1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/bootinfo.h> 41 #include <asm/branch.h> 42 #include <asm/break.h> 43 #include <asm/cop2.h> 44 #include <asm/cpu.h> 45 #include <asm/cpu-type.h> 46 #include <asm/dsp.h> 47 #include <asm/fpu.h> 48 #include <asm/fpu_emulator.h> 49 #include <asm/idle.h> 50 #include <asm/mips-r2-to-r6-emul.h> 51 #include <asm/mipsregs.h> 52 #include <asm/mipsmtregs.h> 53 #include <asm/module.h> 54 #include <asm/msa.h> 55 #include <asm/pgtable.h> 56 #include <asm/ptrace.h> 57 #include <asm/sections.h> 58 #include <asm/tlbdebug.h> 59 #include <asm/traps.h> 60 #include <asm/uaccess.h> 61 #include <asm/watch.h> 62 #include <asm/mmu_context.h> 63 #include <asm/types.h> 64 #include <asm/stacktrace.h> 65 #include <asm/uasm.h> 66 67 extern void check_wait(void); 68 extern asmlinkage void rollback_handle_int(void); 69 extern asmlinkage void handle_int(void); 70 extern u32 handle_tlbl[]; 71 extern u32 handle_tlbs[]; 72 extern u32 handle_tlbm[]; 73 extern asmlinkage void handle_adel(void); 74 extern asmlinkage void handle_ades(void); 75 extern asmlinkage void handle_ibe(void); 76 extern asmlinkage void handle_dbe(void); 77 extern asmlinkage void handle_sys(void); 78 extern asmlinkage void handle_bp(void); 79 extern asmlinkage void handle_ri(void); 80 extern asmlinkage void handle_ri_rdhwr_vivt(void); 81 extern asmlinkage void handle_ri_rdhwr(void); 82 extern asmlinkage void handle_cpu(void); 83 extern asmlinkage void handle_ov(void); 84 extern asmlinkage void handle_tr(void); 85 extern asmlinkage void handle_msa_fpe(void); 86 extern asmlinkage void handle_fpe(void); 87 extern asmlinkage void handle_ftlb(void); 88 extern asmlinkage void handle_msa(void); 89 extern asmlinkage void handle_mdmx(void); 90 extern asmlinkage void handle_watch(void); 91 extern asmlinkage void handle_mt(void); 92 extern asmlinkage void handle_dsp(void); 93 extern asmlinkage void handle_mcheck(void); 94 extern asmlinkage void handle_reserved(void); 95 extern void tlb_do_page_fault_0(void); 96 97 void (*board_be_init)(void); 98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 99 void (*board_nmi_handler_setup)(void); 100 void (*board_ejtag_handler_setup)(void); 101 void (*board_bind_eic_interrupt)(int irq, int regset); 102 void (*board_ebase_setup)(void); 103 void(*board_cache_error_setup)(void); 104 105 static void show_raw_backtrace(unsigned long reg29) 106 { 107 unsigned long *sp = (unsigned long *)(reg29 & ~3); 108 unsigned long addr; 109 110 printk("Call Trace:"); 111 #ifdef CONFIG_KALLSYMS 112 printk("\n"); 113 #endif 114 while (!kstack_end(sp)) { 115 unsigned long __user *p = 116 (unsigned long __user *)(unsigned long)sp++; 117 if (__get_user(addr, p)) { 118 printk(" (Bad stack address)"); 119 break; 120 } 121 if (__kernel_text_address(addr)) 122 print_ip_sym(addr); 123 } 124 printk("\n"); 125 } 126 127 #ifdef CONFIG_KALLSYMS 128 int raw_show_trace; 129 static int __init set_raw_show_trace(char *str) 130 { 131 raw_show_trace = 1; 132 return 1; 133 } 134 __setup("raw_show_trace", set_raw_show_trace); 135 #endif 136 137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 138 { 139 unsigned long sp = regs->regs[29]; 140 unsigned long ra = regs->regs[31]; 141 unsigned long pc = regs->cp0_epc; 142 143 if (!task) 144 task = current; 145 146 if (raw_show_trace || !__kernel_text_address(pc)) { 147 show_raw_backtrace(sp); 148 return; 149 } 150 printk("Call Trace:\n"); 151 do { 152 print_ip_sym(pc); 153 pc = unwind_stack(task, &sp, pc, &ra); 154 } while (pc); 155 printk("\n"); 156 } 157 158 /* 159 * This routine abuses get_user()/put_user() to reference pointers 160 * with at least a bit of error checking ... 161 */ 162 static void show_stacktrace(struct task_struct *task, 163 const struct pt_regs *regs) 164 { 165 const int field = 2 * sizeof(unsigned long); 166 long stackdata; 167 int i; 168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 169 170 printk("Stack :"); 171 i = 0; 172 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 173 if (i && ((i % (64 / field)) == 0)) 174 printk("\n "); 175 if (i > 39) { 176 printk(" ..."); 177 break; 178 } 179 180 if (__get_user(stackdata, sp++)) { 181 printk(" (Bad stack address)"); 182 break; 183 } 184 185 printk(" %0*lx", field, stackdata); 186 i++; 187 } 188 printk("\n"); 189 show_backtrace(task, regs); 190 } 191 192 void show_stack(struct task_struct *task, unsigned long *sp) 193 { 194 struct pt_regs regs; 195 if (sp) { 196 regs.regs[29] = (unsigned long)sp; 197 regs.regs[31] = 0; 198 regs.cp0_epc = 0; 199 } else { 200 if (task && task != current) { 201 regs.regs[29] = task->thread.reg29; 202 regs.regs[31] = 0; 203 regs.cp0_epc = task->thread.reg31; 204 #ifdef CONFIG_KGDB_KDB 205 } else if (atomic_read(&kgdb_active) != -1 && 206 kdb_current_regs) { 207 memcpy(®s, kdb_current_regs, sizeof(regs)); 208 #endif /* CONFIG_KGDB_KDB */ 209 } else { 210 prepare_frametrace(®s); 211 } 212 } 213 show_stacktrace(task, ®s); 214 } 215 216 static void show_code(unsigned int __user *pc) 217 { 218 long i; 219 unsigned short __user *pc16 = NULL; 220 221 printk("\nCode:"); 222 223 if ((unsigned long)pc & 1) 224 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 225 for(i = -3 ; i < 6 ; i++) { 226 unsigned int insn; 227 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 228 printk(" (Bad address in epc)\n"); 229 break; 230 } 231 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 232 } 233 } 234 235 static void __show_regs(const struct pt_regs *regs) 236 { 237 const int field = 2 * sizeof(unsigned long); 238 unsigned int cause = regs->cp0_cause; 239 unsigned int exccode; 240 int i; 241 242 show_regs_print_info(KERN_DEFAULT); 243 244 /* 245 * Saved main processor registers 246 */ 247 for (i = 0; i < 32; ) { 248 if ((i % 4) == 0) 249 printk("$%2d :", i); 250 if (i == 0) 251 printk(" %0*lx", field, 0UL); 252 else if (i == 26 || i == 27) 253 printk(" %*s", field, ""); 254 else 255 printk(" %0*lx", field, regs->regs[i]); 256 257 i++; 258 if ((i % 4) == 0) 259 printk("\n"); 260 } 261 262 #ifdef CONFIG_CPU_HAS_SMARTMIPS 263 printk("Acx : %0*lx\n", field, regs->acx); 264 #endif 265 printk("Hi : %0*lx\n", field, regs->hi); 266 printk("Lo : %0*lx\n", field, regs->lo); 267 268 /* 269 * Saved cp0 registers 270 */ 271 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 272 (void *) regs->cp0_epc); 273 printk("ra : %0*lx %pS\n", field, regs->regs[31], 274 (void *) regs->regs[31]); 275 276 printk("Status: %08x ", (uint32_t) regs->cp0_status); 277 278 if (cpu_has_3kex) { 279 if (regs->cp0_status & ST0_KUO) 280 printk("KUo "); 281 if (regs->cp0_status & ST0_IEO) 282 printk("IEo "); 283 if (regs->cp0_status & ST0_KUP) 284 printk("KUp "); 285 if (regs->cp0_status & ST0_IEP) 286 printk("IEp "); 287 if (regs->cp0_status & ST0_KUC) 288 printk("KUc "); 289 if (regs->cp0_status & ST0_IEC) 290 printk("IEc "); 291 } else if (cpu_has_4kex) { 292 if (regs->cp0_status & ST0_KX) 293 printk("KX "); 294 if (regs->cp0_status & ST0_SX) 295 printk("SX "); 296 if (regs->cp0_status & ST0_UX) 297 printk("UX "); 298 switch (regs->cp0_status & ST0_KSU) { 299 case KSU_USER: 300 printk("USER "); 301 break; 302 case KSU_SUPERVISOR: 303 printk("SUPERVISOR "); 304 break; 305 case KSU_KERNEL: 306 printk("KERNEL "); 307 break; 308 default: 309 printk("BAD_MODE "); 310 break; 311 } 312 if (regs->cp0_status & ST0_ERL) 313 printk("ERL "); 314 if (regs->cp0_status & ST0_EXL) 315 printk("EXL "); 316 if (regs->cp0_status & ST0_IE) 317 printk("IE "); 318 } 319 printk("\n"); 320 321 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 322 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 323 324 if (1 <= exccode && exccode <= 5) 325 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 326 327 printk("PrId : %08x (%s)\n", read_c0_prid(), 328 cpu_name_string()); 329 } 330 331 /* 332 * FIXME: really the generic show_regs should take a const pointer argument. 