sp++)) { 187 pr_cont(" (Bad stack address)"); 188 break; 189 } 190 191 pr_cont(" %0*lx", field, stackdata); 192 i++; 193 } 194 pr_cont("\n"); 195 show_backtrace(task, regs); 196 } 197 198 void show_stack(struct task_struct *task, unsigned long *sp) 199 { 200 struct pt_regs regs; 201 mm_segment_t old_fs = get_fs(); 202 if (sp) { 203 regs.regs[29] = (unsigned long)sp; 204 regs.regs[31] = 0; 205 regs.cp0_epc = 0; 206 } else { 207 if (task && task != current) { 208 regs.regs[29] = task->thread.reg29; 209 regs.regs[31] = 0; 210 regs.cp0_epc = task->thread.reg31; 211 #ifdef CONFIG_KGDB_KDB 212 } else if (atomic_read(&kgdb_active) != -1 && 213 kdb_current_regs) { 214 memcpy(®s, kdb_current_regs, sizeof(regs)); 215 #endif /* CONFIG_KGDB_KDB */ 216 } else { 217 prepare_frametrace(®s); 218 } 219 } 220 /* 221 * show_stack() deals exclusively with kernel mode, so be sure to access 222 * the stack in the kernel (not user) address space. 223 */ 224 set_fs(KERNEL_DS); 225 show_stacktrace(task, ®s); 226 set_fs(old_fs); 227 } 228 229 static void show_code(unsigned int __user *pc) 230 { 231 long i; 232 unsigned short __user *pc16 = NULL; 233 234 printk("Code:"); 235 236 if ((unsigned long)pc & 1) 237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 238 for(i = -3 ; i < 6 ; i++) { 239 unsigned int insn; 240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 241 pr_cont(" (Bad address in epc)\n"); 242 break; 243 } 244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 245 } 246 pr_cont("\n"); 247 } 248 249 static void __show_regs(const struct pt_regs *regs) 250 { 251 const int field = 2 * sizeof(unsigned long); 252 unsigned int cause = regs->cp0_cause; 253 unsigned int exccode; 254 int i; 255 256 show_regs_print_info(KERN_DEFAULT); 257 258 /* 259 * Saved main processor registers 260 */ 261 for (i = 0; i < 32; ) { 262 if ((i % 4) == 0) 263 printk("$%2d :", i); 264 if (i == 0) 265 pr_cont(" %0*lx", field, 0UL); 266 else if (i == 26 || i == 27) 267 pr_cont(" %*s", field, ""); 268 else 269 pr_cont(" %0*lx", field, regs->regs[i]); 270 271 i++; 272 if ((i % 4) == 0) 273 pr_cont("\n"); 274 } 275 276 #ifdef CONFIG_CPU_HAS_SMARTMIPS 277 printk("Acx : %0*lx\n", field, regs->acx); 278 #endif 279 printk("Hi : %0*lx\n", field, regs->hi); 280 printk("Lo : %0*lx\n", field, regs->lo); 281 282 /* 283 * Saved cp0 registers 284 */ 285 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 286 (void *) regs->cp0_epc); 287 printk("ra : %0*lx %pS\n", field, regs->regs[31], 288 (void *) regs->regs[31]); 289 290 printk("Status: %08x ", (uint32_t) regs->cp0_status); 291 292 if (cpu_has_3kex) { 293 if (regs->cp0_status & ST0_KUO) 294 pr_cont("KUo "); 295 if (regs->cp0_status & ST0_IEO) 296 pr_cont("IEo "); 297 if (regs->cp0_status & ST0_KUP) 298 pr_cont("KUp "); 299 if (regs->cp0_status & ST0_IEP) 300 pr_cont("IEp "); 301 if (regs->cp0_status & ST0_KUC) 302 pr_cont("KUc "); 303 if (regs->cp0_status & ST0_IEC) 304 pr_cont("IEc "); 305 } else if (cpu_has_4kex) { 306 if (regs->cp0_status & ST0_KX) 307 pr_cont("KX "); 308 if (regs->cp0_status & ST0_SX) 309 pr_cont("SX "); 310 if (regs->cp0_status & ST0_UX) 311 pr_cont("UX "); 312 switch (regs->cp0_status & ST0_KSU) { 313 case KSU_USER: 314 pr_cont("USER "); 315 break; 316 case KSU_SUPERVISOR: 317 pr_cont("SUPERVISOR "); 318 break; 319 case KSU_KERNEL: 320 pr_cont("KERNEL "); 321 break; 322 default: 323 pr_cont("BAD_MODE "); 324 break; 325 } 326 if (regs->cp0_status & ST0_ERL) 327 pr_cont("ERL "); 328 if (regs->cp0_status & ST0_EXL) 329 pr_cont("EXL "); 330 if (regs->cp0_status & ST0_IE) 331 pr_cont("IE "); 332 } 333 pr_cont("\n"); 334 335 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 336 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 337 338 if (1 <= exccode && exccode <= 5) 339 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 340 341 printk("PrId : %08x (%s)\n", read_c0_prid(), 342 cpu_name_string()); 343 } 344 345 /* 346 * FIXME: really the generic show_regs should take a const pointer argument. 347 */ 348 void show_regs(struct pt_regs *regs) 349 { 350 __show_regs((struct pt_regs *)regs); 351 } 352 353 void show_registers(struct pt_regs *regs) 354 { 355 const int field = 2 * sizeof(unsigned long); 356 mm_segment_t old_fs = get_fs(); 357 358 __show_regs(regs); 359 print_modules(); 360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 361 current->comm, current->pid, current_thread_info(), current, 362 field, current_thread_info()->tp_value); 363 if (cpu_has_userlocal) { 364 unsigned long tls; 365 366 tls = read_c0_userlocal(); 367 if (tls != current_thread_info()->tp_value) 368 printk("*HwTLS: %0*lx\n", field, tls); 369 } 370 371 if (!user_mode(regs)) 372 /* Necessary for getting the correct stack content */ 373 set_fs(KERNEL_DS); 374 show_stacktrace(current, regs); 375 show_code((unsigned int __user *) regs->cp0_epc); 376 printk("\n"); 377 set_fs(old_fs); 378 } 379 380 static DEFINE_RAW_SPINLOCK(die_lock); 381 382 void __noreturn die(const char *str, struct pt_regs *regs) 383 { 384 static int die_counter; 385 int sig = SIGSEGV; 386 387 oops_enter(); 388 389 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 390 SIGSEGV) == NOTIFY_STOP) 391 sig = 0; 392 393 console_verbose(); 394 raw_spin_lock_irq(&die_lock); 395 bust_spinlocks(1); 396 397 printk("%s[#%d]:\n", str, ++die_counter); 398 show_registers(regs); 399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 400 raw_spin_unlock_irq(&die_lock); 401 402 oops_exit(); 403 404 if (in_interrupt()) 405 panic("Fatal exception in interrupt"); 406 407 if (panic_on_oops) 408 panic("Fatal exception"); 409 410 if (regs && kexec_should_crash(current)) 411 crash_kexec(regs); 412 413 do_exit(sig); 414 } 415 416 extern struct exception_table_entry __start___dbe_table[]; 417 extern struct exception_table_entry __stop___dbe_table[]; 418 419 __asm__( 420 " .section __dbe_table, \"a\"\n" 421 " .previous \n"); 422 423 /* Given an address, look for it in the exception tables. */ 424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 425 { 426 const struct exception_table_entry *e; 427 428 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 429 if (!e) 430 e = search_module_dbetables(addr); 431 return e; 432 } 433 434 asmlinkage void do_be(struct pt_regs *regs) 435 { 436 const int field = 2 * sizeof(unsigned long); 437 const struct exception_table_entry *fixup = NULL; 438 int data = regs->cp0_cause & 4; 439 int action = MIPS_BE_FATAL; 440 enum ctx_state prev_state; 441 442 prev_state = exception_enter(); 443 /* XXX For now. Fixme, this searches the wrong table ... */ 444 if (data && !user_mode(regs)) 445 fixup = search_dbe_tables(exception_epc(regs)); 446 447 if (fixup) 448 action = MIPS_BE_FIXUP; 449 450 if (board_be_handler) 451 action = board_be_handler(regs, fixup != NULL); 452 else 453 mips_cm_error_report(); 454 455 switch (action) { 456 case MIPS_BE_DISCARD: 457 goto out; 458 case MIPS_BE_FIXUP: 459 if (fixup) { 460 regs->cp0_epc = fixup->nextinsn; 461 goto out; 462 } 463 break; 464 default: 465 break; 466 } 467 468 /* 469 * Assume it would be too dangerous to continue ... 