1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 13 */ 14 #include <linux/bug.h> 15 #include <linux/compiler.h> 16 #include <linux/init.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 #include <linux/interrupt.h> 25 #include <linux/ptrace.h> 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 #include <linux/kprobes.h> 29 #include <linux/notifier.h> 30 #include <linux/kdb.h> 31 #include <linux/irq.h> 32 #include <linux/perf_event.h> 33 34 #include <asm/bootinfo.h> 35 #include <asm/branch.h> 36 #include <asm/break.h> 37 #include <asm/cop2.h> 38 #include <asm/cpu.h> 39 #include <asm/dsp.h> 40 #include <asm/fpu.h> 41 #include <asm/fpu_emulator.h> 42 #include <asm/mipsregs.h> 43 #include <asm/mipsmtregs.h> 44 #include <asm/module.h> 45 #include <asm/pgtable.h> 46 #include <asm/ptrace.h> 47 #include <asm/sections.h> 48 #include <asm/system.h> 49 #include <asm/tlbdebug.h> 50 #include <asm/traps.h> 51 #include <asm/uaccess.h> 52 #include <asm/watch.h> 53 #include <asm/mmu_context.h> 54 #include <asm/types.h> 55 #include <asm/stacktrace.h> 56 #include <asm/uasm.h> 57 58 extern void check_wait(void); 59 extern asmlinkage void r4k_wait(void); 60 extern asmlinkage void rollback_handle_int(void); 61 extern asmlinkage void handle_int(void); 62 extern asmlinkage void handle_tlbm(void); 63 extern asmlinkage void handle_tlbl(void); 64 extern asmlinkage void handle_tlbs(void); 65 extern asmlinkage void handle_adel(void); 66 extern asmlinkage void handle_ades(void); 67 extern asmlinkage void handle_ibe(void); 68 extern asmlinkage void handle_dbe(void); 69 extern asmlinkage void handle_sys(void); 70 extern asmlinkage void handle_bp(void); 71 extern asmlinkage void handle_ri(void); 72 extern asmlinkage void handle_ri_rdhwr_vivt(void); 73 extern asmlinkage void handle_ri_rdhwr(void); 74 extern asmlinkage void handle_cpu(void); 75 extern asmlinkage void handle_ov(void); 76 extern asmlinkage void handle_tr(void); 77 extern asmlinkage void handle_fpe(void); 78 extern asmlinkage void handle_mdmx(void); 79 extern asmlinkage void handle_watch(void); 80 extern asmlinkage void handle_mt(void); 81 extern asmlinkage void handle_dsp(void); 82 extern asmlinkage void handle_mcheck(void); 83 extern asmlinkage void handle_reserved(void); 84 85 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 86 struct mips_fpu_struct *ctx, int has_fpu, 87 void *__user *fault_addr); 88 89 void (*board_be_init)(void); 90 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 91 void (*board_nmi_handler_setup)(void); 92 void (*board_ejtag_handler_setup)(void); 93 void (*board_bind_eic_interrupt)(int irq, int regset); 94 95 96 static void show_raw_backtrace(unsigned long reg29) 97 { 98 unsigned long *sp = (unsigned long *)(reg29 & ~3); 99 unsigned long addr; 100 101 printk("Call Trace:"); 102 #ifdef CONFIG_KALLSYMS 103 printk("\n"); 104 #endif 105 while (!kstack_end(sp)) { 106 unsigned long __user *p = 107 (unsigned long __user *)(unsigned long)sp++; 108 if (__get_user(addr, p)) { 109 printk(" (Bad stack address)"); 110 break; 111 } 112 if (__kernel_text_address(addr)) 113 print_ip_sym(addr); 114 } 115 printk("\n"); 116 } 117 118 #ifdef CONFIG_KALLSYMS 119 int raw_show_trace; 120 static int __init set_raw_show_trace(char *str) 121 { 122 raw_show_trace = 1; 123 return 1; 124 } 125 __setup("raw_show_trace", set_raw_show_trace); 126 #endif 127 128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 129 { 130 unsigned long sp = regs->regs[29]; 131 unsigned long ra = regs->regs[31]; 132 unsigned long pc = regs->cp0_epc; 133 134 if (raw_show_trace || !__kernel_text_address(pc)) { 135 show_raw_backtrace(sp); 136 return; 137 } 138 printk("Call Trace:\n"); 139 do { 140 print_ip_sym(pc); 141 pc = unwind_stack(task, &sp, pc, &ra); 142 } while (pc); 143 printk("\n"); 144 } 145 146 /* 147 * This routine abuses get_user()/put_user() to reference pointers 148 * with at least a bit of error checking ... 149 */ 150 static void show_stacktrace(struct task_struct *task, 151 const struct pt_regs *regs) 152 { 153 const int field = 2 * sizeof(unsigned long); 154 long stackdata; 155 int i; 156 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 157 158 printk("Stack :"); 159 i = 0; 160 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 161 if (i && ((i % (64 / field)) == 0)) 162 printk("\n "); 163 if (i > 39) { 164 printk(" ..."); 165 break; 166 } 167 168 if (__get_user(stackdata, sp++)) { 169 printk(" (Bad stack address)"); 170 break; 171 } 172 173 printk(" %0*lx", field, stackdata); 174 i++; 175 } 176 printk("\n"); 177 show_backtrace(task, regs); 178 } 179 180 void show_stack(struct task_struct *task, unsigned long *sp) 181 { 182 struct pt_regs regs; 183 if (sp) { 184 regs.regs[29] = (unsigned long)sp; 185 regs.regs[31] = 0; 186 regs.cp0_epc = 0; 187 } else { 188 if (task && task != current) { 189 regs.regs[29] = task->thread.reg29; 190 regs.regs[31] = 0; 191 regs.cp0_epc = task->thread.reg31; 192 #ifdef CONFIG_KGDB_KDB 193 } else if (atomic_read(&kgdb_active) != -1 && 194 kdb_current_regs) { 195 memcpy(®s, kdb_current_regs, sizeof(regs)); 196 #endif /* CONFIG_KGDB_KDB */ 197 } else { 198 prepare_frametrace(®s); 199 } 200 } 201 show_stacktrace(task, ®s); 202 } 203 204 /* 205 * The architecture-independent dump_stack generator 206 */ 207 void dump_stack(void) 208 { 209 struct pt_regs regs; 210 211 prepare_frametrace(®s); 212 show_backtrace(current, ®s); 213 } 214 215 EXPORT_SYMBOL(dump_stack); 216 217 static void show_code(unsigned int __user *pc) 218 { 219 long i; 220 unsigned short __user *pc16 = NULL; 221 222 printk("\nCode:"); 223 224 if ((unsigned long)pc & 1) 225 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 226 for(i = -3 ; i < 6 ; i++) { 227 unsigned int insn; 228 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 229 printk(" (Bad address in epc)\n"); 230 break; 231 } 232 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 233 } 234 } 235 236 static void __show_regs(const struct pt_regs *regs) 237 { 238 const int field = 2 * sizeof(unsigned