333 */ 334 void show_regs(struct pt_regs *regs) 335 { 336 __show_regs((struct pt_regs *)regs); 337 } 338 339 void show_registers(struct pt_regs *regs) 340 { 341 const int field = 2 * sizeof(unsigned long); 342 mm_segment_t old_fs = get_fs(); 343 344 __show_regs(regs); 345 print_modules(); 346 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 347 current->comm, current->pid, current_thread_info(), current, 348 field, current_thread_info()->tp_value); 349 if (cpu_has_userlocal) { 350 unsigned long tls; 351 352 tls = read_c0_userlocal(); 353 if (tls != current_thread_info()->tp_value) 354 printk("*HwTLS: %0*lx\n", field, tls); 355 } 356 357 if (!user_mode(regs)) 358 /* Necessary for getting the correct stack content */ 359 set_fs(KERNEL_DS); 360 show_stacktrace(current, regs); 361 show_code((unsigned int __user *) regs->cp0_epc); 362 printk("\n"); 363 set_fs(old_fs); 364 } 365 366 static int regs_to_trapnr(struct pt_regs *regs) 367 { 368 return (regs->cp0_cause >> 2) & 0x1f; 369 } 370 371 static DEFINE_RAW_SPINLOCK(die_lock); 372 373 void __noreturn die(const char *str, struct pt_regs *regs) 374 { 375 static int die_counter; 376 int sig = SIGSEGV; 377 378 oops_enter(); 379 380 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), 381 SIGSEGV) == NOTIFY_STOP) 382 sig = 0; 383 384 console_verbose(); 385 raw_spin_lock_irq(&die_lock); 386 bust_spinlocks(1); 387 388 printk("%s[#%d]:\n", str, ++die_counter); 389 show_registers(regs); 390 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 391 raw_spin_unlock_irq(&die_lock); 392 393 oops_exit(); 394 395 if (in_interrupt()) 396 panic("Fatal exception in interrupt"); 397 398 if (panic_on_oops) { 399 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 400 ssleep(5); 401 panic("Fatal exception"); 402 } 403 404 if (regs && kexec_should_crash(current)) 405 crash_kexec(regs); 406 407 do_exit(sig); 408 } 409 410 extern struct exception_table_entry __start___dbe_table[]; 411 extern struct exception_table_entry __stop___dbe_table[]; 412 413 __asm__( 414 " .section __dbe_table, \"a\"\n" 415 " .previous \n"); 416 417 /* Given an address, look for it in the exception tables. */ 418 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 419 { 420 const struct exception_table_entry *e; 421 422 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 423 if (!e) 424 e = search_module_dbetables(addr); 425 return e; 426 } 427 428 asmlinkage void do_be(struct pt_regs *regs) 429 { 430 const int field = 2 * sizeof(unsigned long); 431 const struct exception_table_entry *fixup = NULL; 432 int data = regs->cp0_cause & 4; 433 int action = MIPS_BE_FATAL; 434 enum ctx_state prev_state; 435 436 prev_state = exception_enter(); 437 /* XXX For now. Fixme, this searches the wrong table ... */ 438 if (data && !user_mode(regs)) 439 fixup = search_dbe_tables(exception_epc(regs)); 440 441 if (fixup) 442 action = MIPS_BE_FIXUP; 443 444 if (board_be_handler) 445 action = board_be_handler(regs, fixup != NULL); 446 447 switch (action) { 448 case MIPS_BE_DISCARD: 449 goto out; 450 case MIPS_BE_FIXUP: 451 if (fixup) { 452 regs->cp0_epc = fixup->nextinsn; 453 goto out; 454 } 455 break; 456 default: 457 break; 458 } 459 460 /* 461 * Assume it would be too dangerous to continue ... 462 */ 463 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 464 data ? "Data" : "Instruction", 465 field, regs->cp0_epc, field, regs->regs[31]); 466 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), 467 SIGBUS) == NOTIFY_STOP) 468 goto out; 469 470 die_if_kernel("Oops", regs); 471 force_sig(SIGBUS, current); 472 473 out: 474 exception_exit(prev_state); 475 } 476 477 /* 478 * ll/sc, rdhwr, sync emulation 479 */ 480 481 #define OPCODE 0xfc000000 482 #define BASE 0x03e00000 483 #define RT 0x001f0000 484 #define OFFSET 0x0000ffff 485 #define LL 0xc0000000 486 #define SC 0xe0000000 487 #define SPEC0 0x00000000 488 #define SPEC3 0x7c000000 489 #define RD 0x0000f800 490 #define FUNC 0x0000003f 491 #define SYNC 0x0000000f 492 #define RDHWR 0x0000003b 493 494 /* microMIPS definitions */ 495 #define MM_POOL32A_FUNC 0xfc00ffff 496 #define MM_RDHWR 0x00006b3c 497 #define MM_RS 0x001f0000 498 #define MM_RT 0x03e00000 499 500 /* 501 * The ll_bit is cleared by r*_switch.S 502 */ 503 504 unsigned int ll_bit; 505 struct task_struct *ll_task; 506 507 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 508 { 509 unsigned long value, __user *vaddr; 510 long offset; 511 512 /* 513 * analyse the ll instruction that just caused a ri exception 514 * and put the referenced address to addr. 515 */ 516 517 /* sign extend offset */ 518 offset = opcode & OFFSET; 519 offset <<= 16; 520 offset >>= 16; 521 522 vaddr = (unsigned long __user *) 523 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 524 525 if ((unsigned long)vaddr & 3) 526 return SIGBUS; 527 if (get_user(value, vaddr)) 528 return SIGSEGV; 529 530 preempt_disable(); 531 532 if (ll_task == NULL || ll_task == current) { 533 ll_bit = 1; 534 } else { 535 ll_bit = 0; 536 } 537 ll_task = current; 538 539 preempt_enable(); 540 541 regs->regs[(opcode & RT) >> 16] = value; 542 543 return 0; 544 } 545 546 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 547 { 548 unsigned long __user *vaddr; 549 unsigned long reg; 550 long offset; 551 552 /* 553 * analyse the sc instruction that just caused a ri exception 554 * and put the referenced address to addr. 555 */ 556 557 /* sign extend offset */ 558 offset = opcode & OFFSET; 559 offset <<= 16; 560 offset >>= 16; 561 562 vaddr = (unsigned long __user *) 563 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 564 reg = (opcode & RT) >> 16; 565 566 if ((unsigned long)vaddr & 3) 567 return SIGBUS; 568 569 preempt_disable(); 570 571 if (ll_bit == 0 || ll_task != current) { 572 regs->regs[reg] = 0; 573 preempt_enable(); 574 return 0; 575 } 576 577 preempt_enable(); 578 579 if (put_user(regs->regs[reg], vaddr)) 580 return SIGSEGV; 581 582 regs->regs[reg] = 1; 583 584 return 0; 585 } 586 587 /* 588 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 589 * opcodes are supposed to result in coprocessor unusable exceptions if 590 * executed on ll/sc-less processors. That's the theory. In practice a 591 * few processors such as NEC's VR4100 throw reserved instruction exceptions 592 * instead, so we're doing the emulation thing in both exception handlers. 593 */ 594 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 595 { 596 if ((opcode & OPCODE) == LL) { 597 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 598 1, regs, 0); 599 return simulate_ll(regs, opcode); 600 } 601 if ((opcode & OPCODE) == SC) { 602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 603 1, regs, 0); 604 return simulate_sc(regs, opcode); 605 } 606 607 return -1; /* Must be something else ... */ 608 } 609 610 /* 611 * Simulate trapping 'rdhwr' instructions to provide user accessible 612 * registers not implemented in hardware. 613 */ 614 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 615 { 616 struct thread_info *ti = task_thread_info(current); 617 618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 619 1, regs, 0); 620 switch (rd) { 621 case 0: /* CPU number */ 622 regs->regs[rt] = smp_processor_id(); 623 return 0; 624 case 1: /* SYNCI length */ 625 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 626 current_cpu_data.icache.linesz); 627 return 0; 628 case 2: /* Read count register */ 629 regs->regs[rt] = read_c0_count(); 630 return 0; 631 case 3: /* Count register resolution */ 632 switch (current_cpu_type()) { 633 case CPU_20KC: 634 case CPU_25KF: 635 regs->regs[rt] = 1; 636 break; 637 default: 638 regs->regs[rt] = 2; 639 } 640 return 0; 641 case 29: 642 regs->regs[rt] = ti->tp_value; 643 return 0; 644 default: 645 return -1; 646 } 647 } 648 649 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 650 { 651 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 652 int rd = (opcode & RD) >> 11; 653 int rt = (opcode & RT) >> 16; 654 655 simulate_rdhwr(regs, rd, rt); 656 return 0; 657 } 658 659 /* Not ours. */ 660 return -1; 661 } 662 663 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 664 { 665 