xref: /linux/arch/mips/kernel/traps.c (revision 36fe97635826d54d07c51a5953148235b7dd6a04)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
65 #include <asm/uasm.h>
66 
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
96 
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
104 
105 static void show_raw_backtrace(unsigned long reg29)
106 {
107 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
108 	unsigned long addr;
109 
110 	printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
112 	printk("\n");
113 #endif
114 	while (!kstack_end(sp)) {
115 		unsigned long __user *p =
116 			(unsigned long __user *)(unsigned long)sp++;
117 		if (__get_user(addr, p)) {
118 			printk(" (Bad stack address)");
119 			break;
120 		}
121 		if (__kernel_text_address(addr))
122 			print_ip_sym(addr);
123 	}
124 	printk("\n");
125 }
126 
127 #ifdef CONFIG_KALLSYMS
128 int raw_show_trace;
129 static int __init set_raw_show_trace(char *str)
130 {
131 	raw_show_trace = 1;
132 	return 1;
133 }
134 __setup("raw_show_trace", set_raw_show_trace);
135 #endif
136 
137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
138 {
139 	unsigned long sp = regs->regs[29];
140 	unsigned long ra = regs->regs[31];
141 	unsigned long pc = regs->cp0_epc;
142 
143 	if (!task)
144 		task = current;
145 
146 	if (raw_show_trace || !__kernel_text_address(pc)) {
147 		show_raw_backtrace(sp);
148 		return;
149 	}
150 	printk("Call Trace:\n");
151 	do {
152 		print_ip_sym(pc);
153 		pc = unwind_stack(task, &sp, pc, &ra);
154 	} while (pc);
155 	printk("\n");
156 }
157 
158 /*
159  * This routine abuses get_user()/put_user() to reference pointers
160  * with at least a bit of error checking ...
161  */
162 static void show_stacktrace(struct task_struct *task,
163 	const struct pt_regs *regs)
164 {
165 	const int field = 2 * sizeof(unsigned long);
166 	long stackdata;
167 	int i;
168 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
169 
170 	printk("Stack :");
171 	i = 0;
172 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 		if (i && ((i % (64 / field)) == 0))
174 			printk("\n	 ");
175 		if (i > 39) {
176 			printk(" ...");
177 			break;
178 		}
179 
180 		if (__get_user(stackdata, sp++)) {
181 			printk(" (Bad stack address)");
182 			break;
183 		}
184 
185 		printk(" %0*lx", field, stackdata);
186 		i++;
187 	}
188 	printk("\n");
189 	show_backtrace(task, regs);
190 }
191 
192 void show_stack(struct task_struct *task, unsigned long *sp)
193 {
194 	struct pt_regs regs;
195 	if (sp) {
196 		regs.regs[29] = (unsigned long)sp;
197 		regs.regs[31] = 0;
198 		regs.cp0_epc = 0;
199 	} else {
200 		if (task && task != current) {
201 			regs.regs[29] = task->thread.reg29;
202 			regs.regs[31] = 0;
203 			regs.cp0_epc = task->thread.reg31;
204 #ifdef CONFIG_KGDB_KDB
205 		} else if (atomic_read(&kgdb_active) != -1 &&
206 			   kdb_current_regs) {
207 			memcpy(&regs, kdb_current_regs, sizeof(regs));
208 #endif /* CONFIG_KGDB_KDB */
209 		} else {
210 			prepare_frametrace(&regs);
211 		}
212 	}
213 	show_stacktrace(task, &regs);
214 }
215 
216 static void show_code(unsigned int __user *pc)
217 {
218 	long i;
219 	unsigned short __user *pc16 = NULL;
220 
221 	printk("\nCode:");
222 
223 	if ((unsigned long)pc & 1)
224 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
225 	for(i = -3 ; i < 6 ; i++) {
226 		unsigned int insn;
227 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
228 			printk(" (Bad address in epc)\n");
229 			break;
230 		}
231 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
232 	}
233 }
234 
235 static void __show_regs(const struct pt_regs *regs)
236 {
237 	const int field = 2 * sizeof(unsigned long);
238 	unsigned int cause = regs->cp0_cause;
239 	int i;
240 
241 	show_regs_print_info(KERN_DEFAULT);
242 
243 	/*
244 	 * Saved main processor registers
245 	 */
246 	for (i = 0; i < 32; ) {
247 		if ((i % 4) == 0)
248 			printk("$%2d   :", i);
249 		if (i == 0)
250 			printk(" %0*lx", field, 0UL);
251 		else if (i == 26 || i == 27)
252 			printk(" %*s", field, "");
253 		else
254 			printk(" %0*lx", field, regs->regs[i]);
255 
256 		i++;
257 		if ((i % 4) == 0)
258 			printk("\n");
259 	}
260 
261 #ifdef CONFIG_CPU_HAS_SMARTMIPS
262 	printk("Acx    : %0*lx\n", field, regs->acx);
263 #endif
264 	printk("Hi    : %0*lx\n", field, regs->hi);
265 	printk("Lo    : %0*lx\n", field, regs->lo);
266 
267 	/*
268 	 * Saved cp0 registers
269 	 */
270 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
271 	       (void *) regs->cp0_epc);
272 	printk("    %s\n", print_tainted());
273 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
274 	       (void *) regs->regs[31]);
275 
276 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
277 
278 	if (cpu_has_3kex) {
279 		if (regs->cp0_status & ST0_KUO)
280 			printk("KUo ");
281 		if (regs->cp0_status & ST0_IEO)
282 			printk("IEo ");
283 		if (regs->cp0_status & ST0_KUP)
284 			printk("KUp ");
285 		if (regs->cp0_status & ST0_IEP)
286 			printk("IEp ");
287 		if (regs->cp0_status & ST0_KUC)
288 			printk("KUc ");
289 		if (regs->cp0_status & ST0_IEC)
290 			printk("IEc ");
291 	} else if (cpu_has_4kex) {
292 		if (regs->cp0_status & ST0_KX)
293 			printk("KX ");
294 		if (regs->cp0_status & ST0_SX)
295 			printk("SX ");
296 		if (regs->cp0_status & ST0_UX)
297 			printk("UX ");
298 		switch (regs->cp0_status & ST0_KSU) {
299 		case KSU_USER:
300 			printk("USER ");
301 			break;
302 		case KSU_SUPERVISOR:
303 			printk("SUPERVISOR ");
304 			break;
305 		case KSU_KERNEL:
306 			printk("KERNEL ");
307 			break;
308 		default:
309 			printk("BAD_MODE ");
310 			break;
311 		}
312 		if (regs->cp0_status & ST0_ERL)
313 			printk("ERL ");
314 		if (regs->cp0_status & ST0_EXL)
315 			printk("EXL ");
316 		if (regs->cp0_status & ST0_IE)
317 			printk("IE ");
318 	}
319 	printk("\n");
320 
321 	printk("Cause : %08x\n", cause);
322 
323 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
324 	if (1 <= cause && cause <= 5)
325 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
326 
327 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
328 	       cpu_name_string());
329 }
330 
331 /*
332  * FIXME: really the generic show_regs should take a const pointer argument.
