xref: /linux/arch/mips/kernel/traps.c (revision 5e3c6a312a0946d2d83e32359612cbb925a8bed0)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73 
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100 
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108 
109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 	unsigned long addr;
113 
114 	printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 	printk("\n");
117 #endif
118 	while (!kstack_end(sp)) {
119 		unsigned long __user *p =
120 			(unsigned long __user *)(unsigned long)sp++;
121 		if (__get_user(addr, p)) {
122 			printk(" (Bad stack address)");
123 			break;
124 		}
125 		if (__kernel_text_address(addr))
126 			print_ip_sym(addr);
127 	}
128 	printk("\n");
129 }
130 
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
134 {
135 	raw_show_trace = 1;
136 	return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140 
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 	unsigned long sp = regs->regs[29];
144 	unsigned long ra = regs->regs[31];
145 	unsigned long pc = regs->cp0_epc;
146 
147 	if (!task)
148 		task = current;
149 
150 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 		show_raw_backtrace(sp);
152 		return;
153 	}
154 	printk("Call Trace:\n");
155 	do {
156 		print_ip_sym(pc);
157 		pc = unwind_stack(task, &sp, pc, &ra);
158 	} while (pc);
159 	pr_cont("\n");
160 }
161 
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
166 static void show_stacktrace(struct task_struct *task,
167 	const struct pt_regs *regs)
168 {
169 	const int field = 2 * sizeof(unsigned long);
170 	long stackdata;
171 	int i;
172 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173 
174 	printk("Stack :");
175 	i = 0;
176 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 		if (i && ((i % (64 / field)) == 0)) {
178 			pr_cont("\n");
179 			printk("       ");
180 		}
181 		if (i > 39) {
182 			pr_cont(" ...");
183 			break;
184 		}
185 
186 		if (__get_user(stackdata, sp++)) {
187 			pr_cont(" (Bad stack address)");
188 			break;
189 		}
190 
191 		pr_cont(" %0*lx", field, stackdata);
192 		i++;
193 	}
194 	pr_cont("\n");
195 	show_backtrace(task, regs);
196 }
197 
198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200 	struct pt_regs regs;
201 	mm_segment_t old_fs = get_fs();
202 
203 	regs.cp0_status = KSU_KERNEL;
204 	if (sp) {
205 		regs.regs[29] = (unsigned long)sp;
206 		regs.regs[31] = 0;
207 		regs.cp0_epc = 0;
208 	} else {
209 		if (task && task != current) {
210 			regs.regs[29] = task->thread.reg29;
211 			regs.regs[31] = 0;
212 			regs.cp0_epc = task->thread.reg31;
213 		} else {
214 			prepare_frametrace(&regs);
215 		}
216 	}
217 	/*
218 	 * show_stack() deals exclusively with kernel mode, so be sure to access
219 	 * the stack in the kernel (not user) address space.
220 	 */
221 	set_fs(KERNEL_DS);
222 	show_stacktrace(task, &regs);
223 	set_fs(old_fs);
224 }
225 
226 static void show_code(unsigned int __user *pc)
227 {
228 	long i;
229 	unsigned short __user *pc16 = NULL;
230 
231 	printk("Code:");
232 
233 	if ((unsigned long)pc & 1)
234 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
235 	for(i = -3 ; i < 6 ; i++) {
236 		unsigned int insn;
237 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
238 			pr_cont(" (Bad address in epc)\n");
239 			break;
240 		}
241 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
242 	}
243 	pr_cont("\n");
244 }
245 
246 static void __show_regs(const struct pt_regs *regs)
247 {
248 	const int field = 2 * sizeof(unsigned long);
249 	unsigned int cause = regs->cp0_cause;
250 	unsigned int exccode;
251 	int i;
252 
253 	show_regs_print_info(KERN_DEFAULT);
254 
255 	/*
256 	 * Saved main processor registers
257 	 */
258 	for (i = 0; i < 32; ) {
259 		if ((i % 4) == 0)
260 			printk("$%2d   :", i);
261 		if (i == 0)
262 			pr_cont(" %0*lx", field, 0UL);
263 		else if (i == 26 || i == 27)
264 			pr_cont(" %*s", field, "");
265 		else
266 			pr_cont(" %0*lx", field, regs->regs[i]);
267 
268 		i++;
269 		if ((i % 4) == 0)
270 			pr_cont("\n");
271 	}
272 
273 #ifdef CONFIG_CPU_HAS_SMARTMIPS
274 	printk("Acx    : %0*lx\n", field, regs->acx);
275 #endif
276 	if (MIPS_ISA_REV < 6) {
277 		printk("Hi    : %0*lx\n", field, regs->hi);
278 		printk("Lo    : %0*lx\n", field, regs->lo);
279 	}
280 
281 	/*
282 	 * Saved cp0 registers
283 	 */
284 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
285 	       (void *) regs->cp0_epc);
286 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
287 	       (void *) regs->regs[31]);
288 
289 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
290 
291 	if (cpu_has_3kex) {
292 		if (regs->cp0_status & ST0_KUO)
293 			pr_cont("KUo ");
294 		if (regs->cp0_status & ST0_IEO)
295 			pr_cont("IEo ");
296 		if (regs->cp0_status & ST0_KUP)
297 			pr_cont("KUp ");
298 		if (regs->cp0_status & ST0_IEP)
299 			pr_cont("IEp ");
300 		if (regs->cp0_status & ST0_KUC)
301 			pr_cont("KUc ");
302 		if (regs->cp0_status & ST0_IEC)
303 			pr_cont("IEc ");
304 	} else if (cpu_has_4kex) {
305 		if (regs->cp0_status & ST0_KX)
306 			pr_cont("KX ");
307 		if (regs->cp0_status & ST0_SX)
308 			pr_cont("SX ");
309 		if (regs->cp0_status & ST0_UX)
310 			pr_cont("UX ");
311 		switch (regs->cp0_status & ST0_KSU) {
312 		case KSU_USER:
313 			pr_cont("USER ");
314 			break;
315 		case KSU_SUPERVISOR:
316 			pr_cont("SUPERVISOR ");
317 			break;
318 		case KSU_KERNEL:
319 			pr_cont("KERNEL ");
320 			break;
321 		default:
322 			pr_cont("BAD_MODE ");
323 			break;
324 		}
325 		if (regs->cp0_status & ST0_ERL)
326 			pr_cont("ERL ");
327 		if (regs->cp0_status & ST0_EXL)
328 			pr_cont("EXL ");
329 		if (regs->cp0_status & ST0_IE)
330 			pr_cont("IE ");
331 	}
332 	pr_cont("\n");
333 
334 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
335 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
336 
337 	if (1 <= exccode && exccode <= 5)
338 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
339 
340 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
341 	       cpu_name_string());
342 }
343 
344 /*
345  * FIXME: really the generic show_regs should take a const pointer argument.
346  */
347 void show_regs(struct pt_regs *regs)
348 {
349 	__show_regs(regs);
350 	dump_stack();
351 }
352 
353 void show_registers(struct pt_regs *regs)
354 {
355 	const int field = 2 * sizeof(unsigned long);
356 	mm_segment_t old_fs = get_fs();
357 
358 	__show_regs(regs);
359 	print_modules();
360 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 	       current->comm, current->pid, current_thread_info(), current,
362 	      field, current_thread_info()->tp_value);
363 	if (cpu_has_userlocal) {
364 		unsigned long tls;
365 
366 		tls = read_c0_userlocal();
367 		if (tls != current_thread_info()->tp_value)
368 			printk("*HwTLS: %0*lx\n", field, tls);
369 	}
370 
371 	if (!user_mode(regs))
372 		/* Necessary for getting the correct stack content */
373 		set_fs(KERNEL_DS);
374 	show_stacktrace(current, regs);
375 	show_code((unsigned int __user *) regs->cp0_epc);
376 	printk("\n");
377 	set_fs(old_fs);
378 }
379 
380 static DEFINE_RAW_SPINLOCK(die_lock);
381 
382 void __noreturn die(const char *str, struct pt_regs *regs)
383 {
384 	static int die_counter;
385 	int sig = SIGSEGV;
386 
387 	oops_enter();
388 
389 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390 		       SIGSEGV) == NOTIFY_STOP)
391 		sig = 0;
392 
393 	console_verbose();
394 	raw_spin_lock_irq(&die_lock);
395 	bust_spinlocks(1);
396 
397 	printk("%s[#%d]:\n", str, ++die_counter);
398 	show_registers(regs);
399 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 	raw_spin_unlock_irq(&die_lock);
401 
402 	oops_exit();
403 
404 	if (in_interrupt())
405 		panic("Fatal exception in interrupt");
406 
407 	if (panic_on_oops)
408 		panic("Fatal exception");
409 
410 	if (regs && kexec_should_crash(current))
411 		crash_kexec(regs);
412 
413 	do_exit(sig);
414 }
415 
416 extern struct exception_table_entry __start___dbe_table[];
417 extern struct exception_table_entry __stop___dbe_table[];
418 
419 __asm__(
420 "	.section	__dbe_table, \"a\"\n"
421 "	.previous			\n");
422 
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425 {
426 	const struct exception_table_entry *e;
427 
428 	e = search_extable(__start___dbe_table,
429 			   __stop___dbe_table - __start___dbe_table, addr);
430 	if (!e)
431 		e = search_module_dbetables(addr);
432 	return e;
433 }
434 
435 asmlinkage void do_be(struct pt_regs *regs)
436 {
437 	const int field = 2 * sizeof(unsigned long);
438 	const struct exception_table_entry *fixup = NULL;
439 	int data = regs->cp0_cause & 4;
440 	int action = MIPS_BE_FATAL;
441 	enum ctx_state prev_state;
442 
443 	prev_state = exception_enter();
444 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
445 	if (data && !user_mode(regs))
446 		fixup = search_dbe_tables(exception_epc(regs));
447 
448 	if (fixup)
449 		action = MIPS_BE_FIXUP;
450 
451 	if (board_be_handler)
452 		action = board_be_handler(regs, fixup != NULL);
453 	else
454 		mips_cm_error_report();
455 
456 	switch (action) {
457 	case MIPS_BE_DISCARD:
458 		goto out;
459 	case MIPS_BE_FIXUP:
460 		if (fixup) {
461 			regs->cp0_epc = fixup->nextinsn;
462 			goto out;
463 		}
464 		break;
465 	default:
466 		break;
467 	}
468 
469 	/*
470 	 * Assume it would be too dangerous to continue ...