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 666 int rd = (opcode & MM_RS) >> 16; 667 int rt = (opcode & MM_RT) >> 21; 668 simulate_rdhwr(regs, rd, rt); 669 return 0; 670 } 671 672 /* Not ours. */ 673 return -1; 674 } 675 676 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 677 { 678 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 679 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 680 1, regs, 0); 681 return 0; 682 } 683 684 return -1; /* Must be something else ... */ 685 } 686 687 asmlinkage void do_ov(struct pt_regs *regs) 688 { 689 enum ctx_state prev_state; 690 siginfo_t info; 691 692 prev_state = exception_enter(); 693 die_if_kernel("Integer overflow", regs); 694 695 info.si_code = FPE_INTOVF; 696 info.si_signo = SIGFPE; 697 info.si_errno = 0; 698 info.si_addr = (void __user *) regs->cp0_epc; 699 force_sig_info(SIGFPE, &info, current); 700 exception_exit(prev_state); 701 } 702 703 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 704 { 705 struct siginfo si = { 0 }; 706 707 switch (sig) { 708 case 0: 709 return 0; 710 711 case SIGFPE: 712 si.si_addr = fault_addr; 713 si.si_signo = sig; 714 /* 715 * Inexact can happen together with Overflow or Underflow. 716 * Respect the mask to deliver the correct exception. 717 */ 718 fcr31 &= (fcr31 & FPU_CSR_ALL_E) << 719 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); 720 if (fcr31 & FPU_CSR_INV_X) 721 si.si_code = FPE_FLTINV; 722 else if (fcr31 & FPU_CSR_DIV_X) 723 si.si_code = FPE_FLTDIV; 724 else if (fcr31 & FPU_CSR_OVF_X) 725 si.si_code = FPE_FLTOVF; 726 else if (fcr31 & FPU_CSR_UDF_X) 727 si.si_code = FPE_FLTUND; 728 else if (fcr31 & FPU_CSR_INE_X) 729 si.si_code = FPE_FLTRES; 730 else 731 si.si_code = __SI_FAULT; 732 force_sig_info(sig, &si, current); 733 return 1; 734 735 case SIGBUS: 736 si.si_addr = fault_addr; 737 si.si_signo = sig; 738 si.si_code = BUS_ADRERR; 739 force_sig_info(sig, &si, current); 740 return 1; 741 742 case SIGSEGV: 743 si.si_addr = fault_addr; 744 si.si_signo = sig; 745 down_read(¤t->mm->mmap_sem); 746 if (find_vma(current->mm, (unsigned long)fault_addr)) 747 si.si_code = SEGV_ACCERR; 748 else 749 si.si_code = SEGV_MAPERR; 750 up_read(¤t->mm->mmap_sem); 751 force_sig_info(sig, &si, current); 752 return 1; 753 754 default: 755 force_sig(sig, current); 756 return 1; 757 } 758 } 759 760 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 761 unsigned long old_epc, unsigned long old_ra) 762 { 763 union mips_instruction inst = { .word = opcode }; 764 void __user *fault_addr; 765 unsigned long fcr31; 766 int sig; 767 768 /* If it's obviously not an FP instruction, skip it */ 769 switch (inst.i_format.opcode) { 770 case cop1_op: 771 case cop1x_op: 772 case lwc1_op: 773 case ldc1_op: 774 case swc1_op: 775 case sdc1_op: 776 break; 777 778 default: 779 return -1; 780 } 781 782 /* 783 * do_ri skipped over the instruction via compute_return_epc, undo 784 * that for the FPU emulator. 785 */ 786 regs->cp0_epc = old_epc; 787 regs->regs[31] = old_ra; 788 789 /* Save the FP context to struct thread_struct */ 790 lose_fpu(1); 791 792 /* Run the emulator */ 793 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 794 &fault_addr); 795 fcr31 = current->thread.fpu.fcr31; 796 797 /* 798 * We can't allow the emulated instruction to leave any of 799 * the cause bits set in $fcr31. 800 */ 801 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 802 803 /* Restore the hardware register state */ 804 own_fpu(1); 805 806 /* Send a signal if required. */ 807 process_fpemu_return(sig, fault_addr, fcr31); 808 809 return 0; 810 } 811 812 /* 813 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 814 */ 815 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 816 { 817 enum ctx_state prev_state; 818 void __user *fault_addr; 819 int sig; 820 821 prev_state = exception_enter(); 822 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), 823 SIGFPE) == NOTIFY_STOP) 824 goto out; 825 826 /* Clear FCSR.Cause before enabling interrupts */ 827 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); 828 local_irq_enable(); 829 830 die_if_kernel("FP exception in kernel code", regs); 831 832 if (fcr31 & FPU_CSR_UNI_X) { 833 /* 834 * Unimplemented operation exception. If we've got the full 835 * software emulator on-board, let's use it... 836 * 837 * Force FPU to dump state into task/thread context. We're 838 * moving a lot of data here for what is probably a single 839 * instruction, but the alternative is to pre-decode the FP 840 * register operands before invoking the emulator, which seems 841 * a bit extreme for what should be an infrequent event. 842 */ 843 /* Ensure 'resume' not overwrite saved fp context again. */ 844 lose_fpu(1); 845 846 /* Run the emulator */ 847 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 848 &fault_addr); 849 fcr31 = current->thread.fpu.fcr31; 850 851 /* 852 * We can't allow the emulated instruction to leave any of 853 * the cause bits set in $fcr31. 854 */ 855 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 856 857 /* Restore the hardware register state */ 858 own_fpu(1); /* Using the FPU again. */ 859 } else { 860 sig = SIGFPE; 861 fault_addr = (void __user *) regs->cp0_epc; 862 } 863 864 /* Send a signal if required. */ 865 process_fpemu_return(sig, fault_addr, fcr31); 866 867 out: 868 exception_exit(prev_state); 869 } 870 871 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 872 const char *str) 873 { 874 siginfo_t info; 875 char b[40]; 876 877 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 878 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 879 return; 880 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 881 882 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), 883 SIGTRAP) == NOTIFY_STOP) 884 return; 885 886 /* 887 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 888 * insns, even for trap and break codes that indicate arithmetic 889 * failures. Weird ... 890 * But should we continue the brokenness??? --macro 891 */ 892 switch (code) { 893 case BRK_OVERFLOW: 894 case BRK_DIVZERO: 895 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 896 die_if_kernel(b, regs); 897 if (code == BRK_DIVZERO) 898 info.si_code = FPE_INTDIV; 899 else 900 info.si_code = FPE_INTOVF; 901 info.si_signo = SIGFPE; 902 info.si_errno = 0; 903 info.si_addr = (void __user *) regs->cp0_epc; 904 force_sig_info(SIGFPE, &info, current); 905 break; 906 case BRK_BUG: 907 die_if_kernel("Kernel bug detected", regs); 908 force_sig(SIGTRAP, current); 909 break; 910 case BRK_MEMU: 911 /* 912 * This breakpoint code is used by the FPU emulator to retake 913 * control of the CPU after executing the instruction from the 914 * delay slot of an emulated branch. 915 * 916 * Terminate if exception was recognized as a delay slot return 917 * otherwise handle as normal. 918 */ 919 if (do_dsemulret(regs)) 920 return; 921 922 die_if_kernel("Math emu break/trap", regs); 923 force_sig(SIGTRAP, current); 924 break; 925 default: 926 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 927 die_if_kernel(b, regs); 928 force_sig(SIGTRAP, current); 929 } 930 } 931 932 asmlinkage void do_bp(struct pt_regs *regs) 933 { 934 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 935 unsigned int opcode, bcode; 936 enum ctx_state prev_state; 937 mm_segment_t seg; 938 939 seg = get_fs(); 940 if (!user_mode(regs)) 941 set_fs(KERNEL_DS); 942 943 prev_state = exception_enter(); 944 if (get_isa16_mode(regs->cp0_epc)) { 945 u16 instr[2]; 946 947 if (__get_user(instr[0], (u16 __user *)epc)) 948 goto out_sigsegv; 949 950 if (!cpu_has_mmips) { 951 /* MIPS16e mode */ 952 bcode = (instr[0] >> 5) & 0x3f; 953 } else if (mm_insn_16bit(instr[0])) { 954 /* 16-bit microMIPS BREAK */ 955 bcode = instr[0] & 0xf; 956 } else { 957 /* 32-bit microMIPS BREAK */ 958 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 959 goto out_sigsegv; 960 opcode = (instr[0] << 16) | instr[1]; 961 bcode = (opcode >> 6) & ((1 << 20) - 1); 962 } 963 } else { 964 if (__get_user(opcode, (unsigned int __user *)epc)) 965 goto out_sigsegv; 966 bcode = (opcode >> 6) & ((1 << 20) - 1); 967 } 968 969 /* 970 * There is the ancient bug in the MIPS assemblers that the break 971 * code starts left to bit 16 instead to bit 6 in the opcode. 