xref: /linux/arch/mips/kernel/traps.c (revision 10accd2e6890b57db8e717e9aee91b791f90fe14)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
44 #include <asm/cop2.h>
45 #include <asm/cpu.h>
46 #include <asm/cpu-type.h>
47 #include <asm/dsp.h>
48 #include <asm/fpu.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/idle.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
55 #include <asm/msa.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/siginfo.h>
60 #include <asm/tlbdebug.h>
61 #include <asm/traps.h>
62 #include <asm/uaccess.h>
63 #include <asm/watch.h>
64 #include <asm/mmu_context.h>
65 #include <asm/types.h>
66 #include <asm/stacktrace.h>
67 #include <asm/uasm.h>
68 
69 extern void check_wait(void);
70 extern asmlinkage void rollback_handle_int(void);
71 extern asmlinkage void handle_int(void);
72 extern u32 handle_tlbl[];
73 extern u32 handle_tlbs[];
74 extern u32 handle_tlbm[];
75 extern asmlinkage void handle_adel(void);
76 extern asmlinkage void handle_ades(void);
77 extern asmlinkage void handle_ibe(void);
78 extern asmlinkage void handle_dbe(void);
79 extern asmlinkage void handle_sys(void);
80 extern asmlinkage void handle_bp(void);
81 extern asmlinkage void handle_ri(void);
82 extern asmlinkage void handle_ri_rdhwr_vivt(void);
83 extern asmlinkage void handle_ri_rdhwr(void);
84 extern asmlinkage void handle_cpu(void);
85 extern asmlinkage void handle_ov(void);
86 extern asmlinkage void handle_tr(void);
87 extern asmlinkage void handle_msa_fpe(void);
88 extern asmlinkage void handle_fpe(void);
89 extern asmlinkage void handle_ftlb(void);
90 extern asmlinkage void handle_msa(void);
91 extern asmlinkage void handle_mdmx(void);
92 extern asmlinkage void handle_watch(void);
93 extern asmlinkage void handle_mt(void);
94 extern asmlinkage void handle_dsp(void);
95 extern asmlinkage void handle_mcheck(void);
96 extern asmlinkage void handle_reserved(void);
97 extern void tlb_do_page_fault_0(void);
98 
99 void (*board_be_init)(void);
100 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
101 void (*board_nmi_handler_setup)(void);
102 void (*board_ejtag_handler_setup)(void);
103 void (*board_bind_eic_interrupt)(int irq, int regset);
104 void (*board_ebase_setup)(void);
105 void(*board_cache_error_setup)(void);
106 
107 static void show_raw_backtrace(unsigned long reg29)
108 {
109 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
110 	unsigned long addr;
111 
112 	printk("Call Trace:");
113 #ifdef CONFIG_KALLSYMS
114 	printk("\n");
115 #endif
116 	while (!kstack_end(sp)) {
117 		unsigned long __user *p =
118 			(unsigned long __user *)(unsigned long)sp++;
119 		if (__get_user(addr, p)) {
120 			printk(" (Bad stack address)");
121 			break;
122 		}
123 		if (__kernel_text_address(addr))
124 			print_ip_sym(addr);
125 	}
126 	printk("\n");
127 }
128 
129 #ifdef CONFIG_KALLSYMS
130 int raw_show_trace;
131 static int __init set_raw_show_trace(char *str)
132 {
133 	raw_show_trace = 1;
134 	return 1;
135 }
136 __setup("raw_show_trace", set_raw_show_trace);
137 #endif
138 
139 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
140 {
141 	unsigned long sp = regs->regs[29];
142 	unsigned long ra = regs->regs[31];
143 	unsigned long pc = regs->cp0_epc;
144 
145 	if (!task)
146 		task = current;
147 
148 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
149 		show_raw_backtrace(sp);
150 		return;
151 	}
152 	printk("Call Trace:\n");
153 	do {
154 		print_ip_sym(pc);
155 		pc = unwind_stack(task, &sp, pc, &ra);
156 	} while (pc);
157 	printk("\n");
158 }
159 
160 /*
161  * This routine abuses get_user()/put_user() to reference pointers
162  * with at least a bit of error checking ...
163  */
164 static void show_stacktrace(struct task_struct *task,
165 	const struct pt_regs *regs)
166 {
167 	const int field = 2 * sizeof(unsigned long);
168 	long stackdata;
169 	int i;
170 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
171 
172 	printk("Stack :");
173 	i = 0;
174 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
175 		if (i && ((i % (64 / field)) == 0))
176 			printk("\n	 ");
177 		if (i > 39) {
178 			printk(" ...");
179 			break;
180 		}
181 
182 		if (__get_user(stackdata, sp++)) {
183 			printk(" (Bad stack address)");
184 			break;
185 		}
186 
187 		printk(" %0*lx", field, stackdata);
188 		i++;
189 	}
190 	printk("\n");
191 	show_backtrace(task, regs);
192 }
193 
194 void show_stack(struct task_struct *task, unsigned long *sp)
195 {
196 	struct pt_regs regs;
197 	mm_segment_t old_fs = get_fs();
198 	if (sp) {
199 		regs.regs[29] = (unsigned long)sp;
200 		regs.regs[31] = 0;
201 		regs.cp0_epc = 0;
202 	} else {
203 		if (task && task != current) {
204 			regs.regs[29] = task->thread.reg29;
205 			regs.regs[31] = 0;
206 			regs.cp0_epc = task->thread.reg31;
207 #ifdef CONFIG_KGDB_KDB
208 		} else if (atomic_read(&kgdb_active) != -1 &&
209 			   kdb_current_regs) {
210 			memcpy(&regs, kdb_current_regs, sizeof(regs));
211 #endif /* CONFIG_KGDB_KDB */
212 		} else {
213 			prepare_frametrace(&regs);
214 		}
215 	}
216 	/*
217 	 * show_stack() deals exclusively with kernel mode, so be sure to access
218 	 * the stack in the kernel (not user) address space.
219 	 */
220 	set_fs(KERNEL_DS);
221 	show_stacktrace(task, &regs);
222 	set_fs(old_fs);
223 }
224 
225 static void show_code(unsigned int __user *pc)
226 {
227 	long i;
228 	unsigned short __user *pc16 = NULL;
229 
230 	printk("\nCode:");
231 
232 	if ((unsigned long)pc & 1)
233 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
234 	for(i = -3 ; i < 6 ; i++) {
235 		unsigned int insn;
236 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
237 			printk(" (Bad address in epc)\n");
238 			break;
239 		}
240 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
241 	}
242 }
243 
244 static void __show_regs(const struct pt_regs *regs)
245 {
246 	const int field = 2 * sizeof(unsigned long);
247 	unsigned int cause = regs->cp0_cause;
248 	unsigned int exccode;
249 	int i;
250 
251 	show_regs_print_info(KERN_DEFAULT);
252 
253 	/*
254 	 * Saved main processor registers
255 	 */
256 	for (i = 0; i < 32; ) {
257 		if ((i % 4) == 0)
258 			printk("$%2d   :", i);
259 		if (i == 0)
260 			printk(" %0*lx", field, 0UL);
261 		else if (i == 26 || i == 27)
262 			printk(" %*s", field, "");
263 		else
264 			printk(" %0*lx", field, regs->regs[i]);
265 
266 		i++;
267 		if ((i % 4) == 0)
268 			printk("\n");
269 	}
270 
271 #ifdef CONFIG_CPU_HAS_SMARTMIPS
272 	printk("Acx    : %0*lx\n", field, regs->acx);
273 #endif
274 	printk("Hi    : %0*lx\n", field, regs->hi);
275 	printk("Lo    : %0*lx\n", field, regs->lo);
276 
277 	/*
278 	 * Saved cp0 registers
279 	 */
280 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
281 	       (void *) regs->cp0_epc);
282 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
283 	       (void *) regs->regs[31]);
284 
285 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
286 
287 	if (cpu_has_3kex) {
288 		if (regs->cp0_status & ST0_KUO)
289 			printk("KUo ");
290 		if (regs->cp0_status & ST0_IEO)
291 			printk("IEo ");
292 		if (regs->cp0_status & ST0_KUP)
293 			printk("KUp ");
294 		if (regs->cp0_status & ST0_IEP)
295 			printk("IEp ");
296 		if (regs->cp0_status & ST0_KUC)
297 			printk("KUc ");
298 		if (regs->cp0_status & ST0_IEC)
299 			printk("IEc ");
300 	} else if (cpu_has_4kex) {
301 		if (regs->cp0_status & ST0_KX)
302 			printk("KX ");
303 		if (regs->cp0_status & ST0_SX)
304 			printk("SX ");
305 		if (regs->cp0_status & ST0_UX)
306 			printk("UX ");
307 		switch (regs->cp0_status & ST0_KSU) {
308 		case KSU_USER:
309 			printk("USER ");
310 			break;
311 		case KSU_SUPERVISOR:
312 			printk("SUPERVISOR ");
313 			break;
314 		case KSU_KERNEL:
315 			printk("KERNEL ");
316 			break;
317 		default:
318 			printk("BAD_MODE ");
319 			break;
320 		}
321 		if (regs->cp0_status & ST0_ERL)
322 			printk("ERL ");
323 		if (regs->cp0_status & ST0_EXL)
324 			printk("EXL ");
325 		if (regs->cp0_status & ST0_IE)
326 			printk("IE ");
327 	}
328 	printk("\n");
329 
330 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
331 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
332 
333 	if (1 <= exccode && exccode <= 5)
334 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
335 
336 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
337 	       cpu_name_string());
338 }
339 
340 /*
341  * FIXME: really the generic show_regs should take a const pointer argument.