long); 239 unsigned int cause = regs->cp0_cause; 240 int i; 241 242 printk("Cpu %d\n", smp_processor_id()); 243 244 /* 245 * Saved main processor registers 246 */ 247 for (i = 0; i < 32; ) { 248 if ((i % 4) == 0) 249 printk("$%2d :", i); 250 if (i == 0) 251 printk(" %0*lx", field, 0UL); 252 else if (i == 26 || i == 27) 253 printk(" %*s", field, ""); 254 else 255 printk(" %0*lx", field, regs->regs[i]); 256 257 i++; 258 if ((i % 4) == 0) 259 printk("\n"); 260 } 261 262 #ifdef CONFIG_CPU_HAS_SMARTMIPS 263 printk("Acx : %0*lx\n", field, regs->acx); 264 #endif 265 printk("Hi : %0*lx\n", field, regs->hi); 266 printk("Lo : %0*lx\n", field, regs->lo); 267 268 /* 269 * Saved cp0 registers 270 */ 271 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 272 (void *) regs->cp0_epc); 273 printk(" %s\n", print_tainted()); 274 printk("ra : %0*lx %pS\n", field, regs->regs[31], 275 (void *) regs->regs[31]); 276 277 printk("Status: %08x ", (uint32_t) regs->cp0_status); 278 279 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 280 if (regs->cp0_status & ST0_KUO) 281 printk("KUo "); 282 if (regs->cp0_status & ST0_IEO) 283 printk("IEo "); 284 if (regs->cp0_status & ST0_KUP) 285 printk("KUp "); 286 if (regs->cp0_status & ST0_IEP) 287 printk("IEp "); 288 if (regs->cp0_status & ST0_KUC) 289 printk("KUc "); 290 if (regs->cp0_status & ST0_IEC) 291 printk("IEc "); 292 } else { 293 if (regs->cp0_status & ST0_KX) 294 printk("KX "); 295 if (regs->cp0_status & ST0_SX) 296 printk("SX "); 297 if (regs->cp0_status & ST0_UX) 298 printk("UX "); 299 switch (regs->cp0_status & ST0_KSU) { 300 case KSU_USER: 301 printk("USER "); 302 break; 303 case KSU_SUPERVISOR: 304 printk("SUPERVISOR "); 305 break; 306 case KSU_KERNEL: 307 printk("KERNEL "); 308 break; 309 default: 310 printk("BAD_MODE "); 311 break; 312 } 313 if (regs->cp0_status & ST0_ERL) 314 printk("ERL "); 315 if (regs->cp0_status & ST0_EXL) 316 printk("EXL "); 317 if (regs->cp0_status & ST0_IE) 318 printk("IE "); 319 } 320 printk("\n"); 321 322 printk("Cause : %08x\n", cause); 323 324 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 325 if (1 <= cause && cause <= 5) 326 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 327 328 printk("PrId : %08x (%s)\n", read_c0_prid(), 329 cpu_name_string()); 330 } 331 332 /* 333 * FIXME: really the generic show_regs should take a const pointer argument. 334 */ 335 void show_regs(struct pt_regs *regs) 336 { 337 __show_regs((struct pt_regs *)regs); 338 } 339 340 void show_registers(struct pt_regs *regs) 341 { 342 const int field = 2 * sizeof(unsigned long); 343 344 __show_regs(regs); 345 print_modules(); 346 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 347 current->comm, current->pid, current_thread_info(), current, 348 field, current_thread_info()->tp_value); 349 if (cpu_has_userlocal) { 350 unsigned long tls; 351 352 tls = read_c0_userlocal(); 353 if (tls != current_thread_info()->tp_value) 354 printk("*HwTLS: %0*lx\n", field, tls); 355 } 356 357 show_stacktrace(current, regs); 358 show_code((unsigned int __user *) regs->cp0_epc); 359 printk("\n"); 360 } 361 362 static int regs_to_trapnr(struct pt_regs *regs) 363 { 364 return (regs->cp0_cause >> 2) & 0x1f; 365 } 366 367 static DEFINE_SPINLOCK(die_lock); 368 369 void __noreturn die(const char *str, struct pt_regs *regs) 370 { 371 static int die_counter; 372 int sig = SIGSEGV; 373 #ifdef CONFIG_MIPS_MT_SMTC 374 unsigned long dvpret = dvpe(); 375 #endif /* CONFIG_MIPS_MT_SMTC */ 376 377 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP) 378 sig = 0; 379 380 console_verbose(); 381 spin_lock_irq(&die_lock); 382 bust_spinlocks(1); 383 #ifdef CONFIG_MIPS_MT_SMTC 384 mips_mt_regdump(dvpret); 385 #endif /* CONFIG_MIPS_MT_SMTC */ 386 387 printk("%s[#%d]:\n", str, ++die_counter); 388 show_registers(regs); 389 add_taint(TAINT_DIE); 390 spin_unlock_irq(&die_lock); 391 392 if (in_interrupt()) 393 panic("Fatal exception in interrupt"); 394 395 if (panic_on_oops) { 396 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 397 ssleep(5); 398 panic("Fatal exception"); 399 } 400 401 do_exit(sig); 402 } 403 404 extern struct exception_table_entry __start___dbe_table[]; 405 extern struct exception_table_entry __stop___dbe_table[]; 406 407 __asm__( 408 " .section __dbe_table, \"a\"\n" 409 " .previous \n"); 410 411 /* Given an address, look for it in the exception tables. */ 412 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 413 { 414 const struct exception_table_entry *e; 415 416 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 417 if (!e) 418 e = search_module_dbetables(addr); 419 return e; 420 } 421 422 asmlinkage void do_be(struct pt_regs *regs) 423 { 424 const int field = 2 * sizeof(unsigned long); 425 const struct exception_table_entry *fixup = NULL; 426 int data = regs->cp0_cause & 4; 427 int action = MIPS_BE_FATAL; 428 429 /* XXX For now. Fixme, this searches the wrong table ... */ 430 if (data && !user_mode(regs)) 431 fixup = search_dbe_tables(exception_epc(regs)); 432 433 if (fixup) 434 action = MIPS_BE_FIXUP; 435 436 if (board_be_handler) 437 action = board_be_handler(regs, fixup != NULL); 438 439 switch (action) { 440 case MIPS_BE_DISCARD: 441 return; 442 case MIPS_BE_FIXUP: 443 if (fixup) { 444 regs->cp0_epc = fixup->nextinsn; 445 return; 446 } 447 break; 448 default: 449 break; 450 } 451 452 /* 453 * Assume it would be too dangerous to continue ... 