xref: /linux/arch/mips/kernel/traps.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
44 #include <asm/cop2.h>
45 #include <asm/cpu.h>
46 #include <asm/cpu-type.h>
47 #include <asm/dsp.h>
48 #include <asm/fpu.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/idle.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
55 #include <asm/msa.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/siginfo.h>
60 #include <asm/tlbdebug.h>
61 #include <asm/traps.h>
62 #include <asm/uaccess.h>
63 #include <asm/watch.h>
64 #include <asm/mmu_context.h>
65 #include <asm/types.h>
66 #include <asm/stacktrace.h>
67 #include <asm/uasm.h>
68 
69 extern void check_wait(void);
70 extern asmlinkage void rollback_handle_int(void);
71 extern asmlinkage void handle_int(void);
72 extern u32 handle_tlbl[];
73 extern u32 handle_tlbs[];
74 extern u32 handle_tlbm[];
75 extern asmlinkage void handle_adel(void);
76 extern asmlinkage void handle_ades(void);
77 extern asmlinkage void handle_ibe(void);
78 extern asmlinkage void handle_dbe(void);
79 extern asmlinkage void handle_sys(void);
80 extern asmlinkage void handle_bp(void);
81 extern asmlinkage void handle_ri(void);
82 extern asmlinkage void handle_ri_rdhwr_vivt(void);
83 extern asmlinkage void handle_ri_rdhwr(void);
84 extern asmlinkage void handle_cpu(void);
85 extern asmlinkage void handle_ov(void);
86 extern asmlinkage void handle_tr(void);
87 extern asmlinkage void handle_msa_fpe(void);
88 extern asmlinkage void handle_fpe(void);
89 extern asmlinkage void handle_ftlb(void);
90 extern asmlinkage void handle_msa(void);
91 extern asmlinkage void handle_mdmx(void);
92 extern asmlinkage void handle_watch(void);
93 extern asmlinkage void handle_mt(void);
94 extern asmlinkage void handle_dsp(void);
95 extern asmlinkage void handle_mcheck(void);
96 extern asmlinkage void handle_reserved(void);
97 extern void tlb_do_page_fault_0(void);
98 
99 void (*board_be_init)(void);
100 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
101 void (*board_nmi_handler_setup)(void);
102 void (*board_ejtag_handler_setup)(void);
103 void (*board_bind_eic_interrupt)(int irq, int regset);
104 void (*board_ebase_setup)(void);
105 void(*board_cache_error_setup)(void);
106 
107 static void show_raw_backtrace(unsigned long reg29)
108 {
109 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
110 	unsigned long addr;
111 
112 	printk("Call Trace:");
113 #ifdef CONFIG_KALLSYMS
114 	printk("\n");
115 #endif
116 	while (!kstack_end(sp)) {
117 		unsigned long __user *p =
118 			(unsigned long __user *)(unsigned long)sp++;
119 		if (__get_user(addr, p)) {
120 			printk(" (Bad stack address)");
121 			break;
122 		}
123 		if (__kernel_text_address(addr))
124 			print_ip_sym(addr);
125 	}
126 	printk("\n");
127 }
128 
129 #ifdef CONFIG_KALLSYMS
130 int raw_show_trace;
131 static int __init set_raw_show_trace(char *str)
132 {
133 	raw_show_trace = 1;
134 	return 1;
135 }
136 __setup("raw_show_trace", set_raw_show_trace);
137 #endif
138 
139 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
140 {
141 	unsigned long sp = regs->regs[29];
142 	unsigned long ra = regs->regs[31];
143 	unsigned long pc = regs->cp0_epc;
144 
145 	if (!task)
146 		task = current;
147 
148 	if (raw_show_trace || !__kernel_text_address(pc)) {
149 		show_raw_backtrace(sp);
150 		return;
151 	}
152 	printk("Call Trace:\n");
153 	do {
154 		print_ip_sym(pc);
155 		pc = unwind_stack(task, &sp, pc, &ra);
156 	} while (pc);
157 	printk("\n");
158 }
159 
160 /*
161  * This routine abuses get_user()/put_user() to reference pointers
162  * with at least a bit of error checking ...
163  */
164 static void show_stacktrace(struct task_struct *task,
165 	const struct pt_regs *regs)
166 {
167 	const int field = 2 * sizeof(unsigned long);
168 	long stackdata;
169 	int i;
170 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
171 
172 	printk("Stack :");
173 	i = 0;
174 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
175 		if (i && ((i % (64 / field)) == 0))
176 			printk("\n	 ");
177 		if (i > 39) {
178 			printk(" ...");
179 			break;
180 		}
181 
182 		if (__get_user(stackdata, sp++)) {
183 			printk(" (Bad stack address)");
184 			break;
185 		}
186 
187 		printk(" %0*lx", field, stackdata);
188 		i++;
189 	}
190 	printk("\n");
191 	show_backtrace(task, regs);
192 }
193 
194 void show_stack(struct task_struct *task, unsigned long *sp)
195 {
196 	struct pt_regs regs;
197 	mm_segment_t old_fs = get_fs();
198 	if (sp) {
199 		regs.regs[29] = (unsigned long)sp;
200 		regs.regs[31] = 0;
201 		regs.cp0_epc = 0;
202 	} else {
203 		if (task && task != current) {
204 			regs.regs[29] = task->thread.reg29;
205 			regs.regs[31] = 0;
206 			regs.cp0_epc = task->thread.reg31;
207 #ifdef CONFIG_KGDB_KDB
208 		} else if (atomic_read(&kgdb_active) != -1 &&
209 			   kdb_current_regs) {
210 			memcpy(&regs, kdb_current_regs, sizeof(regs));
211 #endif /* CONFIG_KGDB_KDB */
212 		} else {
213 			prepare_frametrace(&regs);
214 		}
215 	}
216 	/*
217 	 * show_stack() deals exclusively with kernel mode, so be sure to access
218 	 * the stack in the kernel (not user) address space.
219 	 */
220 	set_fs(KERNEL_DS);
221 	show_stacktrace(task, &regs);
222 	set_fs(old_fs);
223 }
224 
225 static void show_code(unsigned int __user *pc)
226 {
227 	long i;
228 	unsigned short __user *pc16 = NULL;
229 
230 	printk("\nCode:");
231 
232 	if ((unsigned long)pc & 1)
233 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
234 	for(i = -3 ; i < 6 ; i++) {
235 		unsigned int insn;
236 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
237 			printk(" (Bad address in epc)\n");
238 			break;
239 		}
240 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
241 	}
242 }
243 
244 static void __show_regs(const struct pt_regs *regs)
245 {
246 	const int field = 2 * sizeof(unsigned long);
247 	unsigned int cause = regs->cp0_cause;
248 	unsigned int exccode;
249 	int i;
250 
251 	show_regs_print_info(KERN_DEFAULT);
252 
253 	/*
254 	 * Saved main processor registers
255 	 */
256 	for (i = 0; i < 32; ) {
257 		if ((i % 4) == 0)
258 			printk("$%2d   :", i);
259 		if (i == 0)
260 			printk(" %0*lx", field, 0UL);
261 		else if (i == 26 || i == 27)
262 			printk(" %*s", field, "");
263 		else
264 			printk(" %0*lx", field, regs->regs[i]);
265 
266 		i++;
267 		if ((i % 4) == 0)
268 			printk("\n");
269 	}
270 
271 #ifdef CONFIG_CPU_HAS_SMARTMIPS
272 	printk("Acx    : %0*lx\n", field, regs->acx);
273 #endif
274 	printk("Hi    : %0*lx\n", field, regs->hi);
275 	printk("Lo    : %0*lx\n", field, regs->lo);
276 
277 	/*
278 	 * Saved cp0 registers
279 	 */
280 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
281 	       (void *) regs->cp0_epc);
282 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
283 	       (void *) regs->regs[31]);
284 
285 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
286 
287 	if (cpu_has_3kex) {
288 		if (regs->cp0_status & ST0_KUO)
289 			printk("KUo ");
290 		if (regs->cp0_status & ST0_IEO)
291 			printk("IEo ");
292 		if (regs->cp0_status & ST0_KUP)
293 			printk("KUp ");
294 		if (regs->cp0_status & ST0_IEP)
295 			printk("IEp ");
296 		if (regs->cp0_status & ST0_KUC)
297 			printk("KUc ");
298 		if (regs->cp0_status & ST0_IEC)
299 			printk("IEc ");
300 	} else if (cpu_has_4kex) {
301 		if (regs->cp0_status & ST0_KX)
302 			printk("KX ");
303 		if (regs->cp0_status & ST0_SX)
304 			printk("SX ");
305 		if (regs->cp0_status & ST0_UX)
306 			printk("UX ");
307 		switch (regs->cp0_status & ST0_KSU) {
308 		case KSU_USER:
309 			printk("USER ");
310 			break;
311 		case KSU_SUPERVISOR:
312 			printk("SUPERVISOR ");
313 			break;
314 		case KSU_KERNEL:
315 			printk("KERNEL ");
316 			break;
317 		default:
318 			printk("BAD_MODE ");
319 			break;
320 		}
321 		if (regs->cp0_status & ST0_ERL)
322 			printk("ERL ");
323 		if (regs->cp0_status & ST0_EXL)
324 			printk("EXL ");
325 		if (regs->cp0_status & ST0_IE)
326 			printk("IE ");
327 	}
328 	printk("\n");
329 
330 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
331 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
332 
333 	if (1 <= exccode && exccode <= 5)
334 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
335 
336 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
337 	       cpu_name_string());
338 }
339 
340 /*
341  * FIXME: really the generic show_regs should take a const pointer argument.