342  */
343 void show_regs(struct pt_regs *regs)
344 {
345 	__show_regs((struct pt_regs *)regs);
346 }
347 
348 void show_registers(struct pt_regs *regs)
349 {
350 	const int field = 2 * sizeof(unsigned long);
351 	mm_segment_t old_fs = get_fs();
352 
353 	__show_regs(regs);
354 	print_modules();
355 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
356 	       current->comm, current->pid, current_thread_info(), current,
357 	      field, current_thread_info()->tp_value);
358 	if (cpu_has_userlocal) {
359 		unsigned long tls;
360 
361 		tls = read_c0_userlocal();
362 		if (tls != current_thread_info()->tp_value)
363 			printk("*HwTLS: %0*lx\n", field, tls);
364 	}
365 
366 	if (!user_mode(regs))
367 		/* Necessary for getting the correct stack content */
368 		set_fs(KERNEL_DS);
369 	show_stacktrace(current, regs);
370 	show_code((unsigned int __user *) regs->cp0_epc);
371 	printk("\n");
372 	set_fs(old_fs);
373 }
374 
375 static DEFINE_RAW_SPINLOCK(die_lock);
376 
377 void __noreturn die(const char *str, struct pt_regs *regs)
378 {
379 	static int die_counter;
380 	int sig = SIGSEGV;
381 
382 	oops_enter();
383 
384 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
385 		       SIGSEGV) == NOTIFY_STOP)
386 		sig = 0;
387 
388 	console_verbose();
389 	raw_spin_lock_irq(&die_lock);
390 	bust_spinlocks(1);
391 
392 	printk("%s[#%d]:\n", str, ++die_counter);
393 	show_registers(regs);
394 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
395 	raw_spin_unlock_irq(&die_lock);
396 
397 	oops_exit();
398 
399 	if (in_interrupt())
400 		panic("Fatal exception in interrupt");
401 
402 	if (panic_on_oops)
403 		panic("Fatal exception");
404 
405 	if (regs && kexec_should_crash(current))
406 		crash_kexec(regs);
407 
408 	do_exit(sig);
409 }
410 
411 extern struct exception_table_entry __start___dbe_table[];
412 extern struct exception_table_entry __stop___dbe_table[];
413 
414 __asm__(
415 "	.section	__dbe_table, \"a\"\n"
416 "	.previous			\n");
417 
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420 {
421 	const struct exception_table_entry *e;
422 
423 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 	if (!e)
425 		e = search_module_dbetables(addr);
426 	return e;
427 }
428 
429 asmlinkage void do_be(struct pt_regs *regs)
430 {
431 	const int field = 2 * sizeof(unsigned long);
432 	const struct exception_table_entry *fixup = NULL;
433 	int data = regs->cp0_cause & 4;
434 	int action = MIPS_BE_FATAL;
435 	enum ctx_state prev_state;
436 
437 	prev_state = exception_enter();
438 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
439 	if (data && !user_mode(regs))
440 		fixup = search_dbe_tables(exception_epc(regs));
441 
442 	if (fixup)
443 		action = MIPS_BE_FIXUP;
444 
445 	if (board_be_handler)
446 		action = board_be_handler(regs, fixup != NULL);
447 
448 	switch (action) {
449 	case MIPS_BE_DISCARD:
450 		goto out;
451 	case MIPS_BE_FIXUP:
452 		if (fixup) {
453 			regs->cp0_epc = fixup->nextinsn;
454 			goto out;
455 		}
456 		break;
457 	default:
458 		break;
459 	}
460 
461 	/*
462 	 * Assume it would be too dangerous to continue ...
463 	 */
464 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
465 	       data ? "Data" : "Instruction",
466 	       field, regs->cp0_epc, field, regs->regs[31]);
467 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
468 		       SIGBUS) == NOTIFY_STOP)
469 		goto out;
470 
471 	die_if_kernel("Oops", regs);
472 	force_sig(SIGBUS, current);
473 
474 out:
475 	exception_exit(prev_state);
476 }
477 
478 /*
479  * ll/sc, rdhwr, sync emulation
480  */
481 
482 #define OPCODE 0xfc000000
483 #define BASE   0x03e00000
484 #define RT     0x001f0000
485 #define OFFSET 0x0000ffff
486 #define LL     0xc0000000
487 #define SC     0xe0000000
488 #define SPEC0  0x00000000
489 #define SPEC3  0x7c000000
490 #define RD     0x0000f800
491 #define FUNC   0x0000003f
492 #define SYNC   0x0000000f
493 #define RDHWR  0x0000003b
494 
495 /*  microMIPS definitions   */
496 #define MM_POOL32A_FUNC 0xfc00ffff
497 #define MM_RDHWR        0x00006b3c
498 #define MM_RS           0x001f0000
499 #define MM_RT           0x03e00000
500 
501 /*
502  * The ll_bit is cleared by r*_switch.S
503  */
504 
505 unsigned int ll_bit;
506 struct task_struct *ll_task;
507 
508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
509 {
510 	unsigned long value, __user *vaddr;
511 	long offset;
512 
513 	/*
514 	 * analyse the ll instruction that just caused a ri exception
515 	 * and put the referenced address to addr.
516 	 */
517 
518 	/* sign extend offset */
519 	offset = opcode & OFFSET;
520 	offset <<= 16;
521 	offset >>= 16;
522 
523 	vaddr = (unsigned long __user *)
524 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
525 
526 	if ((unsigned long)vaddr & 3)
527 		return SIGBUS;
528 	if (get_user(value, vaddr))
529 		return SIGSEGV;
530 
531 	preempt_disable();
532 
533 	if (ll_task == NULL || ll_task == current) {
534 		ll_bit = 1;
535 	} else {
536 		ll_bit = 0;
537 	}
538 	ll_task = current;
539 
540 	preempt_enable();
541 
542 	regs->regs[(opcode & RT) >> 16] = value;
543 
544 	return 0;
545 }
546 
547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
548 {
549 	unsigned long __user *vaddr;
550 	unsigned long reg;
551 	long offset;
552 
553 	/*
554 	 * analyse the sc instruction that just caused a ri exception
555 	 * and put the referenced address to addr.
556 	 */
557 
558 	/* sign extend offset */
559 	offset = opcode & OFFSET;
560 	offset <<= 16;
561 	offset >>= 16;
562 
563 	vaddr = (unsigned long __user *)
564 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
565 	reg = (opcode & RT) >> 16;
566 
567 	if ((unsigned long)vaddr & 3)
568 		return SIGBUS;
569 
570 	preempt_disable();
571 
572 	if (ll_bit == 0 || ll_task != current) {
573 		regs->regs[reg] = 0;
574 		preempt_enable();
575 		return 0;
576 	}
577 
578 	preempt_enable();
579 
580 	if (put_user(regs->regs[reg], vaddr))
581 		return SIGSEGV;
582 
583 	regs->regs[reg] = 1;
584 
585 	return 0;
586 }
587 
588 /*
589  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
590  * opcodes are supposed to result in coprocessor unusable exceptions if
591  * executed on ll/sc-less processors.  That's the theory.  In practice a
592  * few processors such as NEC's VR4100 throw reserved instruction exceptions
593  * instead, so we're doing the emulation thing in both exception handlers.
594  */
595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
596 {
597 	if ((opcode & OPCODE) == LL) {
598 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
599 				1, regs, 0);
600 		return simulate_ll(regs, opcode);
601 	}
602 	if ((opcode & OPCODE) == SC) {
603 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
604 				1, regs, 0);
605 		return simulate_sc(regs, opcode);
606 	}
607 
608 	return -1;			/* Must be something else ... */
609 }
610 
611 /*
612  * Simulate trapping 'rdhwr' instructions to provide user accessible
613  * registers not implemented in hardware.