470 */ 471 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 472 data ? "Data" : "Instruction", 473 field, regs->cp0_epc, field, regs->regs[31]); 474 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 475 SIGBUS) == NOTIFY_STOP) 476 goto out; 477 478 die_if_kernel("Oops", regs); 479 force_sig(SIGBUS, current); 480 481 out: 482 exception_exit(prev_state); 483 } 484 485 /* 486 * ll/sc, rdhwr, sync emulation 487 */ 488 489 #define OPCODE 0xfc000000 490 #define BASE 0x03e00000 491 #define RT 0x001f0000 492 #define OFFSET 0x0000ffff 493 #define LL 0xc0000000 494 #define SC 0xe0000000 495 #define SPEC0 0x00000000 496 #define SPEC3 0x7c000000 497 #define RD 0x0000f800 498 #define FUNC 0x0000003f 499 #define SYNC 0x0000000f 500 #define RDHWR 0x0000003b 501 502 /* microMIPS definitions */ 503 #define MM_POOL32A_FUNC 0xfc00ffff 504 #define MM_RDHWR 0x00006b3c 505 #define MM_RS 0x001f0000 506 #define MM_RT 0x03e00000 507 508 /* 509 * The ll_bit is cleared by r*_switch.S 510 */ 511 512 unsigned int ll_bit; 513 struct task_struct *ll_task; 514 515 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 516 { 517 unsigned long value, __user *vaddr; 518 long offset; 519 520 /* 521 * analyse the ll instruction that just caused a ri exception 522 * and put the referenced address to addr. 523 */ 524 525 /* sign extend offset */ 526 offset = opcode & OFFSET; 527 offset <<= 16; 528 offset >>= 16; 529 530 vaddr = (unsigned long __user *) 531 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 532 533 if ((unsigned long)vaddr & 3) 534 return SIGBUS; 535 if (get_user(value, vaddr)) 536 return SIGSEGV; 537 538 preempt_disable(); 539 540 if (ll_task == NULL || ll_task == current) { 541 ll_bit = 1; 542 } else { 543 ll_bit = 0; 544 } 545 ll_task = current; 546 547 preempt_enable(); 548 549 regs->regs[(opcode & RT) >> 16] = value; 550 551 return 0; 552 } 553 554 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 555 { 556 unsigned long __user *vaddr; 557 unsigned long reg; 558 long offset; 559 560 /* 561 * analyse the sc instruction that just caused a ri exception 562 * and put the referenced address to addr. 563 */ 564 565 /* sign extend offset */ 566 offset = opcode & OFFSET; 567 offset <<= 16; 568 offset >>= 16; 569 570 vaddr = (unsigned long __user *) 571 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 572 reg = (opcode & RT) >> 16; 573 574 if ((unsigned long)vaddr & 3) 575 return SIGBUS; 576 577 preempt_disable(); 578 579 if (ll_bit == 0 || ll_task != current) { 580 regs->regs[reg] = 0; 581 preempt_enable(); 582 return 0; 583 } 584 585 preempt_enable(); 586 587 if (put_user(regs->regs[reg], vaddr)) 588 return SIGSEGV; 589 590 regs->regs[reg] = 1; 591 592 return 0; 593 } 594 595 /* 596 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 597 * opcodes are supposed to result in coprocessor unusable exceptions if 598 * executed on ll/sc-less processors. That's the theory. In practice a 599 * few processors such as NEC's VR4100 throw reserved instruction exceptions 600 * instead, so we're doing the emulation thing in both exception handlers. 601 */ 602 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 603 { 604 if ((opcode & OPCODE) == LL) { 605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 606 1, regs, 0); 607 return simulate_ll(regs, opcode); 608 } 609 if ((opcode & OPCODE) == SC) { 610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 611 1, regs, 0); 612 return simulate_sc(regs, opcode); 613 } 614 615 return -1; /* Must be something else ... */ 616 } 617 618 /* 619 * Simulate trapping 'rdhwr' instructions to provide user accessible 620 * registers not implemented in hardware. 621 */ 622 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 623 { 624 struct thread_info *ti = task_thread_info(current); 625 626 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 627 1, regs, 0); 628 switch (rd) { 629 case MIPS_HWR_CPUNUM: /* CPU number */ 630 regs->regs[rt] = smp_processor_id(); 631 return 0; 632 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 633 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 634 current_cpu_data.icache.linesz); 635 return 0; 636 case MIPS_HWR_CC: /* Read count register */ 637 regs->regs[rt] = read_c0_count(); 638 return 0; 639 case MIPS_HWR_CCRES: /* Count register resolution */ 640 switch (current_cpu_type()) { 641 case CPU_20KC: 642 case CPU_25KF: 643 regs->regs[rt] = 1; 644 break; 645 default: 646 regs->regs[rt] = 2; 647 } 648 return 0; 649 case MIPS_HWR_ULR: /* Read UserLocal register */ 650 regs->regs[rt] = ti->tp_value; 651 return 0; 652 default: 653 return -1; 654 } 655 } 656 657 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 658 { 659 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 660 int rd = (opcode & RD) >> 11; 661 int rt = (opcode & RT) >> 16; 662 663 simulate_rdhwr(regs, rd, rt); 664 return 0; 665 } 666 667 /* Not ours. */ 668 return -1; 669 } 670 671 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 672 { 673 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 674 int rd = (opcode & MM_RS) >> 16; 675 int rt = (opcode & MM_RT) >> 21; 676 simulate_rdhwr(regs, rd, rt); 677 return 0; 678 } 679 680 /* Not ours. */ 681 return -1; 682 } 683 684 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 685 { 686 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 687 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 688 1, regs, 0); 689 return 0; 690 } 691 692 return -1; /* Must be something else ... */ 693 } 694 695 asmlinkage void do_ov(struct pt_regs *regs) 696 { 697 enum ctx_state prev_state; 698 siginfo_t info = { 699 .si_signo = SIGFPE, 700 .si_code = FPE_INTOVF, 701 .si_addr = (void __user *)regs->cp0_epc, 702 }; 703 704 prev_state = exception_enter(); 705 die_if_kernel("Integer overflow", regs); 706 707 force_sig_info(SIGFPE, &info, current); 708 exception_exit(prev_state); 709 } 710 711 /* 712 * Send SIGFPE according to FCSR Cause bits, which must have already 713 * been masked against Enable bits. This is impotant as Inexact can 714 * happen together with Overflow or Underflow, and `ptrace' can set 715 * any bits. 716 */ 717 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 718 struct task_struct *tsk) 719 { 720 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE }; 721 722 if (fcr31 & FPU_CSR_INV_X) 723 si.si_code = FPE_FLTINV; 724 else if (fcr31 & FPU_CSR_DIV_X) 725 si.si_code = FPE_FLTDIV; 726 else if (fcr31 & FPU_CSR_OVF_X) 727 si.si_code = FPE_FLTOVF; 728 else if (fcr31 & FPU_CSR_UDF_X) 729 si.si_code = FPE_FLTUND; 730 else if (fcr31 & FPU_CSR_INE_X) 731 si.si_code = FPE_FLTRES; 732 else 733 si.si_code = __SI_FAULT; 734 force_sig_info(SIGFPE, &si, tsk); 735 } 736 737 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 738 { 739 struct siginfo si = { 0 }; 740 struct vm_area_struct *vma; 741 742 switch (sig) { 743 case 0: 744 return 0; 745 746 case SIGFPE: 747 force_fcr31_sig(fcr31, fault_addr, current); 748 return 1; 749 750 case SIGBUS: 751 si.si_addr = fault_addr; 752 si.si_signo = sig; 753 si.si_code = BUS_ADRERR; 754 force_sig_info(sig, &si, current); 755 return 1; 756 757 case SIGSEGV: 758 si.si_addr = fault_addr; 759 si.si_signo = sig; 760 down_read(¤t->mm->mmap_sem); 761 vma = find_vma(current->mm, (unsigned long)fault_addr); 762 if (vma && (vma->vm_start <= (unsigned long)fault_addr)) 763 si.si_code = SEGV_ACCERR; 764 else 765 si.si_code = SEGV_MAPERR; 766 up_read(¤t->mm->mmap_sem); 767 force_sig_info(sig, &si, current); 768 return 1; 769 770 default: 771 force_sig(sig, current); 772 return 1; 773 } 774 } 775 776 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 777 unsigned long old_epc, unsigned long old_ra) 778 { 779 union mips_instruction inst = { .word = opcode }; 780 void __user *fault_addr; 781 unsigned long fcr31; 782 int sig; 783 784 /* If it's obviously not an FP instruction, skip it */ 785 switch (inst.i_format.opcode) { 786 case cop1_op: 787 case cop1x_op: 788 case lwc1_op: 789 case ldc1_op: 790 case swc1_op: 791 case sdc1_op: 792 break; 793 794 default: 795 return -1; 796 } 797 798 /* 799 * do_ri skipped over the instruction via compute_return_epc, undo 800 * that for the FPU emulator. 801 */ 802 regs->cp0_epc = old_epc; 803 regs->regs[31] = old_ra; 804 805 /* Save the FP context to struct thread_struct */ 806 lose_fpu(1); 807 808 /* Run the emulator */ 809 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 810 &fault_addr); 811 812 /* 813 * We can't allow the emulated instruction to leave any 814 * enabled Cause bits set in $fcr31. 