342  */
343 void show_regs(struct pt_regs *regs)
344 {
345 	__show_regs((struct pt_regs *)regs);
346 }
347 
348 void show_registers(struct pt_regs *regs)
349 {
350 	const int field = 2 * sizeof(unsigned long);
351 	mm_segment_t old_fs = get_fs();
352 
353 	__show_regs(regs);
354 	print_modules();
355 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
356 	       current->comm, current->pid, current_thread_info(), current,
357 	      field, current_thread_info()->tp_value);
358 	if (cpu_has_userlocal) {
359 		unsigned long tls;
360 
361 		tls = read_c0_userlocal();
362 		if (tls != current_thread_info()->tp_value)
363 			printk("*HwTLS: %0*lx\n", field, tls);
364 	}
365 
366 	if (!user_mode(regs))
367 		/* Necessary for getting the correct stack content */
368 		set_fs(KERNEL_DS);
369 	show_stacktrace(current, regs);
370 	show_code((unsigned int __user *) regs->cp0_epc);
371 	printk("\n");
372 	set_fs(old_fs);
373 }
374 
375 static DEFINE_RAW_SPINLOCK(die_lock);
376 
377 void __noreturn die(const char *str, struct pt_regs *regs)
378 {
379 	static int die_counter;
380 	int sig = SIGSEGV;
381 
382 	oops_enter();
383 
384 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
385 		       SIGSEGV) == NOTIFY_STOP)
386 		sig = 0;
387 
388 	console_verbose();
389 	raw_spin_lock_irq(&die_lock);
390 	bust_spinlocks(1);
391 
392 	printk("%s[#%d]:\n", str, ++die_counter);
393 	show_registers(regs);
394 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
395 	raw_spin_unlock_irq(&die_lock);
396 
397 	oops_exit();
398 
399 	if (in_interrupt())
400 		panic("Fatal exception in interrupt");
401 
402 	if (panic_on_oops) {
403 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
404 		ssleep(5);
405 		panic("Fatal exception");
406 	}
407 
408 	if (regs && kexec_should_crash(current))
409 		crash_kexec(regs);
410 
411 	do_exit(sig);
412 }
413 
414 extern struct exception_table_entry __start___dbe_table[];
415 extern struct exception_table_entry __stop___dbe_table[];
416 
417 __asm__(
418 "	.section	__dbe_table, \"a\"\n"
419 "	.previous			\n");
420 
421 /* Given an address, look for it in the exception tables. */
422 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
423 {
424 	const struct exception_table_entry *e;
425 
426 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
427 	if (!e)
428 		e = search_module_dbetables(addr);
429 	return e;
430 }
431 
432 asmlinkage void do_be(struct pt_regs *regs)
433 {
434 	const int field = 2 * sizeof(unsigned long);
435 	const struct exception_table_entry *fixup = NULL;
436 	int data = regs->cp0_cause & 4;
437 	int action = MIPS_BE_FATAL;
438 	enum ctx_state prev_state;
439 
440 	prev_state = exception_enter();
441 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
442 	if (data && !user_mode(regs))
443 		fixup = search_dbe_tables(exception_epc(regs));
444 
445 	if (fixup)
446 		action = MIPS_BE_FIXUP;
447 
448 	if (board_be_handler)
449 		action = board_be_handler(regs, fixup != NULL);
450 
451 	switch (action) {
452 	case MIPS_BE_DISCARD:
453 		goto out;
454 	case MIPS_BE_FIXUP:
455 		if (fixup) {
456 			regs->cp0_epc = fixup->nextinsn;
457 			goto out;
458 		}
459 		break;
460 	default:
461 		break;
462 	}
463 
464 	/*
465 	 * Assume it would be too dangerous to continue ...
466 	 */
467 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
468 	       data ? "Data" : "Instruction",
469 	       field, regs->cp0_epc, field, regs->regs[31]);
470 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
471 		       SIGBUS) == NOTIFY_STOP)
472 		goto out;
473 
474 	die_if_kernel("Oops", regs);
475 	force_sig(SIGBUS, current);
476 
477 out:
478 	exception_exit(prev_state);
479 }
480 
481 /*
482  * ll/sc, rdhwr, sync emulation
483  */
484 
485 #define OPCODE 0xfc000000
486 #define BASE   0x03e00000
487 #define RT     0x001f0000
488 #define OFFSET 0x0000ffff
489 #define LL     0xc0000000
490 #define SC     0xe0000000
491 #define SPEC0  0x00000000
492 #define SPEC3  0x7c000000
493 #define RD     0x0000f800
494 #define FUNC   0x0000003f
495 #define SYNC   0x0000000f
496 #define RDHWR  0x0000003b
497 
498 /*  microMIPS definitions   */
499 #define MM_POOL32A_FUNC 0xfc00ffff
500 #define MM_RDHWR        0x00006b3c
501 #define MM_RS           0x001f0000
502 #define MM_RT           0x03e00000
503 
504 /*
505  * The ll_bit is cleared by r*_switch.S
506  */
507 
508 unsigned int ll_bit;
509 struct task_struct *ll_task;
510 
511 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
512 {
513 	unsigned long value, __user *vaddr;
514 	long offset;
515 
516 	/*
517 	 * analyse the ll instruction that just caused a ri exception
518 	 * and put the referenced address to addr.
519 	 */
520 
521 	/* sign extend offset */
522 	offset = opcode & OFFSET;
523 	offset <<= 16;
524 	offset >>= 16;
525 
526 	vaddr = (unsigned long __user *)
527 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
528 
529 	if ((unsigned long)vaddr & 3)
530 		return SIGBUS;
531 	if (get_user(value, vaddr))
532 		return SIGSEGV;
533 
534 	preempt_disable();
535 
536 	if (ll_task == NULL || ll_task == current) {
537 		ll_bit = 1;
538 	} else {
539 		ll_bit = 0;
540 	}
541 	ll_task = current;
542 
543 	preempt_enable();
544 
545 	regs->regs[(opcode & RT) >> 16] = value;
546 
547 	return 0;
548 }
549 
550 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
551 {
552 	unsigned long __user *vaddr;
553 	unsigned long reg;
554 	long offset;
555 
556 	/*
557 	 * analyse the sc instruction that just caused a ri exception
558 	 * and put the referenced address to addr.
559 	 */
560 
561 	/* sign extend offset */
562 	offset = opcode & OFFSET;
563 	offset <<= 16;
564 	offset >>= 16;
565 
566 	vaddr = (unsigned long __user *)
567 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
568 	reg = (opcode & RT) >> 16;
569 
570 	if ((unsigned long)vaddr & 3)
571 		return SIGBUS;
572 
573 	preempt_disable();
574 
575 	if (ll_bit == 0 || ll_task != current) {
576 		regs->regs[reg] = 0;
577 		preempt_enable();
578 		return 0;
579 	}
580 
581 	preempt_enable();
582 
583 	if (put_user(regs->regs[reg], vaddr))
584 		return SIGSEGV;
585 
586 	regs->regs[reg] = 1;
587 
588 	return 0;
589 }
590 
591 /*
592  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
593  * opcodes are supposed to result in coprocessor unusable exceptions if
594  * executed on ll/sc-less processors.  That's the theory.  In practice a
595  * few processors such as NEC's VR4100 throw reserved instruction exceptions
596  * instead, so we're doing the emulation thing in both exception handlers.
597  */
598 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
599 {
600 	if ((opcode & OPCODE) == LL) {
601 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
602 				1, regs, 0);
603 		return simulate_ll(regs, opcode);
604 	}
605 	if ((opcode & OPCODE) == SC) {
606 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 				1, regs, 0);
608 		return simulate_sc(regs, opcode);
609 	}
610 
611 	return -1;			/* Must be something else ... */
612 }
613 
614 /*
615  * Simulate trapping 'rdhwr' instructions to provide user accessible
616  * registers not implemented in hardware.
