xref: /linux/arch/loongarch/kvm/mmu.c (revision cf6d429eb6563185919322205a320c3b12d1c255)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020-2023 Loongson Technology Corporation Limited
4  */
5 
6 #include <linux/highmem.h>
7 #include <linux/hugetlb.h>
8 #include <linux/kvm_host.h>
9 #include <linux/page-flags.h>
10 #include <linux/uaccess.h>
11 #include <asm/mmu_context.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/kvm_mmu.h>
15 
kvm_hugepage_capable(struct kvm_memory_slot * slot)16 static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot)
17 {
18 	return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE;
19 }
20 
kvm_hugepage_incapable(struct kvm_memory_slot * slot)21 static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot)
22 {
23 	return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE;
24 }
25 
kvm_ptw_prepare(struct kvm * kvm,kvm_ptw_ctx * ctx)26 static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx)
27 {
28 	ctx->level = kvm->arch.root_level;
29 	/* pte table */
30 	ctx->invalid_ptes  = kvm->arch.invalid_ptes;
31 	ctx->pte_shifts    = kvm->arch.pte_shifts;
32 	ctx->pgtable_shift = ctx->pte_shifts[ctx->level];
33 	ctx->invalid_entry = ctx->invalid_ptes[ctx->level];
34 	ctx->opaque        = kvm;
35 }
36 
37 /*
38  * Mark a range of guest physical address space old (all accesses fault) in the
39  * VM's GPA page table to allow detection of commonly used pages.
40  */
kvm_mkold_pte(kvm_pte_t * pte,phys_addr_t addr,kvm_ptw_ctx * ctx)41 static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
42 {
43 	if (kvm_pte_young(*pte)) {
44 		*pte = kvm_pte_mkold(*pte);
45 		return 1;
46 	}
47 
48 	return 0;
49 }
50 
51 /*
52  * Mark a range of guest physical address space clean (writes fault) in the VM's
53  * GPA page table to allow dirty page tracking.
54  */
kvm_mkclean_pte(kvm_pte_t * pte,phys_addr_t addr,kvm_ptw_ctx * ctx)55 static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
56 {
57 	gfn_t offset;
58 	kvm_pte_t val;
59 
60 	val = *pte;
61 	/*
62 	 * For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end
63 	 * may cross hugepage, for first huge page parameter addr is equal to
64 	 * start, however for the second huge page addr is base address of
65 	 * this huge page, rather than start or end address
66 	 */
67 	if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) {
68 		offset = (addr >> PAGE_SHIFT) - ctx->gfn;
69 		if (!(BIT(offset) & ctx->mask))
70 			return 0;
71 	}
72 
73 	/*
74 	 * Need not split huge page now, just set write-proect pte bit
75 	 * Split huge page until next write fault
76 	 */
77 	if (kvm_pte_dirty(val)) {
78 		*pte = kvm_pte_mkclean(val);
79 		return 1;
80 	}
81 
82 	return 0;
83 }
84 
85 /*
86  * Clear pte entry
87  */
kvm_flush_pte(kvm_pte_t * pte,phys_addr_t addr,kvm_ptw_ctx * ctx)88 static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
89 {
90 	struct kvm *kvm;
91 
92 	kvm = ctx->opaque;
93 	if (ctx->level)
94 		kvm->stat.hugepages--;
95 	else
96 		kvm->stat.pages--;
97 
98 	*pte = ctx->invalid_entry;
99 
100 	return 1;
101 }
102 
103 /*
104  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
105  *
106  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
107  * to host physical page mappings.
108  *
109  * Returns:	Pointer to new KVM GPA page directory.
110  *		NULL on allocation failure.
111  */
kvm_pgd_alloc(void)112 kvm_pte_t *kvm_pgd_alloc(void)
113 {
114 	kvm_pte_t *pgd;
115 
116 	pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0);
117 	if (pgd)
118 		pgd_init((void *)pgd);
119 
120 	return pgd;
121 }
122 
_kvm_pte_init(void * addr,unsigned long val)123 static void _kvm_pte_init(void *addr, unsigned long val)
124 {
125 	unsigned long *p, *end;
126 
127 	p = (unsigned long *)addr;
128 	end = p + PTRS_PER_PTE;
129 	do {
130 		p[0] = val;
131 		p[1] = val;
132 		p[2] = val;
133 		p[3] = val;
134 		p[4] = val;
135 		p += 8;
136 		p[-3] = val;
137 		p[-2] = val;
138 		p[-1] = val;
139 	} while (p != end);
140 }
141 
142 /*
143  * Caller must hold kvm->mm_lock
144  *
145  * Walk the page tables of kvm to find the PTE corresponding to the
146  * address @addr. If page tables don't exist for @addr, they will be created
147  * from the MMU cache if @cache is not NULL.