972 * Gas is bug-compatible, but not always, grrr... 973 * We handle both cases with a simple heuristics. --macro 974 */ 975 if (bcode >= (1 << 10)) 976 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 977 978 /* 979 * notify the kprobe handlers, if instruction is likely to 980 * pertain to them. 981 */ 982 switch (bcode) { 983 case BRK_KPROBE_BP: 984 if (notify_die(DIE_BREAK, "debug", regs, bcode, 985 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 986 goto out; 987 else 988 break; 989 case BRK_KPROBE_SSTEPBP: 990 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 991 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP) 992 goto out; 993 else 994 break; 995 default: 996 break; 997 } 998 999 do_trap_or_bp(regs, bcode, "Break"); 1000 1001 out: 1002 set_fs(seg); 1003 exception_exit(prev_state); 1004 return; 1005 1006 out_sigsegv: 1007 force_sig(SIGSEGV, current); 1008 goto out; 1009 } 1010 1011 asmlinkage void do_tr(struct pt_regs *regs) 1012 { 1013 u32 opcode, tcode = 0; 1014 enum ctx_state prev_state; 1015 u16 instr[2]; 1016 mm_segment_t seg; 1017 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1018 1019 seg = get_fs(); 1020 if (!user_mode(regs)) 1021 set_fs(get_ds()); 1022 1023 prev_state = exception_enter(); 1024 if (get_isa16_mode(regs->cp0_epc)) { 1025 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1026 __get_user(instr[1], (u16 __user *)(epc + 2))) 1027 goto out_sigsegv; 1028 opcode = (instr[0] << 16) | instr[1]; 1029 /* Immediate versions don't provide a code. */ 1030 if (!(opcode & OPCODE)) 1031 tcode = (opcode >> 12) & ((1 << 4) - 1); 1032 } else { 1033 if (__get_user(opcode, (u32 __user *)epc)) 1034 goto out_sigsegv; 1035 /* Immediate versions don't provide a code. */ 1036 if (!(opcode & OPCODE)) 1037 tcode = (opcode >> 6) & ((1 << 10) - 1); 1038 } 1039 1040 do_trap_or_bp(regs, tcode, "Trap"); 1041 1042 out: 1043 set_fs(seg); 1044 exception_exit(prev_state); 1045 return; 1046 1047 out_sigsegv: 1048 force_sig(SIGSEGV, current); 1049 goto out; 1050 } 1051 1052 asmlinkage void do_ri(struct pt_regs *regs) 1053 { 1054 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1055 unsigned long old_epc = regs->cp0_epc; 1056 unsigned long old31 = regs->regs[31]; 1057 enum ctx_state prev_state; 1058 unsigned int opcode = 0; 1059 int status = -1; 1060 1061 /* 1062 * Avoid any kernel code. Just emulate the R2 instruction 1063 * as quickly as possible. 1064 */ 1065 if (mipsr2_emulation && cpu_has_mips_r6 && 1066 likely(user_mode(regs)) && 1067 likely(get_user(opcode, epc) >= 0)) { 1068 unsigned long fcr31 = 0; 1069 1070 status = mipsr2_decoder(regs, opcode, &fcr31); 1071 switch (status) { 1072 case 0: 1073 case SIGEMT: 1074 task_thread_info(current)->r2_emul_return = 1; 1075 return; 1076 case SIGILL: 1077 goto no_r2_instr; 1078 default: 1079 process_fpemu_return(status, 1080 ¤t->thread.cp0_baduaddr, 1081 fcr31); 1082 task_thread_info(current)->r2_emul_return = 1; 1083 return; 1084 } 1085 } 1086 1087 no_r2_instr: 1088 1089 prev_state = exception_enter(); 1090 1091 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), 1092 SIGILL) == NOTIFY_STOP) 1093 goto out; 1094 1095 die_if_kernel("Reserved instruction in kernel code", regs); 1096 1097 if (unlikely(compute_return_epc(regs) < 0)) 1098 goto out; 1099 1100 if (get_isa16_mode(regs->cp0_epc)) { 1101 unsigned short mmop[2] = { 0 }; 1102 1103 if (unlikely(get_user(mmop[0], epc) < 0)) 1104 status = SIGSEGV; 1105 if (unlikely(get_user(mmop[1], epc) < 0)) 1106 status = SIGSEGV; 1107 opcode = (mmop[0] << 16) | mmop[1]; 1108 1109 if (status < 0) 1110 status = simulate_rdhwr_mm(regs, opcode); 1111 } else { 1112 if (unlikely(get_user(opcode, epc) < 0)) 1113 status = SIGSEGV; 1114 1115 if (!cpu_has_llsc && status < 0) 1116 status = simulate_llsc(regs, opcode); 1117 1118 if (status < 0) 1119 status = simulate_rdhwr_normal(regs, opcode); 1120 1121 if (status < 0) 1122 status = simulate_sync(regs, opcode); 1123 1124 if (status < 0) 1125 status = simulate_fp(regs, opcode, old_epc, old31); 1126 } 1127 1128 if (status < 0) 1129 status = SIGILL; 1130 1131 if (unlikely(status > 0)) { 1132 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1133 regs->regs[31] = old31; 1134 force_sig(status, current); 1135 } 1136 1137 out: 1138 exception_exit(prev_state); 1139 } 1140 1141 /* 1142 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1143 * emulated more than some threshold number of instructions, force migration to 1144 * a "CPU" that has FP support. 1145 */ 1146 static void mt_ase_fp_affinity(void) 1147 { 1148 #ifdef CONFIG_MIPS_MT_FPAFF 1149 if (mt_fpemul_threshold > 0 && 1150 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1151 /* 1152 * If there's no FPU present, or if the application has already 1153 * restricted the allowed set to exclude any CPUs with FPUs, 1154 * we'll skip the procedure. 1155 */ 1156 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1157 cpumask_t tmask; 1158 1159 current->thread.user_cpus_allowed 1160 = current->cpus_allowed; 1161 cpumask_and(&tmask, ¤t->cpus_allowed, 1162 &mt_fpu_cpumask); 1163 set_cpus_allowed_ptr(current, &tmask); 1164 set_thread_flag(TIF_FPUBOUND); 1165 } 1166 } 1167 #endif /* CONFIG_MIPS_MT_FPAFF */ 1168 } 1169 1170 /* 1171 * No lock; only written during early bootup by CPU 0. 1172 */ 1173 static RAW_NOTIFIER_HEAD(cu2_chain); 1174 1175 int __ref register_cu2_notifier(struct notifier_block *nb) 1176 { 1177 return raw_notifier_chain_register(&cu2_chain, nb); 1178 } 1179 1180 int cu2_notifier_call_chain(unsigned long val, void *v) 1181 { 1182 return raw_notifier_call_chain(&cu2_chain, val, v); 1183 } 1184 1185 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1186 void *data) 1187 { 1188 struct pt_regs *regs = data; 1189 1190 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1191 "instruction", regs); 1192 force_sig(SIGILL, current); 1193 1194 return NOTIFY_OK; 1195 } 1196 1197 static int wait_on_fp_mode_switch(atomic_t *p) 1198 { 1199 /* 1200 * The FP mode for this task is currently being switched. That may 1201 * involve modifications to the format of this tasks FP context which 1202 * make it unsafe to proceed with execution for the moment. Instead, 1203 * schedule some other task. 1204 */ 1205 schedule(); 1206 return 0; 1207 } 1208 1209 static int enable_restore_fp_context(int msa) 1210 { 1211 int err, was_fpu_owner, prior_msa; 1212 1213 /* 1214 * If an FP mode switch is currently underway, wait for it to 1215 * complete before proceeding. 1216 */ 1217 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1218 wait_on_fp_mode_switch, TASK_KILLABLE); 1219 1220 if (!used_math()) { 1221 /* First time FP context user. */ 1222 preempt_disable(); 1223 err = init_fpu(); 1224 if (msa && !err) { 1225 enable_msa(); 1226 _init_msa_upper(); 1227 set_thread_flag(TIF_USEDMSA); 1228 set_thread_flag(TIF_MSA_CTX_LIVE); 1229 } 1230 preempt_enable(); 1231 if (!err) 1232 set_used_math(); 1233 return err; 1234 } 1235 1236 /* 1237 * This task has formerly used the FP context. 1238 * 1239 * If this thread has no live MSA vector context then we can simply 1240 * restore the scalar FP context. If it has live MSA vector context 1241 * (that is, it has or may have used MSA since last performing a 1242 * function call) then we'll need to restore the vector context. This 1243 * applies even if we're currently only executing a scalar FP 1244 * instruction. This is because if we were to later execute an MSA 1245 * instruction then we'd either have to: 1246 * 1247 * - Restore the vector context & clobber any registers modified by 1248 * scalar FP instructions between now & then. 1249 * 1250 * or 1251 * 1252 * - Not restore the vector context & lose the most significant bits 1253 * of all vector registers. 