617  */
618 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
619 {
620 	struct thread_info *ti = task_thread_info(current);
621 
622 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
623 			1, regs, 0);
624 	switch (rd) {
625 	case 0:		/* CPU number */
626 		regs->regs[rt] = smp_processor_id();
627 		return 0;
628 	case 1:		/* SYNCI length */
629 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
630 				     current_cpu_data.icache.linesz);
631 		return 0;
632 	case 2:		/* Read count register */
633 		regs->regs[rt] = read_c0_count();
634 		return 0;
635 	case 3:		/* Count register resolution */
636 		switch (current_cpu_type()) {
637 		case CPU_20KC:
638 		case CPU_25KF:
639 			regs->regs[rt] = 1;
640 			break;
641 		default:
642 			regs->regs[rt] = 2;
643 		}
644 		return 0;
645 	case 29:
646 		regs->regs[rt] = ti->tp_value;
647 		return 0;
648 	default:
649 		return -1;
650 	}
651 }
652 
653 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
654 {
655 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
656 		int rd = (opcode & RD) >> 11;
657 		int rt = (opcode & RT) >> 16;
658 
659 		simulate_rdhwr(regs, rd, rt);
660 		return 0;
661 	}
662 
663 	/* Not ours.  */
664 	return -1;
665 }
666 
667 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
668 {
669 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
670 		int rd = (opcode & MM_RS) >> 16;
671 		int rt = (opcode & MM_RT) >> 21;
672 		simulate_rdhwr(regs, rd, rt);
673 		return 0;
674 	}
675 
676 	/* Not ours.  */
677 	return -1;
678 }
679 
680 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
681 {
682 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
683 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
684 				1, regs, 0);
685 		return 0;
686 	}
687 
688 	return -1;			/* Must be something else ... */
689 }
690 
691 asmlinkage void do_ov(struct pt_regs *regs)
692 {
693 	enum ctx_state prev_state;
694 	siginfo_t info = {
695 		.si_signo = SIGFPE,
696 		.si_code = FPE_INTOVF,
697 		.si_addr = (void __user *)regs->cp0_epc,
698 	};
699 
700 	prev_state = exception_enter();
701 	die_if_kernel("Integer overflow", regs);
702 
703 	force_sig_info(SIGFPE, &info, current);
704 	exception_exit(prev_state);
705 }
706 
707 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
708 {
709 	struct siginfo si = { 0 };
710 
711 	switch (sig) {
712 	case 0:
713 		return 0;
714 
715 	case SIGFPE:
716 		si.si_addr = fault_addr;
717 		si.si_signo = sig;
718 		/*
719 		 * Inexact can happen together with Overflow or Underflow.
720 		 * Respect the mask to deliver the correct exception.
721 		 */
722 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
723 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
724 		if (fcr31 & FPU_CSR_INV_X)
725 			si.si_code = FPE_FLTINV;
726 		else if (fcr31 & FPU_CSR_DIV_X)
727 			si.si_code = FPE_FLTDIV;
728 		else if (fcr31 & FPU_CSR_OVF_X)
729 			si.si_code = FPE_FLTOVF;
730 		else if (fcr31 & FPU_CSR_UDF_X)
731 			si.si_code = FPE_FLTUND;
732 		else if (fcr31 & FPU_CSR_INE_X)
733 			si.si_code = FPE_FLTRES;
734 		else
735 			si.si_code = __SI_FAULT;
736 		force_sig_info(sig, &si, current);
737 		return 1;
738 
739 	case SIGBUS:
740 		si.si_addr = fault_addr;
741 		si.si_signo = sig;
742 		si.si_code = BUS_ADRERR;
743 		force_sig_info(sig, &si, current);
744 		return 1;
745 
746 	case SIGSEGV:
747 		si.si_addr = fault_addr;
748 		si.si_signo = sig;
749 		down_read(&current->mm->mmap_sem);
750 		if (find_vma(current->mm, (unsigned long)fault_addr))
751 			si.si_code = SEGV_ACCERR;
752 		else
753 			si.si_code = SEGV_MAPERR;
754 		up_read(&current->mm->mmap_sem);
755 		force_sig_info(sig, &si, current);
756 		return 1;
757 
758 	default:
759 		force_sig(sig, current);
760 		return 1;
761 	}
762 }
763 
764 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
765 		       unsigned long old_epc, unsigned long old_ra)
766 {
767 	union mips_instruction inst = { .word = opcode };
768 	void __user *fault_addr;
769 	unsigned long fcr31;
770 	int sig;
771 
772 	/* If it's obviously not an FP instruction, skip it */
773 	switch (inst.i_format.opcode) {
774 	case cop1_op:
775 	case cop1x_op:
776 	case lwc1_op:
777 	case ldc1_op:
778 	case swc1_op:
779 	case sdc1_op:
780 		break;
781 
782 	default:
783 		return -1;
784 	}
785 
786 	/*
787 	 * do_ri skipped over the instruction via compute_return_epc, undo
788 	 * that for the FPU emulator.
789 	 */
790 	regs->cp0_epc = old_epc;
791 	regs->regs[31] = old_ra;
792 
793 	/* Save the FP context to struct thread_struct */
794 	lose_fpu(1);
795 
796 	/* Run the emulator */
797 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
798 				       &fault_addr);
799 	fcr31 = current->thread.fpu.fcr31;
800 
801 	/*
802 	 * We can't allow the emulated instruction to leave any of
803 	 * the cause bits set in $fcr31.
804 	 */
805 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
806 
807 	/* Restore the hardware register state */
808 	own_fpu(1);
809 
810 	/* Send a signal if required.  */
811 	process_fpemu_return(sig, fault_addr, fcr31);
812 
813 	return 0;
814 }
815 
816 /*
817  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
818  */
819 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
820 {
821 	enum ctx_state prev_state;
822 	void __user *fault_addr;
823 	int sig;
824 
825 	prev_state = exception_enter();
826 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
827 		       SIGFPE) == NOTIFY_STOP)
828 		goto out;
829 
830 	/* Clear FCSR.Cause before enabling interrupts */
831 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
832 	local_irq_enable();
833 
834 	die_if_kernel("FP exception in kernel code", regs);
835 
836 	if (fcr31 & FPU_CSR_UNI_X) {
837 		/*
838 		 * Unimplemented operation exception.  If we've got the full
839 		 * software emulator on-board, let's use it...
840 		 *
841 		 * Force FPU to dump state into task/thread context.  We're
842 		 * moving a lot of data here for what is probably a single
843 		 * instruction, but the alternative is to pre-decode the FP
844 		 * register operands before invoking the emulator, which seems
845 		 * a bit extreme for what should be an infrequent event.
846 		 */
847 		/* Ensure 'resume' not overwrite saved fp context again. */
848 		lose_fpu(1);
849 
850 		/* Run the emulator */
851 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
852 					       &fault_addr);
853 		fcr31 = current->thread.fpu.fcr31;
854 
855 		/*
856 		 * We can't allow the emulated instruction to leave any of
857 		 * the cause bits set in $fcr31.
858 		 */
859 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
860 
861 		/* Restore the hardware register state */
862 		own_fpu(1);	/* Using the FPU again.	 */
863 	} else {
864 		sig = SIGFPE;
865 		fault_addr = (void __user *) regs->cp0_epc;
866 	}
867 
868 	/* Send a signal if required.  */
869 	process_fpemu_return(sig, fault_addr, fcr31);
870 
871 out:
872 	exception_exit(prev_state);
873 }
874 
875 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
876 	const char *str)
877 {
878 	siginfo_t info = { 0 };
879 	char b[40];
880 
881 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
882 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
883 			 SIGTRAP) == NOTIFY_STOP)
884 		return;
885 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
886 
887 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
888 		       SIGTRAP) == NOTIFY_STOP)
889 		return;
890 
891 	/*
892 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
893 	 * insns, even for trap and break codes that indicate arithmetic
894 	 * failures.  Weird ...
895 	 * But should we continue the brokenness???  --macro
896 	 */
897 	switch (code) {
898 	case BRK_OVERFLOW:
899 	case BRK_DIVZERO:
900 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
901 		die_if_kernel(b, regs);
902 		if (code == BRK_DIVZERO)
903 			info.si_code = FPE_INTDIV;
904 		else
905 			info.si_code = FPE_INTOVF;
906 		info.si_signo = SIGFPE;
907 		info.si_addr = (void __user *) regs->cp0_epc;
908 		force_sig_info(SIGFPE, &info, current);
909 		break;
910 	case BRK_BUG:
911 		die_if_kernel("Kernel bug detected", regs);
912 		force_sig(SIGTRAP, current);
913 		break;
914 	case BRK_MEMU:
915 		/*
916 		 * This breakpoint code is used by the FPU emulator to retake
917 		 * control of the CPU after executing the instruction from the
918 		 * delay slot of an emulated branch.
919 		 *
920 		 * Terminate if exception was recognized as a delay slot return
921 		 * otherwise handle as normal.