815 */ 816 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 817 current->thread.fpu.fcr31 &= ~fcr31; 818 819 /* Restore the hardware register state */ 820 own_fpu(1); 821 822 /* Send a signal if required. */ 823 process_fpemu_return(sig, fault_addr, fcr31); 824 825 return 0; 826 } 827 828 /* 829 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 830 */ 831 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 832 { 833 enum ctx_state prev_state; 834 void __user *fault_addr; 835 int sig; 836 837 prev_state = exception_enter(); 838 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 839 SIGFPE) == NOTIFY_STOP) 840 goto out; 841 842 /* Clear FCSR.Cause before enabling interrupts */ 843 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 844 local_irq_enable(); 845 846 die_if_kernel("FP exception in kernel code", regs); 847 848 if (fcr31 & FPU_CSR_UNI_X) { 849 /* 850 * Unimplemented operation exception. If we've got the full 851 * software emulator on-board, let's use it... 852 * 853 * Force FPU to dump state into task/thread context. We're 854 * moving a lot of data here for what is probably a single 855 * instruction, but the alternative is to pre-decode the FP 856 * register operands before invoking the emulator, which seems 857 * a bit extreme for what should be an infrequent event. 858 */ 859 /* Ensure 'resume' not overwrite saved fp context again. */ 860 lose_fpu(1); 861 862 /* Run the emulator */ 863 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 864 &fault_addr); 865 866 /* 867 * We can't allow the emulated instruction to leave any 868 * enabled Cause bits set in $fcr31. 869 */ 870 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 871 current->thread.fpu.fcr31 &= ~fcr31; 872 873 /* Restore the hardware register state */ 874 own_fpu(1); /* Using the FPU again. */ 875 } else { 876 sig = SIGFPE; 877 fault_addr = (void __user *) regs->cp0_epc; 878 } 879 880 /* Send a signal if required. */ 881 process_fpemu_return(sig, fault_addr, fcr31); 882 883 out: 884 exception_exit(prev_state); 885 } 886 887 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 888 const char *str) 889 { 890 siginfo_t info = { 0 }; 891 char b[40]; 892 893 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 894 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 895 SIGTRAP) == NOTIFY_STOP) 896 return; 897 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 898 899 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 900 SIGTRAP) == NOTIFY_STOP) 901 return; 902 903 /* 904 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 905 * insns, even for trap and break codes that indicate arithmetic 906 * failures. Weird ... 907 * But should we continue the brokenness??? --macro 908 */ 909 switch (code) { 910 case BRK_OVERFLOW: 911 case BRK_DIVZERO: 912 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 913 die_if_kernel(b, regs); 914 if (code == BRK_DIVZERO) 915 info.si_code = FPE_INTDIV; 916 else 917 info.si_code = FPE_INTOVF; 918 info.si_signo = SIGFPE; 919 info.si_addr = (void __user *) regs->cp0_epc; 920 force_sig_info(SIGFPE, &info, current); 921 break; 922 case BRK_BUG: 923 die_if_kernel("Kernel bug detected", regs); 924 force_sig(SIGTRAP, current); 925 break; 926 case BRK_MEMU: 927 /* 928 * This breakpoint code is used by the FPU emulator to retake 929 * control of the CPU after executing the instruction from the 930 * delay slot of an emulated branch. 931 * 932 * Terminate if exception was recognized as a delay slot return 933 * otherwise handle as normal. 934 */ 935 if (do_dsemulret(regs)) 936 return; 937 938 die_if_kernel("Math emu break/trap", regs); 939 force_sig(SIGTRAP, current); 940 break; 941 default: 942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 943 die_if_kernel(b, regs); 944 if (si_code) { 945 info.si_signo = SIGTRAP; 946 info.si_code = si_code; 947 force_sig_info(SIGTRAP, &info, current); 948 } else { 949 force_sig(SIGTRAP, current); 950 } 951 } 952 } 953 954 asmlinkage void do_bp(struct pt_regs *regs) 955 { 956 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 957 unsigned int opcode, bcode; 958 enum ctx_state prev_state; 959 mm_segment_t seg; 960 961 seg = get_fs(); 962 if (!user_mode(regs)) 963 set_fs(KERNEL_DS); 964 965 prev_state = exception_enter(); 966 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 967 if (get_isa16_mode(regs->cp0_epc)) { 968 u16 instr[2]; 969 970 if (__get_user(instr[0], (u16 __user *)epc)) 971 goto out_sigsegv; 972 973 if (!cpu_has_mmips) { 974 /* MIPS16e mode */ 975 bcode = (instr[0] >> 5) & 0x3f; 976 } else if (mm_insn_16bit(instr[0])) { 977 /* 16-bit microMIPS BREAK */ 978 bcode = instr[0] & 0xf; 979 } else { 980 /* 32-bit microMIPS BREAK */ 981 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 982 goto out_sigsegv; 983 opcode = (instr[0] << 16) | instr[1]; 984 bcode = (opcode >> 6) & ((1 << 20) - 1); 985 } 986 } else { 987 if (__get_user(opcode, (unsigned int __user *)epc)) 988 goto out_sigsegv; 989 bcode = (opcode >> 6) & ((1 << 20) - 1); 990 } 991 992 /* 993 * There is the ancient bug in the MIPS assemblers that the break 994 * code starts left to bit 16 instead to bit 6 in the opcode. 995 * Gas is bug-compatible, but not always, grrr... 996 * We handle both cases with a simple heuristics. --macro 997 */ 998 if (bcode >= (1 << 10)) 999 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 1000 1001 /* 1002 * notify the kprobe handlers, if instruction is likely to 1003 * pertain to them. 1004 */ 1005 switch (bcode) { 1006 case BRK_UPROBE: 1007 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1009 goto out; 1010 else 1011 break; 1012 case BRK_UPROBE_XOL: 1013 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1014 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1015 goto out; 1016 else 1017 break; 1018 case BRK_KPROBE_BP: 1019 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1020 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1021 goto out; 1022 else 1023 break; 1024 case BRK_KPROBE_SSTEPBP: 1025 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1026 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1027 goto out; 1028 else 1029 break; 1030 default: 1031 break; 1032 } 1033 1034 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1035 1036 out: 1037 set_fs(seg); 1038 exception_exit(prev_state); 1039 return; 1040 1041 out_sigsegv: 1042 force_sig(SIGSEGV, current); 1043 goto out; 1044 } 1045 1046 asmlinkage void do_tr(struct pt_regs *regs) 1047 { 1048 u32 opcode, tcode = 0; 1049 enum ctx_state prev_state; 1050 u16 instr[2]; 1051 mm_segment_t seg; 1052 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1053 1054 seg = get_fs(); 1055 if (!user_mode(regs)) 1056 set_fs(get_ds()); 1057 1058 prev_state = exception_enter(); 1059 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1060 if (get_isa16_mode(regs->cp0_epc)) { 1061 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1062 __get_user(instr[1], (u16 __user *)(epc + 2))) 1063 goto out_sigsegv; 1064 opcode = (instr[0] << 16) | instr[1]; 1065 /* Immediate versions don't provide a code. */ 1066 if (!(opcode & OPCODE)) 1067 tcode = (opcode >> 12) & ((1 << 4) - 1); 1068 } else { 1069 if (__get_user(opcode, (u32 __user *)epc)) 1070 goto out_sigsegv; 1071 /* Immediate versions don't provide a code. */ 1072 if (!(opcode & OPCODE)) 1073 tcode = (opcode >> 6) & ((1 << 10) - 1); 1074 } 1075 1076 do_trap_or_bp(regs, tcode, 0, "Trap"); 1077 1078 out: 1079 set_fs(seg); 1080 exception_exit(prev_state); 1081 return; 1082 1083 out_sigsegv: 1084 force_sig(SIGSEGV, current); 1085 goto out; 1086 } 1087 1088 asmlinkage void do_ri(struct pt_regs *regs) 1089 { 1090 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1091 unsigned long old_epc = regs->cp0_epc; 1092 unsigned long old31 = regs->regs[31]; 1093 enum ctx_state prev_state; 1094 unsigned int opcode = 0; 1095 int status = -1; 1096 1097 /* 1098 * Avoid any kernel code. Just emulate the R2 instruction 1099 * as quickly as possible. 