1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/addrspace.h> 41 #include <asm/bootinfo.h> 42 #include <asm/branch.h> 43 #include <asm/break.h> 44 #include <asm/cop2.h> 45 #include <asm/cpu.h> 46 #include <asm/cpu-type.h> 47 #include <asm/dsp.h> 48 #include <asm/fpu.h> 49 #include <asm/fpu_emulator.h> 50 #include <asm/idle.h> 51 #include <asm/mips-r2-to-r6-emul.h> 52 #include <asm/mipsregs.h> 53 #include <asm/mipsmtregs.h> 54 #include <asm/module.h> 55 #include <asm/msa.h> 56 #include <asm/pgtable.h> 57 #include <asm/ptrace.h> 58 #include <asm/sections.h> 59 #include <asm/siginfo.h> 60 #include <asm/tlbdebug.h> 61 #include <asm/traps.h> 62 #include <asm/uaccess.h> 63 #include <asm/watch.h> 64 #include <asm/mmu_context.h> 65 #include <asm/types.h> 66 #include <asm/stacktrace.h> 67 #include <asm/uasm.h> 68 69 extern void check_wait(void); 70 extern asmlinkage void rollback_handle_int(void); 71 extern asmlinkage void handle_int(void); 72 extern u32 handle_tlbl[]; 73 extern u32 handle_tlbs[]; 74 extern u32 handle_tlbm[]; 75 extern asmlinkage void handle_adel(void); 76 extern asmlinkage void handle_ades(void); 77 extern asmlinkage void handle_ibe(void); 78 extern asmlinkage void handle_dbe(void); 79 extern asmlinkage void handle_sys(void); 80 extern asmlinkage void handle_bp(void); 81 extern asmlinkage void handle_ri(void); 82 extern asmlinkage void handle_ri_rdhwr_vivt(void); 83 extern asmlinkage void handle_ri_rdhwr(void); 84 extern asmlinkage void handle_cpu(void); 85 extern asmlinkage void handle_ov(void); 86 extern asmlinkage void handle_tr(void); 87 extern asmlinkage void handle_msa_fpe(void); 88 extern asmlinkage void handle_fpe(void); 89 extern asmlinkage void handle_ftlb(void); 90 extern asmlinkage void handle_msa(void); 91 extern asmlinkage void handle_mdmx(void); 92 extern asmlinkage void handle_watch(void); 93 extern asmlinkage void handle_mt(void); 94 extern asmlinkage void handle_dsp(void); 95 extern asmlinkage void handle_mcheck(void); 96 extern asmlinkage void handle_reserved(void); 97 extern void tlb_do_page_fault_0(void); 98 99 void (*board_be_init)(void); 100 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 101 void (*board_nmi_handler_setup)(void); 102 void (*board_ejtag_handler_setup)(void); 103 void (*board_bind_eic_interrupt)(int irq, int regset); 104 void (*board_ebase_setup)(void); 105 void(*board_cache_error_setup)(void); 106 107 static void show_raw_backtrace(unsigned long reg29) 108 { 109 unsigned long *sp = (unsigned long *)(reg29 & ~3); 110 unsigned long addr; 111 112 printk("Call Trace:"); 113 #ifdef CONFIG_KALLSYMS 114 printk("\n"); 115 #endif 116 while (!kstack_end(sp)) { 117 unsigned long __user *p = 118 (unsigned long __user *)(unsigned long)sp++; 119 if (__get_user(addr, p)) { 120 printk(" (Bad stack address)"); 121 break; 122 } 123 if (__kernel_text_address(addr)) 124 print_ip_sym(addr); 125 } 126 printk("\n"); 127 } 128 129 #ifdef CONFIG_KALLSYMS 130 int raw_show_trace; 131 static int __init set_raw_show_trace(char *str) 132 { 133 raw_show_trace = 1; 134 return 1; 135 } 136 __setup("raw_show_trace", set_raw_show_trace); 137 #endif 138 139 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 140 { 141 unsigned long sp = regs->regs[29]; 142 unsigned long ra = regs->regs[31]; 143 unsigned long pc = regs->cp0_epc; 144 145 if (!task) 146 task = current; 147 148 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 149 show_raw_backtrace(sp); 150 return; 151 } 152 printk("Call Trace:\n"); 153 do { 154 print_ip_sym(pc); 155 pc = unwind_stack(task, &sp, pc, &ra); 156 } while (pc); 157 printk("\n"); 158 } 159 160 /* 161 * This routine abuses get_user()/put_user() to reference pointers 162 * with at least a bit of error checking ... 163 */ 164 static void show_stacktrace(struct task_struct *task, 165 const struct pt_regs *regs) 166 { 167 const int field = 2 * sizeof(unsigned long); 168 long stackdata; 169 int i; 170 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 171 172 printk("Stack :"); 173 i = 0; 174 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 175 if (i && ((i % (64 / field)) == 0)) 176 printk("\n "); 177 if (i > 39) { 178 printk(" ..."); 179 break; 180 } 181 182 if (__get_user(stackdata, sp++)) { 183 printk(" (Bad stack address)"); 184 break; 185 } 186 187 printk(" %0*lx", field, stackdata); 188 i++; 189 } 190 printk("\n"); 191 show_backtrace(task, regs); 192 } 193 194 void show_stack(struct task_struct *task, unsigned long *sp) 195 { 196 struct pt_regs regs; 197 mm_segment_t old_fs = get_fs(); 198 if (sp) { 199 regs.regs[29] = (unsigned long)sp; 200 regs.regs[31] = 0; 201 regs.cp0_epc = 0; 202 } else { 203 if (task && task != current) { 204 regs.regs[29] = task->thread.reg29; 205 regs.regs[31] = 0; 206 regs.cp0_epc = task->thread.reg31; 207 #ifdef CONFIG_KGDB_KDB 208 } else if (atomic_read(&kgdb_active) != -1 && 209 kdb_current_regs) { 210 memcpy(®s, kdb_current_regs, sizeof(regs)); 211 #endif /* CONFIG_KGDB_KDB */ 212 } else { 213 prepare_frametrace(®s); 214 } 215 } 216 /* 217 * show_stack() deals exclusively with kernel mode, so be sure to access 218 * the stack in the kernel (not user) address space. 219 */ 220 set_fs(KERNEL_DS); 221 show_stacktrace(task, ®s); 222 set_fs(old_fs); 223 } 224 225 static void show_code(unsigned int __user *pc) 226 { 227 long i; 228 unsigned short __user *pc16 = NULL; 229 230 printk("\nCode:"); 231 232 if ((unsigned long)pc & 1) 233 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 234 for(i = -3 ; i < 6 ; i++) { 235 unsigned int insn; 236 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 237 printk(" (Bad address in epc)\n"); 238 break; 239 } 240 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 241 } 242 } 243 244 static void __show_regs(const struct pt_regs *regs) 245 { 246 const int field = 2 * sizeof(unsigned long); 247 unsigned int cause = regs->cp0_cause; 248 unsigned int exccode; 249 int i; 250 251 show_regs_print_info(KERN_DEFAULT); 252 253 /* 254 * Saved main processor registers 255 */ 256 for (i = 0; i < 32; ) { 257 if ((i % 4) == 0) 258 printk("$%2d :", i); 259 if (i == 0) 260 printk(" %0*lx", field, 0UL); 261 else if (i == 26 || i == 27) 262 printk(" %*s", field, ""); 263 else 264 printk(" %0*lx", field, regs->regs[i]); 265 266 i++; 267 if ((i % 4) == 0) 268 printk("\n"); 269 } 270 271 #ifdef CONFIG_CPU_HAS_SMARTMIPS 272 printk("Acx : %0*lx\n", field, regs->acx); 273 #endif 274 printk("Hi : %0*lx\n", field, regs->hi); 275 printk("Lo : %0*lx\n", field, regs->lo); 276 277 /* 278 * Saved cp0 registers 279 */ 280 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 281 (void *) regs->cp0_epc); 282 printk("ra : %0*lx %pS\n", field, regs->regs[31], 283 (void *) regs->regs[31]); 284 285 printk("Status: %08x ", (uint32_t) regs->cp0_status); 286 287 if (cpu_has_3kex) { 288 if (regs->cp0_status & ST0_KUO) 289 printk("KUo "); 290 if (regs->cp0_status & ST0_IEO) 291 printk("IEo "); 292 if (regs->cp0_status & ST0_KUP) 293 printk("KUp "); 294 if (regs->cp0_status & ST0_IEP) 295 printk("IEp "); 296 if (regs->cp0_status & ST0_KUC) 297 printk("KUc "); 298 if (regs->cp0_status & ST0_IEC) 299 printk("IEc "); 300 } else if (cpu_has_4kex) { 301 if (regs->cp0_status & ST0_KX) 302 printk("KX "); 303 if (regs->cp0_status & ST0_SX) 304 printk("SX "); 305 if (regs->cp0_status & ST0_UX) 306 printk("UX "); 307 switch (regs->cp0_status & ST0_KSU) { 308 case KSU_USER: 309 printk("USER "); 310 break; 311 case KSU_SUPERVISOR: 312 printk("SUPERVISOR "); 313 break; 314 case KSU_KERNEL: 315 printk("KERNEL "); 316 break; 317 default: 318 printk("BAD_MODE "); 319 break; 320 } 321 if (regs->cp0_status & ST0_ERL) 322 printk("ERL "); 323 if (regs->cp0_status & ST0_EXL) 324 printk("EXL "); 325 if (regs->cp0_status & ST0_IE) 326 printk("IE "); 327 } 328 printk("\n"); 329 330 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 331 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 332 333 if (1 <= exccode && exccode <= 5) 334 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 335 336 printk("PrId : %08x (%s)\n", read_c0_prid(), 337 cpu_name_string()); 338 } 339 340 /* 341 * FIXME: really the generic show_regs should take a const pointer argument. 