922 		 */
923 		if (do_dsemulret(regs))
924 			return;
925 
926 		die_if_kernel("Math emu break/trap", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	default:
930 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
931 		die_if_kernel(b, regs);
932 		if (si_code) {
933 			info.si_signo = SIGTRAP;
934 			info.si_code = si_code;
935 			force_sig_info(SIGTRAP, &info, current);
936 		} else {
937 			force_sig(SIGTRAP, current);
938 		}
939 	}
940 }
941 
942 asmlinkage void do_bp(struct pt_regs *regs)
943 {
944 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
945 	unsigned int opcode, bcode;
946 	enum ctx_state prev_state;
947 	mm_segment_t seg;
948 
949 	seg = get_fs();
950 	if (!user_mode(regs))
951 		set_fs(KERNEL_DS);
952 
953 	prev_state = exception_enter();
954 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
955 	if (get_isa16_mode(regs->cp0_epc)) {
956 		u16 instr[2];
957 
958 		if (__get_user(instr[0], (u16 __user *)epc))
959 			goto out_sigsegv;
960 
961 		if (!cpu_has_mmips) {
962 			/* MIPS16e mode */
963 			bcode = (instr[0] >> 5) & 0x3f;
964 		} else if (mm_insn_16bit(instr[0])) {
965 			/* 16-bit microMIPS BREAK */
966 			bcode = instr[0] & 0xf;
967 		} else {
968 			/* 32-bit microMIPS BREAK */
969 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
970 				goto out_sigsegv;
971 			opcode = (instr[0] << 16) | instr[1];
972 			bcode = (opcode >> 6) & ((1 << 20) - 1);
973 		}
974 	} else {
975 		if (__get_user(opcode, (unsigned int __user *)epc))
976 			goto out_sigsegv;
977 		bcode = (opcode >> 6) & ((1 << 20) - 1);
978 	}
979 
980 	/*
981 	 * There is the ancient bug in the MIPS assemblers that the break
982 	 * code starts left to bit 16 instead to bit 6 in the opcode.
983 	 * Gas is bug-compatible, but not always, grrr...
984 	 * We handle both cases with a simple heuristics.  --macro
985 	 */
986 	if (bcode >= (1 << 10))
987 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
988 
989 	/*
990 	 * notify the kprobe handlers, if instruction is likely to
991 	 * pertain to them.
992 	 */
993 	switch (bcode) {
994 	case BRK_UPROBE:
995 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
996 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
997 			goto out;
998 		else
999 			break;
1000 	case BRK_UPROBE_XOL:
1001 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1002 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1003 			goto out;
1004 		else
1005 			break;
1006 	case BRK_KPROBE_BP:
1007 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1008 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 			goto out;
1010 		else
1011 			break;
1012 	case BRK_KPROBE_SSTEPBP:
1013 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1014 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 			goto out;
1016 		else
1017 			break;
1018 	default:
1019 		break;
1020 	}
1021 
1022 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1023 
1024 out:
1025 	set_fs(seg);
1026 	exception_exit(prev_state);
1027 	return;
1028 
1029 out_sigsegv:
1030 	force_sig(SIGSEGV, current);
1031 	goto out;
1032 }
1033 
1034 asmlinkage void do_tr(struct pt_regs *regs)
1035 {
1036 	u32 opcode, tcode = 0;
1037 	enum ctx_state prev_state;
1038 	u16 instr[2];
1039 	mm_segment_t seg;
1040 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1041 
1042 	seg = get_fs();
1043 	if (!user_mode(regs))
1044 		set_fs(get_ds());
1045 
1046 	prev_state = exception_enter();
1047 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1048 	if (get_isa16_mode(regs->cp0_epc)) {
1049 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1050 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1051 			goto out_sigsegv;
1052 		opcode = (instr[0] << 16) | instr[1];
1053 		/* Immediate versions don't provide a code.  */
1054 		if (!(opcode & OPCODE))
1055 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1056 	} else {
1057 		if (__get_user(opcode, (u32 __user *)epc))
1058 			goto out_sigsegv;
1059 		/* Immediate versions don't provide a code.  */
1060 		if (!(opcode & OPCODE))
1061 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1062 	}
1063 
1064 	do_trap_or_bp(regs, tcode, 0, "Trap");
1065 
1066 out:
1067 	set_fs(seg);
1068 	exception_exit(prev_state);
1069 	return;
1070 
1071 out_sigsegv:
1072 	force_sig(SIGSEGV, current);
1073 	goto out;
1074 }
1075 
1076 asmlinkage void do_ri(struct pt_regs *regs)
1077 {
1078 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1079 	unsigned long old_epc = regs->cp0_epc;
1080 	unsigned long old31 = regs->regs[31];
1081 	enum ctx_state prev_state;
1082 	unsigned int opcode = 0;
1083 	int status = -1;
1084 
1085 	/*
1086 	 * Avoid any kernel code. Just emulate the R2 instruction
1087 	 * as quickly as possible.
1088 	 */
1089 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1090 	    likely(user_mode(regs)) &&
1091 	    likely(get_user(opcode, epc) >= 0)) {
1092 		unsigned long fcr31 = 0;
1093 
1094 		status = mipsr2_decoder(regs, opcode, &fcr31);
1095 		switch (status) {
1096 		case 0:
1097 		case SIGEMT:
1098 			task_thread_info(current)->r2_emul_return = 1;
1099 			return;
1100 		case SIGILL:
1101 			goto no_r2_instr;
1102 		default:
1103 			process_fpemu_return(status,
1104 					     &current->thread.cp0_baduaddr,
1105 					     fcr31);
1106 			task_thread_info(current)->r2_emul_return = 1;
1107 			return;
1108 		}
1109 	}
1110 
1111 no_r2_instr:
1112 
1113 	prev_state = exception_enter();
1114 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1115 
1116 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1117 		       SIGILL) == NOTIFY_STOP)
1118 		goto out;
1119 
1120 	die_if_kernel("Reserved instruction in kernel code", regs);
1121 
1122 	if (unlikely(compute_return_epc(regs) < 0))
1123 		goto out;
1124 
1125 	if (!get_isa16_mode(regs->cp0_epc)) {
1126 		if (unlikely(get_user(opcode, epc) < 0))
1127 			status = SIGSEGV;
1128 
1129 		if (!cpu_has_llsc && status < 0)
1130 			status = simulate_llsc(regs, opcode);
1131 
1132 		if (status < 0)
1133 			status = simulate_rdhwr_normal(regs, opcode);
1134 
1135 		if (status < 0)
1136 			status = simulate_sync(regs, opcode);
1137 
1138 		if (status < 0)
1139 			status = simulate_fp(regs, opcode, old_epc, old31);
1140 	} else if (cpu_has_mmips) {
1141 		unsigned short mmop[2] = { 0 };
1142 
1143 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1144 			status = SIGSEGV;
1145 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1146 			status = SIGSEGV;
1147 		opcode = mmop[0];
1148 		opcode = (opcode << 16) | mmop[1];
1149 
1150 		if (status < 0)
1151 			status = simulate_rdhwr_mm(regs, opcode);
1152 	}
1153 
1154 	if (status < 0)
1155 		status = SIGILL;
1156 
1157 	if (unlikely(status > 0)) {
1158 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1159 		regs->regs[31] = old31;
1160 		force_sig(status, current);
1161 	}
1162 
1163 out:
1164 	exception_exit(prev_state);
1165 }
1166 
1167 /*
1168  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1169  * emulated more than some threshold number of instructions, force migration to
1170  * a "CPU" that has FP support.
1171  */
1172 static void mt_ase_fp_affinity(void)
1173 {
1174 #ifdef CONFIG_MIPS_MT_FPAFF
1175 	if (mt_fpemul_threshold > 0 &&
1176 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1177 		/*
1178 		 * If there's no FPU present, or if the application has already
1179 		 * restricted the allowed set to exclude any CPUs with FPUs,
1180 		 * we'll skip the procedure.
1181 		 */
1182 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1183 			cpumask_t tmask;
1184 
1185 			current->thread.user_cpus_allowed
1186 				= current->cpus_allowed;
1187 			cpumask_and(&tmask, &current->cpus_allowed,
1188 				    &mt_fpu_cpumask);
1189 			set_cpus_allowed_ptr(current, &tmask);
1190 			set_thread_flag(TIF_FPUBOUND);
1191 		}
1192 	}
1193 #endif /* CONFIG_MIPS_MT_FPAFF */
1194 }
1195 
1196 /*
1197  * No lock; only written during early bootup by CPU 0.
1198  */
1199 static RAW_NOTIFIER_HEAD(cu2_chain);
1200 
1201 int __ref register_cu2_notifier(struct notifier_block *nb)
1202 {
1203 	return raw_notifier_chain_register(&cu2_chain, nb);
1204 }
1205 
1206 int cu2_notifier_call_chain(unsigned long val, void *v)
1207 {
1208 	return raw_notifier_call_chain(&cu2_chain, val, v);
1209 }
1210 
1211 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212 	void *data)
1213 {
1214 	struct pt_regs *regs = data;
1215 
1216 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217 			      "instruction", regs);
1218 	force_sig(SIGILL, current);
1219 
1220 	return NOTIFY_OK;
1221 }
1222 
1223 static int wait_on_fp_mode_switch(atomic_t *p)
1224 {
1225 	/*
1226 	 * The FP mode for this task is currently being switched. That may
1227 	 * involve modifications to the format of this tasks FP context which
1228 	 * make it unsafe to proceed with execution for the moment. Instead,
1229 	 * schedule some other task.
1230 	 */
1231 	schedule();
1232 	return 0;
1233 }
1234 
1235 static int enable_restore_fp_context(int msa)
1236 {
1237 	int err, was_fpu_owner, prior_msa;
1238 
1239 	/*
1240 	 * If an FP mode switch is currently underway, wait for it to
1241 	 * complete before proceeding.