333  */
334 void show_regs(struct pt_regs *regs)
335 {
336 	__show_regs((struct pt_regs *)regs);
337 }
338 
339 void show_registers(struct pt_regs *regs)
340 {
341 	const int field = 2 * sizeof(unsigned long);
342 	mm_segment_t old_fs = get_fs();
343 
344 	__show_regs(regs);
345 	print_modules();
346 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
347 	       current->comm, current->pid, current_thread_info(), current,
348 	      field, current_thread_info()->tp_value);
349 	if (cpu_has_userlocal) {
350 		unsigned long tls;
351 
352 		tls = read_c0_userlocal();
353 		if (tls != current_thread_info()->tp_value)
354 			printk("*HwTLS: %0*lx\n", field, tls);
355 	}
356 
357 	if (!user_mode(regs))
358 		/* Necessary for getting the correct stack content */
359 		set_fs(KERNEL_DS);
360 	show_stacktrace(current, regs);
361 	show_code((unsigned int __user *) regs->cp0_epc);
362 	printk("\n");
363 	set_fs(old_fs);
364 }
365 
366 static int regs_to_trapnr(struct pt_regs *regs)
367 {
368 	return (regs->cp0_cause >> 2) & 0x1f;
369 }
370 
371 static DEFINE_RAW_SPINLOCK(die_lock);
372 
373 void __noreturn die(const char *str, struct pt_regs *regs)
374 {
375 	static int die_counter;
376 	int sig = SIGSEGV;
377 
378 	oops_enter();
379 
380 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
381 		       SIGSEGV) == NOTIFY_STOP)
382 		sig = 0;
383 
384 	console_verbose();
385 	raw_spin_lock_irq(&die_lock);
386 	bust_spinlocks(1);
387 
388 	printk("%s[#%d]:\n", str, ++die_counter);
389 	show_registers(regs);
390 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
391 	raw_spin_unlock_irq(&die_lock);
392 
393 	oops_exit();
394 
395 	if (in_interrupt())
396 		panic("Fatal exception in interrupt");
397 
398 	if (panic_on_oops) {
399 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
400 		ssleep(5);
401 		panic("Fatal exception");
402 	}
403 
404 	if (regs && kexec_should_crash(current))
405 		crash_kexec(regs);
406 
407 	do_exit(sig);
408 }
409 
410 extern struct exception_table_entry __start___dbe_table[];
411 extern struct exception_table_entry __stop___dbe_table[];
412 
413 __asm__(
414 "	.section	__dbe_table, \"a\"\n"
415 "	.previous			\n");
416 
417 /* Given an address, look for it in the exception tables. */
418 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
419 {
420 	const struct exception_table_entry *e;
421 
422 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
423 	if (!e)
424 		e = search_module_dbetables(addr);
425 	return e;
426 }
427 
428 asmlinkage void do_be(struct pt_regs *regs)
429 {
430 	const int field = 2 * sizeof(unsigned long);
431 	const struct exception_table_entry *fixup = NULL;
432 	int data = regs->cp0_cause & 4;
433 	int action = MIPS_BE_FATAL;
434 	enum ctx_state prev_state;
435 
436 	prev_state = exception_enter();
437 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
438 	if (data && !user_mode(regs))
439 		fixup = search_dbe_tables(exception_epc(regs));
440 
441 	if (fixup)
442 		action = MIPS_BE_FIXUP;
443 
444 	if (board_be_handler)
445 		action = board_be_handler(regs, fixup != NULL);
446 
447 	switch (action) {
448 	case MIPS_BE_DISCARD:
449 		goto out;
450 	case MIPS_BE_FIXUP:
451 		if (fixup) {
452 			regs->cp0_epc = fixup->nextinsn;
453 			goto out;
454 		}
455 		break;
456 	default:
457 		break;
458 	}
459 
460 	/*
461 	 * Assume it would be too dangerous to continue ...
462 	 */
463 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 	       data ? "Data" : "Instruction",
465 	       field, regs->cp0_epc, field, regs->regs[31]);
466 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
467 		       SIGBUS) == NOTIFY_STOP)
468 		goto out;
469 
470 	die_if_kernel("Oops", regs);
471 	force_sig(SIGBUS, current);
472 
473 out:
474 	exception_exit(prev_state);
475 }
476 
477 /*
478  * ll/sc, rdhwr, sync emulation
479  */
480 
481 #define OPCODE 0xfc000000
482 #define BASE   0x03e00000
483 #define RT     0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL     0xc0000000
486 #define SC     0xe0000000
487 #define SPEC0  0x00000000
488 #define SPEC3  0x7c000000
489 #define RD     0x0000f800
490 #define FUNC   0x0000003f
491 #define SYNC   0x0000000f
492 #define RDHWR  0x0000003b
493 
494 /*  microMIPS definitions   */
495 #define MM_POOL32A_FUNC 0xfc00ffff
496 #define MM_RDHWR        0x00006b3c
497 #define MM_RS           0x001f0000
498 #define MM_RT           0x03e00000
499 
500 /*
501  * The ll_bit is cleared by r*_switch.S
502  */
503 
504 unsigned int ll_bit;
505 struct task_struct *ll_task;
506 
507 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
508 {
509 	unsigned long value, __user *vaddr;
510 	long offset;
511 
512 	/*
513 	 * analyse the ll instruction that just caused a ri exception
514 	 * and put the referenced address to addr.
515 	 */
516 
517 	/* sign extend offset */
518 	offset = opcode & OFFSET;
519 	offset <<= 16;
520 	offset >>= 16;
521 
522 	vaddr = (unsigned long __user *)
523 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
524 
525 	if ((unsigned long)vaddr & 3)
526 		return SIGBUS;
527 	if (get_user(value, vaddr))
528 		return SIGSEGV;
529 
530 	preempt_disable();
531 
532 	if (ll_task == NULL || ll_task == current) {
533 		ll_bit = 1;
534 	} else {
535 		ll_bit = 0;
536 	}
537 	ll_task = current;
538 
539 	preempt_enable();
540 
541 	regs->regs[(opcode & RT) >> 16] = value;
542 
543 	return 0;
544 }
545 
546 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
547 {
548 	unsigned long __user *vaddr;
549 	unsigned long reg;
550 	long offset;
551 
552 	/*
553 	 * analyse the sc instruction that just caused a ri exception
554 	 * and put the referenced address to addr.
555 	 */
556 
557 	/* sign extend offset */
558 	offset = opcode & OFFSET;
559 	offset <<= 16;
560 	offset >>= 16;
561 
562 	vaddr = (unsigned long __user *)
563 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
564 	reg = (opcode & RT) >> 16;
565 
566 	if ((unsigned long)vaddr & 3)
567 		return SIGBUS;
568 
569 	preempt_disable();
570 
571 	if (ll_bit == 0 || ll_task != current) {
572 		regs->regs[reg] = 0;
573 		preempt_enable();
574 		return 0;
575 	}
576 
577 	preempt_enable();
578 
579 	if (put_user(regs->regs[reg], vaddr))
580 		return SIGSEGV;
581 
582 	regs->regs[reg] = 1;
583 
584 	return 0;
585 }
586 
587 /*
588  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
589  * opcodes are supposed to result in coprocessor unusable exceptions if
590  * executed on ll/sc-less processors.  That's the theory.  In practice a
591  * few processors such as NEC's VR4100 throw reserved instruction exceptions
592  * instead, so we're doing the emulation thing in both exception handlers.
593  */
594 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
595 {
596 	if ((opcode & OPCODE) == LL) {
597 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
598 				1, regs, 0);
599 		return simulate_ll(regs, opcode);
600 	}
601 	if ((opcode & OPCODE) == SC) {
602 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 				1, regs, 0);
604 		return simulate_sc(regs, opcode);
605 	}
606 
607 	return -1;			/* Must be something else ... */
608 }
609 
610 /*
611  * Simulate trapping 'rdhwr' instructions to provide user accessible
612  * registers not implemented in hardware.
613  */
614 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
615 {
616 	struct thread_info *ti = task_thread_info(current);
617 
618 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 			1, regs, 0);
620 	switch (rd) {
621 	case 0:		/* CPU number */
622 		regs->regs[rt] = smp_processor_id();
623 		return 0;
624 	case 1:		/* SYNCI length */
625 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
626 				     current_cpu_data.icache.linesz);
627 		return 0;
628 	case 2:		/* Read count register */
629 		regs->regs[rt] = read_c0_count();
630 		return 0;
631 	case 3:		/* Count register resolution */
632 		switch (current_cpu_type()) {
633 		case CPU_20KC:
634 		case CPU_25KF:
635 			regs->regs[rt] = 1;
636 			break;
637 		default:
638 			regs->regs[rt] = 2;
639 		}
640 		return 0;
641 	case 29:
642 		regs->regs[rt] = ti->tp_value;
643 		return 0;
644 	default:
645 		return -1;
646 	}
647 }
648 
649 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
650 {
651 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
652 		int rd = (opcode & RD) >> 11;
653 		int rt = (opcode & RT) >> 16;
654 
655 		simulate_rdhwr(regs, rd, rt);
656 		return 0;
657 	}
658 
659 	/* Not ours.  */
660 	return -1;
661 }
662 
663 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
664 {
665 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
666 		int rd = (opcode & MM_RS) >> 16;
667 		int rt = (opcode & MM_RT) >> 21;
668 		simulate_rdhwr(regs, rd, rt);
669 		return 0;
670 	}
671 
672 	/* Not ours.  */
673 	return -1;
674 }
675 
676 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
677 {
678 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
679 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
680 				1, regs, 0);
681 		return 0;
682 	}
683 
684 	return -1;			/* Must be something else ... */
685 }
686 
687 asmlinkage void do_ov(struct pt_regs *regs)
688 {
689 	enum ctx_state prev_state;
690 	siginfo_t info;
691 
692 	prev_state = exception_enter();
693 	die_if_kernel("Integer overflow", regs);
694 
695 	info.si_code = FPE_INTOVF;
696 	info.si_signo = SIGFPE;
697 	info.si_errno = 0;
698 	info.si_addr = (void __user *) regs->cp0_epc;
699 	force_sig_info(SIGFPE, &info, current);
700 	exception_exit(prev_state);
701 }
702 
703 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
704 {
705 	struct siginfo si = { 0 };
706 
707 	switch (sig) {
708 	case 0:
709 		return 0;
710 
711 	case SIGFPE:
712 		si.si_addr = fault_addr;
713 		si.si_signo = sig;
714 		/*
715 		 * Inexact can happen together with Overflow or Underflow.
716 		 * Respect the mask to deliver the correct exception.