1100 */ 1101 if (mipsr2_emulation && cpu_has_mips_r6 && 1102 likely(user_mode(regs)) && 1103 likely(get_user(opcode, epc) >= 0)) { 1104 unsigned long fcr31 = 0; 1105 1106 status = mipsr2_decoder(regs, opcode, &fcr31); 1107 switch (status) { 1108 case 0: 1109 case SIGEMT: 1110 task_thread_info(current)->r2_emul_return = 1; 1111 return; 1112 case SIGILL: 1113 goto no_r2_instr; 1114 default: 1115 process_fpemu_return(status, 1116 ¤t->thread.cp0_baduaddr, 1117 fcr31); 1118 task_thread_info(current)->r2_emul_return = 1; 1119 return; 1120 } 1121 } 1122 1123 no_r2_instr: 1124 1125 prev_state = exception_enter(); 1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1127 1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1129 SIGILL) == NOTIFY_STOP) 1130 goto out; 1131 1132 die_if_kernel("Reserved instruction in kernel code", regs); 1133 1134 if (unlikely(compute_return_epc(regs) < 0)) 1135 goto out; 1136 1137 if (!get_isa16_mode(regs->cp0_epc)) { 1138 if (unlikely(get_user(opcode, epc) < 0)) 1139 status = SIGSEGV; 1140 1141 if (!cpu_has_llsc && status < 0) 1142 status = simulate_llsc(regs, opcode); 1143 1144 if (status < 0) 1145 status = simulate_rdhwr_normal(regs, opcode); 1146 1147 if (status < 0) 1148 status = simulate_sync(regs, opcode); 1149 1150 if (status < 0) 1151 status = simulate_fp(regs, opcode, old_epc, old31); 1152 } else if (cpu_has_mmips) { 1153 unsigned short mmop[2] = { 0 }; 1154 1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1156 status = SIGSEGV; 1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1158 status = SIGSEGV; 1159 opcode = mmop[0]; 1160 opcode = (opcode << 16) | mmop[1]; 1161 1162 if (status < 0) 1163 status = simulate_rdhwr_mm(regs, opcode); 1164 } 1165 1166 if (status < 0) 1167 status = SIGILL; 1168 1169 if (unlikely(status > 0)) { 1170 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1171 regs->regs[31] = old31; 1172 force_sig(status, current); 1173 } 1174 1175 out: 1176 exception_exit(prev_state); 1177 } 1178 1179 /* 1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1181 * emulated more than some threshold number of instructions, force migration to 1182 * a "CPU" that has FP support. 1183 */ 1184 static void mt_ase_fp_affinity(void) 1185 { 1186 #ifdef CONFIG_MIPS_MT_FPAFF 1187 if (mt_fpemul_threshold > 0 && 1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1189 /* 1190 * If there's no FPU present, or if the application has already 1191 * restricted the allowed set to exclude any CPUs with FPUs, 1192 * we'll skip the procedure. 1193 */ 1194 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1195 cpumask_t tmask; 1196 1197 current->thread.user_cpus_allowed 1198 = current->cpus_allowed; 1199 cpumask_and(&tmask, ¤t->cpus_allowed, 1200 &mt_fpu_cpumask); 1201 set_cpus_allowed_ptr(current, &tmask); 1202 set_thread_flag(TIF_FPUBOUND); 1203 } 1204 } 1205 #endif /* CONFIG_MIPS_MT_FPAFF */ 1206 } 1207 1208 /* 1209 * No lock; only written during early bootup by CPU 0. 1210 */ 1211 static RAW_NOTIFIER_HEAD(cu2_chain); 1212 1213 int __ref register_cu2_notifier(struct notifier_block *nb) 1214 { 1215 return raw_notifier_chain_register(&cu2_chain, nb); 1216 } 1217 1218 int cu2_notifier_call_chain(unsigned long val, void *v) 1219 { 1220 return raw_notifier_call_chain(&cu2_chain, val, v); 1221 } 1222 1223 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1224 void *data) 1225 { 1226 struct pt_regs *regs = data; 1227 1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1229 "instruction", regs); 1230 force_sig(SIGILL, current); 1231 1232 return NOTIFY_OK; 1233 } 1234 1235 static int wait_on_fp_mode_switch(atomic_t *p) 1236 { 1237 /* 1238 * The FP mode for this task is currently being switched. That may 1239 * involve modifications to the format of this tasks FP context which 1240 * make it unsafe to proceed with execution for the moment. Instead, 1241 * schedule some other task. 1242 */ 1243 schedule(); 1244 return 0; 1245 } 1246 1247 static int enable_restore_fp_context(int msa) 1248 { 1249 int err, was_fpu_owner, prior_msa; 1250 1251 /* 1252 * If an FP mode switch is currently underway, wait for it to 1253 * complete before proceeding. 1254 */ 1255 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1256 wait_on_fp_mode_switch, TASK_KILLABLE); 1257 1258 if (!used_math()) { 1259 /* First time FP context user. */ 1260 preempt_disable(); 1261 err = init_fpu(); 1262 if (msa && !err) { 1263 enable_msa(); 1264 init_msa_upper(); 1265 set_thread_flag(TIF_USEDMSA); 1266 set_thread_flag(TIF_MSA_CTX_LIVE); 1267 } 1268 preempt_enable(); 1269 if (!err) 1270 set_used_math(); 1271 return err; 1272 } 1273 1274 /* 1275 * This task has formerly used the FP context. 1276 * 1277 * If this thread has no live MSA vector context then we can simply 1278 * restore the scalar FP context. If it has live MSA vector context 1279 * (that is, it has or may have used MSA since last performing a 1280 * function call) then we'll need to restore the vector context. This 1281 * applies even if we're currently only executing a scalar FP 1282 * instruction. This is because if we were to later execute an MSA 1283 * instruction then we'd either have to: 1284 * 1285 * - Restore the vector context & clobber any registers modified by 1286 * scalar FP instructions between now & then. 1287 * 1288 * or 1289 * 1290 * - Not restore the vector context & lose the most significant bits 1291 * of all vector registers. 1292 * 1293 * Neither of those options is acceptable. We cannot restore the least 1294 * significant bits of the registers now & only restore the most 1295 * significant bits later because the most significant bits of any 1296 * vector registers whose aliased FP register is modified now will have 1297 * been zeroed. We'd have no way to know that when restoring the vector 1298 * context & thus may load an outdated value for the most significant 1299 * bits of a vector register. 1300 */ 1301 if (!msa && !thread_msa_context_live()) 1302 return own_fpu(1); 1303 1304 /* 1305 * This task is using or has previously used MSA. Thus we require 1306 * that Status.FR == 1. 1307 */ 1308 preempt_disable(); 1309 was_fpu_owner = is_fpu_owner(); 1310 err = own_fpu_inatomic(0); 1311 if (err) 1312 goto out; 1313 1314 enable_msa(); 1315 write_msa_csr(current->thread.fpu.msacsr); 1316 set_thread_flag(TIF_USEDMSA); 1317 1318 /* 1319 * If this is the first time that the task is using MSA and it has 1320 * previously used scalar FP in this time slice then we already nave 1321 * FP context which we shouldn't clobber. We do however need to clear 1322 * the upper 64b of each vector register so that this task has no 1323 * opportunity to see data left behind by another. 1324 */ 1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1326 if (!prior_msa && was_fpu_owner) { 1327 init_msa_upper(); 1328 1329 goto out; 1330 } 1331 1332 if (!prior_msa) { 1333 /* 1334 * Restore the least significant 64b of each vector register 1335 * from the existing scalar FP context. 