1242 	 */
1243 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1244 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1245 
1246 	if (!used_math()) {
1247 		/* First time FP context user. */
1248 		preempt_disable();
1249 		err = init_fpu();
1250 		if (msa && !err) {
1251 			enable_msa();
1252 			_init_msa_upper();
1253 			set_thread_flag(TIF_USEDMSA);
1254 			set_thread_flag(TIF_MSA_CTX_LIVE);
1255 		}
1256 		preempt_enable();
1257 		if (!err)
1258 			set_used_math();
1259 		return err;
1260 	}
1261 
1262 	/*
1263 	 * This task has formerly used the FP context.
1264 	 *
1265 	 * If this thread has no live MSA vector context then we can simply
1266 	 * restore the scalar FP context. If it has live MSA vector context
1267 	 * (that is, it has or may have used MSA since last performing a
1268 	 * function call) then we'll need to restore the vector context. This
1269 	 * applies even if we're currently only executing a scalar FP
1270 	 * instruction. This is because if we were to later execute an MSA
1271 	 * instruction then we'd either have to:
1272 	 *
1273 	 *  - Restore the vector context & clobber any registers modified by
1274 	 *    scalar FP instructions between now & then.
1275 	 *
1276 	 * or
1277 	 *
1278 	 *  - Not restore the vector context & lose the most significant bits
1279 	 *    of all vector registers.
1280 	 *
1281 	 * Neither of those options is acceptable. We cannot restore the least
1282 	 * significant bits of the registers now & only restore the most
1283 	 * significant bits later because the most significant bits of any
1284 	 * vector registers whose aliased FP register is modified now will have
1285 	 * been zeroed. We'd have no way to know that when restoring the vector
1286 	 * context & thus may load an outdated value for the most significant
1287 	 * bits of a vector register.
1288 	 */
1289 	if (!msa && !thread_msa_context_live())
1290 		return own_fpu(1);
1291 
1292 	/*
1293 	 * This task is using or has previously used MSA. Thus we require
1294 	 * that Status.FR == 1.
1295 	 */
1296 	preempt_disable();
1297 	was_fpu_owner = is_fpu_owner();
1298 	err = own_fpu_inatomic(0);
1299 	if (err)
1300 		goto out;
1301 
1302 	enable_msa();
1303 	write_msa_csr(current->thread.fpu.msacsr);
1304 	set_thread_flag(TIF_USEDMSA);
1305 
1306 	/*
1307 	 * If this is the first time that the task is using MSA and it has
1308 	 * previously used scalar FP in this time slice then we already nave
1309 	 * FP context which we shouldn't clobber. We do however need to clear
1310 	 * the upper 64b of each vector register so that this task has no
1311 	 * opportunity to see data left behind by another.
1312 	 */
1313 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1314 	if (!prior_msa && was_fpu_owner) {
1315 		_init_msa_upper();
1316 
1317 		goto out;
1318 	}
1319 
1320 	if (!prior_msa) {
1321 		/*
1322 		 * Restore the least significant 64b of each vector register
1323 		 * from the existing scalar FP context.
1324 		 */
1325 		_restore_fp(current);
1326 
1327 		/*
1328 		 * The task has not formerly used MSA, so clear the upper 64b
1329 		 * of each vector register such that it cannot see data left
1330 		 * behind by another task.
1331 		 */
1332 		_init_msa_upper();
1333 	} else {
1334 		/* We need to restore the vector context. */
1335 		restore_msa(current);
1336 
1337 		/* Restore the scalar FP control & status register */
1338 		if (!was_fpu_owner)
1339 			write_32bit_cp1_register(CP1_STATUS,
1340 						 current->thread.fpu.fcr31);
1341 	}
1342 
1343 out:
1344 	preempt_enable();
1345 
1346 	return 0;
1347 }
1348 
1349 asmlinkage void do_cpu(struct pt_regs *regs)
1350 {
1351 	enum ctx_state prev_state;
1352 	unsigned int __user *epc;
1353 	unsigned long old_epc, old31;
1354 	void __user *fault_addr;
1355 	unsigned int opcode;
1356 	unsigned long fcr31;
1357 	unsigned int cpid;
1358 	int status, err;
1359 	unsigned long __maybe_unused flags;
1360 	int sig;
1361 
1362 	prev_state = exception_enter();
1363 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1364 
1365 	if (cpid != 2)
1366 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1367 
1368 	switch (cpid) {
1369 	case 0:
1370 		epc = (unsigned int __user *)exception_epc(regs);
1371 		old_epc = regs->cp0_epc;
1372 		old31 = regs->regs[31];
1373 		opcode = 0;
1374 		status = -1;
1375 
1376 		if (unlikely(compute_return_epc(regs) < 0))
1377 			break;
1378 
1379 		if (!get_isa16_mode(regs->cp0_epc)) {
1380 			if (unlikely(get_user(opcode, epc) < 0))
1381 				status = SIGSEGV;
1382 
1383 			if (!cpu_has_llsc && status < 0)
1384 				status = simulate_llsc(regs, opcode);
1385 		}
1386 
1387 		if (status < 0)
1388 			status = SIGILL;
1389 
1390 		if (unlikely(status > 0)) {
1391 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1392 			regs->regs[31] = old31;
1393 			force_sig(status, current);
1394 		}
1395 
1396 		break;
1397 
1398 	case 3:
1399 		/*
1400 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1401 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1402 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1403 		 * up the space has been reused for COP1X instructions, that
1404 		 * are enabled by the CP0.Status.CU1 bit and consequently
1405 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1406 		 * exceptions.  Some FPU-less processors that implement one
1407 		 * of these ISAs however use this code erroneously for COP1X
1408 		 * instructions.  Therefore we redirect this trap to the FP
1409 		 * emulator too.
1410 		 */
1411 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1412 			force_sig(SIGILL, current);
1413 			break;
1414 		}
1415 		/* Fall through.  */
1416 
1417 	case 1:
1418 		err = enable_restore_fp_context(0);
1419 
1420 		if (raw_cpu_has_fpu && !err)
1421 			break;
1422 
1423 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1424 					       &fault_addr);
1425 		fcr31 = current->thread.fpu.fcr31;
1426 
1427 		/*
1428 		 * We can't allow the emulated instruction to leave
1429 		 * any of the cause bits set in $fcr31.
1430 		 */
1431 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1432 
1433 		/* Send a signal if required.  */
1434 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1435 			mt_ase_fp_affinity();
1436 
1437 		break;
1438 
1439 	case 2:
1440 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1441 		break;
1442 	}
1443 
1444 	exception_exit(prev_state);
1445 }
1446 
1447 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1448 {
1449 	enum ctx_state prev_state;
1450 
1451 	prev_state = exception_enter();
1452 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455 		goto out;
1456 
1457 	/* Clear MSACSR.Cause before enabling interrupts */
1458 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459 	local_irq_enable();
1460 
1461 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462 	force_sig(SIGFPE, current);
1463 out:
1464 	exception_exit(prev_state);
1465 }
1466 
1467 asmlinkage void do_msa(struct pt_regs *regs)
1468 {
1469 	enum ctx_state prev_state;
1470 	int err;
1471 
1472 	prev_state = exception_enter();
1473 
1474 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475 		force_sig(SIGILL, current);
1476 		goto out;
1477 	}
1478 
1479 	die_if_kernel("do_msa invoked from kernel context!", regs);
1480 
1481 	err = enable_restore_fp_context(1);
1482 	if (err)
1483 		force_sig(SIGILL, current);
1484 out:
1485 	exception_exit(prev_state);
1486 }
1487 
1488 asmlinkage void do_mdmx(struct pt_regs *regs)
1489 {
1490 	enum ctx_state prev_state;
1491 
1492 	prev_state = exception_enter();
1493 	force_sig(SIGILL, current);
1494 	exception_exit(prev_state);
1495 }
1496 
1497 /*
1498  * Called with interrupts disabled.
1499  */
1500 asmlinkage void do_watch(struct pt_regs *regs)
1501 {
1502 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1503 	enum ctx_state prev_state;
1504 	u32 cause;
1505 
1506 	prev_state = exception_enter();
1507 	/*
1508 	 * Clear WP (bit 22) bit of cause register so we don't loop
1509 	 * forever.
1510 	 */
1511 	cause = read_c0_cause();
1512 	cause &= ~(1 << 22);
1513 	write_c0_cause(cause);
1514 
1515 	/*
1516 	 * If the current thread has the watch registers loaded, save
1517 	 * their values and send SIGTRAP.  Otherwise another thread
1518 	 * left the registers set, clear them and continue.