454 */ 455 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 456 data ? "Data" : "Instruction", 457 field, regs->cp0_epc, field, regs->regs[31]); 458 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS) 459 == NOTIFY_STOP) 460 return; 461 462 die_if_kernel("Oops", regs); 463 force_sig(SIGBUS, current); 464 } 465 466 /* 467 * ll/sc, rdhwr, sync emulation 468 */ 469 470 #define OPCODE 0xfc000000 471 #define BASE 0x03e00000 472 #define RT 0x001f0000 473 #define OFFSET 0x0000ffff 474 #define LL 0xc0000000 475 #define SC 0xe0000000 476 #define SPEC0 0x00000000 477 #define SPEC3 0x7c000000 478 #define RD 0x0000f800 479 #define FUNC 0x0000003f 480 #define SYNC 0x0000000f 481 #define RDHWR 0x0000003b 482 483 /* 484 * The ll_bit is cleared by r*_switch.S 485 */ 486 487 unsigned int ll_bit; 488 struct task_struct *ll_task; 489 490 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 491 { 492 unsigned long value, __user *vaddr; 493 long offset; 494 495 /* 496 * analyse the ll instruction that just caused a ri exception 497 * and put the referenced address to addr. 498 */ 499 500 /* sign extend offset */ 501 offset = opcode & OFFSET; 502 offset <<= 16; 503 offset >>= 16; 504 505 vaddr = (unsigned long __user *) 506 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 507 508 if ((unsigned long)vaddr & 3) 509 return SIGBUS; 510 if (get_user(value, vaddr)) 511 return SIGSEGV; 512 513 preempt_disable(); 514 515 if (ll_task == NULL || ll_task == current) { 516 ll_bit = 1; 517 } else { 518 ll_bit = 0; 519 } 520 ll_task = current; 521 522 preempt_enable(); 523 524 regs->regs[(opcode & RT) >> 16] = value; 525 526 return 0; 527 } 528 529 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 530 { 531 unsigned long __user *vaddr; 532 unsigned long reg; 533 long offset; 534 535 /* 536 * analyse the sc instruction that just caused a ri exception 537 * and put the referenced address to addr. 538 */ 539 540 /* sign extend offset */ 541 offset = opcode & OFFSET; 542 offset <<= 16; 543 offset >>= 16; 544 545 vaddr = (unsigned long __user *) 546 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 547 reg = (opcode & RT) >> 16; 548 549 if ((unsigned long)vaddr & 3) 550 return SIGBUS; 551 552 preempt_disable(); 553 554 if (ll_bit == 0 || ll_task != current) { 555 regs->regs[reg] = 0; 556 preempt_enable(); 557 return 0; 558 } 559 560 preempt_enable(); 561 562 if (put_user(regs->regs[reg], vaddr)) 563 return SIGSEGV; 564 565 regs->regs[reg] = 1; 566 567 return 0; 568 } 569 570 /* 571 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 572 * opcodes are supposed to result in coprocessor unusable exceptions if 573 * executed on ll/sc-less processors. That's the theory. In practice a 574 * few processors such as NEC's VR4100 throw reserved instruction exceptions 575 * instead, so we're doing the emulation thing in both exception handlers. 576 */ 577 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 578 { 579 if ((opcode & OPCODE) == LL) { 580 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 581 1, 0, regs, 0); 582 return simulate_ll(regs, opcode); 583 } 584 if ((opcode & OPCODE) == SC) { 585 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 586 1, 0, regs, 0); 587 return simulate_sc(regs, opcode); 588 } 589 590 return -1; /* Must be something else ... */ 591 } 592 593 /* 594 * Simulate trapping 'rdhwr' instructions to provide user accessible 595 * registers not implemented in hardware. 596 */ 597 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode) 598 { 599 struct thread_info *ti = task_thread_info(current); 600 601 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 602 int rd = (opcode & RD) >> 11; 603 int rt = (opcode & RT) >> 16; 604 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 605 1, 0, regs, 0); 606 switch (rd) { 607 case 0: /* CPU number */ 608 regs->regs[rt] = smp_processor_id(); 609 return 0; 610 case 1: /* SYNCI length */ 611 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 612 current_cpu_data.icache.linesz); 613 return 0; 614 case 2: /* Read count register */ 615 regs->regs[rt] = read_c0_count(); 616 return 0; 617 case 3: /* Count register resolution */ 618 switch (current_cpu_data.cputype) { 619 case CPU_20KC: 620 case CPU_25KF: 621 regs->regs[rt] = 1; 622 break; 623 default: 624 regs->regs[rt] = 2; 625 } 626 return 0; 627 case 29: 628 regs->regs[rt] = ti->tp_value; 629 return 0; 630 default: 631 return -1; 632 } 633 } 634 635 /* Not ours. */ 636 return -1; 637 } 638 639 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 640 { 641 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 642 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 643 1, 0, regs, 0); 644 return 0; 645 } 646 647 return -1; /* Must be something else ... */ 648 } 649 650 asmlinkage void do_ov(struct pt_regs *regs) 651 { 652 siginfo_t info; 653 654 die_if_kernel("Integer overflow", regs); 655 656 info.si_code = FPE_INTOVF; 657 info.si_signo = SIGFPE; 658 info.si_errno = 0; 659 info.si_addr = (void __user *) regs->cp0_epc; 660 force_sig_info(SIGFPE, &info, current); 661 } 662 663 static int process_fpemu_return(int sig, void __user *fault_addr) 664 { 665 if (sig == SIGSEGV || sig == SIGBUS) { 666 struct siginfo si = {0}; 667 si.si_addr = fault_addr; 668 si.si_signo = sig; 669 if (sig == SIGSEGV) { 670 if (find_vma(current->mm, (unsigned long)fault_addr)) 671 si.si_code = SEGV_ACCERR; 672 else 673 si.si_code = SEGV_MAPERR; 674 } else { 675 si.si_code = BUS_ADRERR; 676 } 677 force_sig_info(sig, &si, current); 678 return 1; 679 } else if (sig) { 680 force_sig(sig, current); 681 return 1; 682 } else { 683 return 0; 684 } 685 } 686 687 /* 688 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 689 */ 690 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 691 { 692 siginfo_t info = {0}; 693 694 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE) 695 == NOTIFY_STOP) 696 return; 697 die_if_kernel("FP exception in kernel code", regs); 698 699 if (fcr31 & FPU_CSR_UNI_X) { 700 int sig; 701 void __user *fault_addr = NULL; 702 703 /* 704 * Unimplemented operation exception. If we've got the full 705 * software emulator on-board, let's use it... 706 * 707 * Force FPU to dump state into task/thread context. We're 708 * moving a lot of data here for what is probably a single 709 * instruction, but the alternative is to pre-decode the FP 710 * register operands before invoking the emulator, which seems 711 * a bit extreme for what should be an infrequent event. 712 */ 713 /* Ensure 'resume' not overwrite saved fp context again. */ 714 lose_fpu(1); 715 716 /* Run the emulator */ 717 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 718 &fault_addr); 719 720 /* 721 * We can't allow the emulated instruction to leave any of 722 * the cause bit set in $fcr31. 