1336 */ 1337 _restore_fp(current); 1338 1339 /* 1340 * The task has not formerly used MSA, so clear the upper 64b 1341 * of each vector register such that it cannot see data left 1342 * behind by another task. 1343 */ 1344 init_msa_upper(); 1345 } else { 1346 /* We need to restore the vector context. */ 1347 restore_msa(current); 1348 1349 /* Restore the scalar FP control & status register */ 1350 if (!was_fpu_owner) 1351 write_32bit_cp1_register(CP1_STATUS, 1352 current->thread.fpu.fcr31); 1353 } 1354 1355 out: 1356 preempt_enable(); 1357 1358 return 0; 1359 } 1360 1361 asmlinkage void do_cpu(struct pt_regs *regs) 1362 { 1363 enum ctx_state prev_state; 1364 unsigned int __user *epc; 1365 unsigned long old_epc, old31; 1366 void __user *fault_addr; 1367 unsigned int opcode; 1368 unsigned long fcr31; 1369 unsigned int cpid; 1370 int status, err; 1371 int sig; 1372 1373 prev_state = exception_enter(); 1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1375 1376 if (cpid != 2) 1377 die_if_kernel("do_cpu invoked from kernel context!", regs); 1378 1379 switch (cpid) { 1380 case 0: 1381 epc = (unsigned int __user *)exception_epc(regs); 1382 old_epc = regs->cp0_epc; 1383 old31 = regs->regs[31]; 1384 opcode = 0; 1385 status = -1; 1386 1387 if (unlikely(compute_return_epc(regs) < 0)) 1388 break; 1389 1390 if (!get_isa16_mode(regs->cp0_epc)) { 1391 if (unlikely(get_user(opcode, epc) < 0)) 1392 status = SIGSEGV; 1393 1394 if (!cpu_has_llsc && status < 0) 1395 status = simulate_llsc(regs, opcode); 1396 } 1397 1398 if (status < 0) 1399 status = SIGILL; 1400 1401 if (unlikely(status > 0)) { 1402 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1403 regs->regs[31] = old31; 1404 force_sig(status, current); 1405 } 1406 1407 break; 1408 1409 case 3: 1410 /* 1411 * The COP3 opcode space and consequently the CP0.Status.CU3 1412 * bit and the CP0.Cause.CE=3 encoding have been removed as 1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1414 * up the space has been reused for COP1X instructions, that 1415 * are enabled by the CP0.Status.CU1 bit and consequently 1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1417 * exceptions. Some FPU-less processors that implement one 1418 * of these ISAs however use this code erroneously for COP1X 1419 * instructions. Therefore we redirect this trap to the FP 1420 * emulator too. 1421 */ 1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1423 force_sig(SIGILL, current); 1424 break; 1425 } 1426 /* Fall through. */ 1427 1428 case 1: 1429 err = enable_restore_fp_context(0); 1430 1431 if (raw_cpu_has_fpu && !err) 1432 break; 1433 1434 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1435 &fault_addr); 1436 1437 /* 1438 * We can't allow the emulated instruction to leave 1439 * any enabled Cause bits set in $fcr31. 1440 */ 1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1442 current->thread.fpu.fcr31 &= ~fcr31; 1443 1444 /* Send a signal if required. */ 1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1446 mt_ase_fp_affinity(); 1447 1448 break; 1449 1450 case 2: 1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1452 break; 1453 } 1454 1455 exception_exit(prev_state); 1456 } 1457 1458 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1459 { 1460 enum ctx_state prev_state; 1461 1462 prev_state = exception_enter(); 1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1466 goto out; 1467 1468 /* Clear MSACSR.Cause before enabling interrupts */ 1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1470 local_irq_enable(); 1471 1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1473 force_sig(SIGFPE, current); 1474 out: 1475 exception_exit(prev_state); 1476 } 1477 1478 asmlinkage void do_msa(struct pt_regs *regs) 1479 { 1480 enum ctx_state prev_state; 1481 int err; 1482 1483 prev_state = exception_enter(); 1484 1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1486 force_sig(SIGILL, current); 1487 goto out; 1488 } 1489 1490 die_if_kernel("do_msa invoked from kernel context!", regs); 1491 1492 err = enable_restore_fp_context(1); 1493 if (err) 1494 force_sig(SIGILL, current); 1495 out: 1496 exception_exit(prev_state); 1497 } 1498 1499 asmlinkage void do_mdmx(struct pt_regs *regs) 1500 { 1501 enum ctx_state prev_state; 1502 1503 prev_state = exception_enter(); 1504 force_sig(SIGILL, current); 1505 exception_exit(prev_state); 1506 } 1507 1508 /* 1509 * Called with interrupts disabled. 1510 */ 1511 asmlinkage void do_watch(struct pt_regs *regs) 1512 { 1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT }; 1514 enum ctx_state prev_state; 1515 1516 prev_state = exception_enter(); 1517 /* 1518 * Clear WP (bit 22) bit of cause register so we don't loop 1519 * forever. 1520 */ 1521 clear_c0_cause(CAUSEF_WP); 1522 1523 /* 1524 * If the current thread has the watch registers loaded, save 1525 * their values and send SIGTRAP. Otherwise another thread 1526 * left the registers set, clear them and continue. 1527 */ 1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1529 mips_read_watch_registers(); 1530 local_irq_enable(); 1531 force_sig_info(SIGTRAP, &info, current); 1532 } else { 1533 mips_clear_watch_registers(); 1534 local_irq_enable(); 1535 } 1536 exception_exit(prev_state); 1537 } 1538 1539 asmlinkage void do_mcheck(struct pt_regs *regs) 1540 { 1541 int multi_match = regs->cp0_status & ST0_TS; 1542 enum ctx_state prev_state; 1543 mm_segment_t old_fs = get_fs(); 1544 1545 prev_state = exception_enter(); 1546 show_regs(regs); 1547 1548 if (multi_match) { 1549 dump_tlb_regs(); 1550 pr_info("\n"); 1551 dump_tlb_all(); 1552 } 1553 1554 if (!user_mode(regs)) 1555 set_fs(KERNEL_DS); 1556 1557 show_code((unsigned int __user *) regs->cp0_epc); 1558 1559 set_fs(old_fs); 1560 1561 /* 1562 * Some chips may have other causes of machine check (e.g. SB1 1563 * graduation timer) 1564 */ 1565 panic("Caught Machine Check exception - %scaused by multiple " 1566 "matching entries in the TLB.", 1567 (multi_match) ? "" : "not "); 1568 } 1569 1570 asmlinkage void do_mt(struct pt_regs *regs) 1571 { 1572 int subcode; 1573 1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1575 >> VPECONTROL_EXCPT_SHIFT; 1576 switch (subcode) { 1577 case 0: 1578 printk(KERN_DEBUG "Thread Underflow\n"); 1579 break; 1580 case 1: 1581 printk(KERN_DEBUG "Thread Overflow\n"); 1582 break; 1583 case 2: 1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1585 break; 1586 case 3: 1587 printk(KERN_DEBUG "Gating Storage Exception\n"); 1588 break; 1589 case 4: 1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1591 break; 1592 case 5: 1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1594 break; 1595 default: 1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1597 subcode); 1598 break; 1599 } 1600 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1601 1602 force_sig(SIGILL, current); 1603 } 1604 1605 1606 asmlinkage void do_dsp(struct pt_regs *regs) 1607 { 1608 if (cpu_has_dsp) 1609 panic("Unexpected DSP exception"); 1610 1611 force_sig(SIGILL, current); 1612 } 1613 1614 asmlinkage void do_reserved(struct pt_regs *regs) 1615 { 1616 /* 1617 * Game over - no way to handle this if it ever occurs. Most probably 1618 * caused by a new unknown cpu type or after another deadly 1619 * hard/software error. 