1519 	 */
1520 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1521 		mips_read_watch_registers();
1522 		local_irq_enable();
1523 		force_sig_info(SIGTRAP, &info, current);
1524 	} else {
1525 		mips_clear_watch_registers();
1526 		local_irq_enable();
1527 	}
1528 	exception_exit(prev_state);
1529 }
1530 
1531 asmlinkage void do_mcheck(struct pt_regs *regs)
1532 {
1533 	int multi_match = regs->cp0_status & ST0_TS;
1534 	enum ctx_state prev_state;
1535 	mm_segment_t old_fs = get_fs();
1536 
1537 	prev_state = exception_enter();
1538 	show_regs(regs);
1539 
1540 	if (multi_match) {
1541 		dump_tlb_regs();
1542 		pr_info("\n");
1543 		dump_tlb_all();
1544 	}
1545 
1546 	if (!user_mode(regs))
1547 		set_fs(KERNEL_DS);
1548 
1549 	show_code((unsigned int __user *) regs->cp0_epc);
1550 
1551 	set_fs(old_fs);
1552 
1553 	/*
1554 	 * Some chips may have other causes of machine check (e.g. SB1
1555 	 * graduation timer)
1556 	 */
1557 	panic("Caught Machine Check exception - %scaused by multiple "
1558 	      "matching entries in the TLB.",
1559 	      (multi_match) ? "" : "not ");
1560 }
1561 
1562 asmlinkage void do_mt(struct pt_regs *regs)
1563 {
1564 	int subcode;
1565 
1566 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1567 			>> VPECONTROL_EXCPT_SHIFT;
1568 	switch (subcode) {
1569 	case 0:
1570 		printk(KERN_DEBUG "Thread Underflow\n");
1571 		break;
1572 	case 1:
1573 		printk(KERN_DEBUG "Thread Overflow\n");
1574 		break;
1575 	case 2:
1576 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1577 		break;
1578 	case 3:
1579 		printk(KERN_DEBUG "Gating Storage Exception\n");
1580 		break;
1581 	case 4:
1582 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1583 		break;
1584 	case 5:
1585 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1586 		break;
1587 	default:
1588 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1589 			subcode);
1590 		break;
1591 	}
1592 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1593 
1594 	force_sig(SIGILL, current);
1595 }
1596 
1597 
1598 asmlinkage void do_dsp(struct pt_regs *regs)
1599 {
1600 	if (cpu_has_dsp)
1601 		panic("Unexpected DSP exception");
1602 
1603 	force_sig(SIGILL, current);
1604 }
1605 
1606 asmlinkage void do_reserved(struct pt_regs *regs)
1607 {
1608 	/*
1609 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1610 	 * caused by a new unknown cpu type or after another deadly
1611 	 * hard/software error.
1612 	 */
1613 	show_regs(regs);
1614 	panic("Caught reserved exception %ld - should not happen.",
1615 	      (regs->cp0_cause & 0x7f) >> 2);
1616 }
1617 
1618 static int __initdata l1parity = 1;
1619 static int __init nol1parity(char *s)
1620 {
1621 	l1parity = 0;
1622 	return 1;
1623 }
1624 __setup("nol1par", nol1parity);
1625 static int __initdata l2parity = 1;
1626 static int __init nol2parity(char *s)
1627 {
1628 	l2parity = 0;
1629 	return 1;
1630 }
1631 __setup("nol2par", nol2parity);
1632 
1633 /*
1634  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1635  * it different ways.
1636  */
1637 static inline void parity_protection_init(void)
1638 {
1639 	switch (current_cpu_type()) {
1640 	case CPU_24K:
1641 	case CPU_34K:
1642 	case CPU_74K:
1643 	case CPU_1004K:
1644 	case CPU_1074K:
1645 	case CPU_INTERAPTIV:
1646 	case CPU_PROAPTIV:
1647 	case CPU_P5600:
1648 	case CPU_QEMU_GENERIC:
1649 	case CPU_I6400:
1650 		{
1651 #define ERRCTL_PE	0x80000000
1652 #define ERRCTL_L2P	0x00800000
1653 			unsigned long errctl;
1654 			unsigned int l1parity_present, l2parity_present;
1655 
1656 			errctl = read_c0_ecc();
1657 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1658 
1659 			/* probe L1 parity support */
1660 			write_c0_ecc(errctl | ERRCTL_PE);
1661 			back_to_back_c0_hazard();
1662 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1663 
1664 			/* probe L2 parity support */
1665 			write_c0_ecc(errctl|ERRCTL_L2P);
1666 			back_to_back_c0_hazard();
1667 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1668 
1669 			if (l1parity_present && l2parity_present) {
1670 				if (l1parity)
1671 					errctl |= ERRCTL_PE;
1672 				if (l1parity ^ l2parity)
1673 					errctl |= ERRCTL_L2P;
1674 			} else if (l1parity_present) {
1675 				if (l1parity)
1676 					errctl |= ERRCTL_PE;
1677 			} else if (l2parity_present) {
1678 				if (l2parity)
1679 					errctl |= ERRCTL_L2P;
1680 			} else {
1681 				/* No parity available */
1682 			}
1683 
1684 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1685 
1686 			write_c0_ecc(errctl);
1687 			back_to_back_c0_hazard();
1688 			errctl = read_c0_ecc();
1689 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1690 
1691 			if (l1parity_present)
1692 				printk(KERN_INFO "Cache parity protection %sabled\n",
1693 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1694 
1695 			if (l2parity_present) {
1696 				if (l1parity_present && l1parity)
1697 					errctl ^= ERRCTL_L2P;
1698 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1699 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1700 			}
1701 		}
1702 		break;
1703 
1704 	case CPU_5KC:
1705 	case CPU_5KE:
1706 	case CPU_LOONGSON1:
1707 		write_c0_ecc(0x80000000);
1708 		back_to_back_c0_hazard();
1709 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1710 		printk(KERN_INFO "Cache parity protection %sabled\n",
1711 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1712 		break;
1713 	case CPU_20KC:
1714 	case CPU_25KF:
1715 		/* Clear the DE bit (bit 16) in the c0_status register. */
1716 		printk(KERN_INFO "Enable cache parity protection for "
1717 		       "MIPS 20KC/25KF CPUs.\n");
1718 		clear_c0_status(ST0_DE);
1719 		break;
1720 	default:
1721 		break;
1722 	}
1723 }
1724 
1725 asmlinkage void cache_parity_error(void)
1726 {
1727 	const int field = 2 * sizeof(unsigned long);
1728 	unsigned int reg_val;
1729 
1730 	/* For the moment, report the problem and hang. */
1731 	printk("Cache error exception:\n");
1732 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1733 	reg_val = read_c0_cacheerr();
1734 	printk("c0_cacheerr == %08x\n", reg_val);
1735 
1736 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1737 	       reg_val & (1<<30) ? "secondary" : "primary",
1738 	       reg_val & (1<<31) ? "data" : "insn");
1739 	if ((cpu_has_mips_r2_r6) &&
1740 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1741 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1742 			reg_val & (1<<29) ? "ED " : "",
1743 			reg_val & (1<<28) ? "ET " : "",
1744 			reg_val & (1<<27) ? "ES " : "",
1745 			reg_val & (1<<26) ? "EE " : "",
1746 			reg_val & (1<<25) ? "EB " : "",
1747 			reg_val & (1<<24) ? "EI " : "",
1748 			reg_val & (1<<23) ? "E1 " : "",
1749 			reg_val & (1<<22) ? "E0 " : "");
1750 	} else {
1751 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1752 			reg_val & (1<<29) ? "ED " : "",
1753 			reg_val & (1<<28) ? "ET " : "",
1754 			reg_val & (1<<26) ? "EE " : "",
1755 			reg_val & (1<<25) ? "EB " : "",
1756 			reg_val & (1<<24) ? "EI " : "",
1757 			reg_val & (1<<23) ? "E1 " : "",
1758 			reg_val & (1<<22) ? "E0 " : "");
1759 	}
1760 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1761 
1762 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1763 	if (reg_val & (1<<22))
1764 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1765 
1766 	if (reg_val & (1<<23))
1767 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1768 #endif
1769 
1770 	panic("Can't handle the cache error!");
1771 }
1772 
1773 asmlinkage void do_ftlb(void)
1774 {
1775 	const int field = 2 * sizeof(unsigned long);
1776 	unsigned int reg_val;
1777 
1778 	/* For the moment, report the problem and hang. */
1779 	if ((cpu_has_mips_r2_r6) &&
1780 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1781 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1782 		       read_c0_ecc());
1783 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1784 		reg_val = read_c0_cacheerr();
1785 		pr_err("c0_cacheerr == %08x\n", reg_val);
1786 
1787 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1788 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1789 		} else {
1790 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1791 			       reg_val & (1<<30) ? "secondary" : "primary",
1792 			       reg_val & (1<<31) ? "data" : "insn");
1793 		}
1794 	} else {
1795 		pr_err("FTLB error exception\n");
1796 	}
1797 	/* Just print the cacheerr bits for now */
1798 	cache_parity_error();
1799 }
1800 
1801 /*
1802  * SDBBP EJTAG debug exception handler.
1803  * We skip the instruction and return to the next instruction.
1804  */
1805 void ejtag_exception_handler(struct pt_regs *regs)
1806 {
1807 	const int field = 2 * sizeof(unsigned long);
1808 	unsigned long depc, old_epc, old_ra;
1809 	unsigned int debug;
1810 
1811 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1812 	depc = read_c0_depc();
1813 	debug = read_c0_debug();
1814 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1815 	if (debug & 0x80000000) {
1816 		/*
1817 		 * In branch delay slot.
1818 		 * We cheat a little bit here and use EPC to calculate the
1819 		 * debug return address (DEPC). EPC is restored after the
1820 		 * calculation.