717 		 */
718 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
719 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
720 		if (fcr31 & FPU_CSR_INV_X)
721 			si.si_code = FPE_FLTINV;
722 		else if (fcr31 & FPU_CSR_DIV_X)
723 			si.si_code = FPE_FLTDIV;
724 		else if (fcr31 & FPU_CSR_OVF_X)
725 			si.si_code = FPE_FLTOVF;
726 		else if (fcr31 & FPU_CSR_UDF_X)
727 			si.si_code = FPE_FLTUND;
728 		else if (fcr31 & FPU_CSR_INE_X)
729 			si.si_code = FPE_FLTRES;
730 		else
731 			si.si_code = __SI_FAULT;
732 		force_sig_info(sig, &si, current);
733 		return 1;
734 
735 	case SIGBUS:
736 		si.si_addr = fault_addr;
737 		si.si_signo = sig;
738 		si.si_code = BUS_ADRERR;
739 		force_sig_info(sig, &si, current);
740 		return 1;
741 
742 	case SIGSEGV:
743 		si.si_addr = fault_addr;
744 		si.si_signo = sig;
745 		down_read(&current->mm->mmap_sem);
746 		if (find_vma(current->mm, (unsigned long)fault_addr))
747 			si.si_code = SEGV_ACCERR;
748 		else
749 			si.si_code = SEGV_MAPERR;
750 		up_read(&current->mm->mmap_sem);
751 		force_sig_info(sig, &si, current);
752 		return 1;
753 
754 	default:
755 		force_sig(sig, current);
756 		return 1;
757 	}
758 }
759 
760 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
761 		       unsigned long old_epc, unsigned long old_ra)
762 {
763 	union mips_instruction inst = { .word = opcode };
764 	void __user *fault_addr;
765 	unsigned long fcr31;
766 	int sig;
767 
768 	/* If it's obviously not an FP instruction, skip it */
769 	switch (inst.i_format.opcode) {
770 	case cop1_op:
771 	case cop1x_op:
772 	case lwc1_op:
773 	case ldc1_op:
774 	case swc1_op:
775 	case sdc1_op:
776 		break;
777 
778 	default:
779 		return -1;
780 	}
781 
782 	/*
783 	 * do_ri skipped over the instruction via compute_return_epc, undo
784 	 * that for the FPU emulator.
785 	 */
786 	regs->cp0_epc = old_epc;
787 	regs->regs[31] = old_ra;
788 
789 	/* Save the FP context to struct thread_struct */
790 	lose_fpu(1);
791 
792 	/* Run the emulator */
793 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
794 				       &fault_addr);
795 	fcr31 = current->thread.fpu.fcr31;
796 
797 	/*
798 	 * We can't allow the emulated instruction to leave any of
799 	 * the cause bits set in $fcr31.
800 	 */
801 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
802 
803 	/* Restore the hardware register state */
804 	own_fpu(1);
805 
806 	/* Send a signal if required.  */
807 	process_fpemu_return(sig, fault_addr, fcr31);
808 
809 	return 0;
810 }
811 
812 /*
813  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
814  */
815 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
816 {
817 	enum ctx_state prev_state;
818 	void __user *fault_addr;
819 	int sig;
820 
821 	prev_state = exception_enter();
822 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
823 		       SIGFPE) == NOTIFY_STOP)
824 		goto out;
825 	die_if_kernel("FP exception in kernel code", regs);
826 
827 	if (fcr31 & FPU_CSR_UNI_X) {
828 		/*
829 		 * Unimplemented operation exception.  If we've got the full
830 		 * software emulator on-board, let's use it...
831 		 *
832 		 * Force FPU to dump state into task/thread context.  We're
833 		 * moving a lot of data here for what is probably a single
834 		 * instruction, but the alternative is to pre-decode the FP
835 		 * register operands before invoking the emulator, which seems
836 		 * a bit extreme for what should be an infrequent event.
837 		 */
838 		/* Ensure 'resume' not overwrite saved fp context again. */
839 		lose_fpu(1);
840 
841 		/* Run the emulator */
842 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
843 					       &fault_addr);
844 		fcr31 = current->thread.fpu.fcr31;
845 
846 		/*
847 		 * We can't allow the emulated instruction to leave any of
848 		 * the cause bits set in $fcr31.
849 		 */
850 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
851 
852 		/* Restore the hardware register state */
853 		own_fpu(1);	/* Using the FPU again.	 */
854 	} else {
855 		sig = SIGFPE;
856 		fault_addr = (void __user *) regs->cp0_epc;
857 	}
858 
859 	/* Send a signal if required.  */
860 	process_fpemu_return(sig, fault_addr, fcr31);
861 
862 out:
863 	exception_exit(prev_state);
864 }
865 
866 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
867 	const char *str)
868 {
869 	siginfo_t info;
870 	char b[40];
871 
872 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
873 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
874 		return;
875 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
876 
877 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
878 		       SIGTRAP) == NOTIFY_STOP)
879 		return;
880 
881 	/*
882 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
883 	 * insns, even for trap and break codes that indicate arithmetic
884 	 * failures.  Weird ...
885 	 * But should we continue the brokenness???  --macro
886 	 */
887 	switch (code) {
888 	case BRK_OVERFLOW:
889 	case BRK_DIVZERO:
890 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
891 		die_if_kernel(b, regs);
892 		if (code == BRK_DIVZERO)
893 			info.si_code = FPE_INTDIV;
894 		else
895 			info.si_code = FPE_INTOVF;
896 		info.si_signo = SIGFPE;
897 		info.si_errno = 0;
898 		info.si_addr = (void __user *) regs->cp0_epc;
899 		force_sig_info(SIGFPE, &info, current);
900 		break;
901 	case BRK_BUG:
902 		die_if_kernel("Kernel bug detected", regs);
903 		force_sig(SIGTRAP, current);
904 		break;
905 	case BRK_MEMU:
906 		/*
907 		 * This breakpoint code is used by the FPU emulator to retake
908 		 * control of the CPU after executing the instruction from the
909 		 * delay slot of an emulated branch.
910 		 *
911 		 * Terminate if exception was recognized as a delay slot return
912 		 * otherwise handle as normal.
913 		 */
914 		if (do_dsemulret(regs))
915 			return;
916 
917 		die_if_kernel("Math emu break/trap", regs);
918 		force_sig(SIGTRAP, current);
919 		break;
920 	default:
921 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
922 		die_if_kernel(b, regs);
923 		force_sig(SIGTRAP, current);
924 	}
925 }
926 
927 asmlinkage void do_bp(struct pt_regs *regs)
928 {
929 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
930 	unsigned int opcode, bcode;
931 	enum ctx_state prev_state;
932 	mm_segment_t seg;
933 
934 	seg = get_fs();
935 	if (!user_mode(regs))
936 		set_fs(KERNEL_DS);
937 
938 	prev_state = exception_enter();
939 	if (get_isa16_mode(regs->cp0_epc)) {
940 		u16 instr[2];
941 
942 		if (__get_user(instr[0], (u16 __user *)epc))
943 			goto out_sigsegv;
944 
945 		if (!cpu_has_mmips) {
946 			/* MIPS16e mode */
947 			bcode = (instr[0] >> 5) & 0x3f;
948 		} else if (mm_insn_16bit(instr[0])) {
949 			/* 16-bit microMIPS BREAK */
950 			bcode = instr[0] & 0xf;
951 		} else {
952 			/* 32-bit microMIPS BREAK */
953 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
954 				goto out_sigsegv;
955 			opcode = (instr[0] << 16) | instr[1];
956 			bcode = (opcode >> 6) & ((1 << 20) - 1);
957 		}
958 	} else {
959 		if (__get_user(opcode, (unsigned int __user *)epc))
960 			goto out_sigsegv;
961 		bcode = (opcode >> 6) & ((1 << 20) - 1);
962 	}
963 
964 	/*
965 	 * There is the ancient bug in the MIPS assemblers that the break
966 	 * code starts left to bit 16 instead to bit 6 in the opcode.
967 	 * Gas is bug-compatible, but not always, grrr...
968 	 * We handle both cases with a simple heuristics.  --macro
969 	 */
970 	if (bcode >= (1 << 10))
971 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
972 
973 	/*
974 	 * notify the kprobe handlers, if instruction is likely to
975 	 * pertain to them.