471 	 */
472 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
473 	       data ? "Data" : "Instruction",
474 	       field, regs->cp0_epc, field, regs->regs[31]);
475 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
476 		       SIGBUS) == NOTIFY_STOP)
477 		goto out;
478 
479 	die_if_kernel("Oops", regs);
480 	force_sig(SIGBUS);
481 
482 out:
483 	exception_exit(prev_state);
484 }
485 
486 /*
487  * ll/sc, rdhwr, sync emulation
488  */
489 
490 #define OPCODE 0xfc000000
491 #define BASE   0x03e00000
492 #define RT     0x001f0000
493 #define OFFSET 0x0000ffff
494 #define LL     0xc0000000
495 #define SC     0xe0000000
496 #define SPEC0  0x00000000
497 #define SPEC3  0x7c000000
498 #define RD     0x0000f800
499 #define FUNC   0x0000003f
500 #define SYNC   0x0000000f
501 #define RDHWR  0x0000003b
502 
503 /*  microMIPS definitions   */
504 #define MM_POOL32A_FUNC 0xfc00ffff
505 #define MM_RDHWR        0x00006b3c
506 #define MM_RS           0x001f0000
507 #define MM_RT           0x03e00000
508 
509 /*
510  * The ll_bit is cleared by r*_switch.S
511  */
512 
513 unsigned int ll_bit;
514 struct task_struct *ll_task;
515 
516 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
517 {
518 	unsigned long value, __user *vaddr;
519 	long offset;
520 
521 	/*
522 	 * analyse the ll instruction that just caused a ri exception
523 	 * and put the referenced address to addr.
524 	 */
525 
526 	/* sign extend offset */
527 	offset = opcode & OFFSET;
528 	offset <<= 16;
529 	offset >>= 16;
530 
531 	vaddr = (unsigned long __user *)
532 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
533 
534 	if ((unsigned long)vaddr & 3)
535 		return SIGBUS;
536 	if (get_user(value, vaddr))
537 		return SIGSEGV;
538 
539 	preempt_disable();
540 
541 	if (ll_task == NULL || ll_task == current) {
542 		ll_bit = 1;
543 	} else {
544 		ll_bit = 0;
545 	}
546 	ll_task = current;
547 
548 	preempt_enable();
549 
550 	regs->regs[(opcode & RT) >> 16] = value;
551 
552 	return 0;
553 }
554 
555 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
556 {
557 	unsigned long __user *vaddr;
558 	unsigned long reg;
559 	long offset;
560 
561 	/*
562 	 * analyse the sc instruction that just caused a ri exception
563 	 * and put the referenced address to addr.
564 	 */
565 
566 	/* sign extend offset */
567 	offset = opcode & OFFSET;
568 	offset <<= 16;
569 	offset >>= 16;
570 
571 	vaddr = (unsigned long __user *)
572 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
573 	reg = (opcode & RT) >> 16;
574 
575 	if ((unsigned long)vaddr & 3)
576 		return SIGBUS;
577 
578 	preempt_disable();
579 
580 	if (ll_bit == 0 || ll_task != current) {
581 		regs->regs[reg] = 0;
582 		preempt_enable();
583 		return 0;
584 	}
585 
586 	preempt_enable();
587 
588 	if (put_user(regs->regs[reg], vaddr))
589 		return SIGSEGV;
590 
591 	regs->regs[reg] = 1;
592 
593 	return 0;
594 }
595 
596 /*
597  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
598  * opcodes are supposed to result in coprocessor unusable exceptions if
599  * executed on ll/sc-less processors.  That's the theory.  In practice a
600  * few processors such as NEC's VR4100 throw reserved instruction exceptions
601  * instead, so we're doing the emulation thing in both exception handlers.
602  */
603 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
604 {
605 	if ((opcode & OPCODE) == LL) {
606 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 				1, regs, 0);
608 		return simulate_ll(regs, opcode);
609 	}
610 	if ((opcode & OPCODE) == SC) {
611 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 				1, regs, 0);
613 		return simulate_sc(regs, opcode);
614 	}
615 
616 	return -1;			/* Must be something else ... */
617 }
618 
619 /*
620  * Simulate trapping 'rdhwr' instructions to provide user accessible
621  * registers not implemented in hardware.
622  */
623 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
624 {
625 	struct thread_info *ti = task_thread_info(current);
626 
627 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
628 			1, regs, 0);
629 	switch (rd) {
630 	case MIPS_HWR_CPUNUM:		/* CPU number */
631 		regs->regs[rt] = smp_processor_id();
632 		return 0;
633 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
634 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
635 				     current_cpu_data.icache.linesz);
636 		return 0;
637 	case MIPS_HWR_CC:		/* Read count register */
638 		regs->regs[rt] = read_c0_count();
639 		return 0;
640 	case MIPS_HWR_CCRES:		/* Count register resolution */
641 		switch (current_cpu_type()) {
642 		case CPU_20KC:
643 		case CPU_25KF:
644 			regs->regs[rt] = 1;
645 			break;
646 		default:
647 			regs->regs[rt] = 2;
648 		}
649 		return 0;
650 	case MIPS_HWR_ULR:		/* Read UserLocal register */
651 		regs->regs[rt] = ti->tp_value;
652 		return 0;
653 	default:
654 		return -1;
655 	}
656 }
657 
658 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
659 {
660 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
661 		int rd = (opcode & RD) >> 11;
662 		int rt = (opcode & RT) >> 16;
663 
664 		simulate_rdhwr(regs, rd, rt);
665 		return 0;
666 	}
667 
668 	/* Not ours.  */
669 	return -1;
670 }
671 
672 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
673 {
674 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
675 		int rd = (opcode & MM_RS) >> 16;
676 		int rt = (opcode & MM_RT) >> 21;
677 		simulate_rdhwr(regs, rd, rt);
678 		return 0;
679 	}
680 
681 	/* Not ours.  */
682 	return -1;
683 }
684 
685 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
686 {
687 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
688 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
689 				1, regs, 0);
690 		return 0;
691 	}
692 
693 	return -1;			/* Must be something else ... */
694 }
695 
696 asmlinkage void do_ov(struct pt_regs *regs)
697 {
698 	enum ctx_state prev_state;
699 
700 	prev_state = exception_enter();
701 	die_if_kernel("Integer overflow", regs);
702 
703 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
704 	exception_exit(prev_state);
705 }
706 
707 #ifdef CONFIG_MIPS_FP_SUPPORT
708 
709 /*
710  * Send SIGFPE according to FCSR Cause bits, which must have already
711  * been masked against Enable bits.  This is impotant as Inexact can
712  * happen together with Overflow or Underflow, and `ptrace' can set
713  * any bits.