1821 		 */
1822 		old_epc = regs->cp0_epc;
1823 		old_ra = regs->regs[31];
1824 		regs->cp0_epc = depc;
1825 		compute_return_epc(regs);
1826 		depc = regs->cp0_epc;
1827 		regs->cp0_epc = old_epc;
1828 		regs->regs[31] = old_ra;
1829 	} else
1830 		depc += 4;
1831 	write_c0_depc(depc);
1832 
1833 #if 0
1834 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1835 	write_c0_debug(debug | 0x100);
1836 #endif
1837 }
1838 
1839 /*
1840  * NMI exception handler.
1841  * No lock; only written during early bootup by CPU 0.
1842  */
1843 static RAW_NOTIFIER_HEAD(nmi_chain);
1844 
1845 int register_nmi_notifier(struct notifier_block *nb)
1846 {
1847 	return raw_notifier_chain_register(&nmi_chain, nb);
1848 }
1849 
1850 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1851 {
1852 	char str[100];
1853 
1854 	nmi_enter();
1855 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1856 	bust_spinlocks(1);
1857 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1858 		 smp_processor_id(), regs->cp0_epc);
1859 	regs->cp0_epc = read_c0_errorepc();
1860 	die(str, regs);
1861 	nmi_exit();
1862 }
1863 
1864 #define VECTORSPACING 0x100	/* for EI/VI mode */
1865 
1866 unsigned long ebase;
1867 unsigned long exception_handlers[32];
1868 unsigned long vi_handlers[64];
1869 
1870 void __init *set_except_vector(int n, void *addr)
1871 {
1872 	unsigned long handler = (unsigned long) addr;
1873 	unsigned long old_handler;
1874 
1875 #ifdef CONFIG_CPU_MICROMIPS
1876 	/*
1877 	 * Only the TLB handlers are cache aligned with an even
1878 	 * address. All other handlers are on an odd address and
1879 	 * require no modification. Otherwise, MIPS32 mode will
1880 	 * be entered when handling any TLB exceptions. That
1881 	 * would be bad...since we must stay in microMIPS mode.
1882 	 */
1883 	if (!(handler & 0x1))
1884 		handler |= 1;
1885 #endif
1886 	old_handler = xchg(&exception_handlers[n], handler);
1887 
1888 	if (n == 0 && cpu_has_divec) {
1889 #ifdef CONFIG_CPU_MICROMIPS
1890 		unsigned long jump_mask = ~((1 << 27) - 1);
1891 #else
1892 		unsigned long jump_mask = ~((1 << 28) - 1);
1893 #endif
1894 		u32 *buf = (u32 *)(ebase + 0x200);
1895 		unsigned int k0 = 26;
1896 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1897 			uasm_i_j(&buf, handler & ~jump_mask);
1898 			uasm_i_nop(&buf);
1899 		} else {
1900 			UASM_i_LA(&buf, k0, handler);
1901 			uasm_i_jr(&buf, k0);
1902 			uasm_i_nop(&buf);
1903 		}
1904 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1905 	}
1906 	return (void *)old_handler;
1907 }
1908 
1909 static void do_default_vi(void)
1910 {
1911 	show_regs(get_irq_regs());
1912 	panic("Caught unexpected vectored interrupt.");
1913 }
1914 
1915 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1916 {
1917 	unsigned long handler;
1918 	unsigned long old_handler = vi_handlers[n];
1919 	int srssets = current_cpu_data.srsets;
1920 	u16 *h;
1921 	unsigned char *b;
1922 
1923 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1924 
1925 	if (addr == NULL) {
1926 		handler = (unsigned long) do_default_vi;
1927 		srs = 0;
1928 	} else
1929 		handler = (unsigned long) addr;
1930 	vi_handlers[n] = handler;
1931 
1932 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1933 
1934 	if (srs >= srssets)
1935 		panic("Shadow register set %d not supported", srs);
1936 
1937 	if (cpu_has_veic) {
1938 		if (board_bind_eic_interrupt)
1939 			board_bind_eic_interrupt(n, srs);
1940 	} else if (cpu_has_vint) {
1941 		/* SRSMap is only defined if shadow sets are implemented */
1942 		if (srssets > 1)
1943 			change_c0_srsmap(0xf << n*4, srs << n*4);
1944 	}
1945 
1946 	if (srs == 0) {
1947 		/*
1948 		 * If no shadow set is selected then use the default handler
1949 		 * that does normal register saving and standard interrupt exit
1950 		 */
1951 		extern char except_vec_vi, except_vec_vi_lui;
1952 		extern char except_vec_vi_ori, except_vec_vi_end;
1953 		extern char rollback_except_vec_vi;
1954 		char *vec_start = using_rollback_handler() ?
1955 			&rollback_except_vec_vi : &except_vec_vi;
1956 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1957 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1958 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1959 #else
1960 		const int lui_offset = &except_vec_vi_lui - vec_start;
1961 		const int ori_offset = &except_vec_vi_ori - vec_start;
1962 #endif
1963 		const int handler_len = &except_vec_vi_end - vec_start;
1964 
1965 		if (handler_len > VECTORSPACING) {
1966 			/*
1967 			 * Sigh... panicing won't help as the console
1968 			 * is probably not configured :(
1969 			 */
1970 			panic("VECTORSPACING too small");
1971 		}
1972 
1973 		set_handler(((unsigned long)b - ebase), vec_start,
1974 #ifdef CONFIG_CPU_MICROMIPS
1975 				(handler_len - 1));
1976 #else
1977 				handler_len);
1978 #endif
1979 		h = (u16 *)(b + lui_offset);
1980 		*h = (handler >> 16) & 0xffff;
1981 		h = (u16 *)(b + ori_offset);
1982 		*h = (handler & 0xffff);
1983 		local_flush_icache_range((unsigned long)b,
1984 					 (unsigned long)(b+handler_len));
1985 	}
1986 	else {
1987 		/*
1988 		 * In other cases jump directly to the interrupt handler. It
1989 		 * is the handler's responsibility to save registers if required
1990 		 * (eg hi/lo) and return from the exception using "eret".
1991 		 */
1992 		u32 insn;
1993 
1994 		h = (u16 *)b;
1995 		/* j handler */
1996 #ifdef CONFIG_CPU_MICROMIPS
1997 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1998 #else
1999 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2000 #endif
2001 		h[0] = (insn >> 16) & 0xffff;
2002 		h[1] = insn & 0xffff;
2003 		h[2] = 0;
2004 		h[3] = 0;
2005 		local_flush_icache_range((unsigned long)b,
2006 					 (unsigned long)(b+8));
2007 	}
2008 
2009 	return (void *)old_handler;
2010 }
2011 
2012 void *set_vi_handler(int n, vi_handler_t addr)
2013 {
2014 	return set_vi_srs_handler(n, addr, 0);
2015 }
2016 
2017 extern void tlb_init(void);
2018 
2019 /*
2020  * Timer interrupt
2021  */
2022 int cp0_compare_irq;
2023 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2024 int cp0_compare_irq_shift;
2025 
2026 /*
2027  * Performance counter IRQ or -1 if shared with timer
2028  */
2029 int cp0_perfcount_irq;
2030 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2031 
2032 /*
2033  * Fast debug channel IRQ or -1 if not present
2034  */
2035 int cp0_fdc_irq;
2036 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2037 
2038 static int noulri;
2039 
2040 static int __init ulri_disable(char *s)
2041 {
2042 	pr_info("Disabling ulri\n");
2043 	noulri = 1;
2044 
2045 	return 1;
2046 }
2047 __setup("noulri", ulri_disable);
2048 
2049 /* configure STATUS register */
2050 static void configure_status(void)
2051 {
2052 	/*
2053 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2054 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2055 	 * flag that some firmware may have left set and the TS bit (for
2056 	 * IP27).  Set XX for ISA IV code to work.