1620 */ 1621 show_regs(regs); 1622 panic("Caught reserved exception %ld - should not happen.", 1623 (regs->cp0_cause & 0x7f) >> 2); 1624 } 1625 1626 static int __initdata l1parity = 1; 1627 static int __init nol1parity(char *s) 1628 { 1629 l1parity = 0; 1630 return 1; 1631 } 1632 __setup("nol1par", nol1parity); 1633 static int __initdata l2parity = 1; 1634 static int __init nol2parity(char *s) 1635 { 1636 l2parity = 0; 1637 return 1; 1638 } 1639 __setup("nol2par", nol2parity); 1640 1641 /* 1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1643 * it different ways. 1644 */ 1645 static inline void parity_protection_init(void) 1646 { 1647 switch (current_cpu_type()) { 1648 case CPU_24K: 1649 case CPU_34K: 1650 case CPU_74K: 1651 case CPU_1004K: 1652 case CPU_1074K: 1653 case CPU_INTERAPTIV: 1654 case CPU_PROAPTIV: 1655 case CPU_P5600: 1656 case CPU_QEMU_GENERIC: 1657 case CPU_I6400: 1658 case CPU_P6600: 1659 { 1660 #define ERRCTL_PE 0x80000000 1661 #define ERRCTL_L2P 0x00800000 1662 unsigned long errctl; 1663 unsigned int l1parity_present, l2parity_present; 1664 1665 errctl = read_c0_ecc(); 1666 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1667 1668 /* probe L1 parity support */ 1669 write_c0_ecc(errctl | ERRCTL_PE); 1670 back_to_back_c0_hazard(); 1671 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1672 1673 /* probe L2 parity support */ 1674 write_c0_ecc(errctl|ERRCTL_L2P); 1675 back_to_back_c0_hazard(); 1676 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1677 1678 if (l1parity_present && l2parity_present) { 1679 if (l1parity) 1680 errctl |= ERRCTL_PE; 1681 if (l1parity ^ l2parity) 1682 errctl |= ERRCTL_L2P; 1683 } else if (l1parity_present) { 1684 if (l1parity) 1685 errctl |= ERRCTL_PE; 1686 } else if (l2parity_present) { 1687 if (l2parity) 1688 errctl |= ERRCTL_L2P; 1689 } else { 1690 /* No parity available */ 1691 } 1692 1693 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1694 1695 write_c0_ecc(errctl); 1696 back_to_back_c0_hazard(); 1697 errctl = read_c0_ecc(); 1698 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1699 1700 if (l1parity_present) 1701 printk(KERN_INFO "Cache parity protection %sabled\n", 1702 (errctl & ERRCTL_PE) ? "en" : "dis"); 1703 1704 if (l2parity_present) { 1705 if (l1parity_present && l1parity) 1706 errctl ^= ERRCTL_L2P; 1707 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1708 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1709 } 1710 } 1711 break; 1712 1713 case CPU_5KC: 1714 case CPU_5KE: 1715 case CPU_LOONGSON1: 1716 write_c0_ecc(0x80000000); 1717 back_to_back_c0_hazard(); 1718 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1719 printk(KERN_INFO "Cache parity protection %sabled\n", 1720 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1721 break; 1722 case CPU_20KC: 1723 case CPU_25KF: 1724 /* Clear the DE bit (bit 16) in the c0_status register. */ 1725 printk(KERN_INFO "Enable cache parity protection for " 1726 "MIPS 20KC/25KF CPUs.\n"); 1727 clear_c0_status(ST0_DE); 1728 break; 1729 default: 1730 break; 1731 } 1732 } 1733 1734 asmlinkage void cache_parity_error(void) 1735 { 1736 const int field = 2 * sizeof(unsigned long); 1737 unsigned int reg_val; 1738 1739 /* For the moment, report the problem and hang. */ 1740 printk("Cache error exception:\n"); 1741 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1742 reg_val = read_c0_cacheerr(); 1743 printk("c0_cacheerr == %08x\n", reg_val); 1744 1745 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1746 reg_val & (1<<30) ? "secondary" : "primary", 1747 reg_val & (1<<31) ? "data" : "insn"); 1748 if ((cpu_has_mips_r2_r6) && 1749 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1750 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1751 reg_val & (1<<29) ? "ED " : "", 1752 reg_val & (1<<28) ? "ET " : "", 1753 reg_val & (1<<27) ? "ES " : "", 1754 reg_val & (1<<26) ? "EE " : "", 1755 reg_val & (1<<25) ? "EB " : "", 1756 reg_val & (1<<24) ? "EI " : "", 1757 reg_val & (1<<23) ? "E1 " : "", 1758 reg_val & (1<<22) ? "E0 " : ""); 1759 } else { 1760 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1761 reg_val & (1<<29) ? "ED " : "", 1762 reg_val & (1<<28) ? "ET " : "", 1763 reg_val & (1<<26) ? "EE " : "", 1764 reg_val & (1<<25) ? "EB " : "", 1765 reg_val & (1<<24) ? "EI " : "", 1766 reg_val & (1<<23) ? "E1 " : "", 1767 reg_val & (1<<22) ? "E0 " : ""); 1768 } 1769 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1770 1771 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1772 if (reg_val & (1<<22)) 1773 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1774 1775 if (reg_val & (1<<23)) 1776 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1777 #endif 1778 1779 panic("Can't handle the cache error!"); 1780 } 1781 1782 asmlinkage void do_ftlb(void) 1783 { 1784 const int field = 2 * sizeof(unsigned long); 1785 unsigned int reg_val; 1786 1787 /* For the moment, report the problem and hang. */ 1788 if ((cpu_has_mips_r2_r6) && 1789 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1790 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1791 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1792 read_c0_ecc()); 1793 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1794 reg_val = read_c0_cacheerr(); 1795 pr_err("c0_cacheerr == %08x\n", reg_val); 1796 1797 if ((reg_val & 0xc0000000) == 0xc0000000) { 1798 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1799 } else { 1800 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1801 reg_val & (1<<30) ? "secondary" : "primary", 1802 reg_val & (1<<31) ? "data" : "insn"); 1803 } 1804 } else { 1805 pr_err("FTLB error exception\n"); 1806 } 1807 /* Just print the cacheerr bits for now */ 1808 cache_parity_error(); 1809 } 1810 1811 /* 1812 * SDBBP EJTAG debug exception handler. 1813 * We skip the instruction and return to the next instruction. 1814 */ 1815 void ejtag_exception_handler(struct pt_regs *regs) 1816 { 1817 const int field = 2 * sizeof(unsigned long); 1818 unsigned long depc, old_epc, old_ra; 1819 unsigned int debug; 1820 1821 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1822 depc = read_c0_depc(); 1823 debug = read_c0_debug(); 1824 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1825 if (debug & 0x80000000) { 1826 /* 1827 * In branch delay slot. 1828 * We cheat a little bit here and use EPC to calculate the 1829 * debug return address (DEPC). EPC is restored after the 1830 * calculation. 1831 */ 1832 old_epc = regs->cp0_epc; 1833 old_ra = regs->regs[31]; 1834 regs->cp0_epc = depc; 1835 compute_return_epc(regs); 1836 depc = regs->cp0_epc; 1837 regs->cp0_epc = old_epc; 1838 regs->regs[31] = old_ra; 1839 } else 1840 depc += 4; 1841 write_c0_depc(depc); 1842 1843 #if 0 1844 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1845 write_c0_debug(debug | 0x100); 1846 #endif 1847 } 1848 1849 /* 1850 * NMI exception handler. 1851 * No lock; only written during early bootup by CPU 0. 1852 */ 1853 static RAW_NOTIFIER_HEAD(nmi_chain); 1854 1855 int register_nmi_notifier(struct notifier_block *nb) 1856 { 1857 return raw_notifier_chain_register(&nmi_chain, nb); 1858 } 1859 1860 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1861 { 1862 char str[100]; 1863 1864 nmi_enter(); 1865 raw_notifier_call_chain(&nmi_chain, 0, regs); 1866 bust_spinlocks(1); 1867 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1868 smp_processor_id(), regs->cp0_epc); 1869 regs->cp0_epc = read_c0_errorepc(); 1870 die(str, regs); 1871 nmi_exit(); 1872 } 1873 1874 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1875 1876 unsigned long ebase; 1877 EXPORT_SYMBOL_GPL(ebase); 1878 unsigned long exception_handlers[32]; 1879 unsigned long vi_handlers[64]; 1880 1881 void __init *set_except_vector(int n, void *addr) 1882 { 1883 unsigned long handler = (unsigned long) addr; 1884 unsigned long old_handler; 1885 1886 #ifdef CONFIG_CPU_MICROMIPS 1887 /* 1888 * Only the TLB handlers are cache aligned with an even 1889 * address. All other handlers are on an odd address and 1890 * require no modification. Otherwise, MIPS32 mode will 1891 * be entered when handling any TLB exceptions. That 1892 * would be bad...since we must stay in microMIPS mode. 1893 */ 1894 if (!