342 */ 343 void show_regs(struct pt_regs *regs) 344 { 345 __show_regs((struct pt_regs *)regs); 346 } 347 348 void show_registers(struct pt_regs *regs) 349 { 350 const int field = 2 * sizeof(unsigned long); 351 mm_segment_t old_fs = get_fs(); 352 353 __show_regs(regs); 354 print_modules(); 355 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 356 current->comm, current->pid, current_thread_info(), current, 357 field, current_thread_info()->tp_value); 358 if (cpu_has_userlocal) { 359 unsigned long tls; 360 361 tls = read_c0_userlocal(); 362 if (tls != current_thread_info()->tp_value) 363 printk("*HwTLS: %0*lx\n", field, tls); 364 } 365 366 if (!user_mode(regs)) 367 /* Necessary for getting the correct stack content */ 368 set_fs(KERNEL_DS); 369 show_stacktrace(current, regs); 370 show_code((unsigned int __user *) regs->cp0_epc); 371 printk("\n"); 372 set_fs(old_fs); 373 } 374 375 static DEFINE_RAW_SPINLOCK(die_lock); 376 377 void __noreturn die(const char *str, struct pt_regs *regs) 378 { 379 static int die_counter; 380 int sig = SIGSEGV; 381 382 oops_enter(); 383 384 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 385 SIGSEGV) == NOTIFY_STOP) 386 sig = 0; 387 388 console_verbose(); 389 raw_spin_lock_irq(&die_lock); 390 bust_spinlocks(1); 391 392 printk("%s[#%d]:\n", str, ++die_counter); 393 show_registers(regs); 394 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 395 raw_spin_unlock_irq(&die_lock); 396 397 oops_exit(); 398 399 if (in_interrupt()) 400 panic("Fatal exception in interrupt"); 401 402 if (panic_on_oops) 403 panic("Fatal exception"); 404 405 if (regs && kexec_should_crash(current)) 406 crash_kexec(regs); 407 408 do_exit(sig); 409 } 410 411 extern struct exception_table_entry __start___dbe_table[]; 412 extern struct exception_table_entry __stop___dbe_table[]; 413 414 __asm__( 415 " .section __dbe_table, \"a\"\n" 416 " .previous \n"); 417 418 /* Given an address, look for it in the exception tables. */ 419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 420 { 421 const struct exception_table_entry *e; 422 423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 424 if (!e) 425 e = search_module_dbetables(addr); 426 return e; 427 } 428 429 asmlinkage void do_be(struct pt_regs *regs) 430 { 431 const int field = 2 * sizeof(unsigned long); 432 const struct exception_table_entry *fixup = NULL; 433 int data = regs->cp0_cause & 4; 434 int action = MIPS_BE_FATAL; 435 enum ctx_state prev_state; 436 437 prev_state = exception_enter(); 438 /* XXX For now. Fixme, this searches the wrong table ... */ 439 if (data && !user_mode(regs)) 440 fixup = search_dbe_tables(exception_epc(regs)); 441 442 if (fixup) 443 action = MIPS_BE_FIXUP; 444 445 if (board_be_handler) 446 action = board_be_handler(regs, fixup != NULL); 447 448 switch (action) { 449 case MIPS_BE_DISCARD: 450 goto out; 451 case MIPS_BE_FIXUP: 452 if (fixup) { 453 regs->cp0_epc = fixup->nextinsn; 454 goto out; 455 } 456 break; 457 default: 458 break; 459 } 460 461 /* 462 * Assume it would be too dangerous to continue ... 463 */ 464 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 465 data ? "Data" : "Instruction", 466 field, regs->cp0_epc, field, regs->regs[31]); 467 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 468 SIGBUS) == NOTIFY_STOP) 469 goto out; 470 471 die_if_kernel("Oops", regs); 472 force_sig(SIGBUS, current); 473 474 out: 475 exception_exit(prev_state); 476 } 477 478 /* 479 * ll/sc, rdhwr, sync emulation 480 */ 481 482 #define OPCODE 0xfc000000 483 #define BASE 0x03e00000 484 #define RT 0x001f0000 485 #define OFFSET 0x0000ffff 486 #define LL 0xc0000000 487 #define SC 0xe0000000 488 #define SPEC0 0x00000000 489 #define SPEC3 0x7c000000 490 #define RD 0x0000f800 491 #define FUNC 0x0000003f 492 #define SYNC 0x0000000f 493 #define RDHWR 0x0000003b 494 495 /* microMIPS definitions */ 496 #define MM_POOL32A_FUNC 0xfc00ffff 497 #define MM_RDHWR 0x00006b3c 498 #define MM_RS 0x001f0000 499 #define MM_RT 0x03e00000 500 501 /* 502 * The ll_bit is cleared by r*_switch.S 503 */ 504 505 unsigned int ll_bit; 506 struct task_struct *ll_task; 507 508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 509 { 510 unsigned long value, __user *vaddr; 511 long offset; 512 513 /* 514 * analyse the ll instruction that just caused a ri exception 515 * and put the referenced address to addr. 516 */ 517 518 /* sign extend offset */ 519 offset = opcode & OFFSET; 520 offset <<= 16; 521 offset >>= 16; 522 523 vaddr = (unsigned long __user *) 524 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 525 526 if ((unsigned long)vaddr & 3) 527 return SIGBUS; 528 if (get_user(value, vaddr)) 529 return SIGSEGV; 530 531 preempt_disable(); 532 533 if (ll_task == NULL || ll_task == current) { 534 ll_bit = 1; 535 } else { 536 ll_bit = 0; 537 } 538 ll_task = current; 539 540 preempt_enable(); 541 542 regs->regs[(opcode & RT) >> 16] = value; 543 544 return 0; 545 } 546 547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 548 { 549 unsigned long __user *vaddr; 550 unsigned long reg; 551 long offset; 552 553 /* 554 * analyse the sc instruction that just caused a ri exception 555 * and put the referenced address to addr. 556 */ 557 558 /* sign extend offset */ 559 offset = opcode & OFFSET; 560 offset <<= 16; 561 offset >>= 16; 562 563 vaddr = (unsigned long __user *) 564 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 565 reg = (opcode & RT) >> 16; 566 567 if ((unsigned long)vaddr & 3) 568 return SIGBUS; 569 570 preempt_disable(); 571 572 if (ll_bit == 0 || ll_task != current) { 573 regs->regs[reg] = 0; 574 preempt_enable(); 575 return 0; 576 } 577 578 preempt_enable(); 579 580 if (put_user(regs->regs[reg], vaddr)) 581 return SIGSEGV; 582 583 regs->regs[reg] = 1; 584 585 return 0; 586 } 587 588 /* 589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 590 * opcodes are supposed to result in coprocessor unusable exceptions if 591 * executed on ll/sc-less processors. That's the theory. In practice a 592 * few processors such as NEC's VR4100 throw reserved instruction exceptions 593 * instead, so we're doing the emulation thing in both exception handlers. 594 */ 595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 596 { 597 if ((opcode & OPCODE) == LL) { 598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 599 1, regs, 0); 600 return simulate_ll(regs, opcode); 601 } 602 if ((opcode & OPCODE) == SC) { 603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 604 1, regs, 0); 605 return simulate_sc(regs, opcode); 606 } 607 608 return -1; /* Must be something else ... */ 609 } 610 611 /* 612 * Simulate trapping 'rdhwr' instructions to provide user accessible 613 * registers not implemented in hardware. 614 */ 615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 616 { 617 struct thread_info *ti = task_thread_info(current); 618 619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 620 1, regs, 0); 621 switch (rd) { 622 case 0: /* CPU number */ 623 regs->regs[rt] = smp_processor_id(); 624 return 0; 625 case 1: /* SYNCI length */ 626 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 627 current_cpu_data.icache.linesz); 628 return 0; 629 case 2: /* Read count register */ 630 regs->regs[rt] = read_c0_count(); 631 return 0; 632 case 3: /* Count register resolution */ 633 switch (current_cpu_type()) { 634 case CPU_20KC: 635 case CPU_25KF: 636 regs->regs[rt] = 1; 637 break; 638 default: 639 regs->regs[rt] = 2; 640 } 641 return 0; 642 case 29: 643 regs->regs[rt] = ti->tp_value; 644 return 0; 645 default: 646 return -1; 647 } 648 } 649 650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 651 { 652 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 653 int rd = (opcode & RD) >> 11; 654 int rt = (opcode & RT) >> 16; 655 656 simulate_rdhwr(regs, rd, rt); 657 return 0; 658 } 659 660 /* Not ours. */ 661 return -1; 662 } 663 664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) 665 { 666 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 667 int rd = (opcode & MM_RS) >> 16; 668 int rt = (opcode & MM_RT) >> 21; 669 simulate_rdhwr(regs, rd, rt); 670 return 0; 671 } 672 673 /* Not ours. */ 674 return -1; 675 } 676 677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 678 { 679 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 681 1, regs, 0); 682 return 0; 683 } 684 685 return -1; /* Must be something else ... */ 686 } 687 688 asmlinkage void do_ov(struct pt_regs *regs) 689 { 690 enum ctx_state prev_state; 691 siginfo_t info = { 692 .si_signo = SIGFPE, 693 .si_code = FPE_INTOVF, 694 .si_addr = (void __user *)regs->cp0_epc, 695 }; 696 697 prev_state = exception_enter(); 698 die_if_kernel("Integer overflow", regs); 699 700 force_sig_info(SIGFPE, &info, current); 701 exception_exit(prev_state); 702 } 703 704 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 705 { 706 struct siginfo si = { 0 }; 707 708 switch (sig) { 709 case 0: 710 return 0; 711 712 case SIGFPE: 713 si.si_addr = fault_addr; 714 si.si_signo = sig; 715 /* 716 * Inexact can happen together with Overflow or Underflow. 