976 	 */
977 	switch (bcode) {
978 	case BRK_KPROBE_BP:
979 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
980 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
981 			goto out;
982 		else
983 			break;
984 	case BRK_KPROBE_SSTEPBP:
985 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
986 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
987 			goto out;
988 		else
989 			break;
990 	default:
991 		break;
992 	}
993 
994 	do_trap_or_bp(regs, bcode, "Break");
995 
996 out:
997 	set_fs(seg);
998 	exception_exit(prev_state);
999 	return;
1000 
1001 out_sigsegv:
1002 	force_sig(SIGSEGV, current);
1003 	goto out;
1004 }
1005 
1006 asmlinkage void do_tr(struct pt_regs *regs)
1007 {
1008 	u32 opcode, tcode = 0;
1009 	enum ctx_state prev_state;
1010 	u16 instr[2];
1011 	mm_segment_t seg;
1012 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1013 
1014 	seg = get_fs();
1015 	if (!user_mode(regs))
1016 		set_fs(get_ds());
1017 
1018 	prev_state = exception_enter();
1019 	if (get_isa16_mode(regs->cp0_epc)) {
1020 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1021 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1022 			goto out_sigsegv;
1023 		opcode = (instr[0] << 16) | instr[1];
1024 		/* Immediate versions don't provide a code.  */
1025 		if (!(opcode & OPCODE))
1026 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1027 	} else {
1028 		if (__get_user(opcode, (u32 __user *)epc))
1029 			goto out_sigsegv;
1030 		/* Immediate versions don't provide a code.  */
1031 		if (!(opcode & OPCODE))
1032 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1033 	}
1034 
1035 	do_trap_or_bp(regs, tcode, "Trap");
1036 
1037 out:
1038 	set_fs(seg);
1039 	exception_exit(prev_state);
1040 	return;
1041 
1042 out_sigsegv:
1043 	force_sig(SIGSEGV, current);
1044 	goto out;
1045 }
1046 
1047 asmlinkage void do_ri(struct pt_regs *regs)
1048 {
1049 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1050 	unsigned long old_epc = regs->cp0_epc;
1051 	unsigned long old31 = regs->regs[31];
1052 	enum ctx_state prev_state;
1053 	unsigned int opcode = 0;
1054 	int status = -1;
1055 
1056 	/*
1057 	 * Avoid any kernel code. Just emulate the R2 instruction
1058 	 * as quickly as possible.
1059 	 */
1060 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1061 	    likely(user_mode(regs)) &&
1062 	    likely(get_user(opcode, epc) >= 0)) {
1063 		unsigned long fcr31 = 0;
1064 
1065 		status = mipsr2_decoder(regs, opcode, &fcr31);
1066 		switch (status) {
1067 		case 0:
1068 		case SIGEMT:
1069 			task_thread_info(current)->r2_emul_return = 1;
1070 			return;
1071 		case SIGILL:
1072 			goto no_r2_instr;
1073 		default:
1074 			process_fpemu_return(status,
1075 					     &current->thread.cp0_baduaddr,
1076 					     fcr31);
1077 			task_thread_info(current)->r2_emul_return = 1;
1078 			return;
1079 		}
1080 	}
1081 
1082 no_r2_instr:
1083 
1084 	prev_state = exception_enter();
1085 
1086 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1087 		       SIGILL) == NOTIFY_STOP)
1088 		goto out;
1089 
1090 	die_if_kernel("Reserved instruction in kernel code", regs);
1091 
1092 	if (unlikely(compute_return_epc(regs) < 0))
1093 		goto out;
1094 
1095 	if (get_isa16_mode(regs->cp0_epc)) {
1096 		unsigned short mmop[2] = { 0 };
1097 
1098 		if (unlikely(get_user(mmop[0], epc) < 0))
1099 			status = SIGSEGV;
1100 		if (unlikely(get_user(mmop[1], epc) < 0))
1101 			status = SIGSEGV;
1102 		opcode = (mmop[0] << 16) | mmop[1];
1103 
1104 		if (status < 0)
1105 			status = simulate_rdhwr_mm(regs, opcode);
1106 	} else {
1107 		if (unlikely(get_user(opcode, epc) < 0))
1108 			status = SIGSEGV;
1109 
1110 		if (!cpu_has_llsc && status < 0)
1111 			status = simulate_llsc(regs, opcode);
1112 
1113 		if (status < 0)
1114 			status = simulate_rdhwr_normal(regs, opcode);
1115 
1116 		if (status < 0)
1117 			status = simulate_sync(regs, opcode);
1118 
1119 		if (status < 0)
1120 			status = simulate_fp(regs, opcode, old_epc, old31);
1121 	}
1122 
1123 	if (status < 0)
1124 		status = SIGILL;
1125 
1126 	if (unlikely(status > 0)) {
1127 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1128 		regs->regs[31] = old31;
1129 		force_sig(status, current);
1130 	}
1131 
1132 out:
1133 	exception_exit(prev_state);
1134 }
1135 
1136 /*
1137  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1138  * emulated more than some threshold number of instructions, force migration to
1139  * a "CPU" that has FP support.
1140  */
1141 static void mt_ase_fp_affinity(void)
1142 {
1143 #ifdef CONFIG_MIPS_MT_FPAFF
1144 	if (mt_fpemul_threshold > 0 &&
1145 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1146 		/*
1147 		 * If there's no FPU present, or if the application has already
1148 		 * restricted the allowed set to exclude any CPUs with FPUs,
1149 		 * we'll skip the procedure.
1150 		 */
1151 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1152 			cpumask_t tmask;
1153 
1154 			current->thread.user_cpus_allowed
1155 				= current->cpus_allowed;
1156 			cpus_and(tmask, current->cpus_allowed,
1157 				mt_fpu_cpumask);
1158 			set_cpus_allowed_ptr(current, &tmask);
1159 			set_thread_flag(TIF_FPUBOUND);
1160 		}
1161 	}
1162 #endif /* CONFIG_MIPS_MT_FPAFF */
1163 }
1164 
1165 /*
1166  * No lock; only written during early bootup by CPU 0.
1167  */
1168 static RAW_NOTIFIER_HEAD(cu2_chain);
1169 
1170 int __ref register_cu2_notifier(struct notifier_block *nb)
1171 {
1172 	return raw_notifier_chain_register(&cu2_chain, nb);
1173 }
1174 
1175 int cu2_notifier_call_chain(unsigned long val, void *v)
1176 {
1177 	return raw_notifier_call_chain(&cu2_chain, val, v);
1178 }
1179 
1180 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1181 	void *data)
1182 {
1183 	struct pt_regs *regs = data;
1184 
1185 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1186 			      "instruction", regs);
1187 	force_sig(SIGILL, current);
1188 
1189 	return NOTIFY_OK;
1190 }
1191 
1192 static int wait_on_fp_mode_switch(atomic_t *p)
1193 {
1194 	/*
1195 	 * The FP mode for this task is currently being switched. That may
1196 	 * involve modifications to the format of this tasks FP context which
1197 	 * make it unsafe to proceed with execution for the moment. Instead,
1198 	 * schedule some other task.
1199 	 */
1200 	schedule();
1201 	return 0;
1202 }
1203 
1204 static int enable_restore_fp_context(int msa)
1205 {
1206 	int err, was_fpu_owner, prior_msa;
1207 
1208 	/*
1209 	 * If an FP mode switch is currently underway, wait for it to
1210 	 * complete before proceeding.
1211 	 */
1212 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1213 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1214 
1215 	if (!used_math()) {
1216 		/* First time FP context user. */
1217 		preempt_disable();
1218 		err = init_fpu();
1219 		if (msa && !err) {
1220 			enable_msa();
1221 			_init_msa_upper();
1222 			set_thread_flag(TIF_USEDMSA);
1223 			set_thread_flag(TIF_MSA_CTX_LIVE);
1224 		}
1225 		preempt_enable();
1226 		if (!err)
1227 			set_used_math();
1228 		return err;
1229 	}
1230 
1231 	/*
1232 	 * This task has formerly used the FP context.
1233 	 *
1234 	 * If this thread has no live MSA vector context then we can simply
1235 	 * restore the scalar FP context. If it has live MSA vector context
1236 	 * (that is, it has or may have used MSA since last performing a
1237 	 * function call) then we'll need to restore the vector context. This
1238 	 * applies even if we're currently only executing a scalar FP
1239 	 * instruction. This is because if we were to later execute an MSA
1240 	 * instruction then we'd either have to:
1241 	 *
1242 	 *  - Restore the vector context & clobber any registers modified by
1243 	 *    scalar FP instructions between now & then.
1244 	 *
1245 	 * or
1246 	 *
1247 	 *  - Not restore the vector context & lose the most significant bits
1248 	 *    of all vector registers.
1249 	 *
1250 	 * Neither of those options is acceptable. We cannot restore the least
1251 	 * significant bits of the registers now & only restore the most
1252 	 * significant bits later because the most significant bits of any
1253 	 * vector registers whose aliased FP register is modified now will have
1254 	 * been zeroed. We'd have no way to know that when restoring the vector
1255 	 * context & thus may load an outdated value for the most significant
1256 	 * bits of a vector register.
1257 	 */
1258 	if (!msa && !thread_msa_context_live())
1259 		return own_fpu(1);
1260 
1261 	/*
1262 	 * This task is using or has previously used MSA. Thus we require
1263 	 * that Status.FR == 1.