714  */
715 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
716 		     struct task_struct *tsk)
717 {
718 	int si_code = FPE_FLTUNK;
719 
720 	if (fcr31 & FPU_CSR_INV_X)
721 		si_code = FPE_FLTINV;
722 	else if (fcr31 & FPU_CSR_DIV_X)
723 		si_code = FPE_FLTDIV;
724 	else if (fcr31 & FPU_CSR_OVF_X)
725 		si_code = FPE_FLTOVF;
726 	else if (fcr31 & FPU_CSR_UDF_X)
727 		si_code = FPE_FLTUND;
728 	else if (fcr31 & FPU_CSR_INE_X)
729 		si_code = FPE_FLTRES;
730 
731 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
732 }
733 
734 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
735 {
736 	int si_code;
737 	struct vm_area_struct *vma;
738 
739 	switch (sig) {
740 	case 0:
741 		return 0;
742 
743 	case SIGFPE:
744 		force_fcr31_sig(fcr31, fault_addr, current);
745 		return 1;
746 
747 	case SIGBUS:
748 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
749 		return 1;
750 
751 	case SIGSEGV:
752 		down_read(&current->mm->mmap_sem);
753 		vma = find_vma(current->mm, (unsigned long)fault_addr);
754 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
755 			si_code = SEGV_ACCERR;
756 		else
757 			si_code = SEGV_MAPERR;
758 		up_read(&current->mm->mmap_sem);
759 		force_sig_fault(SIGSEGV, si_code, fault_addr);
760 		return 1;
761 
762 	default:
763 		force_sig(sig);
764 		return 1;
765 	}
766 }
767 
768 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
769 		       unsigned long old_epc, unsigned long old_ra)
770 {
771 	union mips_instruction inst = { .word = opcode };
772 	void __user *fault_addr;
773 	unsigned long fcr31;
774 	int sig;
775 
776 	/* If it's obviously not an FP instruction, skip it */
777 	switch (inst.i_format.opcode) {
778 	case cop1_op:
779 	case cop1x_op:
780 	case lwc1_op:
781 	case ldc1_op:
782 	case swc1_op:
783 	case sdc1_op:
784 		break;
785 
786 	default:
787 		return -1;
788 	}
789 
790 	/*
791 	 * do_ri skipped over the instruction via compute_return_epc, undo
792 	 * that for the FPU emulator.
793 	 */
794 	regs->cp0_epc = old_epc;
795 	regs->regs[31] = old_ra;
796 
797 	/* Run the emulator */
798 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
799 				       &fault_addr);
800 
801 	/*
802 	 * We can't allow the emulated instruction to leave any
803 	 * enabled Cause bits set in $fcr31.
804 	 */
805 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
806 	current->thread.fpu.fcr31 &= ~fcr31;
807 
808 	/* Restore the hardware register state */
809 	own_fpu(1);
810 
811 	/* Send a signal if required.  */
812 	process_fpemu_return(sig, fault_addr, fcr31);
813 
814 	return 0;
815 }
816 
817 /*
818  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
819  */
820 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
821 {
822 	enum ctx_state prev_state;
823 	void __user *fault_addr;
824 	int sig;
825 
826 	prev_state = exception_enter();
827 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
828 		       SIGFPE) == NOTIFY_STOP)
829 		goto out;
830 
831 	/* Clear FCSR.Cause before enabling interrupts */
832 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
833 	local_irq_enable();
834 
835 	die_if_kernel("FP exception in kernel code", regs);
836 
837 	if (fcr31 & FPU_CSR_UNI_X) {
838 		/*
839 		 * Unimplemented operation exception.  If we've got the full
840 		 * software emulator on-board, let's use it...
841 		 *
842 		 * Force FPU to dump state into task/thread context.  We're
843 		 * moving a lot of data here for what is probably a single
844 		 * instruction, but the alternative is to pre-decode the FP
845 		 * register operands before invoking the emulator, which seems
846 		 * a bit extreme for what should be an infrequent event.
847 		 */
848 
849 		/* Run the emulator */
850 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
851 					       &fault_addr);
852 
853 		/*
854 		 * We can't allow the emulated instruction to leave any
855 		 * enabled Cause bits set in $fcr31.
856 		 */
857 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
858 		current->thread.fpu.fcr31 &= ~fcr31;
859 
860 		/* Restore the hardware register state */
861 		own_fpu(1);	/* Using the FPU again.	 */
862 	} else {
863 		sig = SIGFPE;
864 		fault_addr = (void __user *) regs->cp0_epc;
865 	}
866 
867 	/* Send a signal if required.  */
868 	process_fpemu_return(sig, fault_addr, fcr31);
869 
870 out:
871 	exception_exit(prev_state);
872 }
873 
874 /*
875  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
876  * emulated more than some threshold number of instructions, force migration to
877  * a "CPU" that has FP support.
878  */
879 static void mt_ase_fp_affinity(void)
880 {
881 #ifdef CONFIG_MIPS_MT_FPAFF
882 	if (mt_fpemul_threshold > 0 &&
883 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
884 		/*
885 		 * If there's no FPU present, or if the application has already
886 		 * restricted the allowed set to exclude any CPUs with FPUs,
887 		 * we'll skip the procedure.
888 		 */
889 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
890 			cpumask_t tmask;
891 
892 			current->thread.user_cpus_allowed
893 				= current->cpus_mask;
894 			cpumask_and(&tmask, &current->cpus_mask,
895 				    &mt_fpu_cpumask);
896 			set_cpus_allowed_ptr(current, &tmask);
897 			set_thread_flag(TIF_FPUBOUND);
898 		}
899 	}
900 #endif /* CONFIG_MIPS_MT_FPAFF */
901 }
902 
903 #else /* !CONFIG_MIPS_FP_SUPPORT */
904 
905 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
906 		       unsigned long old_epc, unsigned long old_ra)
907 {
908 	return -1;
909 }
910 
911 #endif /* !CONFIG_MIPS_FP_SUPPORT */
912 
913 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
914 	const char *str)
915 {
916 	char b[40];
917 
918 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
919 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
920 			 SIGTRAP) == NOTIFY_STOP)
921 		return;
922 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
923 
924 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 		       SIGTRAP) == NOTIFY_STOP)
926 		return;
927 
928 	/*
929 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
930 	 * insns, even for trap and break codes that indicate arithmetic
931 	 * failures.  Weird ...
932 	 * But should we continue the brokenness???  --macro
933 	 */
934 	switch (code) {
935 	case BRK_OVERFLOW:
936 	case BRK_DIVZERO:
937 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
938 		die_if_kernel(b, regs);
939 		force_sig_fault(SIGFPE,
940 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
941 				(void __user *) regs->cp0_epc);
942 		break;
943 	case BRK_BUG:
944 		die_if_kernel("Kernel bug detected", regs);
945 		force_sig(SIGTRAP);
946 		break;
947 	case BRK_MEMU:
948 		/*
949 		 * This breakpoint code is used by the FPU emulator to retake
950 		 * control of the CPU after executing the instruction from the
951 		 * delay slot of an emulated branch.
952 		 *
953 		 * Terminate if exception was recognized as a delay slot return
954 		 * otherwise handle as normal.
955 		 */
956 		if (do_dsemulret(regs))
957 			return;
958 
959 		die_if_kernel("Math emu break/trap", regs);
960 		force_sig(SIGTRAP);
961 		break;
962 	default:
963 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
964 		die_if_kernel(b, regs);
965 		if (si_code) {
966 			force_sig_fault(SIGTRAP, si_code, NULL);
967 		} else {
968 			force_sig(SIGTRAP);
969 		}
970 	}
971 }
972 
973 asmlinkage void do_bp(struct pt_regs *regs)
974 {
975 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
976 	unsigned int opcode, bcode;
977 	enum ctx_state prev_state;
978 	mm_segment_t seg;
979 
980 	seg = get_fs();
981 	if (!user_mode(regs))
982 		set_fs(KERNEL_DS);
983 
984 	prev_state = exception_enter();
985 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
986 	if (get_isa16_mode(regs->cp0_epc)) {
987 		u16 instr[2];
988 
989 		if (__get_user(instr[0], (u16 __user *)epc))
990 			goto out_sigsegv;
991 
992 		if (!cpu_has_mmips) {
993 			/* MIPS16e mode */
994 			bcode = (instr[0] >> 5) & 0x3f;
995 		} else if (mm_insn_16bit(instr[0])) {
996 			/* 16-bit microMIPS BREAK */
997 			bcode = instr[0] & 0xf;
998 		} else {
999 			/* 32-bit microMIPS BREAK */
1000 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1001 				goto out_sigsegv;
1002 			opcode = (instr[0] << 16) | instr[1];
1003 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1004 		}
1005 	} else {
1006 		if (__get_user(opcode, (unsigned int __user *)epc))
1007 			goto out_sigsegv;
1008 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1009 	}
1010 
1011 	/*
1012 	 * There is the ancient bug in the MIPS assemblers that the break
1013 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1014 	 * Gas is bug-compatible, but not always, grrr...
1015 	 * We handle both cases with a simple heuristics.  --macro
1016 	 */
1017 	if (bcode >= (1 << 10))
1018 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1019 
1020 	/*
1021 	 * notify the kprobe handlers, if instruction is likely to
1022 	 * pertain to them.