(handler & 0x1)) 1895 handler |= 1; 1896 #endif 1897 old_handler = xchg(&exception_handlers[n], handler); 1898 1899 if (n == 0 && cpu_has_divec) { 1900 #ifdef CONFIG_CPU_MICROMIPS 1901 unsigned long jump_mask = ~((1 << 27) - 1); 1902 #else 1903 unsigned long jump_mask = ~((1 << 28) - 1); 1904 #endif 1905 u32 *buf = (u32 *)(ebase + 0x200); 1906 unsigned int k0 = 26; 1907 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1908 uasm_i_j(&buf, handler & ~jump_mask); 1909 uasm_i_nop(&buf); 1910 } else { 1911 UASM_i_LA(&buf, k0, handler); 1912 uasm_i_jr(&buf, k0); 1913 uasm_i_nop(&buf); 1914 } 1915 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1916 } 1917 return (void *)old_handler; 1918 } 1919 1920 static void do_default_vi(void) 1921 { 1922 show_regs(get_irq_regs()); 1923 panic("Caught unexpected vectored interrupt."); 1924 } 1925 1926 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1927 { 1928 unsigned long handler; 1929 unsigned long old_handler = vi_handlers[n]; 1930 int srssets = current_cpu_data.srsets; 1931 u16 *h; 1932 unsigned char *b; 1933 1934 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1935 1936 if (addr == NULL) { 1937 handler = (unsigned long) do_default_vi; 1938 srs = 0; 1939 } else 1940 handler = (unsigned long) addr; 1941 vi_handlers[n] = handler; 1942 1943 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1944 1945 if (srs >= srssets) 1946 panic("Shadow register set %d not supported", srs); 1947 1948 if (cpu_has_veic) { 1949 if (board_bind_eic_interrupt) 1950 board_bind_eic_interrupt(n, srs); 1951 } else if (cpu_has_vint) { 1952 /* SRSMap is only defined if shadow sets are implemented */ 1953 if (srssets > 1) 1954 change_c0_srsmap(0xf << n*4, srs << n*4); 1955 } 1956 1957 if (srs == 0) { 1958 /* 1959 * If no shadow set is selected then use the default handler 1960 * that does normal register saving and standard interrupt exit 1961 */ 1962 extern char except_vec_vi, except_vec_vi_lui; 1963 extern char except_vec_vi_ori, except_vec_vi_end; 1964 extern char rollback_except_vec_vi; 1965 char *vec_start = using_rollback_handler() ? 1966 &rollback_except_vec_vi : &except_vec_vi; 1967 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1968 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1969 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1970 #else 1971 const int lui_offset = &except_vec_vi_lui - vec_start; 1972 const int ori_offset = &except_vec_vi_ori - vec_start; 1973 #endif 1974 const int handler_len = &except_vec_vi_end - vec_start; 1975 1976 if (handler_len > VECTORSPACING) { 1977 /* 1978 * Sigh... panicing won't help as the console 1979 * is probably not configured :( 1980 */ 1981 panic("VECTORSPACING too small"); 1982 } 1983 1984 set_handler(((unsigned long)b - ebase), vec_start, 1985 #ifdef CONFIG_CPU_MICROMIPS 1986 (handler_len - 1)); 1987 #else 1988 handler_len); 1989 #endif 1990 h = (u16 *)(b + lui_offset); 1991 *h = (handler >> 16) & 0xffff; 1992 h = (u16 *)(b + ori_offset); 1993 *h = (handler & 0xffff); 1994 local_flush_icache_range((unsigned long)b, 1995 (unsigned long)(b+handler_len)); 1996 } 1997 else { 1998 /* 1999 * In other cases jump directly to the interrupt handler. It 2000 * is the handler's responsibility to save registers if required 2001 * (eg hi/lo) and return from the exception using "eret". 2002 */ 2003 u32 insn; 2004 2005 h = (u16 *)b; 2006 /* j handler */ 2007 #ifdef CONFIG_CPU_MICROMIPS 2008 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2009 #else 2010 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2011 #endif 2012 h[0] = (insn >> 16) & 0xffff; 2013 h[1] = insn & 0xffff; 2014 h[2] = 0; 2015 h[3] = 0; 2016 local_flush_icache_range((unsigned long)b, 2017 (unsigned long)(b+8)); 2018 } 2019 2020 return (void *)old_handler; 2021 } 2022 2023 void *set_vi_handler(int n, vi_handler_t addr) 2024 { 2025 return set_vi_srs_handler(n, addr, 0); 2026 } 2027 2028 extern void tlb_init(void); 2029 2030 /* 2031 * Timer interrupt 2032 */ 2033 int cp0_compare_irq; 2034 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2035 int cp0_compare_irq_shift; 2036 2037 /* 2038 * Performance counter IRQ or -1 if shared with timer 2039 */ 2040 int cp0_perfcount_irq; 2041 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2042 2043 /* 2044 * Fast debug channel IRQ or -1 if not present 2045 */ 2046 int cp0_fdc_irq; 2047 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2048 2049 static int noulri; 2050 2051 static int __init ulri_disable(char *s) 2052 { 2053 pr_info("Disabling ulri\n"); 2054 noulri = 1; 2055 2056 return 1; 2057 } 2058 __setup("noulri", ulri_disable); 2059 2060 /* configure STATUS register */ 2061 static void configure_status(void) 2062 { 2063 /* 2064 * Disable coprocessors and select 32-bit or 64-bit addressing 2065 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2066 * flag that some firmware may have left set and the TS bit (for 2067 * IP27). Set XX for ISA IV code to work. 2068 */ 2069 unsigned int status_set = ST0_CU0; 2070 #ifdef CONFIG_64BIT 2071 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2072 #endif 2073 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2074 status_set |= ST0_XX; 2075 if (cpu_has_dsp) 2076 status_set |= ST0_MX; 2077 2078 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2079 status_set); 2080 } 2081 2082 unsigned int hwrena; 2083 EXPORT_SYMBOL_GPL(hwrena); 2084 2085 /* configure HWRENA register */ 2086 static void configure_hwrena(void) 2087 { 2088 hwrena = cpu_hwrena_impl_bits; 2089 2090 if (cpu_has_mips_r2_r6) 2091 hwrena |= MIPS_HWRENA_CPUNUM | 2092 MIPS_HWRENA_SYNCISTEP | 2093 MIPS_HWRENA_CC | 2094 MIPS_HWRENA_CCRES; 2095 2096 if (!noulri && cpu_has_userlocal) 2097 hwrena |= MIPS_HWRENA_ULR; 2098 2099 if (hwrena) 2100 write_c0_hwrena(hwrena); 2101 } 2102 2103 static void configure_exception_vector(void) 2104 { 2105 if (cpu_has_veic || cpu_has_vint) { 2106 unsigned long sr = set_c0_status(ST0_BEV); 2107 /* If available, use WG to set top bits of EBASE */ 2108 if (cpu_has_ebase_wg) { 2109 #ifdef CONFIG_64BIT 2110 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2111 #else 2112 write_c0_ebase(ebase | MIPS_EBASE_WG); 2113 #endif 2114 } 2115 write_c0_ebase(ebase); 2116 write_c0_status(sr); 2117 /* Setting vector spacing enables EI/VI mode */ 2118 change_c0_intctl(0x3e0, VECTORSPACING); 2119 } 2120 if (cpu_has_divec) { 2121 if (cpu_has_mipsmt) { 2122 unsigned int vpflags = dvpe(); 2123 set_c0_cause(CAUSEF_IV); 2124 evpe(vpflags); 2125 } else 2126 set_c0_cause(CAUSEF_IV); 2127 } 2128 } 2129 2130 void per_cpu_trap_init(bool is_boot_cpu) 2131 { 2132 unsigned int cpu = smp_processor_id(); 2133 2134 configure_status(); 2135 configure_hwrena(); 2136 2137 configure_exception_vector(); 2138 2139 /* 2140 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2141 * 2142 * o read IntCtl.IPTI to determine the timer interrupt 2143 * o read IntCtl.IPPCI to determine the performance counter interrupt 2144 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2145 */ 2146 if (cpu_has_mips_r2_r6) { 2147 /* 2148 * We shouldn't trust a secondary core has a sane EBASE register 2149 * so use the one calculated by the boot CPU. 2150 */ 2151 if (!is_boot_cpu) { 2152 /* If available, use WG to set top bits of EBASE */ 2153 if (cpu_has_ebase_wg) { 2154 #ifdef CONFIG_64BIT 2155 write_c0_ebase_64(ebase | MIPS_EBASE_WG); 2156 #else 2157 write_c0_ebase(ebase | MIPS_EBASE_WG); 2158 #endif 2159 } 2160 write_c0_ebase(ebase); 2161 } 2162 2163 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2164 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2165 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2166 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2167 if (!cp0_fdc_irq) 2168 cp0_fdc_irq = -1; 2169 2170 } else { 2171 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2172 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2173 cp0_perfcount_irq = -1; 2174 cp0_fdc_irq = -1; 2175 } 2176 2177 if (!cpu_data[cpu].asid_cache) 2178 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2179 2180 atomic_inc(&init_mm.mm_count); 2181 current->active_mm = &init_mm; 2182 BUG_ON(current->mm); 2183 enter_lazy_tlb(&init_mm, current); 2184 2185 /* Boot CPU's cache setup in setup_arch(). */ 2186 if (!is_boot_cpu) 2187 cpu_cache_init(); 2188 tlb_init(); 2189 TLBMISS_HANDLER_SETUP(); 2190 } 2191 2192 /* Install CPU exception handler */ 2193 void set_handler(unsigned long offset, void *addr, unsigned long size) 2194 { 2195 #ifdef CONFIG_CPU_MICROMIPS 2196 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2197 #else 2198 memcpy((void *)(ebase + offset), addr, size); 2199 #endif 2200 local_flush_icache_range(ebase + offset, ebase + offset + size); 2201 } 2202 2203 static char panic_null_cerr[] = 2204 "Trying to set NULL cache error exception handler"; 2205 2206 /* 2207 * Install uncached CPU exception handler. 