614  */
615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
616 {
617 	struct thread_info *ti = task_thread_info(current);
618 
619 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 			1, regs, 0);
621 	switch (rd) {
622 	case MIPS_HWR_CPUNUM:		/* CPU number */
623 		regs->regs[rt] = smp_processor_id();
624 		return 0;
625 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
626 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 				     current_cpu_data.icache.linesz);
628 		return 0;
629 	case MIPS_HWR_CC:		/* Read count register */
630 		regs->regs[rt] = read_c0_count();
631 		return 0;
632 	case MIPS_HWR_CCRES:		/* Count register resolution */
633 		switch (current_cpu_type()) {
634 		case CPU_20KC:
635 		case CPU_25KF:
636 			regs->regs[rt] = 1;
637 			break;
638 		default:
639 			regs->regs[rt] = 2;
640 		}
641 		return 0;
642 	case MIPS_HWR_ULR:		/* Read UserLocal register */
643 		regs->regs[rt] = ti->tp_value;
644 		return 0;
645 	default:
646 		return -1;
647 	}
648 }
649 
650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
651 {
652 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
653 		int rd = (opcode & RD) >> 11;
654 		int rt = (opcode & RT) >> 16;
655 
656 		simulate_rdhwr(regs, rd, rt);
657 		return 0;
658 	}
659 
660 	/* Not ours.  */
661 	return -1;
662 }
663 
664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
665 {
666 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
667 		int rd = (opcode & MM_RS) >> 16;
668 		int rt = (opcode & MM_RT) >> 21;
669 		simulate_rdhwr(regs, rd, rt);
670 		return 0;
671 	}
672 
673 	/* Not ours.  */
674 	return -1;
675 }
676 
677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
678 {
679 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
680 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
681 				1, regs, 0);
682 		return 0;
683 	}
684 
685 	return -1;			/* Must be something else ... */
686 }
687 
688 asmlinkage void do_ov(struct pt_regs *regs)
689 {
690 	enum ctx_state prev_state;
691 	siginfo_t info = {
692 		.si_signo = SIGFPE,
693 		.si_code = FPE_INTOVF,
694 		.si_addr = (void __user *)regs->cp0_epc,
695 	};
696 
697 	prev_state = exception_enter();
698 	die_if_kernel("Integer overflow", regs);
699 
700 	force_sig_info(SIGFPE, &info, current);
701 	exception_exit(prev_state);
702 }
703 
704 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
705 {
706 	struct siginfo si = { 0 };
707 	struct vm_area_struct *vma;
708 
709 	switch (sig) {
710 	case 0:
711 		return 0;
712 
713 	case SIGFPE:
714 		si.si_addr = fault_addr;
715 		si.si_signo = sig;
716 		/*
717 		 * Inexact can happen together with Overflow or Underflow.
718 		 * Respect the mask to deliver the correct exception.
719 		 */
720 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
721 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
722 		if (fcr31 & FPU_CSR_INV_X)
723 			si.si_code = FPE_FLTINV;
724 		else if (fcr31 & FPU_CSR_DIV_X)
725 			si.si_code = FPE_FLTDIV;
726 		else if (fcr31 & FPU_CSR_OVF_X)
727 			si.si_code = FPE_FLTOVF;
728 		else if (fcr31 & FPU_CSR_UDF_X)
729 			si.si_code = FPE_FLTUND;
730 		else if (fcr31 & FPU_CSR_INE_X)
731 			si.si_code = FPE_FLTRES;
732 		else
733 			si.si_code = __SI_FAULT;
734 		force_sig_info(sig, &si, current);
735 		return 1;
736 
737 	case SIGBUS:
738 		si.si_addr = fault_addr;
739 		si.si_signo = sig;
740 		si.si_code = BUS_ADRERR;
741 		force_sig_info(sig, &si, current);
742 		return 1;
743 
744 	case SIGSEGV:
745 		si.si_addr = fault_addr;
746 		si.si_signo = sig;
747 		down_read(&current->mm->mmap_sem);
748 		vma = find_vma(current->mm, (unsigned long)fault_addr);
749 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
750 			si.si_code = SEGV_ACCERR;
751 		else
752 			si.si_code = SEGV_MAPERR;
753 		up_read(&current->mm->mmap_sem);
754 		force_sig_info(sig, &si, current);
755 		return 1;
756 
757 	default:
758 		force_sig(sig, current);
759 		return 1;
760 	}
761 }
762 
763 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
764 		       unsigned long old_epc, unsigned long old_ra)
765 {
766 	union mips_instruction inst = { .word = opcode };
767 	void __user *fault_addr;
768 	unsigned long fcr31;
769 	int sig;
770 
771 	/* If it's obviously not an FP instruction, skip it */
772 	switch (inst.i_format.opcode) {
773 	case cop1_op:
774 	case cop1x_op:
775 	case lwc1_op:
776 	case ldc1_op:
777 	case swc1_op:
778 	case sdc1_op:
779 		break;
780 
781 	default:
782 		return -1;
783 	}
784 
785 	/*
786 	 * do_ri skipped over the instruction via compute_return_epc, undo
787 	 * that for the FPU emulator.
788 	 */
789 	regs->cp0_epc = old_epc;
790 	regs->regs[31] = old_ra;
791 
792 	/* Save the FP context to struct thread_struct */
793 	lose_fpu(1);
794 
795 	/* Run the emulator */
796 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
797 				       &fault_addr);
798 	fcr31 = current->thread.fpu.fcr31;
799 
800 	/*
801 	 * We can't allow the emulated instruction to leave any of
802 	 * the cause bits set in $fcr31.
803 	 */
804 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
805 
806 	/* Restore the hardware register state */
807 	own_fpu(1);
808 
809 	/* Send a signal if required.  */
810 	process_fpemu_return(sig, fault_addr, fcr31);
811 
812 	return 0;
813 }
814 
815 /*
816  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
817  */
818 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
819 {
820 	enum ctx_state prev_state;
821 	void __user *fault_addr;
822 	int sig;
823 
824 	prev_state = exception_enter();
825 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
826 		       SIGFPE) == NOTIFY_STOP)
827 		goto out;
828 
829 	/* Clear FCSR.Cause before enabling interrupts */
830 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
831 	local_irq_enable();
832 
833 	die_if_kernel("FP exception in kernel code", regs);
834 
835 	if (fcr31 & FPU_CSR_UNI_X) {
836 		/*
837 		 * Unimplemented operation exception.  If we've got the full
838 		 * software emulator on-board, let's use it...
839 		 *
840 		 * Force FPU to dump state into task/thread context.  We're
841 		 * moving a lot of data here for what is probably a single
842 		 * instruction, but the alternative is to pre-decode the FP
843 		 * register operands before invoking the emulator, which seems
844 		 * a bit extreme for what should be an infrequent event.
845 		 */
846 		/* Ensure 'resume' not overwrite saved fp context again. */
847 		lose_fpu(1);
848 
849 		/* Run the emulator */
850 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
851 					       &fault_addr);
852 		fcr31 = current->thread.fpu.fcr31;
853 
854 		/*
855 		 * We can't allow the emulated instruction to leave any of
856 		 * the cause bits set in $fcr31.
857 		 */
858 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
859 
860 		/* Restore the hardware register state */
861 		own_fpu(1);	/* Using the FPU again.	 */
862 	} else {
863 		sig = SIGFPE;
864 		fault_addr = (void __user *) regs->cp0_epc;
865 	}
866 
867 	/* Send a signal if required.  */
868 	process_fpemu_return(sig, fault_addr, fcr31);
869 
870 out:
871 	exception_exit(prev_state);
872 }
873 
874 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
875 	const char *str)
876 {
877 	siginfo_t info = { 0 };
878 	char b[40];
879 
880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
881 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
882 			 SIGTRAP) == NOTIFY_STOP)
883 		return;
884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
885 
886 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
887 		       SIGTRAP) == NOTIFY_STOP)
888 		return;
889 
890 	/*
891 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
892 	 * insns, even for trap and break codes that indicate arithmetic
893 	 * failures.  Weird ...
894 	 * But should we continue the brokenness???  --macro
895 	 */
896 	switch (code) {
897 	case BRK_OVERFLOW:
898 	case BRK_DIVZERO:
899 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
900 		die_if_kernel(b, regs);
901 		if (code == BRK_DIVZERO)
902 			info.si_code = FPE_INTDIV;
903 		else
904 			info.si_code = FPE_INTOVF;
905 		info.si_signo = SIGFPE;
906 		info.si_addr = (void __user *) regs->cp0_epc;
907 		force_sig_info(SIGFPE, &info, current);
908 		break;
909 	case BRK_BUG:
910 		die_if_kernel("Kernel bug detected", regs);
911 		force_sig(SIGTRAP, current);
912 		break;
913 	case BRK_MEMU:
914 		/*
915 		 * This breakpoint code is used by the FPU emulator to retake
916 		 * control of the CPU after executing the instruction from the
917 		 * delay slot of an emulated branch.
918 		 *
919 		 * Terminate if exception was recognized as a delay slot return
920 		 * otherwise handle as normal.
921 		 */
922 		if (do_dsemulret(regs))
923 			return;
924 
925 		die_if_kernel("Math emu break/trap", regs);
926 		force_sig(SIGTRAP, current);
927 		break;
928 	default:
929 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
930 		die_if_kernel(b, regs);
931 		if (si_code) {
932 			info.si_signo = SIGTRAP;
933 			info.si_code = si_code;
934 			force_sig_info(SIGTRAP, &info, current);
935 		} else {
936 			force_sig(SIGTRAP, current);
937 		}
938 	}
939 }
940 
941 asmlinkage void do_bp(struct pt_regs *regs)
942 {
943 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
944 	unsigned int opcode, bcode;
945 	enum ctx_state prev_state;
946 	mm_segment_t seg;
947 
948 	seg = get_fs();
949 	if (!user_mode(regs))
950 		set_fs(KERNEL_DS);
951 
952 	prev_state = exception_enter();
953 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
954 	if (get_isa16_mode(regs->cp0_epc)) {
955 		u16 instr[2];
956 
957 		if (__get_user(instr[0], (u16 __user *)epc))
958 			goto out_sigsegv;
959 
960 		if (!cpu_has_mmips) {
961 			/* MIPS16e mode */
962 			bcode = (instr[0] >> 5) & 0x3f;
963 		} else if (mm_insn_16bit(instr[0])) {
964 			/* 16-bit microMIPS BREAK */
965 			bcode = instr[0] & 0xf;
966 		} else {
967 			/* 32-bit microMIPS BREAK */
968 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
969 				goto out_sigsegv;
970 			opcode = (instr[0] << 16) | instr[1];
971 			bcode = (opcode >> 6) & ((1 << 20) - 1);
972 		}
973 	} else {
974 		if (__get_user(opcode, (unsigned int __user *)epc))
975 			goto out_sigsegv;
976 		bcode = (opcode >> 6) & ((1 << 20) - 1);
977 	}
978 
979 	/*
980 	 * There is the ancient bug in the MIPS assemblers that the break
981 	 * code starts left to bit 16 instead to bit 6 in the opcode.