717 * Respect the mask to deliver the correct exception. 718 */ 719 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 720 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 721 if (fcr31 & FPU_CSR_INV_X) 722 si.si_code = FPE_FLTINV; 723 else if (fcr31 & FPU_CSR_DIV_X) 724 si.si_code = FPE_FLTDIV; 725 else if (fcr31 & FPU_CSR_OVF_X) 726 si.si_code = FPE_FLTOVF; 727 else if (fcr31 & FPU_CSR_UDF_X) 728 si.si_code = FPE_FLTUND; 729 else if (fcr31 & FPU_CSR_INE_X) 730 si.si_code = FPE_FLTRES; 731 else 732 si.si_code = __SI_FAULT; 733 force_sig_info(sig, &si, current); 734 return 1; 735 736 case SIGBUS: 737 si.si_addr = fault_addr; 738 si.si_signo = sig; 739 si.si_code = BUS_ADRERR; 740 force_sig_info(sig, &si, current); 741 return 1; 742 743 case SIGSEGV: 744 si.si_addr = fault_addr; 745 si.si_signo = sig; 746 down_read(¤t->mm->mmap_sem); 747 if (find_vma(current->mm, (unsigned long)fault_addr)) 748 si.si_code = SEGV_ACCERR; 749 else 750 si.si_code = SEGV_MAPERR; 751 up_read(¤t->mm->mmap_sem); 752 force_sig_info(sig, &si, current); 753 return 1; 754 755 default: 756 force_sig(sig, current); 757 return 1; 758 } 759 } 760 761 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 762 unsigned long old_epc, unsigned long old_ra) 763 { 764 union mips_instruction inst = { .word = opcode }; 765 void __user *fault_addr; 766 unsigned long fcr31; 767 int sig; 768 769 /* If it's obviously not an FP instruction, skip it */ 770 switch (inst.i_format.opcode) { 771 case cop1_op: 772 case cop1x_op: 773 case lwc1_op: 774 case ldc1_op: 775 case swc1_op: 776 case sdc1_op: 777 break; 778 779 default: 780 return -1; 781 } 782 783 /* 784 * do_ri skipped over the instruction via compute_return_epc, undo 785 * that for the FPU emulator. 786 */ 787 regs->cp0_epc = old_epc; 788 regs->regs[31] = old_ra; 789 790 /* Save the FP context to struct thread_struct */ 791 lose_fpu(1); 792 793 /* Run the emulator */ 794 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 795 &fault_addr); 796 fcr31 = current->thread.fpu.fcr31; 797 798 /* 799 * We can't allow the emulated instruction to leave any of 800 * the cause bits set in $fcr31. 801 */ 802 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 803 804 /* Restore the hardware register state */ 805 own_fpu(1); 806 807 /* Send a signal if required. */ 808 process_fpemu_return(sig, fault_addr, fcr31); 809 810 return 0; 811 } 812 813 /* 814 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 815 */ 816 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 817 { 818 enum ctx_state prev_state; 819 void __user *fault_addr; 820 int sig; 821 822 prev_state = exception_enter(); 823 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 824 SIGFPE) == NOTIFY_STOP) 825 goto out; 826 827 /* Clear FCSR.Cause before enabling interrupts */ 828 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 829 local_irq_enable(); 830 831 die_if_kernel("FP exception in kernel code", regs); 832 833 if (fcr31 & FPU_CSR_UNI_X) { 834 /* 835 * Unimplemented operation exception. If we've got the full 836 * software emulator on-board, let's use it... 837 * 838 * Force FPU to dump state into task/thread context. We're 839 * moving a lot of data here for what is probably a single 840 * instruction, but the alternative is to pre-decode the FP 841 * register operands before invoking the emulator, which seems 842 * a bit extreme for what should be an infrequent event. 843 */ 844 /* Ensure 'resume' not overwrite saved fp context again. */ 845 lose_fpu(1); 846 847 /* Run the emulator */ 848 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 849 &fault_addr); 850 fcr31 = current->thread.fpu.fcr31; 851 852 /* 853 * We can't allow the emulated instruction to leave any of 854 * the cause bits set in $fcr31. 855 */ 856 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 857 858 /* Restore the hardware register state */ 859 own_fpu(1); /* Using the FPU again. */ 860 } else { 861 sig = SIGFPE; 862 fault_addr = (void __user *) regs->cp0_epc; 863 } 864 865 /* Send a signal if required. */ 866 process_fpemu_return(sig, fault_addr, fcr31); 867 868 out: 869 exception_exit(prev_state); 870 } 871 872 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, 873 const char *str) 874 { 875 siginfo_t info = { 0 }; 876 char b[40]; 877 878 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 879 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 880 SIGTRAP) == NOTIFY_STOP) 881 return; 882 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 883 884 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 885 SIGTRAP) == NOTIFY_STOP) 886 return; 887 888 /* 889 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 890 * insns, even for trap and break codes that indicate arithmetic 891 * failures. Weird ... 892 * But should we continue the brokenness??? --macro 893 */ 894 switch (code) { 895 case BRK_OVERFLOW: 896 case BRK_DIVZERO: 897 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 898 die_if_kernel(b, regs); 899 if (code == BRK_DIVZERO) 900 info.si_code = FPE_INTDIV; 901 else 902 info.si_code = FPE_INTOVF; 903 info.si_signo = SIGFPE; 904 info.si_addr = (void __user *) regs->cp0_epc; 905 force_sig_info(SIGFPE, &info, current); 906 break; 907 case BRK_BUG: 908 die_if_kernel("Kernel bug detected", regs); 909 force_sig(SIGTRAP, current); 910 break; 911 case BRK_MEMU: 912 /* 913 * This breakpoint code is used by the FPU emulator to retake 914 * control of the CPU after executing the instruction from the 915 * delay slot of an emulated branch. 916 * 917 * Terminate if exception was recognized as a delay slot return 918 * otherwise handle as normal. 919 */ 920 if (do_dsemulret(regs)) 921 return; 922 923 die_if_kernel("Math emu break/trap", regs); 924 force_sig(SIGTRAP, current); 925 break; 926 default: 927 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 928 die_if_kernel(b, regs); 929 if (si_code) { 930 info.si_signo = SIGTRAP; 931 info.si_code = si_code; 932 force_sig_info(SIGTRAP, &info, current); 933 } else { 934 force_sig(SIGTRAP, current); 935 } 936 } 937 } 938 939 asmlinkage void do_bp(struct pt_regs *regs) 940 { 941 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 942 unsigned int opcode, bcode; 943 enum ctx_state prev_state; 944 mm_segment_t seg; 945 946 seg = get_fs(); 947 if (!user_mode(regs)) 948 set_fs(KERNEL_DS); 949 950 prev_state = exception_enter(); 951 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 952 if (get_isa16_mode(regs->cp0_epc)) { 953 u16 instr[2]; 954 955 if (__get_user(instr[0], (u16 __user *)epc)) 956 goto out_sigsegv; 957 958 if (!cpu_has_mmips) { 959 /* MIPS16e mode */ 960 bcode = (instr[0] >> 5) & 0x3f; 961 } else if (mm_insn_16bit(instr[0])) { 962 /* 16-bit microMIPS BREAK */ 963 bcode = instr[0] & 0xf; 964 } else { 965 /* 32-bit microMIPS BREAK */ 966 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 967 goto out_sigsegv; 968 opcode = (instr[0] << 16) | instr[1]; 969 bcode = (opcode >> 6) & ((1 << 20) - 1); 970 } 971 } else { 972 if (__get_user(opcode, (unsigned int __user *)epc)) 973 goto out_sigsegv; 974 bcode = (opcode >> 6) & ((1 << 20) - 1); 975 } 976 977 /* 978 * There is the ancient bug in the MIPS assemblers that the break 979 * code starts left to bit 16 instead to bit 6 in the opcode. 