1264 	 */
1265 	preempt_disable();
1266 	was_fpu_owner = is_fpu_owner();
1267 	err = own_fpu_inatomic(0);
1268 	if (err)
1269 		goto out;
1270 
1271 	enable_msa();
1272 	write_msa_csr(current->thread.fpu.msacsr);
1273 	set_thread_flag(TIF_USEDMSA);
1274 
1275 	/*
1276 	 * If this is the first time that the task is using MSA and it has
1277 	 * previously used scalar FP in this time slice then we already nave
1278 	 * FP context which we shouldn't clobber. We do however need to clear
1279 	 * the upper 64b of each vector register so that this task has no
1280 	 * opportunity to see data left behind by another.
1281 	 */
1282 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1283 	if (!prior_msa && was_fpu_owner) {
1284 		_init_msa_upper();
1285 
1286 		goto out;
1287 	}
1288 
1289 	if (!prior_msa) {
1290 		/*
1291 		 * Restore the least significant 64b of each vector register
1292 		 * from the existing scalar FP context.
1293 		 */
1294 		_restore_fp(current);
1295 
1296 		/*
1297 		 * The task has not formerly used MSA, so clear the upper 64b
1298 		 * of each vector register such that it cannot see data left
1299 		 * behind by another task.
1300 		 */
1301 		_init_msa_upper();
1302 	} else {
1303 		/* We need to restore the vector context. */
1304 		restore_msa(current);
1305 
1306 		/* Restore the scalar FP control & status register */
1307 		if (!was_fpu_owner)
1308 			write_32bit_cp1_register(CP1_STATUS,
1309 						 current->thread.fpu.fcr31);
1310 	}
1311 
1312 out:
1313 	preempt_enable();
1314 
1315 	return 0;
1316 }
1317 
1318 asmlinkage void do_cpu(struct pt_regs *regs)
1319 {
1320 	enum ctx_state prev_state;
1321 	unsigned int __user *epc;
1322 	unsigned long old_epc, old31;
1323 	void __user *fault_addr;
1324 	unsigned int opcode;
1325 	unsigned long fcr31;
1326 	unsigned int cpid;
1327 	int status, err;
1328 	unsigned long __maybe_unused flags;
1329 	int sig;
1330 
1331 	prev_state = exception_enter();
1332 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1333 
1334 	if (cpid != 2)
1335 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1336 
1337 	switch (cpid) {
1338 	case 0:
1339 		epc = (unsigned int __user *)exception_epc(regs);
1340 		old_epc = regs->cp0_epc;
1341 		old31 = regs->regs[31];
1342 		opcode = 0;
1343 		status = -1;
1344 
1345 		if (unlikely(compute_return_epc(regs) < 0))
1346 			break;
1347 
1348 		if (get_isa16_mode(regs->cp0_epc)) {
1349 			unsigned short mmop[2] = { 0 };
1350 
1351 			if (unlikely(get_user(mmop[0], epc) < 0))
1352 				status = SIGSEGV;
1353 			if (unlikely(get_user(mmop[1], epc) < 0))
1354 				status = SIGSEGV;
1355 			opcode = (mmop[0] << 16) | mmop[1];
1356 
1357 			if (status < 0)
1358 				status = simulate_rdhwr_mm(regs, opcode);
1359 		} else {
1360 			if (unlikely(get_user(opcode, epc) < 0))
1361 				status = SIGSEGV;
1362 
1363 			if (!cpu_has_llsc && status < 0)
1364 				status = simulate_llsc(regs, opcode);
1365 
1366 			if (status < 0)
1367 				status = simulate_rdhwr_normal(regs, opcode);
1368 		}
1369 
1370 		if (status < 0)
1371 			status = SIGILL;
1372 
1373 		if (unlikely(status > 0)) {
1374 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1375 			regs->regs[31] = old31;
1376 			force_sig(status, current);
1377 		}
1378 
1379 		break;
1380 
1381 	case 3:
1382 		/*
1383 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1384 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1385 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1386 		 * up the space has been reused for COP1X instructions, that
1387 		 * are enabled by the CP0.Status.CU1 bit and consequently
1388 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1389 		 * exceptions.  Some FPU-less processors that implement one
1390 		 * of these ISAs however use this code erroneously for COP1X
1391 		 * instructions.  Therefore we redirect this trap to the FP
1392 		 * emulator too.
1393 		 */
1394 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1395 			force_sig(SIGILL, current);
1396 			break;
1397 		}
1398 		/* Fall through.  */
1399 
1400 	case 1:
1401 		err = enable_restore_fp_context(0);
1402 
1403 		if (raw_cpu_has_fpu && !err)
1404 			break;
1405 
1406 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1407 					       &fault_addr);
1408 		fcr31 = current->thread.fpu.fcr31;
1409 
1410 		/*
1411 		 * We can't allow the emulated instruction to leave
1412 		 * any of the cause bits set in $fcr31.
1413 		 */
1414 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1415 
1416 		/* Send a signal if required.  */
1417 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1418 			mt_ase_fp_affinity();
1419 
1420 		break;
1421 
1422 	case 2:
1423 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1424 		break;
1425 	}
1426 
1427 	exception_exit(prev_state);
1428 }
1429 
1430 asmlinkage void do_msa_fpe(struct pt_regs *regs)
1431 {
1432 	enum ctx_state prev_state;
1433 
1434 	prev_state = exception_enter();
1435 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1436 	force_sig(SIGFPE, current);
1437 	exception_exit(prev_state);
1438 }
1439 
1440 asmlinkage void do_msa(struct pt_regs *regs)
1441 {
1442 	enum ctx_state prev_state;
1443 	int err;
1444 
1445 	prev_state = exception_enter();
1446 
1447 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1448 		force_sig(SIGILL, current);
1449 		goto out;
1450 	}
1451 
1452 	die_if_kernel("do_msa invoked from kernel context!", regs);
1453 
1454 	err = enable_restore_fp_context(1);
1455 	if (err)
1456 		force_sig(SIGILL, current);
1457 out:
1458 	exception_exit(prev_state);
1459 }
1460 
1461 asmlinkage void do_mdmx(struct pt_regs *regs)
1462 {
1463 	enum ctx_state prev_state;
1464 
1465 	prev_state = exception_enter();
1466 	force_sig(SIGILL, current);
1467 	exception_exit(prev_state);
1468 }
1469 
1470 /*
1471  * Called with interrupts disabled.
1472  */
1473 asmlinkage void do_watch(struct pt_regs *regs)
1474 {
1475 	enum ctx_state prev_state;
1476 	u32 cause;
1477 
1478 	prev_state = exception_enter();
1479 	/*
1480 	 * Clear WP (bit 22) bit of cause register so we don't loop
1481 	 * forever.
1482 	 */
1483 	cause = read_c0_cause();
1484 	cause &= ~(1 << 22);
1485 	write_c0_cause(cause);
1486 
1487 	/*
1488 	 * If the current thread has the watch registers loaded, save
1489 	 * their values and send SIGTRAP.  Otherwise another thread
1490 	 * left the registers set, clear them and continue.
1491 	 */
1492 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1493 		mips_read_watch_registers();
1494 		local_irq_enable();
1495 		force_sig(SIGTRAP, current);
1496 	} else {
1497 		mips_clear_watch_registers();
1498 		local_irq_enable();
1499 	}
1500 	exception_exit(prev_state);
1501 }
1502 
1503 asmlinkage void do_mcheck(struct pt_regs *regs)
1504 {
1505 	const int field = 2 * sizeof(unsigned long);
1506 	int multi_match = regs->cp0_status & ST0_TS;
1507 	enum ctx_state prev_state;
1508 
1509 	prev_state = exception_enter();
1510 	show_regs(regs);
1511 
1512 	if (multi_match) {
1513 		pr_err("Index	: %0x\n", read_c0_index());
1514 		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1515 		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1516 		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1517 		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1518 		pr_err("Wired   : %0x\n", read_c0_wired());
1519 		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1520 		if (cpu_has_htw) {
1521 			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1522 			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1523 			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1524 		}
1525 		pr_err("\n");
1526 		dump_tlb_all();
1527 	}
1528 
1529 	show_code((unsigned int __user *) regs->cp0_epc);
1530 
1531 	/*
1532 	 * Some chips may have other causes of machine check (e.g. SB1
1533 	 * graduation timer)
1534 	 */
1535 	panic("Caught Machine Check exception - %scaused by multiple "
1536 	      "matching entries in the TLB.",
1537 	      (multi_match) ? "" : "not ");
1538 }
1539 
1540 asmlinkage void do_mt(struct pt_regs *regs)
1541 {
1542 	int subcode;
1543 
1544 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1545 			>> VPECONTROL_EXCPT_SHIFT;
1546 	switch (subcode) {
1547 	case 0:
1548 		printk(KERN_DEBUG "Thread Underflow\n");
1549 		break;
1550 	case 1:
1551 		printk(KERN_DEBUG "Thread Overflow\n");
1552 		break;
1553 	case 2:
1554 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1555 		break;
1556 	case 3:
1557 		printk(KERN_DEBUG "Gating Storage Exception\n");
1558 		break;
1559 	case 4:
1560 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1561 		break;
1562 	case 5:
1563 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1564 		break;
1565 	default:
1566 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1567 			subcode);
1568 		break;
1569 	}
1570 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1571 
1572 	force_sig(SIGILL, current);
1573 }
1574 
1575 
1576 asmlinkage void do_dsp(struct pt_regs *regs)
1577 {
1578 	if (cpu_has_dsp)
1579 		panic("Unexpected DSP exception");
1580 
1581 	force_sig(SIGILL, current);
1582 }
1583 
1584 asmlinkage void do_reserved(struct pt_regs *regs)
1585 {
1586 	/*
1587 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1588 	 * caused by a new unknown cpu type or after another deadly
1589 	 * hard/software error.