148  */
kvm_populate_gpa(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,unsigned long addr,int level)149 static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm,
150 				struct kvm_mmu_memory_cache *cache,
151 				unsigned long addr, int level)
152 {
153 	kvm_ptw_ctx ctx;
154 	kvm_pte_t *entry, *child;
155 
156 	kvm_ptw_prepare(kvm, &ctx);
157 	child = kvm->arch.pgd;
158 	while (ctx.level > level) {
159 		entry = kvm_pgtable_offset(&ctx, child, addr);
160 		if (kvm_pte_none(&ctx, entry)) {
161 			if (!cache)
162 				return NULL;
163 
164 			child = kvm_mmu_memory_cache_alloc(cache);
165 			_kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]);
166 			smp_wmb(); /* Make pte visible before pmd */
167 			kvm_set_pte(entry, __pa(child));
168 		} else if (kvm_pte_huge(*entry)) {
169 			return entry;
170 		} else
171 			child = (kvm_pte_t *)__va(PHYSADDR(*entry));
172 		kvm_ptw_enter(&ctx);
173 	}
174 
175 	entry = kvm_pgtable_offset(&ctx, child, addr);
176 
177 	return entry;
178 }
179 
180 /*
181  * Page walker for VM shadow mmu at last level
182  * The last level is small pte page or huge pmd page
183  */
kvm_ptw_leaf(kvm_pte_t * dir,phys_addr_t addr,phys_addr_t end,kvm_ptw_ctx * ctx)184 static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
185 {
186 	int ret;
187 	phys_addr_t next, start, size;
188 	struct list_head *list;
189 	kvm_pte_t *entry, *child;
190 
191 	ret = 0;
192 	start = addr;
193 	child = (kvm_pte_t *)__va(PHYSADDR(*dir));
194 	entry = kvm_pgtable_offset(ctx, child, addr);
195 	do {
196 		next = addr + (0x1UL << ctx->pgtable_shift);
197 		if (!kvm_pte_present(ctx, entry))
198 			continue;
199 
200 		ret |= ctx->ops(entry, addr, ctx);
201 	} while (entry++, addr = next, addr < end);
202 
203 	if (kvm_need_flush(ctx)) {
204 		size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
205 		if (start + size == end) {
206 			list = (struct list_head *)child;
207 			list_add_tail(list, &ctx->list);
208 			*dir = ctx->invalid_ptes[ctx->level + 1];
209 		}
210 	}
211 
212 	return ret;
213 }
214 
215 /*
216  * Page walker for VM shadow mmu at page table dir level
217  */
kvm_ptw_dir(kvm_pte_t * dir,phys_addr_t addr,phys_addr_t end,kvm_ptw_ctx * ctx)218 static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
219 {
220 	int ret;
221 	phys_addr_t next, start, size;
222 	struct list_head *list;
223 	kvm_pte_t *entry, *child;
224 
225 	ret = 0;
226 	start = addr;
227 	child = (kvm_pte_t *)__va(PHYSADDR(*dir));
228 	entry = kvm_pgtable_offset(ctx, child, addr);
229 	do {
230 		next = kvm_pgtable_addr_end(ctx, addr, end);
231 		if (!kvm_pte_present(ctx, entry))
232 			continue;
233 
234 		if (kvm_pte_huge(*entry)) {
235 			ret |= ctx->ops(entry, addr, ctx);
236 			continue;
237 		}
238 
239 		kvm_ptw_enter(ctx);
240 		if (ctx->level == 0)
241 			ret |= kvm_ptw_leaf(entry, addr, next, ctx);
242 		else
243 			ret |= kvm_ptw_dir(entry, addr, next, ctx);
244 		kvm_ptw_exit(ctx);
245 	}  while (entry++, addr = next, addr < end);
246 
247 	if (kvm_need_flush(ctx)) {
248 		size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
249 		if (start + size == end) {
250 			list = (struct list_head *)child;
251 			list_add_tail(list, &ctx->list);
252 			*dir = ctx->invalid_ptes[ctx->level + 1];
253 		}
254 	}
255 
256 	return ret;
257 }
258 
259 /*
260  * Page walker for VM shadow mmu at page root table
261  */
kvm_ptw_top(kvm_pte_t * dir,phys_addr_t addr,phys_addr_t end,kvm_ptw_ctx * ctx)262 static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
263 {
264 	int ret;
265 	phys_addr_t next;
266 	kvm_pte_t *entry;
267 
268 	ret = 0;
269 	entry = kvm_pgtable_offset(ctx, dir, addr);
270 	do {
271 		next = kvm_pgtable_addr_end(ctx, addr, end);
272 		if (!kvm_pte_present(ctx, entry))
273 			continue;
274 
275 		kvm_ptw_enter(ctx);
276 		ret |= kvm_ptw_dir(entry, addr, next, ctx);
277 		kvm_ptw_exit(ctx);
278 	}  while (entry++, addr = next, addr < end);
279 
280 	return ret;
281 }
282 
283 /*
284  * kvm_flush_range() - Flush a range of guest physical addresses.