1254 * 1255 * Neither of those options is acceptable. We cannot restore the least 1256 * significant bits of the registers now & only restore the most 1257 * significant bits later because the most significant bits of any 1258 * vector registers whose aliased FP register is modified now will have 1259 * been zeroed. We'd have no way to know that when restoring the vector 1260 * context & thus may load an outdated value for the most significant 1261 * bits of a vector register. 1262 */ 1263 if (!msa && !thread_msa_context_live()) 1264 return own_fpu(1); 1265 1266 /* 1267 * This task is using or has previously used MSA. Thus we require 1268 * that Status.FR == 1. 1269 */ 1270 preempt_disable(); 1271 was_fpu_owner = is_fpu_owner(); 1272 err = own_fpu_inatomic(0); 1273 if (err) 1274 goto out; 1275 1276 enable_msa(); 1277 write_msa_csr(current->thread.fpu.msacsr); 1278 set_thread_flag(TIF_USEDMSA); 1279 1280 /* 1281 * If this is the first time that the task is using MSA and it has 1282 * previously used scalar FP in this time slice then we already nave 1283 * FP context which we shouldn't clobber. We do however need to clear 1284 * the upper 64b of each vector register so that this task has no 1285 * opportunity to see data left behind by another. 1286 */ 1287 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1288 if (!prior_msa && was_fpu_owner) { 1289 _init_msa_upper(); 1290 1291 goto out; 1292 } 1293 1294 if (!prior_msa) { 1295 /* 1296 * Restore the least significant 64b of each vector register 1297 * from the existing scalar FP context. 1298 */ 1299 _restore_fp(current); 1300 1301 /* 1302 * The task has not formerly used MSA, so clear the upper 64b 1303 * of each vector register such that it cannot see data left 1304 * behind by another task. 1305 */ 1306 _init_msa_upper(); 1307 } else { 1308 /* We need to restore the vector context. */ 1309 restore_msa(current); 1310 1311 /* Restore the scalar FP control & status register */ 1312 if (!was_fpu_owner) 1313 write_32bit_cp1_register(CP1_STATUS, 1314 current->thread.fpu.fcr31); 1315 } 1316 1317 out: 1318 preempt_enable(); 1319 1320 return 0; 1321 } 1322 1323 asmlinkage void do_cpu(struct pt_regs *regs) 1324 { 1325 enum ctx_state prev_state; 1326 unsigned int __user *epc; 1327 unsigned long old_epc, old31; 1328 void __user *fault_addr; 1329 unsigned int opcode; 1330 unsigned long fcr31; 1331 unsigned int cpid; 1332 int status, err; 1333 unsigned long __maybe_unused flags; 1334 int sig; 1335 1336 prev_state = exception_enter(); 1337 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1338 1339 if (cpid != 2) 1340 die_if_kernel("do_cpu invoked from kernel context!", regs); 1341 1342 switch (cpid) { 1343 case 0: 1344 epc = (unsigned int __user *)exception_epc(regs); 1345 old_epc = regs->cp0_epc; 1346 old31 = regs->regs[31]; 1347 opcode = 0; 1348 status = -1; 1349 1350 if (unlikely(compute_return_epc(regs) < 0)) 1351 break; 1352 1353 if (get_isa16_mode(regs->cp0_epc)) { 1354 unsigned short mmop[2] = { 0 }; 1355 1356 if (unlikely(get_user(mmop[0], epc) < 0)) 1357 status = SIGSEGV; 1358 if (unlikely(get_user(mmop[1], epc) < 0)) 1359 status = SIGSEGV; 1360 opcode = (mmop[0] << 16) | mmop[1]; 1361 1362 if (status < 0) 1363 status = simulate_rdhwr_mm(regs, opcode); 1364 } else { 1365 if (unlikely(get_user(opcode, epc) < 0)) 1366 status = SIGSEGV; 1367 1368 if (!cpu_has_llsc && status < 0) 1369 status = simulate_llsc(regs, opcode); 1370 1371 if (status < 0) 1372 status = simulate_rdhwr_normal(regs, opcode); 1373 } 1374 1375 if (status < 0) 1376 status = SIGILL; 1377 1378 if (unlikely(status > 0)) { 1379 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1380 regs->regs[31] = old31; 1381 force_sig(status, current); 1382 } 1383 1384 break; 1385 1386 case 3: 1387 /* 1388 * The COP3 opcode space and consequently the CP0.Status.CU3 1389 * bit and the CP0.Cause.CE=3 encoding have been removed as 1390 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1391 * up the space has been reused for COP1X instructions, that 1392 * are enabled by the CP0.Status.CU1 bit and consequently 1393 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1394 * exceptions. Some FPU-less processors that implement one 1395 * of these ISAs however use this code erroneously for COP1X 1396 * instructions. Therefore we redirect this trap to the FP 1397 * emulator too. 1398 */ 1399 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1400 force_sig(SIGILL, current); 1401 break; 1402 } 1403 /* Fall through. */ 1404 1405 case 1: 1406 err = enable_restore_fp_context(0); 1407 1408 if (raw_cpu_has_fpu && !err) 1409 break; 1410 1411 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1412 &fault_addr); 1413 fcr31 = current->thread.fpu.fcr31; 1414 1415 /* 1416 * We can't allow the emulated instruction to leave 1417 * any of the cause bits set in $fcr31. 1418 */ 1419 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; 1420 1421 /* Send a signal if required. */ 1422 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1423 mt_ase_fp_affinity(); 1424 1425 break; 1426 1427 case 2: 1428 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1429 break; 1430 } 1431 1432 exception_exit(prev_state); 1433 } 1434 1435 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1436 { 1437 enum ctx_state prev_state; 1438 1439 prev_state = exception_enter(); 1440 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1441 regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP) 1442 goto out; 1443 1444 /* Clear MSACSR.Cause before enabling interrupts */ 1445 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1446 local_irq_enable(); 1447 1448 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1449 force_sig(SIGFPE, current); 1450 out: 1451 exception_exit(prev_state); 1452 } 1453 1454 asmlinkage void do_msa(struct pt_regs *regs) 1455 { 1456 enum ctx_state prev_state; 1457 int err; 1458 1459 prev_state = exception_enter(); 1460 1461 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1462 force_sig(SIGILL, current); 1463 goto out; 1464 } 1465 1466 die_if_kernel("do_msa invoked from kernel context!", regs); 1467 1468 err = enable_restore_fp_context(1); 1469 if (err) 1470 force_sig(SIGILL, current); 1471 out: 1472 exception_exit(prev_state); 1473 } 1474 1475 asmlinkage void do_mdmx(struct pt_regs *regs) 1476 { 1477 enum ctx_state prev_state; 1478 1479 prev_state = exception_enter(); 1480 force_sig(SIGILL, current); 1481 exception_exit(prev_state); 1482 } 1483 1484 /* 1485 * Called with interrupts disabled. 1486 */ 1487 asmlinkage void do_watch(struct pt_regs *regs) 1488 { 1489 enum ctx_state prev_state; 1490 u32 cause; 1491 1492 prev_state = exception_enter(); 1493 /* 1494 * Clear WP (bit 22) bit of cause register so we don't loop 1495 * forever. 1496 */ 1497 cause = read_c0_cause(); 1498 cause &= ~(1 << 22); 1499 write_c0_cause(cause); 1500 1501 /* 1502 * If the current thread has the watch registers loaded, save 1503 * their values and send SIGTRAP. Otherwise another thread 1504 * left the registers set, clear them and continue. 