1023 	 */
1024 	switch (bcode) {
1025 	case BRK_UPROBE:
1026 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1027 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1028 			goto out;
1029 		else
1030 			break;
1031 	case BRK_UPROBE_XOL:
1032 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1033 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1034 			goto out;
1035 		else
1036 			break;
1037 	case BRK_KPROBE_BP:
1038 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1039 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1040 			goto out;
1041 		else
1042 			break;
1043 	case BRK_KPROBE_SSTEPBP:
1044 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1045 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1046 			goto out;
1047 		else
1048 			break;
1049 	default:
1050 		break;
1051 	}
1052 
1053 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1054 
1055 out:
1056 	set_fs(seg);
1057 	exception_exit(prev_state);
1058 	return;
1059 
1060 out_sigsegv:
1061 	force_sig(SIGSEGV);
1062 	goto out;
1063 }
1064 
1065 asmlinkage void do_tr(struct pt_regs *regs)
1066 {
1067 	u32 opcode, tcode = 0;
1068 	enum ctx_state prev_state;
1069 	u16 instr[2];
1070 	mm_segment_t seg;
1071 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1072 
1073 	seg = get_fs();
1074 	if (!user_mode(regs))
1075 		set_fs(KERNEL_DS);
1076 
1077 	prev_state = exception_enter();
1078 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1079 	if (get_isa16_mode(regs->cp0_epc)) {
1080 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1081 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1082 			goto out_sigsegv;
1083 		opcode = (instr[0] << 16) | instr[1];
1084 		/* Immediate versions don't provide a code.  */
1085 		if (!(opcode & OPCODE))
1086 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1087 	} else {
1088 		if (__get_user(opcode, (u32 __user *)epc))
1089 			goto out_sigsegv;
1090 		/* Immediate versions don't provide a code.  */
1091 		if (!(opcode & OPCODE))
1092 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1093 	}
1094 
1095 	do_trap_or_bp(regs, tcode, 0, "Trap");
1096 
1097 out:
1098 	set_fs(seg);
1099 	exception_exit(prev_state);
1100 	return;
1101 
1102 out_sigsegv:
1103 	force_sig(SIGSEGV);
1104 	goto out;
1105 }
1106 
1107 asmlinkage void do_ri(struct pt_regs *regs)
1108 {
1109 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1110 	unsigned long old_epc = regs->cp0_epc;
1111 	unsigned long old31 = regs->regs[31];
1112 	enum ctx_state prev_state;
1113 	unsigned int opcode = 0;
1114 	int status = -1;
1115 
1116 	/*
1117 	 * Avoid any kernel code. Just emulate the R2 instruction
1118 	 * as quickly as possible.
1119 	 */
1120 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1121 	    likely(user_mode(regs)) &&
1122 	    likely(get_user(opcode, epc) >= 0)) {
1123 		unsigned long fcr31 = 0;
1124 
1125 		status = mipsr2_decoder(regs, opcode, &fcr31);
1126 		switch (status) {
1127 		case 0:
1128 		case SIGEMT:
1129 			return;
1130 		case SIGILL:
1131 			goto no_r2_instr;
1132 		default:
1133 			process_fpemu_return(status,
1134 					     &current->thread.cp0_baduaddr,
1135 					     fcr31);
1136 			return;
1137 		}
1138 	}
1139 
1140 no_r2_instr:
1141 
1142 	prev_state = exception_enter();
1143 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1144 
1145 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1146 		       SIGILL) == NOTIFY_STOP)
1147 		goto out;
1148 
1149 	die_if_kernel("Reserved instruction in kernel code", regs);
1150 
1151 	if (unlikely(compute_return_epc(regs) < 0))
1152 		goto out;
1153 
1154 	if (!get_isa16_mode(regs->cp0_epc)) {
1155 		if (unlikely(get_user(opcode, epc) < 0))
1156 			status = SIGSEGV;
1157 
1158 		if (!cpu_has_llsc && status < 0)
1159 			status = simulate_llsc(regs, opcode);
1160 
1161 		if (status < 0)
1162 			status = simulate_rdhwr_normal(regs, opcode);
1163 
1164 		if (status < 0)
1165 			status = simulate_sync(regs, opcode);
1166 
1167 		if (status < 0)
1168 			status = simulate_fp(regs, opcode, old_epc, old31);
1169 	} else if (cpu_has_mmips) {
1170 		unsigned short mmop[2] = { 0 };
1171 
1172 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1173 			status = SIGSEGV;
1174 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1175 			status = SIGSEGV;
1176 		opcode = mmop[0];
1177 		opcode = (opcode << 16) | mmop[1];
1178 
1179 		if (status < 0)
1180 			status = simulate_rdhwr_mm(regs, opcode);
1181 	}
1182 
1183 	if (status < 0)
1184 		status = SIGILL;
1185 
1186 	if (unlikely(status > 0)) {
1187 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1188 		regs->regs[31] = old31;
1189 		force_sig(status);
1190 	}
1191 
1192 out:
1193 	exception_exit(prev_state);
1194 }
1195 
1196 /*
1197  * No lock; only written during early bootup by CPU 0.
1198  */
1199 static RAW_NOTIFIER_HEAD(cu2_chain);
1200 
1201 int __ref register_cu2_notifier(struct notifier_block *nb)
1202 {
1203 	return raw_notifier_chain_register(&cu2_chain, nb);
1204 }
1205 
1206 int cu2_notifier_call_chain(unsigned long val, void *v)
1207 {
1208 	return raw_notifier_call_chain(&cu2_chain, val, v);
1209 }
1210 
1211 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212 	void *data)
1213 {
1214 	struct pt_regs *regs = data;
1215 
1216 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217 			      "instruction", regs);
1218 	force_sig(SIGILL);
1219 
1220 	return NOTIFY_OK;
1221 }
1222 
1223 #ifdef CONFIG_MIPS_FP_SUPPORT
1224 
1225 static int enable_restore_fp_context(int msa)
1226 {
1227 	int err, was_fpu_owner, prior_msa;
1228 	bool first_fp;
1229 
1230 	/* Initialize context if it hasn't been used already */
1231 	first_fp = init_fp_ctx(current);
1232 
1233 	if (first_fp) {
1234 		preempt_disable();
1235 		err = own_fpu_inatomic(1);
1236 		if (msa && !err) {
1237 			enable_msa();
1238 			set_thread_flag(TIF_USEDMSA);
1239 			set_thread_flag(TIF_MSA_CTX_LIVE);
1240 		}
1241 		preempt_enable();
1242 		return err;
1243 	}
1244 
1245 	/*
1246 	 * This task has formerly used the FP context.
1247 	 *
1248 	 * If this thread has no live MSA vector context then we can simply
1249 	 * restore the scalar FP context. If it has live MSA vector context
1250 	 * (that is, it has or may have used MSA since last performing a
1251 	 * function call) then we'll need to restore the vector context. This
1252 	 * applies even if we're currently only executing a scalar FP
1253 	 * instruction. This is because if we were to later execute an MSA
1254 	 * instruction then we'd either have to:
1255 	 *
1256 	 *  - Restore the vector context & clobber any registers modified by
1257 	 *    scalar FP instructions between now & then.
1258 	 *
1259 	 * or
1260 	 *
1261 	 *  - Not restore the vector context & lose the most significant bits
1262 	 *    of all vector registers.
1263 	 *
1264 	 * Neither of those options is acceptable. We cannot restore the least
1265 	 * significant bits of the registers now & only restore the most
1266 	 * significant bits later because the most significant bits of any
1267 	 * vector registers whose aliased FP register is modified now will have
1268 	 * been zeroed. We'd have no way to know that when restoring the vector
1269 	 * context & thus may load an outdated value for the most significant
1270 	 * bits of a vector register.
1271 	 */
1272 	if (!msa && !thread_msa_context_live())
1273 		return own_fpu(1);
1274 
1275 	/*
1276 	 * This task is using or has previously used MSA. Thus we require
1277 	 * that Status.FR == 1.
1278 	 */
1279 	preempt_disable();
1280 	was_fpu_owner = is_fpu_owner();
1281 	err = own_fpu_inatomic(0);
1282 	if (err)
1283 		goto out;
1284 
1285 	enable_msa();
1286 	write_msa_csr(current->thread.fpu.msacsr);
1287 	set_thread_flag(TIF_USEDMSA);
1288 
1289 	/*
1290 	 * If this is the first time that the task is using MSA and it has
1291 	 * previously used scalar FP in this time slice then we already nave
1292 	 * FP context which we shouldn't clobber. We do however need to clear
1293 	 * the upper 64b of each vector register so that this task has no
1294 	 * opportunity to see data left behind by another.
1295 	 */
1296 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1297 	if (!prior_msa && was_fpu_owner) {
1298 		init_msa_upper();
1299 
1300 		goto out;
1301 	}
1302 
1303 	if (!prior_msa) {
1304 		/*
1305 		 * Restore the least significant 64b of each vector register
1306 		 * from the existing scalar FP context.
1307 		 */
1308 		_restore_fp(current);
1309 
1310 		/*
1311 		 * The task has not formerly used MSA, so clear the upper 64b
1312 		 * of each vector register such that it cannot see data left
1313 		 * behind by another task.