2208 * This is suitable only for the cache error exception which is the only 2209 * exception handler that is being run uncached. 2210 */ 2211 void set_uncached_handler(unsigned long offset, void *addr, 2212 unsigned long size) 2213 { 2214 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2215 2216 if (!addr) 2217 panic(panic_null_cerr); 2218 2219 memcpy((void *)(uncached_ebase + offset), addr, size); 2220 } 2221 2222 static int __initdata rdhwr_noopt; 2223 static int __init set_rdhwr_noopt(char *str) 2224 { 2225 rdhwr_noopt = 1; 2226 return 1; 2227 } 2228 2229 __setup("rdhwr_noopt", set_rdhwr_noopt); 2230 2231 void __init trap_init(void) 2232 { 2233 extern char except_vec3_generic; 2234 extern char except_vec4; 2235 extern char except_vec3_r4000; 2236 unsigned long i; 2237 2238 check_wait(); 2239 2240 if (cpu_has_veic || cpu_has_vint) { 2241 unsigned long size = 0x200 + VECTORSPACING*64; 2242 phys_addr_t ebase_pa; 2243 2244 ebase = (unsigned long) 2245 __alloc_bootmem(size, 1 << fls(size), 0); 2246 2247 /* 2248 * Try to ensure ebase resides in KSeg0 if possible. 2249 * 2250 * It shouldn't generally be in XKPhys on MIPS64 to avoid 2251 * hitting a poorly defined exception base for Cache Errors. 2252 * The allocation is likely to be in the low 512MB of physical, 2253 * in which case we should be able to convert to KSeg0. 2254 * 2255 * EVA is special though as it allows segments to be rearranged 2256 * and to become uncached during cache error handling. 2257 */ 2258 ebase_pa = __pa(ebase); 2259 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) 2260 ebase = CKSEG0ADDR(ebase_pa); 2261 } else { 2262 ebase = CAC_BASE; 2263 2264 if (cpu_has_mips_r2_r6) { 2265 if (cpu_has_ebase_wg) { 2266 #ifdef CONFIG_64BIT 2267 ebase = (read_c0_ebase_64() & ~0xfff); 2268 #else 2269 ebase = (read_c0_ebase() & ~0xfff); 2270 #endif 2271 } else { 2272 ebase += (read_c0_ebase() & 0x3ffff000); 2273 } 2274 } 2275 } 2276 2277 if (cpu_has_mmips) { 2278 unsigned int config3 = read_c0_config3(); 2279 2280 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2281 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2282 else 2283 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2284 } 2285 2286 if (board_ebase_setup) 2287 board_ebase_setup(); 2288 per_cpu_trap_init(true); 2289 2290 /* 2291 * Copy the generic exception handlers to their final destination. 2292 * This will be overridden later as suitable for a particular 2293 * configuration. 2294 */ 2295 set_handler(0x180, &except_vec3_generic, 0x80); 2296 2297 /* 2298 * Setup default vectors 2299 */ 2300 for (i = 0; i <= 31; i++) 2301 set_except_vector(i, handle_reserved); 2302 2303 /* 2304 * Copy the EJTAG debug exception vector handler code to it's final 2305 * destination. 2306 */ 2307 if (cpu_has_ejtag && board_ejtag_handler_setup) 2308 board_ejtag_handler_setup(); 2309 2310 /* 2311 * Only some CPUs have the watch exceptions. 2312 */ 2313 if (cpu_has_watch) 2314 set_except_vector(EXCCODE_WATCH, handle_watch); 2315 2316 /* 2317 * Initialise interrupt handlers 2318 */ 2319 if (cpu_has_veic || cpu_has_vint) { 2320 int nvec = cpu_has_veic ? 64 : 8; 2321 for (i = 0; i < nvec; i++) 2322 set_vi_handler(i, NULL); 2323 } 2324 else if (cpu_has_divec) 2325 set_handler(0x200, &except_vec4, 0x8); 2326 2327 /* 2328 * Some CPUs can enable/disable for cache parity detection, but does 2329 * it different ways. 2330 */ 2331 parity_protection_init(); 2332 2333 /* 2334 * The Data Bus Errors / Instruction Bus Errors are signaled 2335 * by external hardware. Therefore these two exceptions 2336 * may have board specific handlers. 2337 */ 2338 if (board_be_init) 2339 board_be_init(); 2340 2341 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2342 rollback_handle_int : handle_int); 2343 set_except_vector(EXCCODE_MOD, handle_tlbm); 2344 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2345 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2346 2347 set_except_vector(EXCCODE_ADEL, handle_adel); 2348 set_except_vector(EXCCODE_ADES, handle_ades); 2349 2350 set_except_vector(EXCCODE_IBE, handle_ibe); 2351 set_except_vector(EXCCODE_DBE, handle_dbe); 2352 2353 set_except_vector(EXCCODE_SYS, handle_sys); 2354 set_except_vector(EXCCODE_BP, handle_bp); 2355 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2356 (cpu_has_vtag_icache ? 2357 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2358 set_except_vector(EXCCODE_CPU, handle_cpu); 2359 set_except_vector(EXCCODE_OV, handle_ov); 2360 set_except_vector(EXCCODE_TR, handle_tr); 2361 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2362 2363 if (current_cpu_type() == CPU_R6000 || 2364 current_cpu_type() == CPU_R6000A) { 2365 /* 2366 * The R6000 is the only R-series CPU that features a machine 2367 * check exception (similar to the R4000 cache error) and 2368 * unaligned ldc1/sdc1 exception. The handlers have not been 2369 * written yet. Well, anyway there is no R6000 machine on the 2370 * current list of targets for Linux/MIPS. 2371 * (Duh, crap, there is someone with a triple R6k machine) 2372 */ 2373 //set_except_vector(14, handle_mc); 2374 //set_except_vector(15, handle_ndc); 2375 } 2376 2377 2378 if (board_nmi_handler_setup) 2379 board_nmi_handler_setup(); 2380 2381 if (cpu_has_fpu && !cpu_has_nofpuex) 2382 set_except_vector(EXCCODE_FPE, handle_fpe); 2383 2384 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2385 2386 if (cpu_has_rixiex) { 2387 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2388 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2389 } 2390 2391 set_except_vector(EXCCODE_MSADIS, handle_msa); 2392 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2393 2394 if (cpu_has_mcheck) 2395 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2396 2397 if (cpu_has_mipsmt) 2398 set_except_vector(EXCCODE_THREAD, handle_mt); 2399 2400 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2401 2402 if (board_cache_error_setup) 2403 board_cache_error_setup(); 2404 2405 if (cpu_has_vce) 2406 /* Special exception: R4[04]00 uses also the divec space. */ 2407 set_handler(0x180, &except_vec3_r4000, 0x100); 2408 else if (cpu_has_4kex) 2409 set_handler(0x180, &except_vec3_generic, 0x80); 2410 else 2411 set_handler(0x080, &except_vec3_generic, 0x80); 2412 2413 local_flush_icache_range(ebase, ebase + 0x400); 2414 2415 sort_extable(__start___dbe_table, __stop___dbe_table); 2416 2417 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2418 } 2419 2420 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2421 void *v) 2422 { 2423 switch (cmd) { 2424 case CPU_PM_ENTER_FAILED: 2425 case CPU_PM_EXIT: 2426 configure_status(); 2427 configure_hwrena(); 2428 configure_exception_vector(); 2429 2430 /* Restore register with CPU number for TLB handlers */ 2431 TLBMISS_HANDLER_RESTORE(); 2432 2433 break; 2434 } 2435 2436 return NOTIFY_OK; 2437 } 2438 2439 static struct notifier_block trap_pm_notifier_block = { 2440 .notifier_call = trap_pm_notifier, 2441 }; 2442 2443 static int __init trap_pm_init(void) 2444 { 2445 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2446 } 2447 arch_initcall(trap_pm_init); 2448