982 	 * Gas is bug-compatible, but not always, grrr...
983 	 * We handle both cases with a simple heuristics.  --macro
984 	 */
985 	if (bcode >= (1 << 10))
986 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
987 
988 	/*
989 	 * notify the kprobe handlers, if instruction is likely to
990 	 * pertain to them.
991 	 */
992 	switch (bcode) {
993 	case BRK_UPROBE:
994 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
995 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
996 			goto out;
997 		else
998 			break;
999 	case BRK_UPROBE_XOL:
1000 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1001 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1002 			goto out;
1003 		else
1004 			break;
1005 	case BRK_KPROBE_BP:
1006 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1007 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1008 			goto out;
1009 		else
1010 			break;
1011 	case BRK_KPROBE_SSTEPBP:
1012 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1013 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1014 			goto out;
1015 		else
1016 			break;
1017 	default:
1018 		break;
1019 	}
1020 
1021 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1022 
1023 out:
1024 	set_fs(seg);
1025 	exception_exit(prev_state);
1026 	return;
1027 
1028 out_sigsegv:
1029 	force_sig(SIGSEGV, current);
1030 	goto out;
1031 }
1032 
1033 asmlinkage void do_tr(struct pt_regs *regs)
1034 {
1035 	u32 opcode, tcode = 0;
1036 	enum ctx_state prev_state;
1037 	u16 instr[2];
1038 	mm_segment_t seg;
1039 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1040 
1041 	seg = get_fs();
1042 	if (!user_mode(regs))
1043 		set_fs(get_ds());
1044 
1045 	prev_state = exception_enter();
1046 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1047 	if (get_isa16_mode(regs->cp0_epc)) {
1048 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1049 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1050 			goto out_sigsegv;
1051 		opcode = (instr[0] << 16) | instr[1];
1052 		/* Immediate versions don't provide a code.  */
1053 		if (!(opcode & OPCODE))
1054 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1055 	} else {
1056 		if (__get_user(opcode, (u32 __user *)epc))
1057 			goto out_sigsegv;
1058 		/* Immediate versions don't provide a code.  */
1059 		if (!(opcode & OPCODE))
1060 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1061 	}
1062 
1063 	do_trap_or_bp(regs, tcode, 0, "Trap");
1064 
1065 out:
1066 	set_fs(seg);
1067 	exception_exit(prev_state);
1068 	return;
1069 
1070 out_sigsegv:
1071 	force_sig(SIGSEGV, current);
1072 	goto out;
1073 }
1074 
1075 asmlinkage void do_ri(struct pt_regs *regs)
1076 {
1077 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1078 	unsigned long old_epc = regs->cp0_epc;
1079 	unsigned long old31 = regs->regs[31];
1080 	enum ctx_state prev_state;
1081 	unsigned int opcode = 0;
1082 	int status = -1;
1083 
1084 	/*
1085 	 * Avoid any kernel code. Just emulate the R2 instruction
1086 	 * as quickly as possible.
1087 	 */
1088 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1089 	    likely(user_mode(regs)) &&
1090 	    likely(get_user(opcode, epc) >= 0)) {
1091 		unsigned long fcr31 = 0;
1092 
1093 		status = mipsr2_decoder(regs, opcode, &fcr31);
1094 		switch (status) {
1095 		case 0:
1096 		case SIGEMT:
1097 			task_thread_info(current)->r2_emul_return = 1;
1098 			return;
1099 		case SIGILL:
1100 			goto no_r2_instr;
1101 		default:
1102 			process_fpemu_return(status,
1103 					     &current->thread.cp0_baduaddr,
1104 					     fcr31);
1105 			task_thread_info(current)->r2_emul_return = 1;
1106 			return;
1107 		}
1108 	}
1109 
1110 no_r2_instr:
1111 
1112 	prev_state = exception_enter();
1113 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1114 
1115 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1116 		       SIGILL) == NOTIFY_STOP)
1117 		goto out;
1118 
1119 	die_if_kernel("Reserved instruction in kernel code", regs);
1120 
1121 	if (unlikely(compute_return_epc(regs) < 0))
1122 		goto out;
1123 
1124 	if (!get_isa16_mode(regs->cp0_epc)) {
1125 		if (unlikely(get_user(opcode, epc) < 0))
1126 			status = SIGSEGV;
1127 
1128 		if (!cpu_has_llsc && status < 0)
1129 			status = simulate_llsc(regs, opcode);
1130 
1131 		if (status < 0)
1132 			status = simulate_rdhwr_normal(regs, opcode);
1133 
1134 		if (status < 0)
1135 			status = simulate_sync(regs, opcode);
1136 
1137 		if (status < 0)
1138 			status = simulate_fp(regs, opcode, old_epc, old31);
1139 	} else if (cpu_has_mmips) {
1140 		unsigned short mmop[2] = { 0 };
1141 
1142 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1143 			status = SIGSEGV;
1144 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1145 			status = SIGSEGV;
1146 		opcode = mmop[0];
1147 		opcode = (opcode << 16) | mmop[1];
1148 
1149 		if (status < 0)
1150 			status = simulate_rdhwr_mm(regs, opcode);
1151 	}
1152 
1153 	if (status < 0)
1154 		status = SIGILL;
1155 
1156 	if (unlikely(status > 0)) {
1157 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1158 		regs->regs[31] = old31;
1159 		force_sig(status, current);
1160 	}
1161 
1162 out:
1163 	exception_exit(prev_state);
1164 }
1165 
1166 /*
1167  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1168  * emulated more than some threshold number of instructions, force migration to
1169  * a "CPU" that has FP support.
1170  */
1171 static void mt_ase_fp_affinity(void)
1172 {
1173 #ifdef CONFIG_MIPS_MT_FPAFF
1174 	if (mt_fpemul_threshold > 0 &&
1175 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1176 		/*
1177 		 * If there's no FPU present, or if the application has already
1178 		 * restricted the allowed set to exclude any CPUs with FPUs,
1179 		 * we'll skip the procedure.
1180 		 */
1181 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1182 			cpumask_t tmask;
1183 
1184 			current->thread.user_cpus_allowed
1185 				= current->cpus_allowed;
1186 			cpumask_and(&tmask, &current->cpus_allowed,
1187 				    &mt_fpu_cpumask);
1188 			set_cpus_allowed_ptr(current, &tmask);
1189 			set_thread_flag(TIF_FPUBOUND);
1190 		}
1191 	}
1192 #endif /* CONFIG_MIPS_MT_FPAFF */
1193 }
1194 
1195 /*
1196  * No lock; only written during early bootup by CPU 0.
1197  */
1198 static RAW_NOTIFIER_HEAD(cu2_chain);
1199 
1200 int __ref register_cu2_notifier(struct notifier_block *nb)
1201 {
1202 	return raw_notifier_chain_register(&cu2_chain, nb);
1203 }
1204 
1205 int cu2_notifier_call_chain(unsigned long val, void *v)
1206 {
1207 	return raw_notifier_call_chain(&cu2_chain, val, v);
1208 }
1209 
1210 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1211 	void *data)
1212 {
1213 	struct pt_regs *regs = data;
1214 
1215 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1216 			      "instruction", regs);
1217 	force_sig(SIGILL, current);
1218 
1219 	return NOTIFY_OK;
1220 }
1221 
1222 static int wait_on_fp_mode_switch(atomic_t *p)
1223 {
1224 	/*
1225 	 * The FP mode for this task is currently being switched. That may
1226 	 * involve modifications to the format of this tasks FP context which
1227 	 * make it unsafe to proceed with execution for the moment. Instead,
1228 	 * schedule some other task.
1229 	 */
1230 	schedule();
1231 	return 0;
1232 }
1233 
1234 static int enable_restore_fp_context(int msa)
1235 {
1236 	int err, was_fpu_owner, prior_msa;
1237 
1238 	/*
1239 	 * If an FP mode switch is currently underway, wait for it to
1240 	 * complete before proceeding.
1241 	 */
1242 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1243 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1244 
1245 	if (!used_math()) {
1246 		/* First time FP context user. */
1247 		preempt_disable();
1248 		err = init_fpu();
1249 		if (msa && !err) {
1250 			enable_msa();
1251 			init_msa_upper();
1252 			set_thread_flag(TIF_USEDMSA);
1253 			set_thread_flag(TIF_MSA_CTX_LIVE);
1254 		}
1255 		preempt_enable();
1256 		if (!err)
1257 			set_used_math();
1258 		return err;
1259 	}
1260 
1261 	/*
1262 	 * This task has formerly used the FP context.