980 * Gas is bug-compatible, but not always, grrr... 981 * We handle both cases with a simple heuristics. --macro 982 */ 983 if (bcode >= (1 << 10)) 984 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 985 986 /* 987 * notify the kprobe handlers, if instruction is likely to 988 * pertain to them. 989 */ 990 switch (bcode) { 991 case BRK_UPROBE: 992 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 993 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 994 goto out; 995 else 996 break; 997 case BRK_UPROBE_XOL: 998 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 999 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1000 goto out; 1001 else 1002 break; 1003 case BRK_KPROBE_BP: 1004 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1005 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1006 goto out; 1007 else 1008 break; 1009 case BRK_KPROBE_SSTEPBP: 1010 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1011 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1012 goto out; 1013 else 1014 break; 1015 default: 1016 break; 1017 } 1018 1019 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); 1020 1021 out: 1022 set_fs(seg); 1023 exception_exit(prev_state); 1024 return; 1025 1026 out_sigsegv: 1027 force_sig(SIGSEGV, current); 1028 goto out; 1029 } 1030 1031 asmlinkage void do_tr(struct pt_regs *regs) 1032 { 1033 u32 opcode, tcode = 0; 1034 enum ctx_state prev_state; 1035 u16 instr[2]; 1036 mm_segment_t seg; 1037 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1038 1039 seg = get_fs(); 1040 if (!user_mode(regs)) 1041 set_fs(get_ds()); 1042 1043 prev_state = exception_enter(); 1044 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1045 if (get_isa16_mode(regs->cp0_epc)) { 1046 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1047 __get_user(instr[1], (u16 __user *)(epc + 2))) 1048 goto out_sigsegv; 1049 opcode = (instr[0] << 16) | instr[1]; 1050 /* Immediate versions don't provide a code. */ 1051 if (!(opcode & OPCODE)) 1052 tcode = (opcode >> 12) & ((1 << 4) - 1); 1053 } else { 1054 if (__get_user(opcode, (u32 __user *)epc)) 1055 goto out_sigsegv; 1056 /* Immediate versions don't provide a code. */ 1057 if (!(opcode & OPCODE)) 1058 tcode = (opcode >> 6) & ((1 << 10) - 1); 1059 } 1060 1061 do_trap_or_bp(regs, tcode, 0, "Trap"); 1062 1063 out: 1064 set_fs(seg); 1065 exception_exit(prev_state); 1066 return; 1067 1068 out_sigsegv: 1069 force_sig(SIGSEGV, current); 1070 goto out; 1071 } 1072 1073 asmlinkage void do_ri(struct pt_regs *regs) 1074 { 1075 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1076 unsigned long old_epc = regs->cp0_epc; 1077 unsigned long old31 = regs->regs[31]; 1078 enum ctx_state prev_state; 1079 unsigned int opcode = 0; 1080 int status = -1; 1081 1082 /* 1083 * Avoid any kernel code. Just emulate the R2 instruction 1084 * as quickly as possible. 1085 */ 1086 if (mipsr2_emulation && cpu_has_mips_r6 && 1087 likely(user_mode(regs)) && 1088 likely(get_user(opcode, epc) >= 0)) { 1089 unsigned long fcr31 = 0; 1090 1091 status = mipsr2_decoder(regs, opcode, &fcr31); 1092 switch (status) { 1093 case 0: 1094 case SIGEMT: 1095 task_thread_info(current)->r2_emul_return = 1; 1096 return; 1097 case SIGILL: 1098 goto no_r2_instr; 1099 default: 1100 process_fpemu_return(status, 1101 ¤t->thread.cp0_baduaddr, 1102 fcr31); 1103 task_thread_info(current)->r2_emul_return = 1; 1104 return; 1105 } 1106 } 1107 1108 no_r2_instr: 1109 1110 prev_state = exception_enter(); 1111 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1112 1113 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1114 SIGILL) == NOTIFY_STOP) 1115 goto out; 1116 1117 die_if_kernel("Reserved instruction in kernel code", regs); 1118 1119 if (unlikely(compute_return_epc(regs) < 0)) 1120 goto out; 1121 1122 if (!get_isa16_mode(regs->cp0_epc)) { 1123 if (unlikely(get_user(opcode, epc) < 0)) 1124 status = SIGSEGV; 1125 1126 if (!cpu_has_llsc && status < 0) 1127 status = simulate_llsc(regs, opcode); 1128 1129 if (status < 0) 1130 status = simulate_rdhwr_normal(regs, opcode); 1131 1132 if (status < 0) 1133 status = simulate_sync(regs, opcode); 1134 1135 if (status < 0) 1136 status = simulate_fp(regs, opcode, old_epc, old31); 1137 } else if (cpu_has_mmips) { 1138 unsigned short mmop[2] = { 0 }; 1139 1140 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) 1141 status = SIGSEGV; 1142 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) 1143 status = SIGSEGV; 1144 opcode = mmop[0]; 1145 opcode = (opcode << 16) | mmop[1]; 1146 1147 if (status < 0) 1148 status = simulate_rdhwr_mm(regs, opcode); 1149 } 1150 1151 if (status < 0) 1152 status = SIGILL; 1153 1154 if (unlikely(status > 0)) { 1155 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1156 regs->regs[31] = old31; 1157 force_sig(status, current); 1158 } 1159 1160 out: 1161 exception_exit(prev_state); 1162 } 1163 1164 /* 1165 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1166 * emulated more than some threshold number of instructions, force migration to 1167 * a "CPU" that has FP support. 1168 */ 1169 static void mt_ase_fp_affinity(void) 1170 { 1171 #ifdef CONFIG_MIPS_MT_FPAFF 1172 if (mt_fpemul_threshold > 0 && 1173 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1174 /* 1175 * If there's no FPU present, or if the application has already 1176 * restricted the allowed set to exclude any CPUs with FPUs, 1177 * we'll skip the procedure. 1178 */ 1179 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1180 cpumask_t tmask; 1181 1182 current->thread.user_cpus_allowed 1183 = current->cpus_allowed; 1184 cpumask_and(&tmask, ¤t->cpus_allowed, 1185 &mt_fpu_cpumask); 1186 set_cpus_allowed_ptr(current, &tmask); 1187 set_thread_flag(TIF_FPUBOUND); 1188 } 1189 } 1190 #endif /* CONFIG_MIPS_MT_FPAFF */ 1191 } 1192 1193 /* 1194 * No lock; only written during early bootup by CPU 0. 1195 */ 1196 static RAW_NOTIFIER_HEAD(cu2_chain); 1197 1198 int __ref register_cu2_notifier(struct notifier_block *nb) 1199 { 1200 return raw_notifier_chain_register(&cu2_chain, nb); 1201 } 1202 1203 int cu2_notifier_call_chain(unsigned long val, void *v) 1204 { 1205 return raw_notifier_call_chain(&cu2_chain, val, v); 1206 } 1207 1208 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1209 void *data) 1210 { 1211 struct pt_regs *regs = data; 1212 1213 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1214 "instruction", regs); 1215 force_sig(SIGILL, current); 1216 1217 return NOTIFY_OK; 1218 } 1219 1220 static int wait_on_fp_mode_switch(atomic_t *p) 1221 { 1222 /* 1223 * The FP mode for this task is currently being switched. That may 1224 * involve modifications to the format of this tasks FP context which 1225 * make it unsafe to proceed with execution for the moment. Instead, 1226 * schedule some other task. 1227 */ 1228 schedule(); 1229 return 0; 1230 } 1231 1232 static int enable_restore_fp_context(int msa) 1233 { 1234 int err, was_fpu_owner, prior_msa; 1235 1236 /* 1237 * If an FP mode switch is currently underway, wait for it to 1238 * complete before proceeding. 1239 */ 1240 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1241 wait_on_fp_mode_switch, TASK_KILLABLE); 1242 1243 if (!used_math()) { 1244 /* First time FP context user. */ 1245 preempt_disable(); 1246 err = init_fpu(); 1247 if (msa && !err) { 1248 enable_msa(); 1249 init_msa_upper(); 1250 set_thread_flag(TIF_USEDMSA); 1251 set_thread_flag(TIF_MSA_CTX_LIVE); 1252 } 1253 preempt_enable(); 1254 if (!err) 1255 set_used_math(); 1256 return err; 1257 } 1258 1259 /* 1260 * This task has formerly used the FP context. 