1314 		 */
1315 		init_msa_upper();
1316 	} else {
1317 		/* We need to restore the vector context. */
1318 		restore_msa(current);
1319 
1320 		/* Restore the scalar FP control & status register */
1321 		if (!was_fpu_owner)
1322 			write_32bit_cp1_register(CP1_STATUS,
1323 						 current->thread.fpu.fcr31);
1324 	}
1325 
1326 out:
1327 	preempt_enable();
1328 
1329 	return 0;
1330 }
1331 
1332 #else /* !CONFIG_MIPS_FP_SUPPORT */
1333 
1334 static int enable_restore_fp_context(int msa)
1335 {
1336 	return SIGILL;
1337 }
1338 
1339 #endif /* CONFIG_MIPS_FP_SUPPORT */
1340 
1341 asmlinkage void do_cpu(struct pt_regs *regs)
1342 {
1343 	enum ctx_state prev_state;
1344 	unsigned int __user *epc;
1345 	unsigned long old_epc, old31;
1346 	unsigned int opcode;
1347 	unsigned int cpid;
1348 	int status;
1349 
1350 	prev_state = exception_enter();
1351 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1352 
1353 	if (cpid != 2)
1354 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1355 
1356 	switch (cpid) {
1357 	case 0:
1358 		epc = (unsigned int __user *)exception_epc(regs);
1359 		old_epc = regs->cp0_epc;
1360 		old31 = regs->regs[31];
1361 		opcode = 0;
1362 		status = -1;
1363 
1364 		if (unlikely(compute_return_epc(regs) < 0))
1365 			break;
1366 
1367 		if (!get_isa16_mode(regs->cp0_epc)) {
1368 			if (unlikely(get_user(opcode, epc) < 0))
1369 				status = SIGSEGV;
1370 
1371 			if (!cpu_has_llsc && status < 0)
1372 				status = simulate_llsc(regs, opcode);
1373 		}
1374 
1375 		if (status < 0)
1376 			status = SIGILL;
1377 
1378 		if (unlikely(status > 0)) {
1379 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1380 			regs->regs[31] = old31;
1381 			force_sig(status);
1382 		}
1383 
1384 		break;
1385 
1386 #ifdef CONFIG_MIPS_FP_SUPPORT
1387 	case 3:
1388 		/*
1389 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1390 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1391 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1392 		 * up the space has been reused for COP1X instructions, that
1393 		 * are enabled by the CP0.Status.CU1 bit and consequently
1394 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1395 		 * exceptions.  Some FPU-less processors that implement one
1396 		 * of these ISAs however use this code erroneously for COP1X
1397 		 * instructions.  Therefore we redirect this trap to the FP
1398 		 * emulator too.
1399 		 */
1400 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1401 			force_sig(SIGILL);
1402 			break;
1403 		}
1404 		/* Fall through.  */
1405 
1406 	case 1: {
1407 		void __user *fault_addr;
1408 		unsigned long fcr31;
1409 		int err, sig;
1410 
1411 		err = enable_restore_fp_context(0);
1412 
1413 		if (raw_cpu_has_fpu && !err)
1414 			break;
1415 
1416 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1417 					       &fault_addr);
1418 
1419 		/*
1420 		 * We can't allow the emulated instruction to leave
1421 		 * any enabled Cause bits set in $fcr31.
1422 		 */
1423 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1424 		current->thread.fpu.fcr31 &= ~fcr31;
1425 
1426 		/* Send a signal if required.  */
1427 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1428 			mt_ase_fp_affinity();
1429 
1430 		break;
1431 	}
1432 #else /* CONFIG_MIPS_FP_SUPPORT */
1433 	case 1:
1434 	case 3:
1435 		force_sig(SIGILL);
1436 		break;
1437 #endif /* CONFIG_MIPS_FP_SUPPORT */
1438 
1439 	case 2:
1440 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1441 		break;
1442 	}
1443 
1444 	exception_exit(prev_state);
1445 }
1446 
1447 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1448 {
1449 	enum ctx_state prev_state;
1450 
1451 	prev_state = exception_enter();
1452 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455 		goto out;
1456 
1457 	/* Clear MSACSR.Cause before enabling interrupts */
1458 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459 	local_irq_enable();
1460 
1461 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462 	force_sig(SIGFPE);
1463 out:
1464 	exception_exit(prev_state);
1465 }
1466 
1467 asmlinkage void do_msa(struct pt_regs *regs)
1468 {
1469 	enum ctx_state prev_state;
1470 	int err;
1471 
1472 	prev_state = exception_enter();
1473 
1474 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475 		force_sig(SIGILL);
1476 		goto out;
1477 	}
1478 
1479 	die_if_kernel("do_msa invoked from kernel context!", regs);
1480 
1481 	err = enable_restore_fp_context(1);
1482 	if (err)
1483 		force_sig(SIGILL);
1484 out:
1485 	exception_exit(prev_state);
1486 }
1487 
1488 asmlinkage void do_mdmx(struct pt_regs *regs)
1489 {
1490 	enum ctx_state prev_state;
1491 
1492 	prev_state = exception_enter();
1493 	force_sig(SIGILL);
1494 	exception_exit(prev_state);
1495 }
1496 
1497 /*
1498  * Called with interrupts disabled.
1499  */
1500 asmlinkage void do_watch(struct pt_regs *regs)
1501 {
1502 	enum ctx_state prev_state;
1503 
1504 	prev_state = exception_enter();
1505 	/*
1506 	 * Clear WP (bit 22) bit of cause register so we don't loop
1507 	 * forever.
1508 	 */
1509 	clear_c0_cause(CAUSEF_WP);
1510 
1511 	/*
1512 	 * If the current thread has the watch registers loaded, save
1513 	 * their values and send SIGTRAP.  Otherwise another thread
1514 	 * left the registers set, clear them and continue.
1515 	 */
1516 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1517 		mips_read_watch_registers();
1518 		local_irq_enable();
1519 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1520 	} else {
1521 		mips_clear_watch_registers();
1522 		local_irq_enable();
1523 	}
1524 	exception_exit(prev_state);
1525 }
1526 
1527 asmlinkage void do_mcheck(struct pt_regs *regs)
1528 {
1529 	int multi_match = regs->cp0_status & ST0_TS;
1530 	enum ctx_state prev_state;
1531 	mm_segment_t old_fs = get_fs();
1532 
1533 	prev_state = exception_enter();
1534 	show_regs(regs);
1535 
1536 	if (multi_match) {
1537 		dump_tlb_regs();
1538 		pr_info("\n");
1539 		dump_tlb_all();
1540 	}
1541 
1542 	if (!user_mode(regs))
1543 		set_fs(KERNEL_DS);
1544 
1545 	show_code((unsigned int __user *) regs->cp0_epc);
1546 
1547 	set_fs(old_fs);
1548 
1549 	/*
1550 	 * Some chips may have other causes of machine check (e.g. SB1
1551 	 * graduation timer)
1552 	 */
1553 	panic("Caught Machine Check exception - %scaused by multiple "
1554 	      "matching entries in the TLB.",
1555 	      (multi_match) ? "" : "not ");
1556 }
1557 
1558 asmlinkage void do_mt(struct pt_regs *regs)
1559 {
1560 	int subcode;
1561 
1562 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1563 			>> VPECONTROL_EXCPT_SHIFT;
1564 	switch (subcode) {
1565 	case 0:
1566 		printk(KERN_DEBUG "Thread Underflow\n");
1567 		break;
1568 	case 1:
1569 		printk(KERN_DEBUG "Thread Overflow\n");
1570 		break;
1571 	case 2:
1572 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1573 		break;
1574 	case 3:
1575 		printk(KERN_DEBUG "Gating Storage Exception\n");
1576 		break;
1577 	case 4:
1578 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1579 		break;
1580 	case 5:
1581 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1582 		break;
1583 	default:
1584 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1585 			subcode);
1586 		break;
1587 	}
1588 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1589 
1590 	force_sig(SIGILL);
1591 }
1592 
1593 
1594 asmlinkage void do_dsp(struct pt_regs *regs)
1595 {
1596 	if (cpu_has_dsp)
1597 		panic("Unexpected DSP exception");
1598 
1599 	force_sig(SIGILL);
1600 }
1601 
1602 asmlinkage void do_reserved(struct pt_regs *regs)
1603 {
1604 	/*
1605 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1606 	 * caused by a new unknown cpu type or after another deadly
1607 	 * hard/software error.
1608 	 */
1609 	show_regs(regs);
1610 	panic("Caught reserved exception %ld - should not happen.",
1611 	      (regs->cp0_cause & 0x7f) >> 2);
1612 }
1613 
1614 static int __initdata l1parity = 1;
1615 static int __init nol1parity(char *s)
1616 {
1617 	l1parity = 0;
1618 	return 1;
1619 }
1620 __setup("nol1par", nol1parity);
1621 static int __initdata l2parity = 1;
1622 static int __init nol2parity(char *s)
1623 {
1624 	l2parity = 0;
1625 	return 1;
1626 }
1627 __setup("nol2par", nol2parity);
1628 
1629 /*
1630  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1631  * it different ways.
1632  */
1633 static inline void parity_protection_init(void)
1634 {
1635 #define ERRCTL_PE	0x80000000
1636 #define ERRCTL_L2P	0x00800000
1637 
1638 	if (mips_cm_revision() >= CM_REV_CM3) {
1639 		ulong gcr_ectl, cp0_ectl;
1640 
1641 		/*
1642 		 * With CM3 systems we need to ensure that the L1 & L2
1643 		 * parity enables are set to the same value, since this
1644 		 * is presumed by the hardware engineers.
1645 		 *
1646 		 * If the user disabled either of L1 or L2 ECC checking,
1647 		 * disable both.