1263 	 *
1264 	 * If this thread has no live MSA vector context then we can simply
1265 	 * restore the scalar FP context. If it has live MSA vector context
1266 	 * (that is, it has or may have used MSA since last performing a
1267 	 * function call) then we'll need to restore the vector context. This
1268 	 * applies even if we're currently only executing a scalar FP
1269 	 * instruction. This is because if we were to later execute an MSA
1270 	 * instruction then we'd either have to:
1271 	 *
1272 	 *  - Restore the vector context & clobber any registers modified by
1273 	 *    scalar FP instructions between now & then.
1274 	 *
1275 	 * or
1276 	 *
1277 	 *  - Not restore the vector context & lose the most significant bits
1278 	 *    of all vector registers.
1279 	 *
1280 	 * Neither of those options is acceptable. We cannot restore the least
1281 	 * significant bits of the registers now & only restore the most
1282 	 * significant bits later because the most significant bits of any
1283 	 * vector registers whose aliased FP register is modified now will have
1284 	 * been zeroed. We'd have no way to know that when restoring the vector
1285 	 * context & thus may load an outdated value for the most significant
1286 	 * bits of a vector register.
1287 	 */
1288 	if (!msa && !thread_msa_context_live())
1289 		return own_fpu(1);
1290 
1291 	/*
1292 	 * This task is using or has previously used MSA. Thus we require
1293 	 * that Status.FR == 1.
1294 	 */
1295 	preempt_disable();
1296 	was_fpu_owner = is_fpu_owner();
1297 	err = own_fpu_inatomic(0);
1298 	if (err)
1299 		goto out;
1300 
1301 	enable_msa();
1302 	write_msa_csr(current->thread.fpu.msacsr);
1303 	set_thread_flag(TIF_USEDMSA);
1304 
1305 	/*
1306 	 * If this is the first time that the task is using MSA and it has
1307 	 * previously used scalar FP in this time slice then we already nave
1308 	 * FP context which we shouldn't clobber. We do however need to clear
1309 	 * the upper 64b of each vector register so that this task has no
1310 	 * opportunity to see data left behind by another.
1311 	 */
1312 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1313 	if (!prior_msa && was_fpu_owner) {
1314 		init_msa_upper();
1315 
1316 		goto out;
1317 	}
1318 
1319 	if (!prior_msa) {
1320 		/*
1321 		 * Restore the least significant 64b of each vector register
1322 		 * from the existing scalar FP context.
1323 		 */
1324 		_restore_fp(current);
1325 
1326 		/*
1327 		 * The task has not formerly used MSA, so clear the upper 64b
1328 		 * of each vector register such that it cannot see data left
1329 		 * behind by another task.
1330 		 */
1331 		init_msa_upper();
1332 	} else {
1333 		/* We need to restore the vector context. */
1334 		restore_msa(current);
1335 
1336 		/* Restore the scalar FP control & status register */
1337 		if (!was_fpu_owner)
1338 			write_32bit_cp1_register(CP1_STATUS,
1339 						 current->thread.fpu.fcr31);
1340 	}
1341 
1342 out:
1343 	preempt_enable();
1344 
1345 	return 0;
1346 }
1347 
1348 asmlinkage void do_cpu(struct pt_regs *regs)
1349 {
1350 	enum ctx_state prev_state;
1351 	unsigned int __user *epc;
1352 	unsigned long old_epc, old31;
1353 	void __user *fault_addr;
1354 	unsigned int opcode;
1355 	unsigned long fcr31;
1356 	unsigned int cpid;
1357 	int status, err;
1358 	int sig;
1359 
1360 	prev_state = exception_enter();
1361 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1362 
1363 	if (cpid != 2)
1364 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1365 
1366 	switch (cpid) {
1367 	case 0:
1368 		epc = (unsigned int __user *)exception_epc(regs);
1369 		old_epc = regs->cp0_epc;
1370 		old31 = regs->regs[31];
1371 		opcode = 0;
1372 		status = -1;
1373 
1374 		if (unlikely(compute_return_epc(regs) < 0))
1375 			break;
1376 
1377 		if (!get_isa16_mode(regs->cp0_epc)) {
1378 			if (unlikely(get_user(opcode, epc) < 0))
1379 				status = SIGSEGV;
1380 
1381 			if (!cpu_has_llsc && status < 0)
1382 				status = simulate_llsc(regs, opcode);
1383 		}
1384 
1385 		if (status < 0)
1386 			status = SIGILL;
1387 
1388 		if (unlikely(status > 0)) {
1389 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1390 			regs->regs[31] = old31;
1391 			force_sig(status, current);
1392 		}
1393 
1394 		break;
1395 
1396 	case 3:
1397 		/*
1398 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1399 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1400 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1401 		 * up the space has been reused for COP1X instructions, that
1402 		 * are enabled by the CP0.Status.CU1 bit and consequently
1403 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1404 		 * exceptions.  Some FPU-less processors that implement one
1405 		 * of these ISAs however use this code erroneously for COP1X
1406 		 * instructions.  Therefore we redirect this trap to the FP
1407 		 * emulator too.
1408 		 */
1409 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1410 			force_sig(SIGILL, current);
1411 			break;
1412 		}
1413 		/* Fall through.  */
1414 
1415 	case 1:
1416 		err = enable_restore_fp_context(0);
1417 
1418 		if (raw_cpu_has_fpu && !err)
1419 			break;
1420 
1421 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1422 					       &fault_addr);
1423 		fcr31 = current->thread.fpu.fcr31;
1424 
1425 		/*
1426 		 * We can't allow the emulated instruction to leave
1427 		 * any of the cause bits set in $fcr31.
1428 		 */
1429 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1430 
1431 		/* Send a signal if required.  */
1432 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1433 			mt_ase_fp_affinity();
1434 
1435 		break;
1436 
1437 	case 2:
1438 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1439 		break;
1440 	}
1441 
1442 	exception_exit(prev_state);
1443 }
1444 
1445 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1446 {
1447 	enum ctx_state prev_state;
1448 
1449 	prev_state = exception_enter();
1450 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1451 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1452 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1453 		goto out;
1454 
1455 	/* Clear MSACSR.Cause before enabling interrupts */
1456 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1457 	local_irq_enable();
1458 
1459 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1460 	force_sig(SIGFPE, current);
1461 out:
1462 	exception_exit(prev_state);
1463 }
1464 
1465 asmlinkage void do_msa(struct pt_regs *regs)
1466 {
1467 	enum ctx_state prev_state;
1468 	int err;
1469 
1470 	prev_state = exception_enter();
1471 
1472 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1473 		force_sig(SIGILL, current);
1474 		goto out;
1475 	}
1476 
1477 	die_if_kernel("do_msa invoked from kernel context!", regs);
1478 
1479 	err = enable_restore_fp_context(1);
1480 	if (err)
1481 		force_sig(SIGILL, current);
1482 out:
1483 	exception_exit(prev_state);
1484 }
1485 
1486 asmlinkage void do_mdmx(struct pt_regs *regs)
1487 {
1488 	enum ctx_state prev_state;
1489 
1490 	prev_state = exception_enter();
1491 	force_sig(SIGILL, current);
1492 	exception_exit(prev_state);
1493 }
1494 
1495 /*
1496  * Called with interrupts disabled.
1497  */
1498 asmlinkage void do_watch(struct pt_regs *regs)
1499 {
1500 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1501 	enum ctx_state prev_state;
1502 
1503 	prev_state = exception_enter();
1504 	/*
1505 	 * Clear WP (bit 22) bit of cause register so we don't loop
1506 	 * forever.
1507 	 */
1508 	clear_c0_cause(CAUSEF_WP);
1509 
1510 	/*
1511 	 * If the current thread has the watch registers loaded, save
1512 	 * their values and send SIGTRAP.  Otherwise another thread
1513 	 * left the registers set, clear them and continue.