1590 	 */
1591 	show_regs(regs);
1592 	panic("Caught reserved exception %ld - should not happen.",
1593 	      (regs->cp0_cause & 0x7f) >> 2);
1594 }
1595 
1596 static int __initdata l1parity = 1;
1597 static int __init nol1parity(char *s)
1598 {
1599 	l1parity = 0;
1600 	return 1;
1601 }
1602 __setup("nol1par", nol1parity);
1603 static int __initdata l2parity = 1;
1604 static int __init nol2parity(char *s)
1605 {
1606 	l2parity = 0;
1607 	return 1;
1608 }
1609 __setup("nol2par", nol2parity);
1610 
1611 /*
1612  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1613  * it different ways.
1614  */
1615 static inline void parity_protection_init(void)
1616 {
1617 	switch (current_cpu_type()) {
1618 	case CPU_24K:
1619 	case CPU_34K:
1620 	case CPU_74K:
1621 	case CPU_1004K:
1622 	case CPU_1074K:
1623 	case CPU_INTERAPTIV:
1624 	case CPU_PROAPTIV:
1625 	case CPU_P5600:
1626 	case CPU_QEMU_GENERIC:
1627 		{
1628 #define ERRCTL_PE	0x80000000
1629 #define ERRCTL_L2P	0x00800000
1630 			unsigned long errctl;
1631 			unsigned int l1parity_present, l2parity_present;
1632 
1633 			errctl = read_c0_ecc();
1634 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1635 
1636 			/* probe L1 parity support */
1637 			write_c0_ecc(errctl | ERRCTL_PE);
1638 			back_to_back_c0_hazard();
1639 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1640 
1641 			/* probe L2 parity support */
1642 			write_c0_ecc(errctl|ERRCTL_L2P);
1643 			back_to_back_c0_hazard();
1644 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1645 
1646 			if (l1parity_present && l2parity_present) {
1647 				if (l1parity)
1648 					errctl |= ERRCTL_PE;
1649 				if (l1parity ^ l2parity)
1650 					errctl |= ERRCTL_L2P;
1651 			} else if (l1parity_present) {
1652 				if (l1parity)
1653 					errctl |= ERRCTL_PE;
1654 			} else if (l2parity_present) {
1655 				if (l2parity)
1656 					errctl |= ERRCTL_L2P;
1657 			} else {
1658 				/* No parity available */
1659 			}
1660 
1661 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1662 
1663 			write_c0_ecc(errctl);
1664 			back_to_back_c0_hazard();
1665 			errctl = read_c0_ecc();
1666 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1667 
1668 			if (l1parity_present)
1669 				printk(KERN_INFO "Cache parity protection %sabled\n",
1670 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1671 
1672 			if (l2parity_present) {
1673 				if (l1parity_present && l1parity)
1674 					errctl ^= ERRCTL_L2P;
1675 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1676 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1677 			}
1678 		}
1679 		break;
1680 
1681 	case CPU_5KC:
1682 	case CPU_5KE:
1683 	case CPU_LOONGSON1:
1684 		write_c0_ecc(0x80000000);
1685 		back_to_back_c0_hazard();
1686 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1687 		printk(KERN_INFO "Cache parity protection %sabled\n",
1688 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1689 		break;
1690 	case CPU_20KC:
1691 	case CPU_25KF:
1692 		/* Clear the DE bit (bit 16) in the c0_status register. */
1693 		printk(KERN_INFO "Enable cache parity protection for "
1694 		       "MIPS 20KC/25KF CPUs.\n");
1695 		clear_c0_status(ST0_DE);
1696 		break;
1697 	default:
1698 		break;
1699 	}
1700 }
1701 
1702 asmlinkage void cache_parity_error(void)
1703 {
1704 	const int field = 2 * sizeof(unsigned long);
1705 	unsigned int reg_val;
1706 
1707 	/* For the moment, report the problem and hang. */
1708 	printk("Cache error exception:\n");
1709 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1710 	reg_val = read_c0_cacheerr();
1711 	printk("c0_cacheerr == %08x\n", reg_val);
1712 
1713 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1714 	       reg_val & (1<<30) ? "secondary" : "primary",
1715 	       reg_val & (1<<31) ? "data" : "insn");
1716 	if ((cpu_has_mips_r2_r6) &&
1717 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1718 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1719 			reg_val & (1<<29) ? "ED " : "",
1720 			reg_val & (1<<28) ? "ET " : "",
1721 			reg_val & (1<<27) ? "ES " : "",
1722 			reg_val & (1<<26) ? "EE " : "",
1723 			reg_val & (1<<25) ? "EB " : "",
1724 			reg_val & (1<<24) ? "EI " : "",
1725 			reg_val & (1<<23) ? "E1 " : "",
1726 			reg_val & (1<<22) ? "E0 " : "");
1727 	} else {
1728 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1729 			reg_val & (1<<29) ? "ED " : "",
1730 			reg_val & (1<<28) ? "ET " : "",
1731 			reg_val & (1<<26) ? "EE " : "",
1732 			reg_val & (1<<25) ? "EB " : "",
1733 			reg_val & (1<<24) ? "EI " : "",
1734 			reg_val & (1<<23) ? "E1 " : "",
1735 			reg_val & (1<<22) ? "E0 " : "");
1736 	}
1737 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1738 
1739 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1740 	if (reg_val & (1<<22))
1741 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1742 
1743 	if (reg_val & (1<<23))
1744 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1745 #endif
1746 
1747 	panic("Can't handle the cache error!");
1748 }
1749 
1750 asmlinkage void do_ftlb(void)
1751 {
1752 	const int field = 2 * sizeof(unsigned long);
1753 	unsigned int reg_val;
1754 
1755 	/* For the moment, report the problem and hang. */
1756 	if ((cpu_has_mips_r2_r6) &&
1757 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1758 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1759 		       read_c0_ecc());
1760 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1761 		reg_val = read_c0_cacheerr();
1762 		pr_err("c0_cacheerr == %08x\n", reg_val);
1763 
1764 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1765 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1766 		} else {
1767 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1768 			       reg_val & (1<<30) ? "secondary" : "primary",
1769 			       reg_val & (1<<31) ? "data" : "insn");
1770 		}
1771 	} else {
1772 		pr_err("FTLB error exception\n");
1773 	}
1774 	/* Just print the cacheerr bits for now */
1775 	cache_parity_error();
1776 }
1777 
1778 /*
1779  * SDBBP EJTAG debug exception handler.
1780  * We skip the instruction and return to the next instruction.
1781  */
1782 void ejtag_exception_handler(struct pt_regs *regs)
1783 {
1784 	const int field = 2 * sizeof(unsigned long);
1785 	unsigned long depc, old_epc, old_ra;
1786 	unsigned int debug;
1787 
1788 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1789 	depc = read_c0_depc();
1790 	debug = read_c0_debug();
1791 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1792 	if (debug & 0x80000000) {
1793 		/*
1794 		 * In branch delay slot.
1795 		 * We cheat a little bit here and use EPC to calculate the
1796 		 * debug return address (DEPC). EPC is restored after the
1797 		 * calculation.
1798 		 */
1799 		old_epc = regs->cp0_epc;
1800 		old_ra = regs->regs[31];
1801 		regs->cp0_epc = depc;
1802 		compute_return_epc(regs);
1803 		depc = regs->cp0_epc;
1804 		regs->cp0_epc = old_epc;
1805 		regs->regs[31] = old_ra;
1806 	} else
1807 		depc += 4;
1808 	write_c0_depc(depc);
1809 
1810 #if 0
1811 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1812 	write_c0_debug(debug | 0x100);
1813 #endif
1814 }
1815 
1816 /*
1817  * NMI exception handler.
1818  * No lock; only written during early bootup by CPU 0.