723 */ 724 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 725 726 /* Restore the hardware register state */ 727 own_fpu(1); /* Using the FPU again. */ 728 729 /* If something went wrong, signal */ 730 process_fpemu_return(sig, fault_addr); 731 732 return; 733 } else if (fcr31 & FPU_CSR_INV_X) 734 info.si_code = FPE_FLTINV; 735 else if (fcr31 & FPU_CSR_DIV_X) 736 info.si_code = FPE_FLTDIV; 737 else if (fcr31 & FPU_CSR_OVF_X) 738 info.si_code = FPE_FLTOVF; 739 else if (fcr31 & FPU_CSR_UDF_X) 740 info.si_code = FPE_FLTUND; 741 else if (fcr31 & FPU_CSR_INE_X) 742 info.si_code = FPE_FLTRES; 743 else 744 info.si_code = __SI_FAULT; 745 info.si_signo = SIGFPE; 746 info.si_errno = 0; 747 info.si_addr = (void __user *) regs->cp0_epc; 748 force_sig_info(SIGFPE, &info, current); 749 } 750 751 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 752 const char *str) 753 { 754 siginfo_t info; 755 char b[40]; 756 757 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 758 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 759 return; 760 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 761 762 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 763 return; 764 765 /* 766 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 767 * insns, even for trap and break codes that indicate arithmetic 768 * failures. Weird ... 769 * But should we continue the brokenness??? --macro 770 */ 771 switch (code) { 772 case BRK_OVERFLOW: 773 case BRK_DIVZERO: 774 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 775 die_if_kernel(b, regs); 776 if (code == BRK_DIVZERO) 777 info.si_code = FPE_INTDIV; 778 else 779 info.si_code = FPE_INTOVF; 780 info.si_signo = SIGFPE; 781 info.si_errno = 0; 782 info.si_addr = (void __user *) regs->cp0_epc; 783 force_sig_info(SIGFPE, &info, current); 784 break; 785 case BRK_BUG: 786 die_if_kernel("Kernel bug detected", regs); 787 force_sig(SIGTRAP, current); 788 break; 789 case BRK_MEMU: 790 /* 791 * Address errors may be deliberately induced by the FPU 792 * emulator to retake control of the CPU after executing the 793 * instruction in the delay slot of an emulated branch. 794 * 795 * Terminate if exception was recognized as a delay slot return 796 * otherwise handle as normal. 797 */ 798 if (do_dsemulret(regs)) 799 return; 800 801 die_if_kernel("Math emu break/trap", regs); 802 force_sig(SIGTRAP, current); 803 break; 804 default: 805 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 806 die_if_kernel(b, regs); 807 force_sig(SIGTRAP, current); 808 } 809 } 810 811 asmlinkage void do_bp(struct pt_regs *regs) 812 { 813 unsigned int opcode, bcode; 814 815 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 816 goto out_sigsegv; 817 818 /* 819 * There is the ancient bug in the MIPS assemblers that the break 820 * code starts left to bit 16 instead to bit 6 in the opcode. 821 * Gas is bug-compatible, but not always, grrr... 822 * We handle both cases with a simple heuristics. --macro 823 */ 824 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 825 if (bcode >= (1 << 10)) 826 bcode >>= 10; 827 828 /* 829 * notify the kprobe handlers, if instruction is likely to 830 * pertain to them. 831 */ 832 switch (bcode) { 833 case BRK_KPROBE_BP: 834 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 835 return; 836 else 837 break; 838 case BRK_KPROBE_SSTEPBP: 839 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 840 return; 841 else 842 break; 843 default: 844 break; 845 } 846 847 do_trap_or_bp(regs, bcode, "Break"); 848 return; 849 850 out_sigsegv: 851 force_sig(SIGSEGV, current); 852 } 853 854 asmlinkage void do_tr(struct pt_regs *regs) 855 { 856 unsigned int opcode, tcode = 0; 857 858 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs))) 859 goto out_sigsegv; 860 861 /* Immediate versions don't provide a code. */ 862 if (!(opcode & OPCODE)) 863 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 864 865 do_trap_or_bp(regs, tcode, "Trap"); 866 return; 867 868 out_sigsegv: 869 force_sig(SIGSEGV, current); 870 } 871 872 asmlinkage void do_ri(struct pt_regs *regs) 873 { 874 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 875 unsigned long old_epc = regs->cp0_epc; 876 unsigned int opcode = 0; 877 int status = -1; 878 879 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL) 880 == NOTIFY_STOP) 881 return; 882 883 die_if_kernel("Reserved instruction in kernel code", regs); 884 885 if (unlikely(compute_return_epc(regs) < 0)) 886 return; 887 888 if (unlikely(get_user(opcode, epc) < 0)) 889 status = SIGSEGV; 890 891 if (!cpu_has_llsc && status < 0) 892 status = simulate_llsc(regs, opcode); 893 894 if (status < 0) 895 status = simulate_rdhwr(regs, opcode); 896 897 if (status < 0) 898 status = simulate_sync(regs, opcode); 899 900 if (status < 0) 901 status = SIGILL; 902 903 if (unlikely(status > 0)) { 904 regs->cp0_epc = old_epc; /* Undo skip-over. */ 905 force_sig(status, current); 906 } 907 } 908 909 /* 910 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 911 * emulated more than some threshold number of instructions, force migration to 912 * a "CPU" that has FP support. 913 */ 914 static void mt_ase_fp_affinity(void) 915 { 916 #ifdef CONFIG_MIPS_MT_FPAFF 917 if (mt_fpemul_threshold > 0 && 918 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 919 /* 920 * If there's no FPU present, or if the application has already 921 * restricted the allowed set to exclude any CPUs with FPUs, 922 * we'll skip the procedure. 923 */ 924 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) { 925 cpumask_t tmask; 926 927 current->thread.user_cpus_allowed 928 = current->cpus_allowed; 929 cpus_and(tmask, current->cpus_allowed, 930 mt_fpu_cpumask); 931 set_cpus_allowed_ptr(current, &tmask); 932 set_thread_flag(TIF_FPUBOUND); 933 } 934 } 935 #endif /* CONFIG_MIPS_MT_FPAFF */ 936 } 937 938 /* 939 * No lock; only written during early bootup by CPU 0. 