1648 		 */
1649 		l1parity &= l2parity;
1650 		l2parity &= l1parity;
1651 
1652 		/* Probe L1 ECC support */
1653 		cp0_ectl = read_c0_ecc();
1654 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1655 		back_to_back_c0_hazard();
1656 		cp0_ectl = read_c0_ecc();
1657 
1658 		/* Probe L2 ECC support */
1659 		gcr_ectl = read_gcr_err_control();
1660 
1661 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1662 		    !(cp0_ectl & ERRCTL_PE)) {
1663 			/*
1664 			 * One of L1 or L2 ECC checking isn't supported,
1665 			 * so we cannot enable either.
1666 			 */
1667 			l1parity = l2parity = 0;
1668 		}
1669 
1670 		/* Configure L1 ECC checking */
1671 		if (l1parity)
1672 			cp0_ectl |= ERRCTL_PE;
1673 		else
1674 			cp0_ectl &= ~ERRCTL_PE;
1675 		write_c0_ecc(cp0_ectl);
1676 		back_to_back_c0_hazard();
1677 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1678 
1679 		/* Configure L2 ECC checking */
1680 		if (l2parity)
1681 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1682 		else
1683 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1684 		write_gcr_err_control(gcr_ectl);
1685 		gcr_ectl = read_gcr_err_control();
1686 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1687 		WARN_ON(!!gcr_ectl != l2parity);
1688 
1689 		pr_info("Cache parity protection %sabled\n",
1690 			l1parity ? "en" : "dis");
1691 		return;
1692 	}
1693 
1694 	switch (current_cpu_type()) {
1695 	case CPU_24K:
1696 	case CPU_34K:
1697 	case CPU_74K:
1698 	case CPU_1004K:
1699 	case CPU_1074K:
1700 	case CPU_INTERAPTIV:
1701 	case CPU_PROAPTIV:
1702 	case CPU_P5600:
1703 	case CPU_QEMU_GENERIC:
1704 	case CPU_P6600:
1705 		{
1706 			unsigned long errctl;
1707 			unsigned int l1parity_present, l2parity_present;
1708 
1709 			errctl = read_c0_ecc();
1710 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1711 
1712 			/* probe L1 parity support */
1713 			write_c0_ecc(errctl | ERRCTL_PE);
1714 			back_to_back_c0_hazard();
1715 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1716 
1717 			/* probe L2 parity support */
1718 			write_c0_ecc(errctl|ERRCTL_L2P);
1719 			back_to_back_c0_hazard();
1720 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1721 
1722 			if (l1parity_present && l2parity_present) {
1723 				if (l1parity)
1724 					errctl |= ERRCTL_PE;
1725 				if (l1parity ^ l2parity)
1726 					errctl |= ERRCTL_L2P;
1727 			} else if (l1parity_present) {
1728 				if (l1parity)
1729 					errctl |= ERRCTL_PE;
1730 			} else if (l2parity_present) {
1731 				if (l2parity)
1732 					errctl |= ERRCTL_L2P;
1733 			} else {
1734 				/* No parity available */
1735 			}
1736 
1737 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1738 
1739 			write_c0_ecc(errctl);
1740 			back_to_back_c0_hazard();
1741 			errctl = read_c0_ecc();
1742 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1743 
1744 			if (l1parity_present)
1745 				printk(KERN_INFO "Cache parity protection %sabled\n",
1746 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1747 
1748 			if (l2parity_present) {
1749 				if (l1parity_present && l1parity)
1750 					errctl ^= ERRCTL_L2P;
1751 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1752 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1753 			}
1754 		}
1755 		break;
1756 
1757 	case CPU_5KC:
1758 	case CPU_5KE:
1759 	case CPU_LOONGSON32:
1760 		write_c0_ecc(0x80000000);
1761 		back_to_back_c0_hazard();
1762 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1763 		printk(KERN_INFO "Cache parity protection %sabled\n",
1764 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1765 		break;
1766 	case CPU_20KC:
1767 	case CPU_25KF:
1768 		/* Clear the DE bit (bit 16) in the c0_status register. */
1769 		printk(KERN_INFO "Enable cache parity protection for "
1770 		       "MIPS 20KC/25KF CPUs.\n");
1771 		clear_c0_status(ST0_DE);
1772 		break;
1773 	default:
1774 		break;
1775 	}
1776 }
1777 
1778 asmlinkage void cache_parity_error(void)
1779 {
1780 	const int field = 2 * sizeof(unsigned long);
1781 	unsigned int reg_val;
1782 
1783 	/* For the moment, report the problem and hang. */
1784 	printk("Cache error exception:\n");
1785 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1786 	reg_val = read_c0_cacheerr();
1787 	printk("c0_cacheerr == %08x\n", reg_val);
1788 
1789 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1790 	       reg_val & (1<<30) ? "secondary" : "primary",
1791 	       reg_val & (1<<31) ? "data" : "insn");
1792 	if ((cpu_has_mips_r2_r6) &&
1793 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1794 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1795 			reg_val & (1<<29) ? "ED " : "",
1796 			reg_val & (1<<28) ? "ET " : "",
1797 			reg_val & (1<<27) ? "ES " : "",
1798 			reg_val & (1<<26) ? "EE " : "",
1799 			reg_val & (1<<25) ? "EB " : "",
1800 			reg_val & (1<<24) ? "EI " : "",
1801 			reg_val & (1<<23) ? "E1 " : "",
1802 			reg_val & (1<<22) ? "E0 " : "");
1803 	} else {
1804 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1805 			reg_val & (1<<29) ? "ED " : "",
1806 			reg_val & (1<<28) ? "ET " : "",
1807 			reg_val & (1<<26) ? "EE " : "",
1808 			reg_val & (1<<25) ? "EB " : "",
1809 			reg_val & (1<<24) ? "EI " : "",
1810 			reg_val & (1<<23) ? "E1 " : "",
1811 			reg_val & (1<<22) ? "E0 " : "");
1812 	}
1813 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1814 
1815 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1816 	if (reg_val & (1<<22))
1817 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1818 
1819 	if (reg_val & (1<<23))
1820 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1821 #endif
1822 
1823 	panic("Can't handle the cache error!");
1824 }
1825 
1826 asmlinkage void do_ftlb(void)
1827 {
1828 	const int field = 2 * sizeof(unsigned long);
1829 	unsigned int reg_val;
1830 
1831 	/* For the moment, report the problem and hang. */
1832 	if ((cpu_has_mips_r2_r6) &&
1833 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1834 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1835 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1836 		       read_c0_ecc());
1837 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1838 		reg_val = read_c0_cacheerr();
1839 		pr_err("c0_cacheerr == %08x\n", reg_val);
1840 
1841 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1842 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1843 		} else {
1844 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845 			       reg_val & (1<<30) ? "secondary" : "primary",
1846 			       reg_val & (1<<31) ? "data" : "insn");
1847 		}
1848 	} else {
1849 		pr_err("FTLB error exception\n");
1850 	}
1851 	/* Just print the cacheerr bits for now */
1852 	cache_parity_error();
1853 }
1854 
1855 /*
1856  * SDBBP EJTAG debug exception handler.
1857  * We skip the instruction and return to the next instruction.
1858  */
1859 void ejtag_exception_handler(struct pt_regs *regs)
1860 {
1861 	const int field = 2 * sizeof(unsigned long);
1862 	unsigned long depc, old_epc, old_ra;
1863 	unsigned int debug;
1864 
1865 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1866 	depc = read_c0_depc();
1867 	debug = read_c0_debug();
1868 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1869 	if (debug & 0x80000000) {
1870 		/*
1871 		 * In branch delay slot.
1872 		 * We cheat a little bit here and use EPC to calculate the
1873 		 * debug return address (DEPC). EPC is restored after the
1874 		 * calculation.
1875 		 */
1876 		old_epc = regs->cp0_epc;
1877 		old_ra = regs->regs[31];
1878 		regs->cp0_epc = depc;
1879 		compute_return_epc(regs);
1880 		depc = regs->cp0_epc;
1881 		regs->cp0_epc = old_epc;
1882 		regs->regs[31] = old_ra;
1883 	} else
1884 		depc += 4;
1885 	write_c0_depc(depc);
1886 
1887 #if 0
1888 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1889 	write_c0_debug(debug | 0x100);
1890 #endif
1891 }
1892 
1893 /*
1894  * NMI exception handler.
1895  * No lock; only written during early bootup by CPU 0.