1505 */ 1506 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1507 mips_read_watch_registers(); 1508 local_irq_enable(); 1509 force_sig(SIGTRAP, current); 1510 } else { 1511 mips_clear_watch_registers(); 1512 local_irq_enable(); 1513 } 1514 exception_exit(prev_state); 1515 } 1516 1517 asmlinkage void do_mcheck(struct pt_regs *regs) 1518 { 1519 const int field = 2 * sizeof(unsigned long); 1520 int multi_match = regs->cp0_status & ST0_TS; 1521 enum ctx_state prev_state; 1522 1523 prev_state = exception_enter(); 1524 show_regs(regs); 1525 1526 if (multi_match) { 1527 pr_err("Index : %0x\n", read_c0_index()); 1528 pr_err("Pagemask: %0x\n", read_c0_pagemask()); 1529 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi()); 1530 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0()); 1531 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1()); 1532 pr_err("Wired : %0x\n", read_c0_wired()); 1533 pr_err("Pagegrain: %0x\n", read_c0_pagegrain()); 1534 if (cpu_has_htw) { 1535 pr_err("PWField : %0*lx\n", field, read_c0_pwfield()); 1536 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize()); 1537 pr_err("PWCtl : %0x\n", read_c0_pwctl()); 1538 } 1539 pr_err("\n"); 1540 dump_tlb_all(); 1541 } 1542 1543 show_code((unsigned int __user *) regs->cp0_epc); 1544 1545 /* 1546 * Some chips may have other causes of machine check (e.g. SB1 1547 * graduation timer) 1548 */ 1549 panic("Caught Machine Check exception - %scaused by multiple " 1550 "matching entries in the TLB.", 1551 (multi_match) ? "" : "not "); 1552 } 1553 1554 asmlinkage void do_mt(struct pt_regs *regs) 1555 { 1556 int subcode; 1557 1558 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1559 >> VPECONTROL_EXCPT_SHIFT; 1560 switch (subcode) { 1561 case 0: 1562 printk(KERN_DEBUG "Thread Underflow\n"); 1563 break; 1564 case 1: 1565 printk(KERN_DEBUG "Thread Overflow\n"); 1566 break; 1567 case 2: 1568 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1569 break; 1570 case 3: 1571 printk(KERN_DEBUG "Gating Storage Exception\n"); 1572 break; 1573 case 4: 1574 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1575 break; 1576 case 5: 1577 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1578 break; 1579 default: 1580 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1581 subcode); 1582 break; 1583 } 1584 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1585 1586 force_sig(SIGILL, current); 1587 } 1588 1589 1590 asmlinkage void do_dsp(struct pt_regs *regs) 1591 { 1592 if (cpu_has_dsp) 1593 panic("Unexpected DSP exception"); 1594 1595 force_sig(SIGILL, current); 1596 } 1597 1598 asmlinkage void do_reserved(struct pt_regs *regs) 1599 { 1600 /* 1601 * Game over - no way to handle this if it ever occurs. Most probably 1602 * caused by a new unknown cpu type or after another deadly 1603 * hard/software error. 1604 */ 1605 show_regs(regs); 1606 panic("Caught reserved exception %ld - should not happen.", 1607 (regs->cp0_cause & 0x7f) >> 2); 1608 } 1609 1610 static int __initdata l1parity = 1; 1611 static int __init nol1parity(char *s) 1612 { 1613 l1parity = 0; 1614 return 1; 1615 } 1616 __setup("nol1par", nol1parity); 1617 static int __initdata l2parity = 1; 1618 static int __init nol2parity(char *s) 1619 { 1620 l2parity = 0; 1621 return 1; 1622 } 1623 __setup("nol2par", nol2parity); 1624 1625 /* 1626 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1627 * it different ways. 1628 */ 1629 static inline void parity_protection_init(void) 1630 { 1631 switch (current_cpu_type()) { 1632 case CPU_24K: 1633 case CPU_34K: 1634 case CPU_74K: 1635 case CPU_1004K: 1636 case CPU_1074K: 1637 case CPU_INTERAPTIV: 1638 case CPU_PROAPTIV: 1639 case CPU_P5600: 1640 case CPU_QEMU_GENERIC: 1641 { 1642 #define ERRCTL_PE 0x80000000 1643 #define ERRCTL_L2P 0x00800000 1644 unsigned long errctl; 1645 unsigned int l1parity_present, l2parity_present; 1646 1647 errctl = read_c0_ecc(); 1648 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1649 1650 /* probe L1 parity support */ 1651 write_c0_ecc(errctl | ERRCTL_PE); 1652 back_to_back_c0_hazard(); 1653 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1654 1655 /* probe L2 parity support */ 1656 write_c0_ecc(errctl|ERRCTL_L2P); 1657 back_to_back_c0_hazard(); 1658 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1659 1660 if (l1parity_present && l2parity_present) { 1661 if (l1parity) 1662 errctl |= ERRCTL_PE; 1663 if (l1parity ^ l2parity) 1664 errctl |= ERRCTL_L2P; 1665 } else if (l1parity_present) { 1666 if (l1parity) 1667 errctl |= ERRCTL_PE; 1668 } else if (l2parity_present) { 1669 if (l2parity) 1670 errctl |= ERRCTL_L2P; 1671 } else { 1672 /* No parity available */ 1673 } 1674 1675 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1676 1677 write_c0_ecc(errctl); 1678 back_to_back_c0_hazard(); 1679 errctl = read_c0_ecc(); 1680 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1681 1682 if (l1parity_present) 1683 printk(KERN_INFO "Cache parity protection %sabled\n", 1684 (errctl & ERRCTL_PE) ? "en" : "dis"); 1685 1686 if (l2parity_present) { 1687 if (l1parity_present && l1parity) 1688 errctl ^= ERRCTL_L2P; 1689 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1690 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1691 } 1692 } 1693 break; 1694 1695 case CPU_5KC: 1696 case CPU_5KE: 1697 case CPU_LOONGSON1: 1698 write_c0_ecc(0x80000000); 1699 back_to_back_c0_hazard(); 1700 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1701 printk(KERN_INFO "Cache parity protection %sabled\n", 1702 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1703 break; 1704 case CPU_20KC: 1705 case CPU_25KF: 1706 /* Clear the DE bit (bit 16) in the c0_status register. */ 1707 printk(KERN_INFO "Enable cache parity protection for " 1708 "MIPS 20KC/25KF CPUs.\n"); 1709 clear_c0_status(ST0_DE); 1710 break; 1711 default: 1712 break; 1713 } 1714 } 1715 1716 asmlinkage void cache_parity_error(void) 1717 { 1718 const int field = 2 * sizeof(unsigned long); 1719 unsigned int reg_val; 1720 1721 /* For the moment, report the problem and hang. */ 1722 printk("Cache error exception:\n"); 1723 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1724 reg_val = read_c0_cacheerr(); 1725 printk("c0_cacheerr == %08x\n", reg_val); 1726 1727 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1728 reg_val & (1<<30) ? "secondary" : "primary", 1729 reg_val & (1<<31) ? "data" : "insn"); 1730 if ((cpu_has_mips_r2_r6) && 1731 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1732 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1733 reg_val & (1<<29) ? "ED " : "", 1734 reg_val & (1<<28) ? "ET " : "", 1735 reg_val & (1<<27) ? "ES " : "", 1736 reg_val & (1<<26) ? "EE " : "", 1737 reg_val & (1<<25) ? "EB " : "", 1738 reg_val & (1<<24) ? "EI " : "", 1739 reg_val & (1<<23) ? "E1 " : "", 1740 reg_val & (1<<22) ? "E0 " : ""); 1741 } else { 1742 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1743 reg_val & (1<<29) ? "ED " : "", 1744 reg_val & (1<<28) ? "ET " : "", 1745 reg_val & (1<<26) ? "EE " : "", 1746 reg_val & (1<<25) ? "EB " : "", 1747 reg_val & (1<<24) ? "EI " : "", 1748 reg_val & (1<<23) ? "E1 " : "", 1749 reg_val & (1<<22) ? "E0 " : ""); 1750 } 1751 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1752 1753 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1754 if (reg_val & (1<<22)) 1755 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1756 1757 if (reg_val & (1<<23)) 1758 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1759 #endif 1760 1761 panic("Can't handle the cache error!"); 1762 } 1763 1764 asmlinkage void do_ftlb(void) 1765 { 1766 const int field = 2 * sizeof(unsigned long); 1767 unsigned int reg_val; 1768 1769 /* For the moment, report the problem and hang. */ 1770 if ((cpu_has_mips_r2_r6) && 1771 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1772 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1773 read_c0_ecc()); 1774 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1775 reg_val = read_c0_cacheerr(); 1776 pr_err("c0_cacheerr == %08x\n", reg_val); 1777 1778 if ((reg_val & 0xc0000000) == 0xc0000000) { 1779 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1780 } else { 1781 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1782 reg_val & (1<<30) ? "secondary" : "primary", 1783 reg_val & (1<<31) ? "data" : "insn"); 1784 } 1785 } else { 1786 pr_err("FTLB error exception\n"); 1787 } 1788 /* Just print the cacheerr bits for now */ 1789 cache_parity_error(); 1790 } 1791 1792 /* 1793 * SDBBP EJTAG debug exception handler. 1794 * We skip the instruction and return to the next instruction. 1795 */ 1796 void ejtag_exception_handler(struct pt_regs *regs) 1797 { 1798 const int field = 2 * sizeof(unsigned long); 1799 unsigned long depc, old_epc, old_ra; 1800 unsigned int debug; 1801 1802 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1803 depc = read_c0_depc(); 1804 debug = read_c0_debug(); 1805 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1806 if (debug & 0x80000000) { 1807 /* 1808 * In branch delay slot. 1809 * We cheat a little bit here and use EPC to calculate the 1810 * debug return address (DEPC). EPC is restored after the 1811 * calculation. 