940 */ 941 static RAW_NOTIFIER_HEAD(cu2_chain); 942 943 int __ref register_cu2_notifier(struct notifier_block *nb) 944 { 945 return raw_notifier_chain_register(&cu2_chain, nb); 946 } 947 948 int cu2_notifier_call_chain(unsigned long val, void *v) 949 { 950 return raw_notifier_call_chain(&cu2_chain, val, v); 951 } 952 953 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 954 void *data) 955 { 956 struct pt_regs *regs = data; 957 958 switch (action) { 959 default: 960 die_if_kernel("Unhandled kernel unaligned access or invalid " 961 "instruction", regs); 962 /* Fall through */ 963 964 case CU2_EXCEPTION: 965 force_sig(SIGILL, current); 966 } 967 968 return NOTIFY_OK; 969 } 970 971 asmlinkage void do_cpu(struct pt_regs *regs) 972 { 973 unsigned int __user *epc; 974 unsigned long old_epc; 975 unsigned int opcode; 976 unsigned int cpid; 977 int status; 978 unsigned long __maybe_unused flags; 979 980 die_if_kernel("do_cpu invoked from kernel context!", regs); 981 982 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 983 984 switch (cpid) { 985 case 0: 986 epc = (unsigned int __user *)exception_epc(regs); 987 old_epc = regs->cp0_epc; 988 opcode = 0; 989 status = -1; 990 991 if (unlikely(compute_return_epc(regs) < 0)) 992 return; 993 994 if (unlikely(get_user(opcode, epc) < 0)) 995 status = SIGSEGV; 996 997 if (!cpu_has_llsc && status < 0) 998 status = simulate_llsc(regs, opcode); 999 1000 if (status < 0) 1001 status = simulate_rdhwr(regs, opcode); 1002 1003 if (status < 0) 1004 status = SIGILL; 1005 1006 if (unlikely(status > 0)) { 1007 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1008 force_sig(status, current); 1009 } 1010 1011 return; 1012 1013 case 1: 1014 if (used_math()) /* Using the FPU again. */ 1015 own_fpu(1); 1016 else { /* First time FPU user. */ 1017 init_fpu(); 1018 set_used_math(); 1019 } 1020 1021 if (!raw_cpu_has_fpu) { 1022 int sig; 1023 void __user *fault_addr = NULL; 1024 sig = fpu_emulator_cop1Handler(regs, 1025 ¤t->thread.fpu, 1026 0, &fault_addr); 1027 if (!process_fpemu_return(sig, fault_addr)) 1028 mt_ase_fp_affinity(); 1029 } 1030 1031 return; 1032 1033 case 2: 1034 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1035 return; 1036 1037 case 3: 1038 break; 1039 } 1040 1041 force_sig(SIGILL, current); 1042 } 1043 1044 asmlinkage void do_mdmx(struct pt_regs *regs) 1045 { 1046 force_sig(SIGILL, current); 1047 } 1048 1049 /* 1050 * Called with interrupts disabled. 1051 */ 1052 asmlinkage void do_watch(struct pt_regs *regs) 1053 { 1054 u32 cause; 1055 1056 /* 1057 * Clear WP (bit 22) bit of cause register so we don't loop 1058 * forever. 1059 */ 1060 cause = read_c0_cause(); 1061 cause &= ~(1 << 22); 1062 write_c0_cause(cause); 1063 1064 /* 1065 * If the current thread has the watch registers loaded, save 1066 * their values and send SIGTRAP. Otherwise another thread 1067 * left the registers set, clear them and continue. 1068 */ 1069 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1070 mips_read_watch_registers(); 1071 local_irq_enable(); 1072 force_sig(SIGTRAP, current); 1073 } else { 1074 mips_clear_watch_registers(); 1075 local_irq_enable(); 1076 } 1077 } 1078 1079 asmlinkage void do_mcheck(struct pt_regs *regs) 1080 { 1081 const int field = 2 * sizeof(unsigned long); 1082 int multi_match = regs->cp0_status & ST0_TS; 1083 1084 show_regs(regs); 1085 1086 if (multi_match) { 1087 printk("Index : %0x\n", read_c0_index()); 1088 printk("Pagemask: %0x\n", read_c0_pagemask()); 1089 printk("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1090 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1091 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1092 printk("\n"); 1093 dump_tlb_all(); 1094 } 1095 1096 show_code((unsigned int __user *) regs->cp0_epc); 1097 1098 /* 1099 * Some chips may have other causes of machine check (e.g. SB1 1100 * graduation timer) 1101 */ 1102 panic("Caught Machine Check exception - %scaused by multiple " 1103 "matching entries in the TLB.", 1104 (multi_match) ? "" : "not "); 1105 } 1106 1107 asmlinkage void do_mt(struct pt_regs *regs) 1108 { 1109 int subcode; 1110 1111 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1112 >> VPECONTROL_EXCPT_SHIFT; 1113 switch (subcode) { 1114 case 0: 1115 printk(KERN_DEBUG "Thread Underflow\n"); 1116 break; 1117 case 1: 1118 printk(KERN_DEBUG "Thread Overflow\n"); 1119 break; 1120 case 2: 1121 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1122 break; 1123 case 3: 1124 printk(KERN_DEBUG "Gating Storage Exception\n"); 1125 break; 1126 case 4: 1127 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1128 break; 1129 case 5: 1130 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n"); 1131 break; 1132 default: 1133 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1134 subcode); 1135 break; 1136 } 1137 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1138 1139 force_sig(SIGILL, current); 1140 } 1141 1142 1143 asmlinkage void do_dsp(struct pt_regs *regs) 1144 { 1145 if (cpu_has_dsp) 1146 panic("Unexpected DSP exception\n"); 1147 1148 force_sig(SIGILL, current); 1149 } 1150 1151 asmlinkage void do_reserved(struct pt_regs *regs) 1152 { 1153 /* 1154 * Game over - no way to handle this if it ever occurs. Most probably 1155 * caused by a new unknown cpu type or after another deadly 1156 * hard/software error. 