1819  */
1820 static RAW_NOTIFIER_HEAD(nmi_chain);
1821 
1822 int register_nmi_notifier(struct notifier_block *nb)
1823 {
1824 	return raw_notifier_chain_register(&nmi_chain, nb);
1825 }
1826 
1827 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1828 {
1829 	char str[100];
1830 
1831 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1832 	bust_spinlocks(1);
1833 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1834 		 smp_processor_id(), regs->cp0_epc);
1835 	regs->cp0_epc = read_c0_errorepc();
1836 	die(str, regs);
1837 }
1838 
1839 #define VECTORSPACING 0x100	/* for EI/VI mode */
1840 
1841 unsigned long ebase;
1842 unsigned long exception_handlers[32];
1843 unsigned long vi_handlers[64];
1844 
1845 void __init *set_except_vector(int n, void *addr)
1846 {
1847 	unsigned long handler = (unsigned long) addr;
1848 	unsigned long old_handler;
1849 
1850 #ifdef CONFIG_CPU_MICROMIPS
1851 	/*
1852 	 * Only the TLB handlers are cache aligned with an even
1853 	 * address. All other handlers are on an odd address and
1854 	 * require no modification. Otherwise, MIPS32 mode will
1855 	 * be entered when handling any TLB exceptions. That
1856 	 * would be bad...since we must stay in microMIPS mode.
1857 	 */
1858 	if (!(handler & 0x1))
1859 		handler |= 1;
1860 #endif
1861 	old_handler = xchg(&exception_handlers[n], handler);
1862 
1863 	if (n == 0 && cpu_has_divec) {
1864 #ifdef CONFIG_CPU_MICROMIPS
1865 		unsigned long jump_mask = ~((1 << 27) - 1);
1866 #else
1867 		unsigned long jump_mask = ~((1 << 28) - 1);
1868 #endif
1869 		u32 *buf = (u32 *)(ebase + 0x200);
1870 		unsigned int k0 = 26;
1871 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1872 			uasm_i_j(&buf, handler & ~jump_mask);
1873 			uasm_i_nop(&buf);
1874 		} else {
1875 			UASM_i_LA(&buf, k0, handler);
1876 			uasm_i_jr(&buf, k0);
1877 			uasm_i_nop(&buf);
1878 		}
1879 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1880 	}
1881 	return (void *)old_handler;
1882 }
1883 
1884 static void do_default_vi(void)
1885 {
1886 	show_regs(get_irq_regs());
1887 	panic("Caught unexpected vectored interrupt.");
1888 }
1889 
1890 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1891 {
1892 	unsigned long handler;
1893 	unsigned long old_handler = vi_handlers[n];
1894 	int srssets = current_cpu_data.srsets;
1895 	u16 *h;
1896 	unsigned char *b;
1897 
1898 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1899 
1900 	if (addr == NULL) {
1901 		handler = (unsigned long) do_default_vi;
1902 		srs = 0;
1903 	} else
1904 		handler = (unsigned long) addr;
1905 	vi_handlers[n] = handler;
1906 
1907 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1908 
1909 	if (srs >= srssets)
1910 		panic("Shadow register set %d not supported", srs);
1911 
1912 	if (cpu_has_veic) {
1913 		if (board_bind_eic_interrupt)
1914 			board_bind_eic_interrupt(n, srs);
1915 	} else if (cpu_has_vint) {
1916 		/* SRSMap is only defined if shadow sets are implemented */
1917 		if (srssets > 1)
1918 			change_c0_srsmap(0xf << n*4, srs << n*4);
1919 	}
1920 
1921 	if (srs == 0) {
1922 		/*
1923 		 * If no shadow set is selected then use the default handler
1924 		 * that does normal register saving and standard interrupt exit
1925 		 */
1926 		extern char except_vec_vi, except_vec_vi_lui;
1927 		extern char except_vec_vi_ori, except_vec_vi_end;
1928 		extern char rollback_except_vec_vi;
1929 		char *vec_start = using_rollback_handler() ?
1930 			&rollback_except_vec_vi : &except_vec_vi;
1931 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1932 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1933 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1934 #else
1935 		const int lui_offset = &except_vec_vi_lui - vec_start;
1936 		const int ori_offset = &except_vec_vi_ori - vec_start;
1937 #endif
1938 		const int handler_len = &except_vec_vi_end - vec_start;
1939 
1940 		if (handler_len > VECTORSPACING) {
1941 			/*
1942 			 * Sigh... panicing won't help as the console
1943 			 * is probably not configured :(
1944 			 */
1945 			panic("VECTORSPACING too small");
1946 		}
1947 
1948 		set_handler(((unsigned long)b - ebase), vec_start,
1949 #ifdef CONFIG_CPU_MICROMIPS
1950 				(handler_len - 1));
1951 #else
1952 				handler_len);
1953 #endif
1954 		h = (u16 *)(b + lui_offset);
1955 		*h = (handler >> 16) & 0xffff;
1956 		h = (u16 *)(b + ori_offset);
1957 		*h = (handler & 0xffff);
1958 		local_flush_icache_range((unsigned long)b,
1959 					 (unsigned long)(b+handler_len));
1960 	}
1961 	else {
1962 		/*
1963 		 * In other cases jump directly to the interrupt handler. It
1964 		 * is the handler's responsibility to save registers if required
1965 		 * (eg hi/lo) and return from the exception using "eret".
1966 		 */
1967 		u32 insn;
1968 
1969 		h = (u16 *)b;
1970 		/* j handler */
1971 #ifdef CONFIG_CPU_MICROMIPS
1972 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1973 #else
1974 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1975 #endif
1976 		h[0] = (insn >> 16) & 0xffff;
1977 		h[1] = insn & 0xffff;
1978 		h[2] = 0;
1979 		h[3] = 0;
1980 		local_flush_icache_range((unsigned long)b,
1981 					 (unsigned long)(b+8));
1982 	}
1983 
1984 	return (void *)old_handler;
1985 }
1986 
1987 void *set_vi_handler(int n, vi_handler_t addr)
1988 {
1989 	return set_vi_srs_handler(n, addr, 0);
1990 }
1991 
1992 extern void tlb_init(void);
1993 
1994 /*
1995  * Timer interrupt
1996  */
1997 int cp0_compare_irq;
1998 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1999 int cp0_compare_irq_shift;
2000 
2001 /*
2002  * Performance counter IRQ or -1 if shared with timer
2003  */
2004 int cp0_perfcount_irq;
2005 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2006 
2007 /*
2008  * Fast debug channel IRQ or -1 if not present
2009  */
2010 int cp0_fdc_irq;
2011 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2012 
2013 static int noulri;
2014 
2015 static int __init ulri_disable(char *s)
2016 {
2017 	pr_info("Disabling ulri\n");
2018 	noulri = 1;
2019 
2020 	return 1;
2021 }
2022 __setup("noulri", ulri_disable);
2023 
2024 /* configure STATUS register */
2025 static void configure_status(void)
2026 {
2027 	/*
2028 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2029 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2030 	 * flag that some firmware may have left set and the TS bit (for
2031 	 * IP27).  Set XX for ISA IV code to work.
2032 	 */
2033 	unsigned int status_set = ST0_CU0;
2034 #ifdef CONFIG_64BIT
2035 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2036 #endif
2037 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2038 		status_set |= ST0_XX;
2039 	if (cpu_has_dsp)
2040 		status_set |= ST0_MX;
2041 
2042 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2043 			 status_set);
2044 }
2045 
2046 /* configure HWRENA register */
2047 static void configure_hwrena(void)
2048 {
2049 	unsigned int hwrena = cpu_hwrena_impl_bits;
2050 
2051 	if (cpu_has_mips_r2_r6)
2052 		hwrena |= 0x0000000f;
2053 
2054 	if (!noulri && cpu_has_userlocal)
2055 		hwrena |= (1 << 29);
2056 
2057 	if (hwrena)
2058 		write_c0_hwrena(hwrena);
2059 }
2060 
2061 static void configure_exception_vector(void)
2062 {
2063 	if (cpu_has_veic || cpu_has_vint) {
2064 		unsigned long sr = set_c0_status(ST0_BEV);
2065 		write_c0_ebase(ebase);
2066 		write_c0_status(sr);
2067 		/* Setting vector spacing enables EI/VI mode  */
2068 		change_c0_intctl(0x3e0, VECTORSPACING);
2069 	}
2070 	if (cpu_has_divec) {
2071 		if (cpu_has_mipsmt) {
2072 			unsigned int vpflags = dvpe();
2073 			set_c0_cause(CAUSEF_IV);
2074 			evpe(vpflags);
2075 		} else
2076 			set_c0_cause(CAUSEF_IV);
2077 	}
2078 }
2079 
2080 void per_cpu_trap_init(bool is_boot_cpu)
2081 {
2082 	unsigned int cpu = smp_processor_id();
2083 
2084 	configure_status();
2085 	configure_hwrena();
2086 
2087 	configure_exception_vector();
2088 
2089 	/*
2090 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2091 	 *
2092 	 *  o read IntCtl.IPTI to determine the timer interrupt
2093 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2094 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2095 	 */
2096 	if (cpu_has_mips_r2_r6) {
2097 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2098 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2099 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2100 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2101 		if (!cp0_fdc_irq)
2102 			cp0_fdc_irq = -1;
2103 
2104 	} else {
2105 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2106 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2107 		cp0_perfcount_irq = -1;
2108 		cp0_fdc_irq = -1;
2109 	}
2110 
2111 	if (!cpu_data[cpu].asid_cache)
2112 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2113 
2114 	atomic_inc(&init_mm.mm_count);
2115 	current->active_mm = &init_mm;
2116 	BUG_ON(current->mm);
2117 	enter_lazy_tlb(&init_mm, current);
2118 
2119 		/* Boot CPU's cache setup in setup_arch(). */
2120 		if (!is_boot_cpu)
2121 			cpu_cache_init();
2122 		tlb_init();
2123 	TLBMISS_HANDLER_SETUP();
2124 }
2125 
2126 /* Install CPU exception handler */
2127 void set_handler(unsigned long offset, void *addr, unsigned long size)
2128 {
2129 #ifdef CONFIG_CPU_MICROMIPS
2130 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2131 #else
2132 	memcpy((void *)(ebase + offset), addr, size);
2133 #endif
2134 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2135 }
2136 
2137 static char panic_null_cerr[] =
2138 	"Trying to set NULL cache error exception handler";
2139 
2140 /*
2141  * Install uncached CPU exception handler.