1896  */
1897 static RAW_NOTIFIER_HEAD(nmi_chain);
1898 
1899 int register_nmi_notifier(struct notifier_block *nb)
1900 {
1901 	return raw_notifier_chain_register(&nmi_chain, nb);
1902 }
1903 
1904 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1905 {
1906 	char str[100];
1907 
1908 	nmi_enter();
1909 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1910 	bust_spinlocks(1);
1911 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1912 		 smp_processor_id(), regs->cp0_epc);
1913 	regs->cp0_epc = read_c0_errorepc();
1914 	die(str, regs);
1915 	nmi_exit();
1916 }
1917 
1918 #define VECTORSPACING 0x100	/* for EI/VI mode */
1919 
1920 unsigned long ebase;
1921 EXPORT_SYMBOL_GPL(ebase);
1922 unsigned long exception_handlers[32];
1923 unsigned long vi_handlers[64];
1924 
1925 void __init *set_except_vector(int n, void *addr)
1926 {
1927 	unsigned long handler = (unsigned long) addr;
1928 	unsigned long old_handler;
1929 
1930 #ifdef CONFIG_CPU_MICROMIPS
1931 	/*
1932 	 * Only the TLB handlers are cache aligned with an even
1933 	 * address. All other handlers are on an odd address and
1934 	 * require no modification. Otherwise, MIPS32 mode will
1935 	 * be entered when handling any TLB exceptions. That
1936 	 * would be bad...since we must stay in microMIPS mode.
1937 	 */
1938 	if (!(handler & 0x1))
1939 		handler |= 1;
1940 #endif
1941 	old_handler = xchg(&exception_handlers[n], handler);
1942 
1943 	if (n == 0 && cpu_has_divec) {
1944 #ifdef CONFIG_CPU_MICROMIPS
1945 		unsigned long jump_mask = ~((1 << 27) - 1);
1946 #else
1947 		unsigned long jump_mask = ~((1 << 28) - 1);
1948 #endif
1949 		u32 *buf = (u32 *)(ebase + 0x200);
1950 		unsigned int k0 = 26;
1951 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1952 			uasm_i_j(&buf, handler & ~jump_mask);
1953 			uasm_i_nop(&buf);
1954 		} else {
1955 			UASM_i_LA(&buf, k0, handler);
1956 			uasm_i_jr(&buf, k0);
1957 			uasm_i_nop(&buf);
1958 		}
1959 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1960 	}
1961 	return (void *)old_handler;
1962 }
1963 
1964 static void do_default_vi(void)
1965 {
1966 	show_regs(get_irq_regs());
1967 	panic("Caught unexpected vectored interrupt.");
1968 }
1969 
1970 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1971 {
1972 	unsigned long handler;
1973 	unsigned long old_handler = vi_handlers[n];
1974 	int srssets = current_cpu_data.srsets;
1975 	u16 *h;
1976 	unsigned char *b;
1977 
1978 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1979 
1980 	if (addr == NULL) {
1981 		handler = (unsigned long) do_default_vi;
1982 		srs = 0;
1983 	} else
1984 		handler = (unsigned long) addr;
1985 	vi_handlers[n] = handler;
1986 
1987 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1988 
1989 	if (srs >= srssets)
1990 		panic("Shadow register set %d not supported", srs);
1991 
1992 	if (cpu_has_veic) {
1993 		if (board_bind_eic_interrupt)
1994 			board_bind_eic_interrupt(n, srs);
1995 	} else if (cpu_has_vint) {
1996 		/* SRSMap is only defined if shadow sets are implemented */
1997 		if (srssets > 1)
1998 			change_c0_srsmap(0xf << n*4, srs << n*4);
1999 	}
2000 
2001 	if (srs == 0) {
2002 		/*
2003 		 * If no shadow set is selected then use the default handler
2004 		 * that does normal register saving and standard interrupt exit
2005 		 */
2006 		extern char except_vec_vi, except_vec_vi_lui;
2007 		extern char except_vec_vi_ori, except_vec_vi_end;
2008 		extern char rollback_except_vec_vi;
2009 		char *vec_start = using_rollback_handler() ?
2010 			&rollback_except_vec_vi : &except_vec_vi;
2011 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2012 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2013 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2014 #else
2015 		const int lui_offset = &except_vec_vi_lui - vec_start;
2016 		const int ori_offset = &except_vec_vi_ori - vec_start;
2017 #endif
2018 		const int handler_len = &except_vec_vi_end - vec_start;
2019 
2020 		if (handler_len > VECTORSPACING) {
2021 			/*
2022 			 * Sigh... panicing won't help as the console
2023 			 * is probably not configured :(
2024 			 */
2025 			panic("VECTORSPACING too small");
2026 		}
2027 
2028 		set_handler(((unsigned long)b - ebase), vec_start,
2029 #ifdef CONFIG_CPU_MICROMIPS
2030 				(handler_len - 1));
2031 #else
2032 				handler_len);
2033 #endif
2034 		h = (u16 *)(b + lui_offset);
2035 		*h = (handler >> 16) & 0xffff;
2036 		h = (u16 *)(b + ori_offset);
2037 		*h = (handler & 0xffff);
2038 		local_flush_icache_range((unsigned long)b,
2039 					 (unsigned long)(b+handler_len));
2040 	}
2041 	else {
2042 		/*
2043 		 * In other cases jump directly to the interrupt handler. It
2044 		 * is the handler's responsibility to save registers if required
2045 		 * (eg hi/lo) and return from the exception using "eret".
2046 		 */
2047 		u32 insn;
2048 
2049 		h = (u16 *)b;
2050 		/* j handler */
2051 #ifdef CONFIG_CPU_MICROMIPS
2052 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2053 #else
2054 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2055 #endif
2056 		h[0] = (insn >> 16) & 0xffff;
2057 		h[1] = insn & 0xffff;
2058 		h[2] = 0;
2059 		h[3] = 0;
2060 		local_flush_icache_range((unsigned long)b,
2061 					 (unsigned long)(b+8));
2062 	}
2063 
2064 	return (void *)old_handler;
2065 }
2066 
2067 void *set_vi_handler(int n, vi_handler_t addr)
2068 {
2069 	return set_vi_srs_handler(n, addr, 0);
2070 }
2071 
2072 extern void tlb_init(void);
2073 
2074 /*
2075  * Timer interrupt
2076  */
2077 int cp0_compare_irq;
2078 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2079 int cp0_compare_irq_shift;
2080 
2081 /*
2082  * Performance counter IRQ or -1 if shared with timer
2083  */
2084 int cp0_perfcount_irq;
2085 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2086 
2087 /*
2088  * Fast debug channel IRQ or -1 if not present
2089  */
2090 int cp0_fdc_irq;
2091 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2092 
2093 static int noulri;
2094 
2095 static int __init ulri_disable(char *s)
2096 {
2097 	pr_info("Disabling ulri\n");
2098 	noulri = 1;
2099 
2100 	return 1;
2101 }
2102 __setup("noulri", ulri_disable);
2103 
2104 /* configure STATUS register */
2105 static void configure_status(void)
2106 {
2107 	/*
2108 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2109 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2110 	 * flag that some firmware may have left set and the TS bit (for
2111 	 * IP27).  Set XX for ISA IV code to work.
2112 	 */
2113 	unsigned int status_set = ST0_CU0;
2114 #ifdef CONFIG_64BIT
2115 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2116 #endif
2117 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2118 		status_set |= ST0_XX;
2119 	if (cpu_has_dsp)
2120 		status_set |= ST0_MX;
2121 
2122 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2123 			 status_set);
2124 }
2125 
2126 unsigned int hwrena;
2127 EXPORT_SYMBOL_GPL(hwrena);
2128 
2129 /* configure HWRENA register */
2130 static void configure_hwrena(void)
2131 {
2132 	hwrena = cpu_hwrena_impl_bits;
2133 
2134 	if (cpu_has_mips_r2_r6)
2135 		hwrena |= MIPS_HWRENA_CPUNUM |
2136 			  MIPS_HWRENA_SYNCISTEP |
2137 			  MIPS_HWRENA_CC |
2138 			  MIPS_HWRENA_CCRES;
2139 
2140 	if (!noulri && cpu_has_userlocal)
2141 		hwrena |= MIPS_HWRENA_ULR;
2142 
2143 	if (hwrena)
2144 		write_c0_hwrena(hwrena);
2145 }
2146 
2147 static void configure_exception_vector(void)
2148 {
2149 	if (cpu_has_mips_r2_r6) {
2150 		unsigned long sr = set_c0_status(ST0_BEV);
2151 		/* If available, use WG to set top bits of EBASE */
2152 		if (cpu_has_ebase_wg) {
2153 #ifdef CONFIG_64BIT
2154 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2155 #else
2156 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2157 #endif
2158 		}
2159 		write_c0_ebase(ebase);
2160 		write_c0_status(sr);
2161 	}
2162 	if (cpu_has_veic || cpu_has_vint) {
2163 		/* Setting vector spacing enables EI/VI mode  */
2164 		change_c0_intctl(0x3e0, VECTORSPACING);
2165 	}
2166 	if (cpu_has_divec) {
2167 		if (cpu_has_mipsmt) {
2168 			unsigned int vpflags = dvpe();
2169 			set_c0_cause(CAUSEF_IV);
2170 			evpe(vpflags);
2171 		} else
2172 			set_c0_cause(CAUSEF_IV);
2173 	}
2174 }
2175 
2176 void per_cpu_trap_init(bool is_boot_cpu)
2177 {
2178 	unsigned int cpu = smp_processor_id();
2179 
2180 	configure_status();
2181 	configure_hwrena();
2182 
2183 	configure_exception_vector();
2184 
2185 	/*
2186 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2187 	 *
2188 	 *  o read IntCtl.IPTI to determine the timer interrupt
2189 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2190 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2191 	 */
2192 	if (cpu_has_mips_r2_r6) {
2193 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2194 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2195 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2196 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2197 		if (!cp0_fdc_irq)
2198 			cp0_fdc_irq = -1;
2199 
2200 	} else {
2201 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2202 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2203 		cp0_perfcount_irq = -1;
2204 		cp0_fdc_irq = -1;
2205 	}
2206 
2207 	if (cpu_has_mmid)
2208 		cpu_data[cpu].asid_cache = 0;
2209 	else if (!cpu_data[cpu].asid_cache)
2210 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2211 
2212 	mmgrab(&init_mm);
2213 	current->active_mm = &init_mm;
2214 	BUG_ON(current->mm);
2215 	enter_lazy_tlb(&init_mm, current);
2216 
2217 	/* Boot CPU's cache setup in setup_arch(). */
2218 	if (!is_boot_cpu)
2219 		cpu_cache_init();
2220 	tlb_init();
2221 	TLBMISS_HANDLER_SETUP();
2222 }
2223 
2224 /* Install CPU exception handler */
2225 void set_handler(unsigned long offset, void *addr, unsigned long size)
2226 {
2227 #ifdef CONFIG_CPU_MICROMIPS
2228 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2229 #else
2230 	memcpy((void *)(ebase + offset), addr, size);
2231 #endif
2232 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2233 }
2234 
2235 static const char panic_null_cerr[] =
2236 	"Trying to set NULL cache error exception handler\n";
2237 
2238 /*
2239  * Install uncached CPU exception handler.