1812 */ 1813 old_epc = regs->cp0_epc; 1814 old_ra = regs->regs[31]; 1815 regs->cp0_epc = depc; 1816 compute_return_epc(regs); 1817 depc = regs->cp0_epc; 1818 regs->cp0_epc = old_epc; 1819 regs->regs[31] = old_ra; 1820 } else 1821 depc += 4; 1822 write_c0_depc(depc); 1823 1824 #if 0 1825 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1826 write_c0_debug(debug | 0x100); 1827 #endif 1828 } 1829 1830 /* 1831 * NMI exception handler. 1832 * No lock; only written during early bootup by CPU 0. 1833 */ 1834 static RAW_NOTIFIER_HEAD(nmi_chain); 1835 1836 int register_nmi_notifier(struct notifier_block *nb) 1837 { 1838 return raw_notifier_chain_register(&nmi_chain, nb); 1839 } 1840 1841 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1842 { 1843 char str[100]; 1844 1845 raw_notifier_call_chain(&nmi_chain, 0, regs); 1846 bust_spinlocks(1); 1847 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1848 smp_processor_id(), regs->cp0_epc); 1849 regs->cp0_epc = read_c0_errorepc(); 1850 die(str, regs); 1851 } 1852 1853 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1854 1855 unsigned long ebase; 1856 unsigned long exception_handlers[32]; 1857 unsigned long vi_handlers[64]; 1858 1859 void __init *set_except_vector(int n, void *addr) 1860 { 1861 unsigned long handler = (unsigned long) addr; 1862 unsigned long old_handler; 1863 1864 #ifdef CONFIG_CPU_MICROMIPS 1865 /* 1866 * Only the TLB handlers are cache aligned with an even 1867 * address. All other handlers are on an odd address and 1868 * require no modification. Otherwise, MIPS32 mode will 1869 * be entered when handling any TLB exceptions. That 1870 * would be bad...since we must stay in microMIPS mode. 1871 */ 1872 if (!(handler & 0x1)) 1873 handler |= 1; 1874 #endif 1875 old_handler = xchg(&exception_handlers[n], handler); 1876 1877 if (n == 0 && cpu_has_divec) { 1878 #ifdef CONFIG_CPU_MICROMIPS 1879 unsigned long jump_mask = ~((1 << 27) - 1); 1880 #else 1881 unsigned long jump_mask = ~((1 << 28) - 1); 1882 #endif 1883 u32 *buf = (u32 *)(ebase + 0x200); 1884 unsigned int k0 = 26; 1885 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1886 uasm_i_j(&buf, handler & ~jump_mask); 1887 uasm_i_nop(&buf); 1888 } else { 1889 UASM_i_LA(&buf, k0, handler); 1890 uasm_i_jr(&buf, k0); 1891 uasm_i_nop(&buf); 1892 } 1893 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1894 } 1895 return (void *)old_handler; 1896 } 1897 1898 static void do_default_vi(void) 1899 { 1900 show_regs(get_irq_regs()); 1901 panic("Caught unexpected vectored interrupt."); 1902 } 1903 1904 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1905 { 1906 unsigned long handler; 1907 unsigned long old_handler = vi_handlers[n]; 1908 int srssets = current_cpu_data.srsets; 1909 u16 *h; 1910 unsigned char *b; 1911 1912 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1913 1914 if (addr == NULL) { 1915 handler = (unsigned long) do_default_vi; 1916 srs = 0; 1917 } else 1918 handler = (unsigned long) addr; 1919 vi_handlers[n] = handler; 1920 1921 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1922 1923 if (srs >= srssets) 1924 panic("Shadow register set %d not supported", srs); 1925 1926 if (cpu_has_veic) { 1927 if (board_bind_eic_interrupt) 1928 board_bind_eic_interrupt(n, srs); 1929 } else if (cpu_has_vint) { 1930 /* SRSMap is only defined if shadow sets are implemented */ 1931 if (srssets > 1) 1932 change_c0_srsmap(0xf << n*4, srs << n*4); 1933 } 1934 1935 if (srs == 0) { 1936 /* 1937 * If no shadow set is selected then use the default handler 1938 * that does normal register saving and standard interrupt exit 1939 */ 1940 extern char except_vec_vi, except_vec_vi_lui; 1941 extern char except_vec_vi_ori, except_vec_vi_end; 1942 extern char rollback_except_vec_vi; 1943 char *vec_start = using_rollback_handler() ? 1944 &rollback_except_vec_vi : &except_vec_vi; 1945 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1946 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1947 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1948 #else 1949 const int lui_offset = &except_vec_vi_lui - vec_start; 1950 const int ori_offset = &except_vec_vi_ori - vec_start; 1951 #endif 1952 const int handler_len = &except_vec_vi_end - vec_start; 1953 1954 if (handler_len > VECTORSPACING) { 1955 /* 1956 * Sigh... panicing won't help as the console 1957 * is probably not configured :( 1958 */ 1959 panic("VECTORSPACING too small"); 1960 } 1961 1962 set_handler(((unsigned long)b - ebase), vec_start, 1963 #ifdef CONFIG_CPU_MICROMIPS 1964 (handler_len - 1)); 1965 #else 1966 handler_len); 1967 #endif 1968 h = (u16 *)(b + lui_offset); 1969 *h = (handler >> 16) & 0xffff; 1970 h = (u16 *)(b + ori_offset); 1971 *h = (handler & 0xffff); 1972 local_flush_icache_range((unsigned long)b, 1973 (unsigned long)(b+handler_len)); 1974 } 1975 else { 1976 /* 1977 * In other cases jump directly to the interrupt handler. It 1978 * is the handler's responsibility to save registers if required 1979 * (eg hi/lo) and return from the exception using "eret". 1980 */ 1981 u32 insn; 1982 1983 h = (u16 *)b; 1984 /* j handler */ 1985 #ifdef CONFIG_CPU_MICROMIPS 1986 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 1987 #else 1988 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 1989 #endif 1990 h[0] = (insn >> 16) & 0xffff; 1991 h[1] = insn & 0xffff; 1992 h[2] = 0; 1993 h[3] = 0; 1994 local_flush_icache_range((unsigned long)b, 1995 (unsigned long)(b+8)); 1996 } 1997 1998 return (void *)old_handler; 1999 } 2000 2001 void *set_vi_handler(int n, vi_handler_t addr) 2002 { 2003 return set_vi_srs_handler(n, addr, 0); 2004 } 2005 2006 extern void tlb_init(void); 2007 2008 /* 2009 * Timer interrupt 2010 */ 2011 int cp0_compare_irq; 2012 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2013 int cp0_compare_irq_shift; 2014 2015 /* 2016 * Performance counter IRQ or -1 if shared with timer 2017 */ 2018 int cp0_perfcount_irq; 2019 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2020 2021 /* 2022 * Fast debug channel IRQ or -1 if not present 2023 */ 2024 int cp0_fdc_irq; 2025 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2026 2027 static int noulri; 2028 2029 static int __init ulri_disable(char *s) 2030 { 2031 pr_info("Disabling ulri\n"); 2032 noulri = 1; 2033 2034 return 1; 2035 } 2036 __setup("noulri", ulri_disable); 2037 2038 /* configure STATUS register */ 2039 static void configure_status(void) 2040 { 2041 /* 2042 * Disable coprocessors and select 32-bit or 64-bit addressing 2043 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2044 * flag that some firmware may have left set and the TS bit (for 2045 * IP27). Set XX for ISA IV code to work. 2046 */ 2047 unsigned int status_set = ST0_CU0; 2048 #ifdef CONFIG_64BIT 2049 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2050 #endif 2051 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2052 status_set |= ST0_XX; 2053 if (cpu_has_dsp) 2054 status_set |= ST0_MX; 2055 2056 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2057 status_set); 2058 } 2059 2060 /* configure HWRENA register */ 2061 static void configure_hwrena(void) 2062 { 2063 unsigned int hwrena = cpu_hwrena_impl_bits; 2064 2065 if (cpu_has_mips_r2_r6) 2066 hwrena |= 0x0000000f; 2067 2068 if (!noulri && cpu_has_userlocal) 2069 hwrena |= (1 << 29); 2070 2071 if (hwrena) 2072 write_c0_hwrena(hwrena); 2073 } 2074 2075 static void configure_exception_vector(void) 2076 { 2077 if (cpu_has_veic || cpu_has_vint) { 2078 unsigned long sr = set_c0_status(ST0_BEV); 2079 write_c0_ebase(ebase); 2080 write_c0_status(sr); 2081 /* Setting vector spacing enables EI/VI mode */ 2082 change_c0_intctl(0x3e0, VECTORSPACING); 2083 } 2084 if (cpu_has_divec) { 2085 if (cpu_has_mipsmt) { 2086 unsigned int vpflags = dvpe(); 2087 set_c0_cause(CAUSEF_IV); 2088 evpe(vpflags); 2089 } else 2090 set_c0_cause(CAUSEF_IV); 2091 } 2092 } 