1261 * 1262 * If this thread has no live MSA vector context then we can simply 1263 * restore the scalar FP context. If it has live MSA vector context 1264 * (that is, it has or may have used MSA since last performing a 1265 * function call) then we'll need to restore the vector context. This 1266 * applies even if we're currently only executing a scalar FP 1267 * instruction. This is because if we were to later execute an MSA 1268 * instruction then we'd either have to: 1269 * 1270 * - Restore the vector context & clobber any registers modified by 1271 * scalar FP instructions between now & then. 1272 * 1273 * or 1274 * 1275 * - Not restore the vector context & lose the most significant bits 1276 * of all vector registers. 1277 * 1278 * Neither of those options is acceptable. We cannot restore the least 1279 * significant bits of the registers now & only restore the most 1280 * significant bits later because the most significant bits of any 1281 * vector registers whose aliased FP register is modified now will have 1282 * been zeroed. We'd have no way to know that when restoring the vector 1283 * context & thus may load an outdated value for the most significant 1284 * bits of a vector register. 1285 */ 1286 if (!msa && !thread_msa_context_live()) 1287 return own_fpu(1); 1288 1289 /* 1290 * This task is using or has previously used MSA. Thus we require 1291 * that Status.FR == 1. 1292 */ 1293 preempt_disable(); 1294 was_fpu_owner = is_fpu_owner(); 1295 err = own_fpu_inatomic(0); 1296 if (err) 1297 goto out; 1298 1299 enable_msa(); 1300 write_msa_csr(current->thread.fpu.msacsr); 1301 set_thread_flag(TIF_USEDMSA); 1302 1303 /* 1304 * If this is the first time that the task is using MSA and it has 1305 * previously used scalar FP in this time slice then we already nave 1306 * FP context which we shouldn't clobber. We do however need to clear 1307 * the upper 64b of each vector register so that this task has no 1308 * opportunity to see data left behind by another. 1309 */ 1310 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1311 if (!prior_msa && was_fpu_owner) { 1312 init_msa_upper(); 1313 1314 goto out; 1315 } 1316 1317 if (!prior_msa) { 1318 /* 1319 * Restore the least significant 64b of each vector register 1320 * from the existing scalar FP context. 1321 */ 1322 _restore_fp(current); 1323 1324 /* 1325 * The task has not formerly used MSA, so clear the upper 64b 1326 * of each vector register such that it cannot see data left 1327 * behind by another task. 1328 */ 1329 init_msa_upper(); 1330 } else { 1331 /* We need to restore the vector context. */ 1332 restore_msa(current); 1333 1334 /* Restore the scalar FP control & status register */ 1335 if (!was_fpu_owner) 1336 write_32bit_cp1_register(CP1_STATUS, 1337 current->thread.fpu.fcr31); 1338 } 1339 1340 out: 1341 preempt_enable(); 1342 1343 return 0; 1344 } 1345 1346 asmlinkage void do_cpu(struct pt_regs *regs) 1347 { 1348 enum ctx_state prev_state; 1349 unsigned int __user *epc; 1350 unsigned long old_epc, old31; 1351 void __user *fault_addr; 1352 unsigned int opcode; 1353 unsigned long fcr31; 1354 unsigned int cpid; 1355 int status, err; 1356 int sig; 1357 1358 prev_state = exception_enter(); 1359 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1360 1361 if (cpid != 2) 1362 die_if_kernel("do_cpu invoked from kernel context!", regs); 1363 1364 switch (cpid) { 1365 case 0: 1366 epc = (unsigned int __user *)exception_epc(regs); 1367 old_epc = regs->cp0_epc; 1368 old31 = regs->regs[31]; 1369 opcode = 0; 1370 status = -1; 1371 1372 if (unlikely(compute_return_epc(regs) < 0)) 1373 break; 1374 1375 if (!get_isa16_mode(regs->cp0_epc)) { 1376 if (unlikely(get_user(opcode, epc) < 0)) 1377 status = SIGSEGV; 1378 1379 if (!cpu_has_llsc && status < 0) 1380 status = simulate_llsc(regs, opcode); 1381 } 1382 1383 if (status < 0) 1384 status = SIGILL; 1385 1386 if (unlikely(status > 0)) { 1387 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1388 regs->regs[31] = old31; 1389 force_sig(status, current); 1390 } 1391 1392 break; 1393 1394 case 3: 1395 /* 1396 * The COP3 opcode space and consequently the CP0.Status.CU3 1397 * bit and the CP0.Cause.CE=3 encoding have been removed as 1398 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1399 * up the space has been reused for COP1X instructions, that 1400 * are enabled by the CP0.Status.CU1 bit and consequently 1401 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1402 * exceptions. Some FPU-less processors that implement one 1403 * of these ISAs however use this code erroneously for COP1X 1404 * instructions. Therefore we redirect this trap to the FP 1405 * emulator too. 1406 */ 1407 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1408 force_sig(SIGILL, current); 1409 break; 1410 } 1411 /* Fall through. */ 1412 1413 case 1: 1414 err = enable_restore_fp_context(0); 1415 1416 if (raw_cpu_has_fpu && !err) 1417 break; 1418 1419 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1420 &fault_addr); 1421 fcr31 = current->thread.fpu.fcr31; 1422 1423 /* 1424 * We can't allow the emulated instruction to leave 1425 * any of the cause bits set in $fcr31. 1426 */ 1427 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1428 1429 /* Send a signal if required. */ 1430 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1431 mt_ase_fp_affinity(); 1432 1433 break; 1434 1435 case 2: 1436 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1437 break; 1438 } 1439 1440 exception_exit(prev_state); 1441 } 1442 1443 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1444 { 1445 enum ctx_state prev_state; 1446 1447 prev_state = exception_enter(); 1448 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1449 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1450 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1451 goto out; 1452 1453 /* Clear MSACSR.Cause before enabling interrupts */ 1454 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1455 local_irq_enable(); 1456 1457 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1458 force_sig(SIGFPE, current); 1459 out: 1460 exception_exit(prev_state); 1461 } 1462 1463 asmlinkage void do_msa(struct pt_regs *regs) 1464 { 1465 enum ctx_state prev_state; 1466 int err; 1467 1468 prev_state = exception_enter(); 1469 1470 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1471 force_sig(SIGILL, current); 1472 goto out; 1473 } 1474 1475 die_if_kernel("do_msa invoked from kernel context!", regs); 1476 1477 err = enable_restore_fp_context(1); 1478 if (err) 1479 force_sig(SIGILL, current); 1480 out: 1481 exception_exit(prev_state); 1482 } 1483 1484 asmlinkage void do_mdmx(struct pt_regs *regs) 1485 { 1486 enum ctx_state prev_state; 1487 1488 prev_state = exception_enter(); 1489 force_sig(SIGILL, current); 1490 exception_exit(prev_state); 1491 } 1492 1493 /* 1494 * Called with interrupts disabled. 1495 */ 1496 asmlinkage void do_watch(struct pt_regs *regs) 1497 { 1498 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT }; 1499 enum ctx_state prev_state; 1500 1501 prev_state = exception_enter(); 1502 /* 1503 * Clear WP (bit 22) bit of cause register so we don't loop 1504 * forever. 1505 */ 1506 clear_c0_cause(CAUSEF_WP); 1507 1508 /* 1509 * If the current thread has the watch registers loaded, save 1510 * their values and send SIGTRAP. Otherwise another thread 1511 * left the registers set, clear them and continue. 