1157 */ 1158 show_regs(regs); 1159 panic("Caught reserved exception %ld - should not happen.", 1160 (regs->cp0_cause & 0x7f) >> 2); 1161 } 1162 1163 static int __initdata l1parity = 1; 1164 static int __init nol1parity(char *s) 1165 { 1166 l1parity = 0; 1167 return 1; 1168 } 1169 __setup("nol1par", nol1parity); 1170 static int __initdata l2parity = 1; 1171 static int __init nol2parity(char *s) 1172 { 1173 l2parity = 0; 1174 return 1; 1175 } 1176 __setup("nol2par", nol2parity); 1177 1178 /* 1179 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1180 * it different ways. 1181 */ 1182 static inline void parity_protection_init(void) 1183 { 1184 switch (current_cpu_type()) { 1185 case CPU_24K: 1186 case CPU_34K: 1187 case CPU_74K: 1188 case CPU_1004K: 1189 { 1190 #define ERRCTL_PE 0x80000000 1191 #define ERRCTL_L2P 0x00800000 1192 unsigned long errctl; 1193 unsigned int l1parity_present, l2parity_present; 1194 1195 errctl = read_c0_ecc(); 1196 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1197 1198 /* probe L1 parity support */ 1199 write_c0_ecc(errctl | ERRCTL_PE); 1200 back_to_back_c0_hazard(); 1201 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1202 1203 /* probe L2 parity support */ 1204 write_c0_ecc(errctl|ERRCTL_L2P); 1205 back_to_back_c0_hazard(); 1206 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1207 1208 if (l1parity_present && l2parity_present) { 1209 if (l1parity) 1210 errctl |= ERRCTL_PE; 1211 if (l1parity ^ l2parity) 1212 errctl |= ERRCTL_L2P; 1213 } else if (l1parity_present) { 1214 if (l1parity) 1215 errctl |= ERRCTL_PE; 1216 } else if (l2parity_present) { 1217 if (l2parity) 1218 errctl |= ERRCTL_L2P; 1219 } else { 1220 /* No parity available */ 1221 } 1222 1223 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1224 1225 write_c0_ecc(errctl); 1226 back_to_back_c0_hazard(); 1227 errctl = read_c0_ecc(); 1228 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1229 1230 if (l1parity_present) 1231 printk(KERN_INFO "Cache parity protection %sabled\n", 1232 (errctl & ERRCTL_PE) ? "en" : "dis"); 1233 1234 if (l2parity_present) { 1235 if (l1parity_present && l1parity) 1236 errctl ^= ERRCTL_L2P; 1237 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1238 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1239 } 1240 } 1241 break; 1242 1243 case CPU_5KC: 1244 write_c0_ecc(0x80000000); 1245 back_to_back_c0_hazard(); 1246 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1247 printk(KERN_INFO "Cache parity protection %sabled\n", 1248 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1249 break; 1250 case CPU_20KC: 1251 case CPU_25KF: 1252 /* Clear the DE bit (bit 16) in the c0_status register. */ 1253 printk(KERN_INFO "Enable cache parity protection for " 1254 "MIPS 20KC/25KF CPUs.\n"); 1255 clear_c0_status(ST0_DE); 1256 break; 1257 default: 1258 break; 1259 } 1260 } 1261 1262 asmlinkage void cache_parity_error(void) 1263 { 1264 const int field = 2 * sizeof(unsigned long); 1265 unsigned int reg_val; 1266 1267 /* For the moment, report the problem and hang. */ 1268 printk("Cache error exception:\n"); 1269 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1270 reg_val = read_c0_cacheerr(); 1271 printk("c0_cacheerr == %08x\n", reg_val); 1272 1273 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1274 reg_val & (1<<30) ? "secondary" : "primary", 1275 reg_val & (1<<31) ? "data" : "insn"); 1276 printk("Error bits: %s%s%s%s%s%s%s\n", 1277 reg_val & (1<<29) ? "ED " : "", 1278 reg_val & (1<<28) ? "ET " : "", 1279 reg_val & (1<<26) ? "EE " : "", 1280 reg_val & (1<<25) ? "EB " : "", 1281 reg_val & (1<<24) ? "EI " : "", 1282 reg_val & (1<<23) ? "E1 " : "", 1283 reg_val & (1<<22) ? "E0 " : ""); 1284 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1285 1286 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1287 if (reg_val & (1<<22)) 1288 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1289 1290 if (reg_val & (1<<23)) 1291 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1292 #endif 1293 1294 panic("Can't handle the cache error!"); 1295 } 1296 1297 /* 1298 * SDBBP EJTAG debug exception handler. 1299 * We skip the instruction and return to the next instruction. 1300 */ 1301 void ejtag_exception_handler(struct pt_regs *regs) 1302 { 1303 const int field = 2 * sizeof(unsigned long); 1304 unsigned long depc, old_epc; 1305 unsigned int debug; 1306 1307 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1308 depc = read_c0_depc(); 1309 debug = read_c0_debug(); 1310 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1311 if (debug & 0x80000000) { 1312 /* 1313 * In branch delay slot. 1314 * We cheat a little bit here and use EPC to calculate the 1315 * debug return address (DEPC). EPC is restored after the 1316 * calculation. 1317 */ 1318 old_epc = regs->cp0_epc; 1319 regs->cp0_epc = depc; 1320 __compute_return_epc(regs); 1321 depc = regs->cp0_epc; 1322 regs->cp0_epc = old_epc; 1323 } else 1324 depc += 4; 1325 write_c0_depc(depc); 1326 1327 #if 0 1328 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1329 write_c0_debug(debug | 0x100); 1330 #endif 1331 } 1332 1333 /* 1334 * NMI exception handler. 1335 */ 1336 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs) 1337 { 1338 bust_spinlocks(1); 1339 printk("NMI taken!!!!\n"); 1340 die("NMI", regs); 1341 } 1342 1343 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1344 1345 unsigned long ebase; 1346 unsigned long exception_handlers[32]; 1347 unsigned long vi_handlers[64]; 1348 1349 void __init *set_except_vector(int n, void *addr) 1350 { 1351 unsigned long handler = (unsigned long) addr; 1352 unsigned long old_handler = exception_handlers[n]; 1353 1354 exception_handlers[n] = handler; 1355 if (n == 0 && cpu_has_divec) { 1356 unsigned long jump_mask = ~((1 << 28) - 1); 1357 u32 *buf = (u32 *)(ebase + 0x200); 1358 unsigned int k0 = 26; 1359 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1360 uasm_i_j(&buf, handler & ~jump_mask); 1361 uasm_i_nop(&buf); 1362 } else { 1363 UASM_i_LA(&buf, k0, handler); 1364 uasm_i_jr(&buf, k0); 1365 uasm_i_nop(&buf); 1366 } 1367 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1368 } 1369 return (void *)old_handler; 1370 } 1371 1372 static asmlinkage void do_default_vi(void) 1373 { 1374 show_regs(get_irq_regs()); 1375 panic("Caught unexpected vectored interrupt."); 1376 } 1377 1378 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1379 { 1380 unsigned long handler; 1381 unsigned long old_handler = vi_handlers[n]; 1382 int srssets = current_cpu_data.srsets; 1383 u32 *w; 1384 unsigned char *b; 1385 1386 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1387 1388 if (addr == NULL) { 1389 handler = (unsigned long) do_default_vi; 1390 srs = 0; 1391 } else 1392 handler = (unsigned long) addr; 1393 vi_handlers[n] = (unsigned long) addr; 1394 1395 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1396 1397 if (srs >= srssets) 1398 panic("Shadow register set %d not supported", srs); 1399 1400 if (cpu_has_veic) { 1401 if (board_bind_eic_interrupt) 1402 board_bind_eic_interrupt(n, srs); 1403 } else if (cpu_has_vint) { 1404 /* SRSMap is only defined if shadow sets are implemented */ 1405 if (srssets > 1) 1406 change_c0_srsmap(0xf << n*4, srs << n*4); 1407 } 1408 1409 if (srs == 0) { 1410 /* 1411 * If no shadow set is selected then use the default handler 1412 * that does normal register saving and a standard interrupt exit 1413 */ 1414 1415 extern char except_vec_vi, except_vec_vi_lui; 1416 extern char except_vec_vi_ori, except_vec_vi_end; 1417 extern char rollback_except_vec_vi; 1418 char *vec_start = (cpu_wait == r4k_wait) ? 