2057 	 */
2058 	unsigned int status_set = ST0_CU0;
2059 #ifdef CONFIG_64BIT
2060 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2061 #endif
2062 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2063 		status_set |= ST0_XX;
2064 	if (cpu_has_dsp)
2065 		status_set |= ST0_MX;
2066 
2067 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2068 			 status_set);
2069 }
2070 
2071 /* configure HWRENA register */
2072 static void configure_hwrena(void)
2073 {
2074 	unsigned int hwrena = cpu_hwrena_impl_bits;
2075 
2076 	if (cpu_has_mips_r2_r6)
2077 		hwrena |= 0x0000000f;
2078 
2079 	if (!noulri && cpu_has_userlocal)
2080 		hwrena |= (1 << 29);
2081 
2082 	if (hwrena)
2083 		write_c0_hwrena(hwrena);
2084 }
2085 
2086 static void configure_exception_vector(void)
2087 {
2088 	if (cpu_has_veic || cpu_has_vint) {
2089 		unsigned long sr = set_c0_status(ST0_BEV);
2090 		write_c0_ebase(ebase);
2091 		write_c0_status(sr);
2092 		/* Setting vector spacing enables EI/VI mode  */
2093 		change_c0_intctl(0x3e0, VECTORSPACING);
2094 	}
2095 	if (cpu_has_divec) {
2096 		if (cpu_has_mipsmt) {
2097 			unsigned int vpflags = dvpe();
2098 			set_c0_cause(CAUSEF_IV);
2099 			evpe(vpflags);
2100 		} else
2101 			set_c0_cause(CAUSEF_IV);
2102 	}
2103 }
2104 
2105 void per_cpu_trap_init(bool is_boot_cpu)
2106 {
2107 	unsigned int cpu = smp_processor_id();
2108 
2109 	configure_status();
2110 	configure_hwrena();
2111 
2112 	configure_exception_vector();
2113 
2114 	/*
2115 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2116 	 *
2117 	 *  o read IntCtl.IPTI to determine the timer interrupt
2118 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2119 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2120 	 */
2121 	if (cpu_has_mips_r2_r6) {
2122 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2123 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2124 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2125 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2126 		if (!cp0_fdc_irq)
2127 			cp0_fdc_irq = -1;
2128 
2129 	} else {
2130 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2131 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2132 		cp0_perfcount_irq = -1;
2133 		cp0_fdc_irq = -1;
2134 	}
2135 
2136 	if (!cpu_data[cpu].asid_cache)
2137 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2138 
2139 	atomic_inc(&init_mm.mm_count);
2140 	current->active_mm = &init_mm;
2141 	BUG_ON(current->mm);
2142 	enter_lazy_tlb(&init_mm, current);
2143 
2144 	/* Boot CPU's cache setup in setup_arch(). */
2145 	if (!is_boot_cpu)
2146 		cpu_cache_init();
2147 	tlb_init();
2148 	TLBMISS_HANDLER_SETUP();
2149 }
2150 
2151 /* Install CPU exception handler */
2152 void set_handler(unsigned long offset, void *addr, unsigned long size)
2153 {
2154 #ifdef CONFIG_CPU_MICROMIPS
2155 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2156 #else
2157 	memcpy((void *)(ebase + offset), addr, size);
2158 #endif
2159 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2160 }
2161 
2162 static char panic_null_cerr[] =
2163 	"Trying to set NULL cache error exception handler";
2164 
2165 /*
2166  * Install uncached CPU exception handler.
2167  * This is suitable only for the cache error exception which is the only
2168  * exception handler that is being run uncached.
2169  */
2170 void set_uncached_handler(unsigned long offset, void *addr,
2171 	unsigned long size)
2172 {
2173 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2174 
2175 	if (!addr)
2176 		panic(panic_null_cerr);
2177 
2178 	memcpy((void *)(uncached_ebase + offset), addr, size);
2179 }
2180 
2181 static int __initdata rdhwr_noopt;
2182 static int __init set_rdhwr_noopt(char *str)
2183 {
2184 	rdhwr_noopt = 1;
2185 	return 1;
2186 }
2187 
2188 __setup("rdhwr_noopt", set_rdhwr_noopt);
2189 
2190 void __init trap_init(void)
2191 {
2192 	extern char except_vec3_generic;
2193 	extern char except_vec4;
2194 	extern char except_vec3_r4000;
2195 	unsigned long i;
2196 
2197 	check_wait();
2198 
2199 	if (cpu_has_veic || cpu_has_vint) {
2200 		unsigned long size = 0x200 + VECTORSPACING*64;
2201 		ebase = (unsigned long)
2202 			__alloc_bootmem(size, 1 << fls(size), 0);
2203 	} else {
2204 		ebase = CAC_BASE;
2205 
2206 		if (cpu_has_mips_r2_r6)
2207 			ebase += (read_c0_ebase() & 0x3ffff000);
2208 	}
2209 
2210 	if (cpu_has_mmips) {
2211 		unsigned int config3 = read_c0_config3();
2212 
2213 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2214 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2215 		else
2216 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2217 	}
2218 
2219 	if (board_ebase_setup)
2220 		board_ebase_setup();
2221 	per_cpu_trap_init(true);
2222 
2223 	/*
2224 	 * Copy the generic exception handlers to their final destination.
2225 	 * This will be overridden later as suitable for a particular
2226 	 * configuration.
2227 	 */
2228 	set_handler(0x180, &except_vec3_generic, 0x80);
2229 
2230 	/*
2231 	 * Setup default vectors
2232 	 */
2233 	for (i = 0; i <= 31; i++)
2234 		set_except_vector(i, handle_reserved);
2235 
2236 	/*
2237 	 * Copy the EJTAG debug exception vector handler code to it's final
2238 	 * destination.
2239 	 */
2240 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2241 		board_ejtag_handler_setup();
2242 
2243 	/*
2244 	 * Only some CPUs have the watch exceptions.
2245 	 */
2246 	if (cpu_has_watch)
2247 		set_except_vector(EXCCODE_WATCH, handle_watch);
2248 
2249 	/*
2250 	 * Initialise interrupt handlers
2251 	 */
2252 	if (cpu_has_veic || cpu_has_vint) {
2253 		int nvec = cpu_has_veic ? 64 : 8;
2254 		for (i = 0; i < nvec; i++)
2255 			set_vi_handler(i, NULL);
2256 	}
2257 	else if (cpu_has_divec)
2258 		set_handler(0x200, &except_vec4, 0x8);
2259 
2260 	/*
2261 	 * Some CPUs can enable/disable for cache parity detection, but does
2262 	 * it different ways.
2263 	 */
2264 	parity_protection_init();
2265 
2266 	/*
2267 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2268 	 * by external hardware.  Therefore these two exceptions
2269 	 * may have board specific handlers.
2270 	 */
2271 	if (board_be_init)
2272 		board_be_init();
2273 
2274 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2275 					rollback_handle_int : handle_int);
2276 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2277 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2278 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2279 
2280 	set_except_vector(EXCCODE_ADEL, handle_adel);
2281 	set_except_vector(EXCCODE_ADES, handle_ades);
2282 
2283 	set_except_vector(EXCCODE_IBE, handle_ibe);
2284 	set_except_vector(EXCCODE_DBE, handle_dbe);
2285 
2286 	set_except_vector(EXCCODE_SYS, handle_sys);
2287 	set_except_vector(EXCCODE_BP, handle_bp);
2288 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2289 			  (cpu_has_vtag_icache ?
2290 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2291 	set_except_vector(EXCCODE_CPU, handle_cpu);
2292 	set_except_vector(EXCCODE_OV, handle_ov);
2293 	set_except_vector(EXCCODE_TR, handle_tr);
2294 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2295 
2296 	if (current_cpu_type() == CPU_R6000 ||
2297 	    current_cpu_type() == CPU_R6000A) {
2298 		/*
2299 		 * The R6000 is the only R-series CPU that features a machine
2300 		 * check exception (similar to the R4000 cache error) and
2301 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2302 		 * written yet.	 Well, anyway there is no R6000 machine on the
2303 		 * current list of targets for Linux/MIPS.
2304 		 * (Duh, crap, there is someone with a triple R6k machine)
2305 		 */
2306 		//set_except_vector(14, handle_mc);
2307 		//set_except_vector(15, handle_ndc);
2308 	}
2309 
2310 
2311 	if (board_nmi_handler_setup)
2312 		board_nmi_handler_setup();
2313 
2314 	if (cpu_has_fpu && !cpu_has_nofpuex)
2315 		set_except_vector(EXCCODE_FPE, handle_fpe);
2316 
2317 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2318 
2319 	if (cpu_has_rixiex) {
2320 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2321 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2322 	}
2323 
2324 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2325 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2326 
2327 	if (cpu_has_mcheck)
2328 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2329 
2330 	if (cpu_has_mipsmt)
2331 		set_except_vector(EXCCODE_THREAD, handle_mt);
2332 
2333 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2334 
2335 	if (board_cache_error_setup)
2336 		board_cache_error_setup();
2337 
2338 	if (cpu_has_vce)
2339 		/* Special exception: R4[04]00 uses also the divec space. */
2340 		set_handler(0x180, &except_vec3_r4000, 0x100);
2341 	else if (cpu_has_4kex)
2342 		set_handler(0x180, &except_vec3_generic, 0x80);
2343 	else
2344 		set_handler(0x080, &except_vec3_generic, 0x80);
2345 
2346 	local_flush_icache_range(ebase, ebase + 0x400);
2347 
2348 	sort_extable(__start___dbe_table, __stop___dbe_table);
2349 
2350 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2351 }
2352 
2353 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2354 			    void *v)
2355 {
2356 	switch (cmd) {
2357 	case CPU_PM_ENTER_FAILED:
2358 	case CPU_PM_EXIT:
2359 		configure_status();
2360 		configure_hwrena();
2361 		configure_exception_vector();
2362 
2363 		/* Restore register with CPU number for TLB handlers */
2364 		TLBMISS_HANDLER_RESTORE();
2365 
2366 		break;
2367 	}
2368 
2369 	return NOTIFY_OK;
2370 }
2371 
2372 static struct notifier_block trap_pm_notifier_block = {
2373 	.notifier_call = trap_pm_notifier,
2374 };
2375 
2376 static int __init trap_pm_init(void)
2377 {
2378 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2379 }
2380 arch_initcall(trap_pm_init);
2381