1512 */ 1513 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1514 mips_read_watch_registers(); 1515 local_irq_enable(); 1516 force_sig_info(SIGTRAP, &info, current); 1517 } else { 1518 mips_clear_watch_registers(); 1519 local_irq_enable(); 1520 } 1521 exception_exit(prev_state); 1522 } 1523 1524 asmlinkage void do_mcheck(struct pt_regs *regs) 1525 { 1526 int multi_match = regs->cp0_status & ST0_TS; 1527 enum ctx_state prev_state; 1528 mm_segment_t old_fs = get_fs(); 1529 1530 prev_state = exception_enter(); 1531 show_regs(regs); 1532 1533 if (multi_match) { 1534 dump_tlb_regs(); 1535 pr_info("\n"); 1536 dump_tlb_all(); 1537 } 1538 1539 if (!user_mode(regs)) 1540 set_fs(KERNEL_DS); 1541 1542 show_code((unsigned int __user *) regs->cp0_epc); 1543 1544 set_fs(old_fs); 1545 1546 /* 1547 * Some chips may have other causes of machine check (e.g. SB1 1548 * graduation timer) 1549 */ 1550 panic("Caught Machine Check exception - %scaused by multiple " 1551 "matching entries in the TLB.", 1552 (multi_match) ? "" : "not "); 1553 } 1554 1555 asmlinkage void do_mt(struct pt_regs *regs) 1556 { 1557 int subcode; 1558 1559 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1560 >> VPECONTROL_EXCPT_SHIFT; 1561 switch (subcode) { 1562 case 0: 1563 printk(KERN_DEBUG "Thread Underflow\n"); 1564 break; 1565 case 1: 1566 printk(KERN_DEBUG "Thread Overflow\n"); 1567 break; 1568 case 2: 1569 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1570 break; 1571 case 3: 1572 printk(KERN_DEBUG "Gating Storage Exception\n"); 1573 break; 1574 case 4: 1575 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1576 break; 1577 case 5: 1578 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1579 break; 1580 default: 1581 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1582 subcode); 1583 break; 1584 } 1585 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1586 1587 force_sig(SIGILL, current); 1588 } 1589 1590 1591 asmlinkage void do_dsp(struct pt_regs *regs) 1592 { 1593 if (cpu_has_dsp) 1594 panic("Unexpected DSP exception"); 1595 1596 force_sig(SIGILL, current); 1597 } 1598 1599 asmlinkage void do_reserved(struct pt_regs *regs) 1600 { 1601 /* 1602 * Game over - no way to handle this if it ever occurs. Most probably 1603 * caused by a new unknown cpu type or after another deadly 1604 * hard/software error. 1605 */ 1606 show_regs(regs); 1607 panic("Caught reserved exception %ld - should not happen.", 1608 (regs->cp0_cause & 0x7f) >> 2); 1609 } 1610 1611 static int __initdata l1parity = 1; 1612 static int __init nol1parity(char *s) 1613 { 1614 l1parity = 0; 1615 return 1; 1616 } 1617 __setup("nol1par", nol1parity); 1618 static int __initdata l2parity = 1; 1619 static int __init nol2parity(char *s) 1620 { 1621 l2parity = 0; 1622 return 1; 1623 } 1624 __setup("nol2par", nol2parity); 1625 1626 /* 1627 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1628 * it different ways. 1629 */ 1630 static inline void parity_protection_init(void) 1631 { 1632 switch (current_cpu_type()) { 1633 case CPU_24K: 1634 case CPU_34K: 1635 case CPU_74K: 1636 case CPU_1004K: 1637 case CPU_1074K: 1638 case CPU_INTERAPTIV: 1639 case CPU_PROAPTIV: 1640 case CPU_P5600: 1641 case CPU_QEMU_GENERIC: 1642 case CPU_I6400: 1643 case CPU_P6600: 1644 { 1645 #define ERRCTL_PE 0x80000000 1646 #define ERRCTL_L2P 0x00800000 1647 unsigned long errctl; 1648 unsigned int l1parity_present, l2parity_present; 1649 1650 errctl = read_c0_ecc(); 1651 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1652 1653 /* probe L1 parity support */ 1654 write_c0_ecc(errctl | ERRCTL_PE); 1655 back_to_back_c0_hazard(); 1656 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1657 1658 /* probe L2 parity support */ 1659 write_c0_ecc(errctl|ERRCTL_L2P); 1660 back_to_back_c0_hazard(); 1661 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1662 1663 if (l1parity_present && l2parity_present) { 1664 if (l1parity) 1665 errctl |= ERRCTL_PE; 1666 if (l1parity ^ l2parity) 1667 errctl |= ERRCTL_L2P; 1668 } else if (l1parity_present) { 1669 if (l1parity) 1670 errctl |= ERRCTL_PE; 1671 } else if (l2parity_present) { 1672 if (l2parity) 1673 errctl |= ERRCTL_L2P; 1674 } else { 1675 /* No parity available */ 1676 } 1677 1678 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1679 1680 write_c0_ecc(errctl); 1681 back_to_back_c0_hazard(); 1682 errctl = read_c0_ecc(); 1683 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1684 1685 if (l1parity_present) 1686 printk(KERN_INFO "Cache parity protection %sabled\n", 1687 (errctl & ERRCTL_PE) ? "en" : "dis"); 1688 1689 if (l2parity_present) { 1690 if (l1parity_present && l1parity) 1691 errctl ^= ERRCTL_L2P; 1692 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1693 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1694 } 1695 } 1696 break; 1697 1698 case CPU_5KC: 1699 case CPU_5KE: 1700 case CPU_LOONGSON1: 1701 write_c0_ecc(0x80000000); 1702 back_to_back_c0_hazard(); 1703 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1704 printk(KERN_INFO "Cache parity protection %sabled\n", 1705 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1706 break; 1707 case CPU_20KC: 1708 case CPU_25KF: 1709 /* Clear the DE bit (bit 16) in the c0_status register. */ 1710 printk(KERN_INFO "Enable cache parity protection for " 1711 "MIPS 20KC/25KF CPUs.\n"); 1712 clear_c0_status(ST0_DE); 1713 break; 1714 default: 1715 break; 1716 } 1717 } 1718 1719 asmlinkage void cache_parity_error(void) 1720 { 1721 const int field = 2 * sizeof(unsigned long); 1722 unsigned int reg_val; 1723 1724 /* For the moment, report the problem and hang. */ 1725 printk("Cache error exception:\n"); 1726 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1727 reg_val = read_c0_cacheerr(); 1728 printk("c0_cacheerr == %08x\n", reg_val); 1729 1730 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1731 reg_val & (1<<30) ? "secondary" : "primary", 1732 reg_val & (1<<31) ? "data" : "insn"); 1733 if ((cpu_has_mips_r2_r6) && 1734 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1735 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1736 reg_val & (1<<29) ? "ED " : "", 1737 reg_val & (1<<28) ? "ET " : "", 1738 reg_val & (1<<27) ? "ES " : "", 1739 reg_val & (1<<26) ? "EE " : "", 1740 reg_val & (1<<25) ? "EB " : "", 1741 reg_val & (1<<24) ? "EI " : "", 1742 reg_val & (1<<23) ? "E1 " : "", 1743 reg_val & (1<<22) ? "E0 " : ""); 1744 } else { 1745 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1746 reg_val & (1<<29) ? "ED " : "", 1747 reg_val & (1<<28) ? "ET " : "", 1748 reg_val & (1<<26) ? "EE " : "", 1749 reg_val & (1<<25) ? "EB " : "", 1750 reg_val & (1<<24) ? "EI " : "", 1751 reg_val & (1<<23) ? "E1 " : "", 1752 reg_val & (1<<22) ? "E0 " : ""); 1753 } 1754 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1755 1756 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1757 if (reg_val & (1<<22)) 1758 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1759 1760 if (reg_val & (1<<23)) 1761 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1762 #endif 1763 1764 panic("Can't handle the cache error!"); 1765 } 1766 1767 asmlinkage void do_ftlb(void) 1768 { 1769 const int field = 2 * sizeof(unsigned long); 1770 unsigned int reg_val; 1771 1772 /* For the moment, report the problem and hang. */ 1773 if ((cpu_has_mips_r2_r6) && 1774 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || 1775 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { 1776 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1777 read_c0_ecc()); 1778 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1779 reg_val = read_c0_cacheerr(); 1780 pr_err("c0_cacheerr == %08x\n", reg_val); 1781 1782 if ((reg_val & 0xc0000000) == 0xc0000000) { 1783 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1784 } else { 1785 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1786 reg_val & (1<<30) ? "secondary" : "primary", 1787 reg_val & (1<<31) ? "data" : "insn"); 1788 } 1789 } else { 1790 pr_err("FTLB error exception\n"); 1791 } 1792 /* Just print the cacheerr bits for now */ 1793 cache_parity_error(); 1794 } 1795 1796 /* 1797 * SDBBP EJTAG debug exception handler. 1798 * We skip the instruction and return to the next instruction. 1799 */ 1800 void ejtag_exception_handler(struct pt_regs *regs) 1801 { 1802 const int field = 2 * sizeof(unsigned long); 1803 unsigned long depc, old_epc, old_ra; 1804 unsigned int debug; 1805 1806 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1807 depc = read_c0_depc(); 1808 debug = read_c0_debug(); 1809 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1810 if (debug & 0x80000000) { 1811 /* 1812 * In branch delay slot. 1813 * We cheat a little bit here and use EPC to calculate the 1814 * debug return address (DEPC). EPC is restored after the 1815 * calculation. 