2142  * This is suitable only for the cache error exception which is the only
2143  * exception handler that is being run uncached.
2144  */
2145 void set_uncached_handler(unsigned long offset, void *addr,
2146 	unsigned long size)
2147 {
2148 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2149 
2150 	if (!addr)
2151 		panic(panic_null_cerr);
2152 
2153 	memcpy((void *)(uncached_ebase + offset), addr, size);
2154 }
2155 
2156 static int __initdata rdhwr_noopt;
2157 static int __init set_rdhwr_noopt(char *str)
2158 {
2159 	rdhwr_noopt = 1;
2160 	return 1;
2161 }
2162 
2163 __setup("rdhwr_noopt", set_rdhwr_noopt);
2164 
2165 void __init trap_init(void)
2166 {
2167 	extern char except_vec3_generic;
2168 	extern char except_vec4;
2169 	extern char except_vec3_r4000;
2170 	unsigned long i;
2171 
2172 	check_wait();
2173 
2174 #if defined(CONFIG_KGDB)
2175 	if (kgdb_early_setup)
2176 		return; /* Already done */
2177 #endif
2178 
2179 	if (cpu_has_veic || cpu_has_vint) {
2180 		unsigned long size = 0x200 + VECTORSPACING*64;
2181 		ebase = (unsigned long)
2182 			__alloc_bootmem(size, 1 << fls(size), 0);
2183 	} else {
2184 #ifdef CONFIG_KVM_GUEST
2185 #define KVM_GUEST_KSEG0     0x40000000
2186         ebase = KVM_GUEST_KSEG0;
2187 #else
2188         ebase = CKSEG0;
2189 #endif
2190 		if (cpu_has_mips_r2_r6)
2191 			ebase += (read_c0_ebase() & 0x3ffff000);
2192 	}
2193 
2194 	if (cpu_has_mmips) {
2195 		unsigned int config3 = read_c0_config3();
2196 
2197 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2198 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2199 		else
2200 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2201 	}
2202 
2203 	if (board_ebase_setup)
2204 		board_ebase_setup();
2205 	per_cpu_trap_init(true);
2206 
2207 	/*
2208 	 * Copy the generic exception handlers to their final destination.
2209 	 * This will be overriden later as suitable for a particular
2210 	 * configuration.
2211 	 */
2212 	set_handler(0x180, &except_vec3_generic, 0x80);
2213 
2214 	/*
2215 	 * Setup default vectors
2216 	 */
2217 	for (i = 0; i <= 31; i++)
2218 		set_except_vector(i, handle_reserved);
2219 
2220 	/*
2221 	 * Copy the EJTAG debug exception vector handler code to it's final
2222 	 * destination.
2223 	 */
2224 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2225 		board_ejtag_handler_setup();
2226 
2227 	/*
2228 	 * Only some CPUs have the watch exceptions.
2229 	 */
2230 	if (cpu_has_watch)
2231 		set_except_vector(23, handle_watch);
2232 
2233 	/*
2234 	 * Initialise interrupt handlers
2235 	 */
2236 	if (cpu_has_veic || cpu_has_vint) {
2237 		int nvec = cpu_has_veic ? 64 : 8;
2238 		for (i = 0; i < nvec; i++)
2239 			set_vi_handler(i, NULL);
2240 	}
2241 	else if (cpu_has_divec)
2242 		set_handler(0x200, &except_vec4, 0x8);
2243 
2244 	/*
2245 	 * Some CPUs can enable/disable for cache parity detection, but does
2246 	 * it different ways.
2247 	 */
2248 	parity_protection_init();
2249 
2250 	/*
2251 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2252 	 * by external hardware.  Therefore these two exceptions
2253 	 * may have board specific handlers.
2254 	 */
2255 	if (board_be_init)
2256 		board_be_init();
2257 
2258 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2259 						      : handle_int);
2260 	set_except_vector(1, handle_tlbm);
2261 	set_except_vector(2, handle_tlbl);
2262 	set_except_vector(3, handle_tlbs);
2263 
2264 	set_except_vector(4, handle_adel);
2265 	set_except_vector(5, handle_ades);
2266 
2267 	set_except_vector(6, handle_ibe);
2268 	set_except_vector(7, handle_dbe);
2269 
2270 	set_except_vector(8, handle_sys);
2271 	set_except_vector(9, handle_bp);
2272 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2273 			  (cpu_has_vtag_icache ?
2274 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2275 	set_except_vector(11, handle_cpu);
2276 	set_except_vector(12, handle_ov);
2277 	set_except_vector(13, handle_tr);
2278 	set_except_vector(14, handle_msa_fpe);
2279 
2280 	if (current_cpu_type() == CPU_R6000 ||
2281 	    current_cpu_type() == CPU_R6000A) {
2282 		/*
2283 		 * The R6000 is the only R-series CPU that features a machine
2284 		 * check exception (similar to the R4000 cache error) and
2285 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2286 		 * written yet.	 Well, anyway there is no R6000 machine on the
2287 		 * current list of targets for Linux/MIPS.
2288 		 * (Duh, crap, there is someone with a triple R6k machine)
2289 		 */
2290 		//set_except_vector(14, handle_mc);
2291 		//set_except_vector(15, handle_ndc);
2292 	}
2293 
2294 
2295 	if (board_nmi_handler_setup)
2296 		board_nmi_handler_setup();
2297 
2298 	if (cpu_has_fpu && !cpu_has_nofpuex)
2299 		set_except_vector(15, handle_fpe);
2300 
2301 	set_except_vector(16, handle_ftlb);
2302 
2303 	if (cpu_has_rixiex) {
2304 		set_except_vector(19, tlb_do_page_fault_0);
2305 		set_except_vector(20, tlb_do_page_fault_0);
2306 	}
2307 
2308 	set_except_vector(21, handle_msa);
2309 	set_except_vector(22, handle_mdmx);
2310 
2311 	if (cpu_has_mcheck)
2312 		set_except_vector(24, handle_mcheck);
2313 
2314 	if (cpu_has_mipsmt)
2315 		set_except_vector(25, handle_mt);
2316 
2317 	set_except_vector(26, handle_dsp);
2318 
2319 	if (board_cache_error_setup)
2320 		board_cache_error_setup();
2321 
2322 	if (cpu_has_vce)
2323 		/* Special exception: R4[04]00 uses also the divec space. */
2324 		set_handler(0x180, &except_vec3_r4000, 0x100);
2325 	else if (cpu_has_4kex)
2326 		set_handler(0x180, &except_vec3_generic, 0x80);
2327 	else
2328 		set_handler(0x080, &except_vec3_generic, 0x80);
2329 
2330 	local_flush_icache_range(ebase, ebase + 0x400);
2331 
2332 	sort_extable(__start___dbe_table, __stop___dbe_table);
2333 
2334 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2335 }
2336 
2337 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2338 			    void *v)
2339 {
2340 	switch (cmd) {
2341 	case CPU_PM_ENTER_FAILED:
2342 	case CPU_PM_EXIT:
2343 		configure_status();
2344 		configure_hwrena();
2345 		configure_exception_vector();
2346 
2347 		/* Restore register with CPU number for TLB handlers */
2348 		TLBMISS_HANDLER_RESTORE();
2349 
2350 		break;
2351 	}
2352 
2353 	return NOTIFY_OK;
2354 }
2355 
2356 static struct notifier_block trap_pm_notifier_block = {
2357 	.notifier_call = trap_pm_notifier,
2358 };
2359 
2360 static int __init trap_pm_init(void)
2361 {
2362 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2363 }
2364 arch_initcall(trap_pm_init);
2365