1514 	 */
1515 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1516 		mips_read_watch_registers();
1517 		local_irq_enable();
1518 		force_sig_info(SIGTRAP, &info, current);
1519 	} else {
1520 		mips_clear_watch_registers();
1521 		local_irq_enable();
1522 	}
1523 	exception_exit(prev_state);
1524 }
1525 
1526 asmlinkage void do_mcheck(struct pt_regs *regs)
1527 {
1528 	int multi_match = regs->cp0_status & ST0_TS;
1529 	enum ctx_state prev_state;
1530 	mm_segment_t old_fs = get_fs();
1531 
1532 	prev_state = exception_enter();
1533 	show_regs(regs);
1534 
1535 	if (multi_match) {
1536 		dump_tlb_regs();
1537 		pr_info("\n");
1538 		dump_tlb_all();
1539 	}
1540 
1541 	if (!user_mode(regs))
1542 		set_fs(KERNEL_DS);
1543 
1544 	show_code((unsigned int __user *) regs->cp0_epc);
1545 
1546 	set_fs(old_fs);
1547 
1548 	/*
1549 	 * Some chips may have other causes of machine check (e.g. SB1
1550 	 * graduation timer)
1551 	 */
1552 	panic("Caught Machine Check exception - %scaused by multiple "
1553 	      "matching entries in the TLB.",
1554 	      (multi_match) ? "" : "not ");
1555 }
1556 
1557 asmlinkage void do_mt(struct pt_regs *regs)
1558 {
1559 	int subcode;
1560 
1561 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1562 			>> VPECONTROL_EXCPT_SHIFT;
1563 	switch (subcode) {
1564 	case 0:
1565 		printk(KERN_DEBUG "Thread Underflow\n");
1566 		break;
1567 	case 1:
1568 		printk(KERN_DEBUG "Thread Overflow\n");
1569 		break;
1570 	case 2:
1571 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1572 		break;
1573 	case 3:
1574 		printk(KERN_DEBUG "Gating Storage Exception\n");
1575 		break;
1576 	case 4:
1577 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1578 		break;
1579 	case 5:
1580 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1581 		break;
1582 	default:
1583 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1584 			subcode);
1585 		break;
1586 	}
1587 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1588 
1589 	force_sig(SIGILL, current);
1590 }
1591 
1592 
1593 asmlinkage void do_dsp(struct pt_regs *regs)
1594 {
1595 	if (cpu_has_dsp)
1596 		panic("Unexpected DSP exception");
1597 
1598 	force_sig(SIGILL, current);
1599 }
1600 
1601 asmlinkage void do_reserved(struct pt_regs *regs)
1602 {
1603 	/*
1604 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1605 	 * caused by a new unknown cpu type or after another deadly
1606 	 * hard/software error.
1607 	 */
1608 	show_regs(regs);
1609 	panic("Caught reserved exception %ld - should not happen.",
1610 	      (regs->cp0_cause & 0x7f) >> 2);
1611 }
1612 
1613 static int __initdata l1parity = 1;
1614 static int __init nol1parity(char *s)
1615 {
1616 	l1parity = 0;
1617 	return 1;
1618 }
1619 __setup("nol1par", nol1parity);
1620 static int __initdata l2parity = 1;
1621 static int __init nol2parity(char *s)
1622 {
1623 	l2parity = 0;
1624 	return 1;
1625 }
1626 __setup("nol2par", nol2parity);
1627 
1628 /*
1629  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1630  * it different ways.
1631  */
1632 static inline void parity_protection_init(void)
1633 {
1634 	switch (current_cpu_type()) {
1635 	case CPU_24K:
1636 	case CPU_34K:
1637 	case CPU_74K:
1638 	case CPU_1004K:
1639 	case CPU_1074K:
1640 	case CPU_INTERAPTIV:
1641 	case CPU_PROAPTIV:
1642 	case CPU_P5600:
1643 	case CPU_QEMU_GENERIC:
1644 	case CPU_I6400:
1645 	case CPU_P6600:
1646 		{
1647 #define ERRCTL_PE	0x80000000
1648 #define ERRCTL_L2P	0x00800000
1649 			unsigned long errctl;
1650 			unsigned int l1parity_present, l2parity_present;
1651 
1652 			errctl = read_c0_ecc();
1653 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1654 
1655 			/* probe L1 parity support */
1656 			write_c0_ecc(errctl | ERRCTL_PE);
1657 			back_to_back_c0_hazard();
1658 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1659 
1660 			/* probe L2 parity support */
1661 			write_c0_ecc(errctl|ERRCTL_L2P);
1662 			back_to_back_c0_hazard();
1663 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1664 
1665 			if (l1parity_present && l2parity_present) {
1666 				if (l1parity)
1667 					errctl |= ERRCTL_PE;
1668 				if (l1parity ^ l2parity)
1669 					errctl |= ERRCTL_L2P;
1670 			} else if (l1parity_present) {
1671 				if (l1parity)
1672 					errctl |= ERRCTL_PE;
1673 			} else if (l2parity_present) {
1674 				if (l2parity)
1675 					errctl |= ERRCTL_L2P;
1676 			} else {
1677 				/* No parity available */
1678 			}
1679 
1680 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1681 
1682 			write_c0_ecc(errctl);
1683 			back_to_back_c0_hazard();
1684 			errctl = read_c0_ecc();
1685 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1686 
1687 			if (l1parity_present)
1688 				printk(KERN_INFO "Cache parity protection %sabled\n",
1689 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1690 
1691 			if (l2parity_present) {
1692 				if (l1parity_present && l1parity)
1693 					errctl ^= ERRCTL_L2P;
1694 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1695 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1696 			}
1697 		}
1698 		break;
1699 
1700 	case CPU_5KC:
1701 	case CPU_5KE:
1702 	case CPU_LOONGSON1:
1703 		write_c0_ecc(0x80000000);
1704 		back_to_back_c0_hazard();
1705 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1706 		printk(KERN_INFO "Cache parity protection %sabled\n",
1707 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1708 		break;
1709 	case CPU_20KC:
1710 	case CPU_25KF:
1711 		/* Clear the DE bit (bit 16) in the c0_status register. */
1712 		printk(KERN_INFO "Enable cache parity protection for "
1713 		       "MIPS 20KC/25KF CPUs.\n");
1714 		clear_c0_status(ST0_DE);
1715 		break;
1716 	default:
1717 		break;
1718 	}
1719 }
1720 
1721 asmlinkage void cache_parity_error(void)
1722 {
1723 	const int field = 2 * sizeof(unsigned long);
1724 	unsigned int reg_val;
1725 
1726 	/* For the moment, report the problem and hang. */
1727 	printk("Cache error exception:\n");
1728 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1729 	reg_val = read_c0_cacheerr();
1730 	printk("c0_cacheerr == %08x\n", reg_val);
1731 
1732 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1733 	       reg_val & (1<<30) ? "secondary" : "primary",
1734 	       reg_val & (1<<31) ? "data" : "insn");
1735 	if ((cpu_has_mips_r2_r6) &&
1736 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1737 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1738 			reg_val & (1<<29) ? "ED " : "",
1739 			reg_val & (1<<28) ? "ET " : "",
1740 			reg_val & (1<<27) ? "ES " : "",
1741 			reg_val & (1<<26) ? "EE " : "",
1742 			reg_val & (1<<25) ? "EB " : "",
1743 			reg_val & (1<<24) ? "EI " : "",
1744 			reg_val & (1<<23) ? "E1 " : "",
1745 			reg_val & (1<<22) ? "E0 " : "");
1746 	} else {
1747 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1748 			reg_val & (1<<29) ? "ED " : "",
1749 			reg_val & (1<<28) ? "ET " : "",
1750 			reg_val & (1<<26) ? "EE " : "",
1751 			reg_val & (1<<25) ? "EB " : "",
1752 			reg_val & (1<<24) ? "EI " : "",
1753 			reg_val & (1<<23) ? "E1 " : "",
1754 			reg_val & (1<<22) ? "E0 " : "");
1755 	}
1756 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1757 
1758 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1759 	if (reg_val & (1<<22))
1760 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1761 
1762 	if (reg_val & (1<<23))
1763 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1764 #endif
1765 
1766 	panic("Can't handle the cache error!");
1767 }
1768 
1769 asmlinkage void do_ftlb(void)
1770 {
1771 	const int field = 2 * sizeof(unsigned long);
1772 	unsigned int reg_val;
1773 
1774 	/* For the moment, report the problem and hang. */
1775 	if ((cpu_has_mips_r2_r6) &&
1776 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1777 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1778 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1779 		       read_c0_ecc());
1780 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1781 		reg_val = read_c0_cacheerr();
1782 		pr_err("c0_cacheerr == %08x\n", reg_val);
1783 
1784 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1785 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1786 		} else {
1787 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1788 			       reg_val & (1<<30) ? "secondary" : "primary",
1789 			       reg_val & (1<<31) ? "data" : "insn");
1790 		}
1791 	} else {
1792 		pr_err("FTLB error exception\n");
1793 	}
1794 	/* Just print the cacheerr bits for now */
1795 	cache_parity_error();
1796 }
1797 
1798 /*
1799  * SDBBP EJTAG debug exception handler.
1800  * We skip the instruction and return to the next instruction.
1801  */
1802 void ejtag_exception_handler(struct pt_regs *regs)
1803 {
1804 	const int field = 2 * sizeof(unsigned long);
1805 	unsigned long depc, old_epc, old_ra;
1806 	unsigned int debug;
1807 
1808 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1809 	depc = read_c0_depc();
1810 	debug = read_c0_debug();
1811 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1812 	if (debug & 0x80000000) {
1813 		/*
1814 		 * In branch delay slot.
1815 		 * We cheat a little bit here and use EPC to calculate the
1816 		 * debug return address (DEPC). EPC is restored after the
1817 		 * calculation.
1818 		 */
1819 		old_epc = regs->cp0_epc;
1820 		old_ra = regs->regs[31];
1821 		regs->cp0_epc = depc;
1822 		compute_return_epc(regs);
1823 		depc = regs->cp0_epc;
1824 		regs->cp0_epc = old_epc;
1825 		regs->regs[31] = old_ra;
1826 	} else
1827 		depc += 4;
1828 	write_c0_depc(depc);
1829 
1830 #if 0
1831 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1832 	write_c0_debug(debug | 0x100);
1833 #endif
1834 }
1835 
1836 /*
1837  * NMI exception handler.