1816 */ 1817 old_epc = regs->cp0_epc; 1818 old_ra = regs->regs[31]; 1819 regs->cp0_epc = depc; 1820 compute_return_epc(regs); 1821 depc = regs->cp0_epc; 1822 regs->cp0_epc = old_epc; 1823 regs->regs[31] = old_ra; 1824 } else 1825 depc += 4; 1826 write_c0_depc(depc); 1827 1828 #if 0 1829 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1830 write_c0_debug(debug | 0x100); 1831 #endif 1832 } 1833 1834 /* 1835 * NMI exception handler. 1836 * No lock; only written during early bootup by CPU 0. 1837 */ 1838 static RAW_NOTIFIER_HEAD(nmi_chain); 1839 1840 int register_nmi_notifier(struct notifier_block *nb) 1841 { 1842 return raw_notifier_chain_register(&nmi_chain, nb); 1843 } 1844 1845 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1846 { 1847 char str[100]; 1848 1849 nmi_enter(); 1850 raw_notifier_call_chain(&nmi_chain, 0, regs); 1851 bust_spinlocks(1); 1852 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1853 smp_processor_id(), regs->cp0_epc); 1854 regs->cp0_epc = read_c0_errorepc(); 1855 die(str, regs); 1856 nmi_exit(); 1857 } 1858 1859 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1860 1861 unsigned long ebase; 1862 unsigned long exception_handlers[32]; 1863 unsigned long vi_handlers[64]; 1864 1865 void __init *set_except_vector(int n, void *addr) 1866 { 1867 unsigned long handler = (unsigned long) addr; 1868 unsigned long old_handler; 1869 1870 #ifdef CONFIG_CPU_MICROMIPS 1871 /* 1872 * Only the TLB handlers are cache aligned with an even 1873 * address. All other handlers are on an odd address and 1874 * require no modification. Otherwise, MIPS32 mode will 1875 * be entered when handling any TLB exceptions. That 1876 * would be bad...since we must stay in microMIPS mode. 1877 */ 1878 if (!(handler & 0x1)) 1879 handler |= 1; 1880 #endif 1881 old_handler = xchg(&exception_handlers[n], handler); 1882 1883 if (n == 0 && cpu_has_divec) { 1884 #ifdef CONFIG_CPU_MICROMIPS 1885 unsigned long jump_mask = ~((1 << 27) - 1); 1886 #else 1887 unsigned long jump_mask = ~((1 << 28) - 1); 1888 #endif 1889 u32 *buf = (u32 *)(ebase + 0x200); 1890 unsigned int k0 = 26; 1891 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1892 uasm_i_j(&buf, handler & ~jump_mask); 1893 uasm_i_nop(&buf); 1894 } else { 1895 UASM_i_LA(&buf, k0, handler); 1896 uasm_i_jr(&buf, k0); 1897 uasm_i_nop(&buf); 1898 } 1899 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1900 } 1901 return (void *)old_handler; 1902 } 1903 1904 static void do_default_vi(void) 1905 { 1906 show_regs(get_irq_regs()); 1907 panic("Caught unexpected vectored interrupt."); 1908 } 1909 1910 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1911 { 1912 unsigned long handler; 1913 unsigned long old_handler = vi_handlers[n]; 1914 int srssets = current_cpu_data.srsets; 1915 u16 *h; 1916 unsigned char *b; 1917 1918 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1919 1920 if (addr == NULL) { 1921 handler = (unsigned long) do_default_vi; 1922 srs = 0; 1923 } else 1924 handler = (unsigned long) addr; 1925 vi_handlers[n] = handler; 1926 1927 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1928 1929 if (srs >= srssets) 1930 panic("Shadow register set %d not supported", srs); 1931 1932 if (cpu_has_veic) { 1933 if (board_bind_eic_interrupt) 1934 board_bind_eic_interrupt(n, srs); 1935 } else if (cpu_has_vint) { 1936 /* SRSMap is only defined if shadow sets are implemented */ 1937 if (srssets > 1) 1938 change_c0_srsmap(0xf << n*4, srs << n*4); 1939 } 1940 1941 if (srs == 0) { 1942 /* 1943 * If no shadow set is selected then use the default handler 1944 * that does normal register saving and standard interrupt exit 1945 */ 1946 extern char except_vec_vi, except_vec_vi_lui; 1947 extern char except_vec_vi_ori, except_vec_vi_end; 1948 extern char rollback_except_vec_vi; 1949 char *vec_start = using_rollback_handler() ? 1950 &rollback_except_vec_vi : &except_vec_vi; 1951 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1952 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1953 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1954 #else 1955 const int lui_offset = &except_vec_vi_lui - vec_start; 1956 const int ori_offset = &except_vec_vi_ori - vec_start; 1957 #endif 1958 const int handler_len = &except_vec_vi_end - vec_start; 1959 1960 if (handler_len > VECTORSPACING) { 1961 /* 1962 * Sigh... panicing won't help as the console 1963 * is probably not configured :( 1964 */ 1965 panic("VECTORSPACING too small"); 1966 } 1967 1968 set_handler(((unsigned long)b - ebase), vec_start, 1969 #ifdef CONFIG_CPU_MICROMIPS 1970 (handler_len - 1)); 1971 #else 1972 handler_len); 1973 #endif 1974 h = (u16 *)(b + lui_offset); 1975 *h = (handler >> 16) & 0xffff; 1976 h = (u16 *)(b + ori_offset); 1977 *h = (handler & 0xffff); 1978 local_flush_icache_range((unsigned long)b, 1979 (unsigned long)(b+handler_len)); 1980 } 1981 else { 1982 /* 1983 * In other cases jump directly to the interrupt handler. It 1984 * is the handler's responsibility to save registers if required 1985 * (eg hi/lo) and return from the exception using "eret". 1986 */ 1987 u32 insn; 1988 1989 h = (u16 *)b; 1990 /* j handler */ 1991 #ifdef CONFIG_CPU_MICROMIPS 1992 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1993 #else 1994 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1995 #endif 1996 h[0] = (insn >> 16) & 0xffff; 1997 h[1] = insn & 0xffff; 1998 h[2] = 0; 1999 h[3] = 0; 2000 local_flush_icache_range((unsigned long)b, 2001 (unsigned long)(b+8)); 2002 } 2003 2004 return (void *)old_handler; 2005 } 2006 2007 void *set_vi_handler(int n, vi_handler_t addr) 2008 { 2009 return set_vi_srs_handler(n, addr, 0); 2010 } 2011 2012 extern void tlb_init(void); 2013 2014 /* 2015 * Timer interrupt 2016 */ 2017 int cp0_compare_irq; 2018 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2019 int cp0_compare_irq_shift; 2020 2021 /* 2022 * Performance counter IRQ or -1 if shared with timer 2023 */ 2024 int cp0_perfcount_irq; 2025 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2026 2027 /* 2028 * Fast debug channel IRQ or -1 if not present 2029 */ 2030 int cp0_fdc_irq; 2031 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2032 2033 static int noulri; 2034 2035 static int __init ulri_disable(char *s) 2036 { 2037 pr_info("Disabling ulri\n"); 2038 noulri = 1; 2039 2040 return 1; 2041 } 2042 __setup("noulri", ulri_disable); 2043 2044 /* configure STATUS register */ 2045 static void configure_status(void) 2046 { 2047 /* 2048 * Disable coprocessors and select 32-bit or 64-bit addressing 2049 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2050 * flag that some firmware may have left set and the TS bit (for 2051 * IP27). Set XX for ISA IV code to work. 2052 */ 2053 unsigned int status_set = ST0_CU0; 2054 #ifdef CONFIG_64BIT 2055 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2056 #endif 2057 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2058 status_set |= ST0_XX; 2059 if (cpu_has_dsp) 2060 status_set |= ST0_MX; 2061 2062 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2063 status_set); 2064 } 2065 2066 /* configure HWRENA register */ 2067 static void configure_hwrena(void) 2068 { 2069 unsigned int hwrena = cpu_hwrena_impl_bits; 2070 2071 if (cpu_has_mips_r2_r6) 2072 hwrena |= 0x0000000f; 2073 2074 if (!noulri && cpu_has_userlocal) 2075 hwrena |= (1 << 29); 2076 2077 if (hwrena) 2078 write_c0_hwrena(hwrena); 2079 } 2080 2081 static void configure_exception_vector(void) 2082 { 2083 if (cpu_has_veic || cpu_has_vint) { 2084 unsigned long sr = set_c0_status(ST0_BEV); 2085 write_c0_ebase(ebase); 2086 write_c0_status(sr); 2087 /* Setting vector spacing enables EI/VI mode */ 2088 change_c0_intctl(0x3e0, VECTORSPACING); 2089 } 2090 if (cpu_has_divec) { 2091 if (cpu_has_mipsmt) { 2092 unsigned int vpflags = dvpe(); 2093 set_c0_cause(CAUSEF_IV); 2094 evpe(vpflags); 2095 } else 2096 set_c0_cause(CAUSEF_IV); 2097 } 2098 } 2099 2100 void per_cpu_trap_init(bool is_boot_cpu) 2101 { 2102 unsigned int cpu = smp_processor_id(); 2103 2104 configure_status(); 2105 configure_hwrena(); 2106 2107 configure_exception_vector(); 2108 2109 /* 2110 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2111 * 2112 * o read IntCtl.IPTI to determine the