2093 2094 void per_cpu_trap_init(bool is_boot_cpu) 2095 { 2096 unsigned int cpu = smp_processor_id(); 2097 2098 configure_status(); 2099 configure_hwrena(); 2100 2101 configure_exception_vector(); 2102 2103 /* 2104 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2105 * 2106 * o read IntCtl.IPTI to determine the timer interrupt 2107 * o read IntCtl.IPPCI to determine the performance counter interrupt 2108 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2109 */ 2110 if (cpu_has_mips_r2_r6) { 2111 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2112 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2113 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2114 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2115 if (!cp0_fdc_irq) 2116 cp0_fdc_irq = -1; 2117 2118 } else { 2119 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2120 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2121 cp0_perfcount_irq = -1; 2122 cp0_fdc_irq = -1; 2123 } 2124 2125 if (!cpu_data[cpu].asid_cache) 2126 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2127 2128 atomic_inc(&init_mm.mm_count); 2129 current->active_mm = &init_mm; 2130 BUG_ON(current->mm); 2131 enter_lazy_tlb(&init_mm, current); 2132 2133 /* Boot CPU's cache setup in setup_arch(). */ 2134 if (!is_boot_cpu) 2135 cpu_cache_init(); 2136 tlb_init(); 2137 TLBMISS_HANDLER_SETUP(); 2138 } 2139 2140 /* Install CPU exception handler */ 2141 void set_handler(unsigned long offset, void *addr, unsigned long size) 2142 { 2143 #ifdef CONFIG_CPU_MICROMIPS 2144 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2145 #else 2146 memcpy((void *)(ebase + offset), addr, size); 2147 #endif 2148 local_flush_icache_range(ebase + offset, ebase + offset + size); 2149 } 2150 2151 static char panic_null_cerr[] = 2152 "Trying to set NULL cache error exception handler"; 2153 2154 /* 2155 * Install uncached CPU exception handler. 2156 * This is suitable only for the cache error exception which is the only 2157 * exception handler that is being run uncached. 2158 */ 2159 void set_uncached_handler(unsigned long offset, void *addr, 2160 unsigned long size) 2161 { 2162 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2163 2164 if (!addr) 2165 panic(panic_null_cerr); 2166 2167 memcpy((void *)(uncached_ebase + offset), addr, size); 2168 } 2169 2170 static int __initdata rdhwr_noopt; 2171 static int __init set_rdhwr_noopt(char *str) 2172 { 2173 rdhwr_noopt = 1; 2174 return 1; 2175 } 2176 2177 __setup("rdhwr_noopt", set_rdhwr_noopt); 2178 2179 void __init trap_init(void) 2180 { 2181 extern char except_vec3_generic; 2182 extern char except_vec4; 2183 extern char except_vec3_r4000; 2184 unsigned long i; 2185 2186 check_wait(); 2187 2188 if (cpu_has_veic || cpu_has_vint) { 2189 unsigned long size = 0x200 + VECTORSPACING*64; 2190 ebase = (unsigned long) 2191 __alloc_bootmem(size, 1 << fls(size), 0); 2192 } else { 2193 #ifdef CONFIG_KVM_GUEST 2194 #define KVM_GUEST_KSEG0 0x40000000 2195 ebase = KVM_GUEST_KSEG0; 2196 #else 2197 ebase = CKSEG0; 2198 #endif 2199 if (cpu_has_mips_r2_r6) 2200 ebase += (read_c0_ebase() & 0x3ffff000); 2201 } 2202 2203 if (cpu_has_mmips) { 2204 unsigned int config3 = read_c0_config3(); 2205 2206 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2207 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2208 else 2209 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2210 } 2211 2212 if (board_ebase_setup) 2213 board_ebase_setup(); 2214 per_cpu_trap_init(true); 2215 2216 /* 2217 * Copy the generic exception handlers to their final destination. 2218 * This will be overriden later as suitable for a particular 2219 * configuration. 2220 */ 2221 set_handler(0x180, &except_vec3_generic, 0x80); 2222 2223 /* 2224 * Setup default vectors 2225 */ 2226 for (i = 0; i <= 31; i++) 2227 set_except_vector(i, handle_reserved); 2228 2229 /* 2230 * Copy the EJTAG debug exception vector handler code to it's final 2231 * destination. 2232 */ 2233 if (cpu_has_ejtag && board_ejtag_handler_setup) 2234 board_ejtag_handler_setup(); 2235 2236 /* 2237 * Only some CPUs have the watch exceptions. 2238 */ 2239 if (cpu_has_watch) 2240 set_except_vector(23, handle_watch); 2241 2242 /* 2243 * Initialise interrupt handlers 2244 */ 2245 if (cpu_has_veic || cpu_has_vint) { 2246 int nvec = cpu_has_veic ? 64 : 8; 2247 for (i = 0; i < nvec; i++) 2248 set_vi_handler(i, NULL); 2249 } 2250 else if (cpu_has_divec) 2251 set_handler(0x200, &except_vec4, 0x8); 2252 2253 /* 2254 * Some CPUs can enable/disable for cache parity detection, but does 2255 * it different ways. 2256 */ 2257 parity_protection_init(); 2258 2259 /* 2260 * The Data Bus Errors / Instruction Bus Errors are signaled 2261 * by external hardware. Therefore these two exceptions 2262 * may have board specific handlers. 2263 */ 2264 if (board_be_init) 2265 board_be_init(); 2266 2267 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2268 : handle_int); 2269 set_except_vector(1, handle_tlbm); 2270 set_except_vector(2, handle_tlbl); 2271 set_except_vector(3, handle_tlbs); 2272 2273 set_except_vector(4, handle_adel); 2274 set_except_vector(5, handle_ades); 2275 2276 set_except_vector(6, handle_ibe); 2277 set_except_vector(7, handle_dbe); 2278 2279 set_except_vector(8, handle_sys); 2280 set_except_vector(9, handle_bp); 2281 set_except_vector(10, rdhwr_noopt ? handle_ri : 2282 (cpu_has_vtag_icache ? 2283 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2284 set_except_vector(11, handle_cpu); 2285 set_except_vector(12, handle_ov); 2286 set_except_vector(13, handle_tr); 2287 set_except_vector(14, handle_msa_fpe); 2288 2289 if (current_cpu_type() == CPU_R6000 || 2290 current_cpu_type() == CPU_R6000A) { 2291 /* 2292 * The R6000 is the only R-series CPU that features a machine 2293 * check exception (similar to the R4000 cache error) and 2294 * unaligned ldc1/sdc1 exception. The handlers have not been 2295 * written yet. Well, anyway there is no R6000 machine on the 2296 * current list of targets for Linux/MIPS. 2297 * (Duh, crap, there is someone with a triple R6k machine) 2298 */ 2299 //set_except_vector(14, handle_mc); 2300 //set_except_vector(15, handle_ndc); 2301 } 2302 2303 2304 if (board_nmi_handler_setup) 2305 board_nmi_handler_setup(); 2306 2307 if (cpu_has_fpu && !cpu_has_nofpuex) 2308 set_except_vector(15, handle_fpe); 2309 2310 set_except_vector(16, handle_ftlb); 2311 2312 if (cpu_has_rixiex) { 2313 set_except_vector(19, tlb_do_page_fault_0); 2314 set_except_vector(20, tlb_do_page_fault_0); 2315 } 2316 2317 set_except_vector(21, handle_msa); 2318 set_except_vector(22, handle_mdmx); 2319 2320 if (cpu_has_mcheck) 2321 set_except_vector(24, handle_mcheck); 2322 2323 if (cpu_has_mipsmt) 2324 set_except_vector(25, handle_mt); 2325 2326 set_except_vector(26, handle_dsp); 2327 2328 if (board_cache_error_setup) 2329 board_cache_error_setup(); 2330 2331 if (cpu_has_vce) 2332 /* Special exception: R4[04]00 uses also the divec space. */ 2333 set_handler(0x180, &except_vec3_r4000, 0x100); 2334 else if (cpu_has_4kex) 2335 set_handler(0x180, &except_vec3_generic, 0x80); 2336 else 2337 set_handler(0x080, &except_vec3_generic, 0x80); 2338 2339 local_flush_icache_range(ebase, ebase + 0x400); 2340 2341 sort_extable(__start___dbe_table, __stop___dbe_table); 2342 2343 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2344 } 2345 2346 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2347 void *v) 2348 { 2349 switch (cmd) { 2350 case CPU_PM_ENTER_FAILED: 2351 case CPU_PM_EXIT: 2352 configure_status(); 2353 configure_hwrena(); 2354 configure_exception_vector(); 2355 2356 /* Restore register with CPU number for TLB handlers */ 2357 TLBMISS_HANDLER_RESTORE(); 2358 2359 break; 2360 } 2361 2362 return NOTIFY_OK; 2363 } 2364 2365 static struct notifier_block trap_pm_notifier_block = { 2366 .notifier_call = trap_pm_notifier, 2367 }; 2368 2369 static int __init trap_pm_init(void) 2370 { 2371 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2372 } 2373 arch_initcall(trap_pm_init); 2374