1419 &rollback_except_vec_vi : &except_vec_vi; 1420 #ifdef CONFIG_MIPS_MT_SMTC 1421 /* 1422 * We need to provide the SMTC vectored interrupt handler 1423 * not only with the address of the handler, but with the 1424 * Status.IM bit to be masked before going there. 1425 */ 1426 extern char except_vec_vi_mori; 1427 const int mori_offset = &except_vec_vi_mori - vec_start; 1428 #endif /* CONFIG_MIPS_MT_SMTC */ 1429 const int handler_len = &except_vec_vi_end - vec_start; 1430 const int lui_offset = &except_vec_vi_lui - vec_start; 1431 const int ori_offset = &except_vec_vi_ori - vec_start; 1432 1433 if (handler_len > VECTORSPACING) { 1434 /* 1435 * Sigh... panicing won't help as the console 1436 * is probably not configured :( 1437 */ 1438 panic("VECTORSPACING too small"); 1439 } 1440 1441 memcpy(b, vec_start, handler_len); 1442 #ifdef CONFIG_MIPS_MT_SMTC 1443 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */ 1444 1445 w = (u32 *)(b + mori_offset); 1446 *w = (*w & 0xffff0000) | (0x100 << n); 1447 #endif /* CONFIG_MIPS_MT_SMTC */ 1448 w = (u32 *)(b + lui_offset); 1449 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1450 w = (u32 *)(b + ori_offset); 1451 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1452 local_flush_icache_range((unsigned long)b, 1453 (unsigned long)(b+handler_len)); 1454 } 1455 else { 1456 /* 1457 * In other cases jump directly to the interrupt handler 1458 * 1459 * It is the handlers responsibility to save registers if required 1460 * (eg hi/lo) and return from the exception using "eret" 1461 */ 1462 w = (u32 *)b; 1463 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1464 *w = 0; 1465 local_flush_icache_range((unsigned long)b, 1466 (unsigned long)(b+8)); 1467 } 1468 1469 return (void *)old_handler; 1470 } 1471 1472 void *set_vi_handler(int n, vi_handler_t addr) 1473 { 1474 return set_vi_srs_handler(n, addr, 0); 1475 } 1476 1477 extern void cpu_cache_init(void); 1478 extern void tlb_init(void); 1479 extern void flush_tlb_handlers(void); 1480 1481 /* 1482 * Timer interrupt 1483 */ 1484 int cp0_compare_irq; 1485 int cp0_compare_irq_shift; 1486 1487 /* 1488 * Performance counter IRQ or -1 if shared with timer 1489 */ 1490 int cp0_perfcount_irq; 1491 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 1492 1493 static int __cpuinitdata noulri; 1494 1495 static int __init ulri_disable(char *s) 1496 { 1497 pr_info("Disabling ulri\n"); 1498 noulri = 1; 1499 1500 return 1; 1501 } 1502 __setup("noulri", ulri_disable); 1503 1504 void __cpuinit per_cpu_trap_init(void) 1505 { 1506 unsigned int cpu = smp_processor_id(); 1507 unsigned int status_set = ST0_CU0; 1508 unsigned int hwrena = cpu_hwrena_impl_bits; 1509 #ifdef CONFIG_MIPS_MT_SMTC 1510 int secondaryTC = 0; 1511 int bootTC = (cpu == 0); 1512 1513 /* 1514 * Only do per_cpu_trap_init() for first TC of Each VPE. 1515 * Note that this hack assumes that the SMTC init code 1516 * assigns TCs consecutively and in ascending order. 1517 */ 1518 1519 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) && 1520 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id)) 1521 secondaryTC = 1; 1522 #endif /* CONFIG_MIPS_MT_SMTC */ 1523 1524 /* 1525 * Disable coprocessors and select 32-bit or 64-bit addressing 1526 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1527 * flag that some firmware may have left set and the TS bit (for 1528 * IP27). Set XX for ISA IV code to work. 1529 */ 1530 #ifdef CONFIG_64BIT 1531 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1532 #endif 1533 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1534 status_set |= ST0_XX; 1535 if (cpu_has_dsp) 1536 status_set |= ST0_MX; 1537 1538 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1539 status_set); 1540 1541 if (cpu_has_mips_r2) 1542 hwrena |= 0x0000000f; 1543 1544 if (!noulri && cpu_has_userlocal) 1545 hwrena |= (1 << 29); 1546 1547 if (hwrena) 1548 write_c0_hwrena(hwrena); 1549 1550 #ifdef CONFIG_MIPS_MT_SMTC 1551 if (!secondaryTC) { 1552 #endif /* CONFIG_MIPS_MT_SMTC */ 1553 1554 if (cpu_has_veic || cpu_has_vint) { 1555 unsigned long sr = set_c0_status(ST0_BEV); 1556 write_c0_ebase(ebase); 1557 write_c0_status(sr); 1558 /* Setting vector spacing enables EI/VI mode */ 1559 change_c0_intctl(0x3e0, VECTORSPACING); 1560 } 1561 if (cpu_has_divec) { 1562 if (cpu_has_mipsmt) { 1563 unsigned int vpflags = dvpe(); 1564 set_c0_cause(CAUSEF_IV); 1565 evpe(vpflags); 1566 } else 1567 set_c0_cause(CAUSEF_IV); 1568 } 1569 1570 /* 1571 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 1572 * 1573 * o read IntCtl.IPTI to determine the timer interrupt 1574 * o read IntCtl.IPPCI to determine the performance counter interrupt 1575 */ 1576 if (cpu_has_mips_r2) { 1577 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 1578 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 1579 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 1580 if (cp0_perfcount_irq == cp0_compare_irq) 1581 cp0_perfcount_irq = -1; 1582 } else { 1583 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 1584 cp0_compare_irq_shift = cp0_compare_irq; 1585 cp0_perfcount_irq = -1; 1586 } 1587 1588 #ifdef CONFIG_MIPS_MT_SMTC 1589 } 1590 #endif /* CONFIG_MIPS_MT_SMTC */ 1591 1592 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1593 1594 atomic_inc(&init_mm.mm_count); 1595 current->active_mm = &init_mm; 1596 BUG_ON(current->mm); 1597 enter_lazy_tlb(&init_mm, current); 1598 1599 #ifdef CONFIG_MIPS_MT_SMTC 1600 if (bootTC) { 1601 #endif /* CONFIG_MIPS_MT_SMTC */ 1602 cpu_cache_init(); 1603 tlb_init(); 1604 #ifdef CONFIG_MIPS_MT_SMTC 1605 } else if (!secondaryTC) { 1606 /* 1607 * First TC in non-boot VPE must do subset of tlb_init() 1608 * for MMU countrol registers. 