2240  * This is suitable only for the cache error exception which is the only
2241  * exception handler that is being run uncached.
2242  */
2243 void set_uncached_handler(unsigned long offset, void *addr,
2244 	unsigned long size)
2245 {
2246 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2247 
2248 	if (!addr)
2249 		panic(panic_null_cerr);
2250 
2251 	memcpy((void *)(uncached_ebase + offset), addr, size);
2252 }
2253 
2254 static int __initdata rdhwr_noopt;
2255 static int __init set_rdhwr_noopt(char *str)
2256 {
2257 	rdhwr_noopt = 1;
2258 	return 1;
2259 }
2260 
2261 __setup("rdhwr_noopt", set_rdhwr_noopt);
2262 
2263 void __init trap_init(void)
2264 {
2265 	extern char except_vec3_generic;
2266 	extern char except_vec4;
2267 	extern char except_vec3_r4000;
2268 	unsigned long i, vec_size;
2269 	phys_addr_t ebase_pa;
2270 
2271 	check_wait();
2272 
2273 	if (!cpu_has_mips_r2_r6) {
2274 		ebase = CAC_BASE;
2275 		ebase_pa = virt_to_phys((void *)ebase);
2276 		vec_size = 0x400;
2277 
2278 		memblock_reserve(ebase_pa, vec_size);
2279 	} else {
2280 		if (cpu_has_veic || cpu_has_vint)
2281 			vec_size = 0x200 + VECTORSPACING*64;
2282 		else
2283 			vec_size = PAGE_SIZE;
2284 
2285 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2286 		if (!ebase_pa)
2287 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2288 			      __func__, vec_size, 1 << fls(vec_size));
2289 
2290 		/*
2291 		 * Try to ensure ebase resides in KSeg0 if possible.
2292 		 *
2293 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2294 		 * hitting a poorly defined exception base for Cache Errors.
2295 		 * The allocation is likely to be in the low 512MB of physical,
2296 		 * in which case we should be able to convert to KSeg0.
2297 		 *
2298 		 * EVA is special though as it allows segments to be rearranged
2299 		 * and to become uncached during cache error handling.
2300 		 */
2301 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2302 			ebase = CKSEG0ADDR(ebase_pa);
2303 		else
2304 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2305 	}
2306 
2307 	if (cpu_has_mmips) {
2308 		unsigned int config3 = read_c0_config3();
2309 
2310 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2311 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2312 		else
2313 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2314 	}
2315 
2316 	if (board_ebase_setup)
2317 		board_ebase_setup();
2318 	per_cpu_trap_init(true);
2319 	memblock_set_bottom_up(false);
2320 
2321 	/*
2322 	 * Copy the generic exception handlers to their final destination.
2323 	 * This will be overridden later as suitable for a particular
2324 	 * configuration.
2325 	 */
2326 	set_handler(0x180, &except_vec3_generic, 0x80);
2327 
2328 	/*
2329 	 * Setup default vectors
2330 	 */
2331 	for (i = 0; i <= 31; i++)
2332 		set_except_vector(i, handle_reserved);
2333 
2334 	/*
2335 	 * Copy the EJTAG debug exception vector handler code to it's final
2336 	 * destination.
2337 	 */
2338 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2339 		board_ejtag_handler_setup();
2340 
2341 	/*
2342 	 * Only some CPUs have the watch exceptions.
2343 	 */
2344 	if (cpu_has_watch)
2345 		set_except_vector(EXCCODE_WATCH, handle_watch);
2346 
2347 	/*
2348 	 * Initialise interrupt handlers
2349 	 */
2350 	if (cpu_has_veic || cpu_has_vint) {
2351 		int nvec = cpu_has_veic ? 64 : 8;
2352 		for (i = 0; i < nvec; i++)
2353 			set_vi_handler(i, NULL);
2354 	}
2355 	else if (cpu_has_divec)
2356 		set_handler(0x200, &except_vec4, 0x8);
2357 
2358 	/*
2359 	 * Some CPUs can enable/disable for cache parity detection, but does
2360 	 * it different ways.
2361 	 */
2362 	parity_protection_init();
2363 
2364 	/*
2365 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2366 	 * by external hardware.  Therefore these two exceptions
2367 	 * may have board specific handlers.
2368 	 */
2369 	if (board_be_init)
2370 		board_be_init();
2371 
2372 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2373 					rollback_handle_int : handle_int);
2374 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2375 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2376 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2377 
2378 	set_except_vector(EXCCODE_ADEL, handle_adel);
2379 	set_except_vector(EXCCODE_ADES, handle_ades);
2380 
2381 	set_except_vector(EXCCODE_IBE, handle_ibe);
2382 	set_except_vector(EXCCODE_DBE, handle_dbe);
2383 
2384 	set_except_vector(EXCCODE_SYS, handle_sys);
2385 	set_except_vector(EXCCODE_BP, handle_bp);
2386 
2387 	if (rdhwr_noopt)
2388 		set_except_vector(EXCCODE_RI, handle_ri);
2389 	else {
2390 		if (cpu_has_vtag_icache)
2391 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2392 		else if (current_cpu_type() == CPU_LOONGSON64)
2393 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2394 		else
2395 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2396 	}
2397 
2398 	set_except_vector(EXCCODE_CPU, handle_cpu);
2399 	set_except_vector(EXCCODE_OV, handle_ov);
2400 	set_except_vector(EXCCODE_TR, handle_tr);
2401 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2402 
2403 	if (board_nmi_handler_setup)
2404 		board_nmi_handler_setup();
2405 
2406 	if (cpu_has_fpu && !cpu_has_nofpuex)
2407 		set_except_vector(EXCCODE_FPE, handle_fpe);
2408 
2409 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2410 
2411 	if (cpu_has_rixiex) {
2412 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2413 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2414 	}
2415 
2416 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2417 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2418 
2419 	if (cpu_has_mcheck)
2420 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2421 
2422 	if (cpu_has_mipsmt)
2423 		set_except_vector(EXCCODE_THREAD, handle_mt);
2424 
2425 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2426 
2427 	if (board_cache_error_setup)
2428 		board_cache_error_setup();
2429 
2430 	if (cpu_has_vce)
2431 		/* Special exception: R4[04]00 uses also the divec space. */
2432 		set_handler(0x180, &except_vec3_r4000, 0x100);
2433 	else if (cpu_has_4kex)
2434 		set_handler(0x180, &except_vec3_generic, 0x80);
2435 	else
2436 		set_handler(0x080, &except_vec3_generic, 0x80);
2437 
2438 	local_flush_icache_range(ebase, ebase + vec_size);
2439 
2440 	sort_extable(__start___dbe_table, __stop___dbe_table);
2441 
2442 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2443 }
2444 
2445 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2446 			    void *v)
2447 {
2448 	switch (cmd) {
2449 	case CPU_PM_ENTER_FAILED:
2450 	case CPU_PM_EXIT:
2451 		configure_status();
2452 		configure_hwrena();
2453 		configure_exception_vector();
2454 
2455 		/* Restore register with CPU number for TLB handlers */
2456 		TLBMISS_HANDLER_RESTORE();
2457 
2458 		break;
2459 	}
2460 
2461 	return NOTIFY_OK;
2462 }
2463 
2464 static struct notifier_block trap_pm_notifier_block = {
2465 	.notifier_call = trap_pm_notifier,
2466 };
2467 
2468 static int __init trap_pm_init(void)
2469 {
2470 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2471 }
2472 arch_initcall(trap_pm_init);
2473