1838  * No lock; only written during early bootup by CPU 0.
1839  */
1840 static RAW_NOTIFIER_HEAD(nmi_chain);
1841 
1842 int register_nmi_notifier(struct notifier_block *nb)
1843 {
1844 	return raw_notifier_chain_register(&nmi_chain, nb);
1845 }
1846 
1847 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1848 {
1849 	char str[100];
1850 
1851 	nmi_enter();
1852 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1853 	bust_spinlocks(1);
1854 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1855 		 smp_processor_id(), regs->cp0_epc);
1856 	regs->cp0_epc = read_c0_errorepc();
1857 	die(str, regs);
1858 	nmi_exit();
1859 }
1860 
1861 #define VECTORSPACING 0x100	/* for EI/VI mode */
1862 
1863 unsigned long ebase;
1864 EXPORT_SYMBOL_GPL(ebase);
1865 unsigned long exception_handlers[32];
1866 unsigned long vi_handlers[64];
1867 
1868 void __init *set_except_vector(int n, void *addr)
1869 {
1870 	unsigned long handler = (unsigned long) addr;
1871 	unsigned long old_handler;
1872 
1873 #ifdef CONFIG_CPU_MICROMIPS
1874 	/*
1875 	 * Only the TLB handlers are cache aligned with an even
1876 	 * address. All other handlers are on an odd address and
1877 	 * require no modification. Otherwise, MIPS32 mode will
1878 	 * be entered when handling any TLB exceptions. That
1879 	 * would be bad...since we must stay in microMIPS mode.
1880 	 */
1881 	if (!(handler & 0x1))
1882 		handler |= 1;
1883 #endif
1884 	old_handler = xchg(&exception_handlers[n], handler);
1885 
1886 	if (n == 0 && cpu_has_divec) {
1887 #ifdef CONFIG_CPU_MICROMIPS
1888 		unsigned long jump_mask = ~((1 << 27) - 1);
1889 #else
1890 		unsigned long jump_mask = ~((1 << 28) - 1);
1891 #endif
1892 		u32 *buf = (u32 *)(ebase + 0x200);
1893 		unsigned int k0 = 26;
1894 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1895 			uasm_i_j(&buf, handler & ~jump_mask);
1896 			uasm_i_nop(&buf);
1897 		} else {
1898 			UASM_i_LA(&buf, k0, handler);
1899 			uasm_i_jr(&buf, k0);
1900 			uasm_i_nop(&buf);
1901 		}
1902 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1903 	}
1904 	return (void *)old_handler;
1905 }
1906 
1907 static void do_default_vi(void)
1908 {
1909 	show_regs(get_irq_regs());
1910 	panic("Caught unexpected vectored interrupt.");
1911 }
1912 
1913 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1914 {
1915 	unsigned long handler;
1916 	unsigned long old_handler = vi_handlers[n];
1917 	int srssets = current_cpu_data.srsets;
1918 	u16 *h;
1919 	unsigned char *b;
1920 
1921 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1922 
1923 	if (addr == NULL) {
1924 		handler = (unsigned long) do_default_vi;
1925 		srs = 0;
1926 	} else
1927 		handler = (unsigned long) addr;
1928 	vi_handlers[n] = handler;
1929 
1930 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1931 
1932 	if (srs >= srssets)
1933 		panic("Shadow register set %d not supported", srs);
1934 
1935 	if (cpu_has_veic) {
1936 		if (board_bind_eic_interrupt)
1937 			board_bind_eic_interrupt(n, srs);
1938 	} else if (cpu_has_vint) {
1939 		/* SRSMap is only defined if shadow sets are implemented */
1940 		if (srssets > 1)
1941 			change_c0_srsmap(0xf << n*4, srs << n*4);
1942 	}
1943 
1944 	if (srs == 0) {
1945 		/*
1946 		 * If no shadow set is selected then use the default handler
1947 		 * that does normal register saving and standard interrupt exit
1948 		 */
1949 		extern char except_vec_vi, except_vec_vi_lui;
1950 		extern char except_vec_vi_ori, except_vec_vi_end;
1951 		extern char rollback_except_vec_vi;
1952 		char *vec_start = using_rollback_handler() ?
1953 			&rollback_except_vec_vi : &except_vec_vi;
1954 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1955 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1956 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1957 #else
1958 		const int lui_offset = &except_vec_vi_lui - vec_start;
1959 		const int ori_offset = &except_vec_vi_ori - vec_start;
1960 #endif
1961 		const int handler_len = &except_vec_vi_end - vec_start;
1962 
1963 		if (handler_len > VECTORSPACING) {
1964 			/*
1965 			 * Sigh... panicing won't help as the console
1966 			 * is probably not configured :(
1967 			 */
1968 			panic("VECTORSPACING too small");
1969 		}
1970 
1971 		set_handler(((unsigned long)b - ebase), vec_start,
1972 #ifdef CONFIG_CPU_MICROMIPS
1973 				(handler_len - 1));
1974 #else
1975 				handler_len);
1976 #endif
1977 		h = (u16 *)(b + lui_offset);
1978 		*h = (handler >> 16) & 0xffff;
1979 		h = (u16 *)(b + ori_offset);
1980 		*h = (handler & 0xffff);
1981 		local_flush_icache_range((unsigned long)b,
1982 					 (unsigned long)(b+handler_len));
1983 	}
1984 	else {
1985 		/*
1986 		 * In other cases jump directly to the interrupt handler. It
1987 		 * is the handler's responsibility to save registers if required
1988 		 * (eg hi/lo) and return from the exception using "eret".
1989 		 */
1990 		u32 insn;
1991 
1992 		h = (u16 *)b;
1993 		/* j handler */
1994 #ifdef CONFIG_CPU_MICROMIPS
1995 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1996 #else
1997 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1998 #endif
1999 		h[0] = (insn >> 16) & 0xffff;
2000 		h[1] = insn & 0xffff;
2001 		h[2] = 0;
2002 		h[3] = 0;
2003 		local_flush_icache_range((unsigned long)b,
2004 					 (unsigned long)(b+8));
2005 	}
2006 
2007 	return (void *)old_handler;
2008 }
2009 
2010 void *set_vi_handler(int n, vi_handler_t addr)
2011 {
2012 	return set_vi_srs_handler(n, addr, 0);
2013 }
2014 
2015 extern void tlb_init(void);
2016 
2017 /*
2018  * Timer interrupt
2019  */
2020 int cp0_compare_irq;
2021 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2022 int cp0_compare_irq_shift;
2023 
2024 /*
2025  * Performance counter IRQ or -1 if shared with timer
2026  */
2027 int cp0_perfcount_irq;
2028 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2029 
2030 /*
2031  * Fast debug channel IRQ or -1 if not present
2032  */
2033 int cp0_fdc_irq;
2034 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2035 
2036 static int noulri;
2037 
2038 static int __init ulri_disable(char *s)
2039 {
2040 	pr_info("Disabling ulri\n");
2041 	noulri = 1;
2042 
2043 	return 1;
2044 }
2045 __setup("noulri", ulri_disable);
2046 
2047 /* configure STATUS register */
2048 static void configure_status(void)
2049 {
2050 	/*
2051 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2052 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2053 	 * flag that some firmware may have left set and the TS bit (for
2054 	 * IP27).  Set XX for ISA IV code to work.
2055 	 */
2056 	unsigned int status_set = ST0_CU0;
2057 #ifdef CONFIG_64BIT
2058 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2059 #endif
2060 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2061 		status_set |= ST0_XX;
2062 	if (cpu_has_dsp)
2063 		status_set |= ST0_MX;
2064 
2065 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2066 			 status_set);
2067 }
2068 
2069 unsigned int hwrena;
2070 EXPORT_SYMBOL_GPL(hwrena);
2071 
2072 /* configure HWRENA register */
2073 static void configure_hwrena(void)
2074 {
2075 	hwrena = cpu_hwrena_impl_bits;
2076 
2077 	if (cpu_has_mips_r2_r6)
2078 		hwrena |= MIPS_HWRENA_CPUNUM |
2079 			  MIPS_HWRENA_SYNCISTEP |
2080 			  MIPS_HWRENA_CC |
2081 			  MIPS_HWRENA_CCRES;
2082 
2083 	if (!noulri && cpu_has_userlocal)
2084 		hwrena |= MIPS_HWRENA_ULR;
2085 
2086 	if (hwrena)
2087 		write_c0_hwrena(hwrena);
2088 }
2089 
2090 static void configure_exception_vector(void)
2091 {
2092 	if (cpu_has_veic || cpu_has_vint) {
2093 		unsigned long sr = set_c0_status(ST0_BEV);
2094 		write_c0_ebase(ebase);
2095 		write_c0_status(sr);
2096 		/* Setting vector spacing enables EI/VI mode  */
2097 		change_c0_intctl(0x3e0, VECTORSPACING);
2098 	}
2099 	if (cpu_has_divec) {
2100 		if (cpu_has_mipsmt) {
2101 			unsigned int vpflags = dvpe();
2102 			set_c0_cause(CAUSEF_IV);
2103 			evpe(vpflags);
2104 		} else
2105 			set_c0_cause(CAUSEF_IV);
2106 	}
2107 }
2108 
2109 void per_cpu_trap_init(bool is_boot_cpu)
2110 {
2111 	unsigned int cpu = smp_processor_id();
2112 
2113 	configure_status();
2114 	configure_hwrena();
2115 
2116 	configure_exception_vector();
2117 
2118 	/*
2119 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2120 	 *
2121 	 *  o read IntCtl.IPTI to determine the timer interrupt
2122 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2123 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2124 	 */
2125 	if (cpu_has_mips_r2_r6) {
2126 		/*
2127 		 * We shouldn't trust a secondary core has a sane EBASE register
2128 		 * so use the one calculated by the boot CPU.