timer interrupt 2113 * o read IntCtl.IPPCI to determine the performance counter interrupt 2114 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2115 */ 2116 if (cpu_has_mips_r2_r6) { 2117 /* 2118 * We shouldn't trust a secondary core has a sane EBASE register 2119 * so use the one calculated by the boot CPU. 2120 */ 2121 if (!is_boot_cpu) 2122 write_c0_ebase(ebase); 2123 2124 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2125 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2126 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2127 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2128 if (!cp0_fdc_irq) 2129 cp0_fdc_irq = -1; 2130 2131 } else { 2132 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2133 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2134 cp0_perfcount_irq = -1; 2135 cp0_fdc_irq = -1; 2136 } 2137 2138 if (!cpu_data[cpu].asid_cache) 2139 cpu_data[cpu].asid_cache = asid_first_version(cpu); 2140 2141 atomic_inc(&init_mm.mm_count); 2142 current->active_mm = &init_mm; 2143 BUG_ON(current->mm); 2144 enter_lazy_tlb(&init_mm, current); 2145 2146 /* Boot CPU's cache setup in setup_arch(). */ 2147 if (!is_boot_cpu) 2148 cpu_cache_init(); 2149 tlb_init(); 2150 TLBMISS_HANDLER_SETUP(); 2151 } 2152 2153 /* Install CPU exception handler */ 2154 void set_handler(unsigned long offset, void *addr, unsigned long size) 2155 { 2156 #ifdef CONFIG_CPU_MICROMIPS 2157 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2158 #else 2159 memcpy((void *)(ebase + offset), addr, size); 2160 #endif 2161 local_flush_icache_range(ebase + offset, ebase + offset + size); 2162 } 2163 2164 static char panic_null_cerr[] = 2165 "Trying to set NULL cache error exception handler"; 2166 2167 /* 2168 * Install uncached CPU exception handler. 2169 * This is suitable only for the cache error exception which is the only 2170 * exception handler that is being run uncached. 2171 */ 2172 void set_uncached_handler(unsigned long offset, void *addr, 2173 unsigned long size) 2174 { 2175 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2176 2177 if (!addr) 2178 panic(panic_null_cerr); 2179 2180 memcpy((void *)(uncached_ebase + offset), addr, size); 2181 } 2182 2183 static int __initdata rdhwr_noopt; 2184 static int __init set_rdhwr_noopt(char *str) 2185 { 2186 rdhwr_noopt = 1; 2187 return 1; 2188 } 2189 2190 __setup("rdhwr_noopt", set_rdhwr_noopt); 2191 2192 void __init trap_init(void) 2193 { 2194 extern char except_vec3_generic; 2195 extern char except_vec4; 2196 extern char except_vec3_r4000; 2197 unsigned long i; 2198 2199 check_wait(); 2200 2201 if (cpu_has_veic || cpu_has_vint) { 2202 unsigned long size = 0x200 + VECTORSPACING*64; 2203 ebase = (unsigned long) 2204 __alloc_bootmem(size, 1 << fls(size), 0); 2205 } else { 2206 ebase = CAC_BASE; 2207 2208 if (cpu_has_mips_r2_r6) 2209 ebase += (read_c0_ebase() & 0x3ffff000); 2210 } 2211 2212 if (cpu_has_mmips) { 2213 unsigned int config3 = read_c0_config3(); 2214 2215 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2216 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2217 else 2218 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2219 } 2220 2221 if (board_ebase_setup) 2222 board_ebase_setup(); 2223 per_cpu_trap_init(true); 2224 2225 /* 2226 * Copy the generic exception handlers to their final destination. 2227 * This will be overridden later as suitable for a particular 2228 * configuration. 2229 */ 2230 set_handler(0x180, &except_vec3_generic, 0x80); 2231 2232 /* 2233 * Setup default vectors 2234 */ 2235 for (i = 0; i <= 31; i++) 2236 set_except_vector(i, handle_reserved); 2237 2238 /* 2239 * Copy the EJTAG debug exception vector handler code to it's final 2240 * destination. 2241 */ 2242 if (cpu_has_ejtag && board_ejtag_handler_setup) 2243 board_ejtag_handler_setup(); 2244 2245 /* 2246 * Only some CPUs have the watch exceptions. 2247 */ 2248 if (cpu_has_watch) 2249 set_except_vector(EXCCODE_WATCH, handle_watch); 2250 2251 /* 2252 * Initialise interrupt handlers 2253 */ 2254 if (cpu_has_veic || cpu_has_vint) { 2255 int nvec = cpu_has_veic ? 64 : 8; 2256 for (i = 0; i < nvec; i++) 2257 set_vi_handler(i, NULL); 2258 } 2259 else if (cpu_has_divec) 2260 set_handler(0x200, &except_vec4, 0x8); 2261 2262 /* 2263 * Some CPUs can enable/disable for cache parity detection, but does 2264 * it different ways. 2265 */ 2266 parity_protection_init(); 2267 2268 /* 2269 * The Data Bus Errors / Instruction Bus Errors are signaled 2270 * by external hardware. Therefore these two exceptions 2271 * may have board specific handlers. 2272 */ 2273 if (board_be_init) 2274 board_be_init(); 2275 2276 set_except_vector(EXCCODE_INT, using_rollback_handler() ? 2277 rollback_handle_int : handle_int); 2278 set_except_vector(EXCCODE_MOD, handle_tlbm); 2279 set_except_vector(EXCCODE_TLBL, handle_tlbl); 2280 set_except_vector(EXCCODE_TLBS, handle_tlbs); 2281 2282 set_except_vector(EXCCODE_ADEL, handle_adel); 2283 set_except_vector(EXCCODE_ADES, handle_ades); 2284 2285 set_except_vector(EXCCODE_IBE, handle_ibe); 2286 set_except_vector(EXCCODE_DBE, handle_dbe); 2287 2288 set_except_vector(EXCCODE_SYS, handle_sys); 2289 set_except_vector(EXCCODE_BP, handle_bp); 2290 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri : 2291 (cpu_has_vtag_icache ? 2292 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2293 set_except_vector(EXCCODE_CPU, handle_cpu); 2294 set_except_vector(EXCCODE_OV, handle_ov); 2295 set_except_vector(EXCCODE_TR, handle_tr); 2296 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); 2297 2298 if (current_cpu_type() == CPU_R6000 || 2299 current_cpu_type() == CPU_R6000A) { 2300 /* 2301 * The R6000 is the only R-series CPU that features a machine 2302 * check exception (similar to the R4000 cache error) and 2303 * unaligned ldc1/sdc1 exception. The handlers have not been 2304 * written yet. Well, anyway there is no R6000 machine on the 2305 * current list of targets for Linux/MIPS. 2306 * (Duh, crap, there is someone with a triple R6k machine) 2307 */ 2308 //set_except_vector(14, handle_mc); 2309 //set_except_vector(15, handle_ndc); 2310 } 2311 2312 2313 if (board_nmi_handler_setup) 2314 board_nmi_handler_setup(); 2315 2316 if (cpu_has_fpu && !cpu_has_nofpuex) 2317 set_except_vector(EXCCODE_FPE, handle_fpe); 2318 2319 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); 2320 2321 if (cpu_has_rixiex) { 2322 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); 2323 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); 2324 } 2325 2326 set_except_vector(EXCCODE_MSADIS, handle_msa); 2327 set_except_vector(EXCCODE_MDMX, handle_mdmx); 2328 2329 if (cpu_has_mcheck) 2330 set_except_vector(EXCCODE_MCHECK, handle_mcheck); 2331 2332 if (cpu_has_mipsmt) 2333 set_except_vector(EXCCODE_THREAD, handle_mt); 2334 2335 set_except_vector(EXCCODE_DSPDIS, handle_dsp); 2336 2337 if (board_cache_error_setup) 2338 board_cache_error_setup(); 2339 2340 if (cpu_has_vce) 2341 /* Special exception: R4[04]00 uses also the divec space. */ 2342 set_handler(0x180, &except_vec3_r4000, 0x100); 2343 else if (cpu_has_4kex) 2344 set_handler(0x180, &except_vec3_generic, 0x80); 2345 else 2346 set_handler(0x080, &except_vec3_generic, 0x80); 2347 2348 local_flush_icache_range(ebase, ebase + 0x400); 2349 2350 sort_extable(__start___dbe_table, __stop___dbe_table); 2351 2352 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2353 } 2354 2355 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2356 void *v) 2357 { 2358 switch (cmd) { 2359 case CPU_PM_ENTER_FAILED: 2360 case CPU_PM_EXIT: 2361 configure_status(); 2362 configure_hwrena(); 2363 configure_exception_vector(); 2364 2365 /* Restore register with CPU number for TLB handlers */ 2366 TLBMISS_HANDLER_RESTORE(); 2367 2368 break; 2369 } 2370 2371 return NOTIFY_OK; 2372 } 2373 2374 static struct notifier_block trap_pm_notifier_block = { 2375 .notifier_call = trap_pm_notifier, 2376 }; 2377 2378 static int __init trap_pm_init(void) 2379 { 2380 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2381 } 2382 arch_initcall(trap_pm_init); 2383