1609 */ 1610 write_c0_pagemask(PM_DEFAULT_MASK); 1611 write_c0_wired(0); 1612 } 1613 #endif /* CONFIG_MIPS_MT_SMTC */ 1614 TLBMISS_HANDLER_SETUP(); 1615 } 1616 1617 /* Install CPU exception handler */ 1618 void __init set_handler(unsigned long offset, void *addr, unsigned long size) 1619 { 1620 memcpy((void *)(ebase + offset), addr, size); 1621 local_flush_icache_range(ebase + offset, ebase + offset + size); 1622 } 1623 1624 static char panic_null_cerr[] __cpuinitdata = 1625 "Trying to set NULL cache error exception handler"; 1626 1627 /* 1628 * Install uncached CPU exception handler. 1629 * This is suitable only for the cache error exception which is the only 1630 * exception handler that is being run uncached. 1631 */ 1632 void __cpuinit set_uncached_handler(unsigned long offset, void *addr, 1633 unsigned long size) 1634 { 1635 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 1636 1637 if (!addr) 1638 panic(panic_null_cerr); 1639 1640 memcpy((void *)(uncached_ebase + offset), addr, size); 1641 } 1642 1643 static int __initdata rdhwr_noopt; 1644 static int __init set_rdhwr_noopt(char *str) 1645 { 1646 rdhwr_noopt = 1; 1647 return 1; 1648 } 1649 1650 __setup("rdhwr_noopt", set_rdhwr_noopt); 1651 1652 void __init trap_init(void) 1653 { 1654 extern char except_vec3_generic, except_vec3_r4000; 1655 extern char except_vec4; 1656 unsigned long i; 1657 int rollback; 1658 1659 check_wait(); 1660 rollback = (cpu_wait == r4k_wait); 1661 1662 #if defined(CONFIG_KGDB) 1663 if (kgdb_early_setup) 1664 return; /* Already done */ 1665 #endif 1666 1667 if (cpu_has_veic || cpu_has_vint) { 1668 unsigned long size = 0x200 + VECTORSPACING*64; 1669 ebase = (unsigned long) 1670 __alloc_bootmem(size, 1 << fls(size), 0); 1671 } else { 1672 ebase = CKSEG0; 1673 if (cpu_has_mips_r2) 1674 ebase += (read_c0_ebase() & 0x3ffff000); 1675 } 1676 1677 per_cpu_trap_init(); 1678 1679 /* 1680 * Copy the generic exception handlers to their final destination. 1681 * This will be overriden later as suitable for a particular 1682 * configuration. 1683 */ 1684 set_handler(0x180, &except_vec3_generic, 0x80); 1685 1686 /* 1687 * Setup default vectors 1688 */ 1689 for (i = 0; i <= 31; i++) 1690 set_except_vector(i, handle_reserved); 1691 1692 /* 1693 * Copy the EJTAG debug exception vector handler code to it's final 1694 * destination. 1695 */ 1696 if (cpu_has_ejtag && board_ejtag_handler_setup) 1697 board_ejtag_handler_setup(); 1698 1699 /* 1700 * Only some CPUs have the watch exceptions. 1701 */ 1702 if (cpu_has_watch) 1703 set_except_vector(23, handle_watch); 1704 1705 /* 1706 * Initialise interrupt handlers 1707 */ 1708 if (cpu_has_veic || cpu_has_vint) { 1709 int nvec = cpu_has_veic ? 64 : 8; 1710 for (i = 0; i < nvec; i++) 1711 set_vi_handler(i, NULL); 1712 } 1713 else if (cpu_has_divec) 1714 set_handler(0x200, &except_vec4, 0x8); 1715 1716 /* 1717 * Some CPUs can enable/disable for cache parity detection, but does 1718 * it different ways. 1719 */ 1720 parity_protection_init(); 1721 1722 /* 1723 * The Data Bus Errors / Instruction Bus Errors are signaled 1724 * by external hardware. Therefore these two exceptions 1725 * may have board specific handlers. 1726 */ 1727 if (board_be_init) 1728 board_be_init(); 1729 1730 set_except_vector(0, rollback ? rollback_handle_int : handle_int); 1731 set_except_vector(1, handle_tlbm); 1732 set_except_vector(2, handle_tlbl); 1733 set_except_vector(3, handle_tlbs); 1734 1735 set_except_vector(4, handle_adel); 1736 set_except_vector(5, handle_ades); 1737 1738 set_except_vector(6, handle_ibe); 1739 set_except_vector(7, handle_dbe); 1740 1741 set_except_vector(8, handle_sys); 1742 set_except_vector(9, handle_bp); 1743 set_except_vector(10, rdhwr_noopt ? handle_ri : 1744 (cpu_has_vtag_icache ? 1745 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 1746 set_except_vector(11, handle_cpu); 1747 set_except_vector(12, handle_ov); 1748 set_except_vector(13, handle_tr); 1749 1750 if (current_cpu_type() == CPU_R6000 || 1751 current_cpu_type() == CPU_R6000A) { 1752 /* 1753 * The R6000 is the only R-series CPU that features a machine 1754 * check exception (similar to the R4000 cache error) and 1755 * unaligned ldc1/sdc1 exception. The handlers have not been 1756 * written yet. Well, anyway there is no R6000 machine on the 1757 * current list of targets for Linux/MIPS. 1758 * (Duh, crap, there is someone with a triple R6k machine) 1759 */ 1760 //set_except_vector(14, handle_mc); 1761 //set_except_vector(15, handle_ndc); 1762 } 1763 1764 1765 if (board_nmi_handler_setup) 1766 board_nmi_handler_setup(); 1767 1768 if (cpu_has_fpu && !cpu_has_nofpuex) 1769 set_except_vector(15, handle_fpe); 1770 1771 set_except_vector(22, handle_mdmx); 1772 1773 if (cpu_has_mcheck) 1774 set_except_vector(24, handle_mcheck); 1775 1776 if (cpu_has_mipsmt) 1777 set_except_vector(25, handle_mt); 1778 1779 set_except_vector(26, handle_dsp); 1780 1781 if (cpu_has_vce) 1782 /* Special exception: R4[04]00 uses also the divec space. */ 1783 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100); 1784 else if (cpu_has_4kex) 1785 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80); 1786 else 1787 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80); 1788 1789 local_flush_icache_range(ebase, ebase + 0x400); 1790 flush_tlb_handlers(); 1791 1792 sort_extable(__start___dbe_table, __stop___dbe_table); 1793 1794 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 1795 } 1796