2129 		 */
2130 		if (!is_boot_cpu)
2131 			write_c0_ebase(ebase);
2132 
2133 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2134 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2135 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2136 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2137 		if (!cp0_fdc_irq)
2138 			cp0_fdc_irq = -1;
2139 
2140 	} else {
2141 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2142 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2143 		cp0_perfcount_irq = -1;
2144 		cp0_fdc_irq = -1;
2145 	}
2146 
2147 	if (!cpu_data[cpu].asid_cache)
2148 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2149 
2150 	atomic_inc(&init_mm.mm_count);
2151 	current->active_mm = &init_mm;
2152 	BUG_ON(current->mm);
2153 	enter_lazy_tlb(&init_mm, current);
2154 
2155 	/* Boot CPU's cache setup in setup_arch(). */
2156 	if (!is_boot_cpu)
2157 		cpu_cache_init();
2158 	tlb_init();
2159 	TLBMISS_HANDLER_SETUP();
2160 }
2161 
2162 /* Install CPU exception handler */
2163 void set_handler(unsigned long offset, void *addr, unsigned long size)
2164 {
2165 #ifdef CONFIG_CPU_MICROMIPS
2166 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2167 #else
2168 	memcpy((void *)(ebase + offset), addr, size);
2169 #endif
2170 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2171 }
2172 
2173 static char panic_null_cerr[] =
2174 	"Trying to set NULL cache error exception handler";
2175 
2176 /*
2177  * Install uncached CPU exception handler.
2178  * This is suitable only for the cache error exception which is the only
2179  * exception handler that is being run uncached.
2180  */
2181 void set_uncached_handler(unsigned long offset, void *addr,
2182 	unsigned long size)
2183 {
2184 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2185 
2186 	if (!addr)
2187 		panic(panic_null_cerr);
2188 
2189 	memcpy((void *)(uncached_ebase + offset), addr, size);
2190 }
2191 
2192 static int __initdata rdhwr_noopt;
2193 static int __init set_rdhwr_noopt(char *str)
2194 {
2195 	rdhwr_noopt = 1;
2196 	return 1;
2197 }
2198 
2199 __setup("rdhwr_noopt", set_rdhwr_noopt);
2200 
2201 void __init trap_init(void)
2202 {
2203 	extern char except_vec3_generic;
2204 	extern char except_vec4;
2205 	extern char except_vec3_r4000;
2206 	unsigned long i;
2207 
2208 	check_wait();
2209 
2210 	if (cpu_has_veic || cpu_has_vint) {
2211 		unsigned long size = 0x200 + VECTORSPACING*64;
2212 		ebase = (unsigned long)
2213 			__alloc_bootmem(size, 1 << fls(size), 0);
2214 	} else {
2215 		ebase = CAC_BASE;
2216 
2217 		if (cpu_has_mips_r2_r6)
2218 			ebase += (read_c0_ebase() & 0x3ffff000);
2219 	}
2220 
2221 	if (cpu_has_mmips) {
2222 		unsigned int config3 = read_c0_config3();
2223 
2224 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2225 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2226 		else
2227 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2228 	}
2229 
2230 	if (board_ebase_setup)
2231 		board_ebase_setup();
2232 	per_cpu_trap_init(true);
2233 
2234 	/*
2235 	 * Copy the generic exception handlers to their final destination.
2236 	 * This will be overridden later as suitable for a particular
2237 	 * configuration.
2238 	 */
2239 	set_handler(0x180, &except_vec3_generic, 0x80);
2240 
2241 	/*
2242 	 * Setup default vectors
2243 	 */
2244 	for (i = 0; i <= 31; i++)
2245 		set_except_vector(i, handle_reserved);
2246 
2247 	/*
2248 	 * Copy the EJTAG debug exception vector handler code to it's final
2249 	 * destination.
2250 	 */
2251 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2252 		board_ejtag_handler_setup();
2253 
2254 	/*
2255 	 * Only some CPUs have the watch exceptions.
2256 	 */
2257 	if (cpu_has_watch)
2258 		set_except_vector(EXCCODE_WATCH, handle_watch);
2259 
2260 	/*
2261 	 * Initialise interrupt handlers
2262 	 */
2263 	if (cpu_has_veic || cpu_has_vint) {
2264 		int nvec = cpu_has_veic ? 64 : 8;
2265 		for (i = 0; i < nvec; i++)
2266 			set_vi_handler(i, NULL);
2267 	}
2268 	else if (cpu_has_divec)
2269 		set_handler(0x200, &except_vec4, 0x8);
2270 
2271 	/*
2272 	 * Some CPUs can enable/disable for cache parity detection, but does
2273 	 * it different ways.
2274 	 */
2275 	parity_protection_init();
2276 
2277 	/*
2278 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2279 	 * by external hardware.  Therefore these two exceptions
2280 	 * may have board specific handlers.
2281 	 */
2282 	if (board_be_init)
2283 		board_be_init();
2284 
2285 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2286 					rollback_handle_int : handle_int);
2287 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2288 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2289 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2290 
2291 	set_except_vector(EXCCODE_ADEL, handle_adel);
2292 	set_except_vector(EXCCODE_ADES, handle_ades);
2293 
2294 	set_except_vector(EXCCODE_IBE, handle_ibe);
2295 	set_except_vector(EXCCODE_DBE, handle_dbe);
2296 
2297 	set_except_vector(EXCCODE_SYS, handle_sys);
2298 	set_except_vector(EXCCODE_BP, handle_bp);
2299 	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2300 			  (cpu_has_vtag_icache ?
2301 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2302 	set_except_vector(EXCCODE_CPU, handle_cpu);
2303 	set_except_vector(EXCCODE_OV, handle_ov);
2304 	set_except_vector(EXCCODE_TR, handle_tr);
2305 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2306 
2307 	if (current_cpu_type() == CPU_R6000 ||
2308 	    current_cpu_type() == CPU_R6000A) {
2309 		/*
2310 		 * The R6000 is the only R-series CPU that features a machine
2311 		 * check exception (similar to the R4000 cache error) and
2312 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2313 		 * written yet.	 Well, anyway there is no R6000 machine on the
2314 		 * current list of targets for Linux/MIPS.
2315 		 * (Duh, crap, there is someone with a triple R6k machine)
2316 		 */
2317 		//set_except_vector(14, handle_mc);
2318 		//set_except_vector(15, handle_ndc);
2319 	}
2320 
2321 
2322 	if (board_nmi_handler_setup)
2323 		board_nmi_handler_setup();
2324 
2325 	if (cpu_has_fpu && !cpu_has_nofpuex)
2326 		set_except_vector(EXCCODE_FPE, handle_fpe);
2327 
2328 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2329 
2330 	if (cpu_has_rixiex) {
2331 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2332 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2333 	}
2334 
2335 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2336 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2337 
2338 	if (cpu_has_mcheck)
2339 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2340 
2341 	if (cpu_has_mipsmt)
2342 		set_except_vector(EXCCODE_THREAD, handle_mt);
2343 
2344 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2345 
2346 	if (board_cache_error_setup)
2347 		board_cache_error_setup();
2348 
2349 	if (cpu_has_vce)
2350 		/* Special exception: R4[04]00 uses also the divec space. */
2351 		set_handler(0x180, &except_vec3_r4000, 0x100);
2352 	else if (cpu_has_4kex)
2353 		set_handler(0x180, &except_vec3_generic, 0x80);
2354 	else
2355 		set_handler(0x080, &except_vec3_generic, 0x80);
2356 
2357 	local_flush_icache_range(ebase, ebase + 0x400);
2358 
2359 	sort_extable(__start___dbe_table, __stop___dbe_table);
2360 
2361 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2362 }
2363 
2364 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2365 			    void *v)
2366 {
2367 	switch (cmd) {
2368 	case CPU_PM_ENTER_FAILED:
2369 	case CPU_PM_EXIT:
2370 		configure_status();
2371 		configure_hwrena();
2372 		configure_exception_vector();
2373 
2374 		/* Restore register with CPU number for TLB handlers */
2375 		TLBMISS_HANDLER_RESTORE();
2376 
2377 		break;
2378 	}
2379 
2380 	return NOTIFY_OK;
2381 }
2382 
2383 static struct notifier_block trap_pm_notifier_block = {
2384 	.notifier_call = trap_pm_notifier,
2385 };
2386 
2387 static int __init trap_pm_init(void)
2388 {
2389 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2390 }
2391 arch_initcall(trap_pm_init);
2392