285  * @kvm:	KVM pointer.
286  * @start_gfn:	Guest frame number of first page in GPA range to flush.
287  * @end_gfn:	Guest frame number of last page in GPA range to flush.
288  * @lock:	Whether to hold mmu_lock or not
289  *
290  * Flushes a range of GPA mappings from the GPA page tables.
291  */
kvm_flush_range(struct kvm * kvm,gfn_t start_gfn,gfn_t end_gfn,int lock)292 static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock)
293 {
294 	int ret;
295 	kvm_ptw_ctx ctx;
296 	struct list_head *pos, *temp;
297 
298 	ctx.ops = kvm_flush_pte;
299 	ctx.flag = _KVM_FLUSH_PGTABLE;
300 	kvm_ptw_prepare(kvm, &ctx);
301 	INIT_LIST_HEAD(&ctx.list);
302 
303 	if (lock) {
304 		spin_lock(&kvm->mmu_lock);
305 		ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
306 					end_gfn << PAGE_SHIFT, &ctx);
307 		spin_unlock(&kvm->mmu_lock);
308 	} else
309 		ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
310 					end_gfn << PAGE_SHIFT, &ctx);
311 
312 	/* Flush vpid for each vCPU individually */
313 	if (ret)
314 		kvm_flush_remote_tlbs(kvm);
315 
316 	/*
317 	 * free pte table page after mmu_lock
318 	 * the pte table page is linked together with ctx.list
319 	 */
320 	list_for_each_safe(pos, temp, &ctx.list) {
321 		list_del(pos);
322 		free_page((unsigned long)pos);
323 	}
324 }
325 
326 /*
327  * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
328  * @kvm:	KVM pointer.
329  * @start_gfn:	Guest frame number of first page in GPA range to flush.
330  * @end_gfn:	Guest frame number of last page in GPA range to flush.
331  *
332  * Make a range of GPA mappings clean so that guest writes will fault and
333  * trigger dirty page logging.
334  *
335  * The caller must hold the @kvm->mmu_lock spinlock.
336  *
337  * Returns:	Whether any GPA mappings were modified, which would require
338  *		derived mappings (GVA page tables & TLB enties) to be
339  *		invalidated.
340  */
kvm_mkclean_gpa_pt(struct kvm * kvm,gfn_t start_gfn,gfn_t end_gfn)341 static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
342 {
343 	kvm_ptw_ctx ctx;
344 
345 	ctx.ops = kvm_mkclean_pte;
346 	ctx.flag = 0;
347 	kvm_ptw_prepare(kvm, &ctx);
348 	return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx);
349 }
350 
351 /*
352  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
353  * @kvm:	The KVM pointer
354  * @slot:	The memory slot associated with mask
355  * @gfn_offset:	The gfn offset in memory slot
356  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
357  *		slot to be write protected
358  *
359  * Walks bits set in mask write protects the associated pte's. Caller must
360  * acquire @kvm->mmu_lock.
361  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)362 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
363 		struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask)
364 {
365 	kvm_ptw_ctx ctx;
366 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
367 	gfn_t start = base_gfn + __ffs(mask);
368 	gfn_t end = base_gfn + __fls(mask) + 1;
369 
370 	ctx.ops = kvm_mkclean_pte;
371 	ctx.flag = _KVM_HAS_PGMASK;
372 	ctx.mask = mask;
373 	ctx.gfn = base_gfn;
374 	kvm_ptw_prepare(kvm, &ctx);
375 
376 	kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx);
377 }
378 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)379 int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old,
380 				   struct kvm_memory_slot *new, enum kvm_mr_change change)
381 {
382 	gpa_t gpa_start;
383 	hva_t hva_start;
384 	size_t size, gpa_offset, hva_offset;
385 
386 	if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE))
387 		return 0;
388 	/*
389 	 * Prevent userspace from creating a memory region outside of the
390 	 * VM GPA address space
391 	 */
392 	if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT))
393 		return -ENOMEM;
394 
395 	new->arch.flags = 0;
396 	size = new->npages * PAGE_SIZE;
397 	gpa_start = new->base_gfn << PAGE_SHIFT;
398 	hva_start = new->userspace_addr;
399 	if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE)
400 			&& IS_ALIGNED(hva_start, PMD_SIZE))
401 		new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE;
402 	else {
403 		/*
404 		 * Pages belonging to memslots that don't have the same
405 		 * alignment within a PMD for userspace and GPA cannot be
406 		 * mapped with PMD entries, because we'll end up mapping
407 		 * the wrong pages.
408 		 *
409 		 * Consider a layout like the following:
410 		 *
411 		 *    memslot->userspace_addr:
412 		 *    +-----+--------------------+--------------------+---+
413 		 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
414 		 *    +-----+--------------------+--------------------+---+
415 		 *
416 		 *    memslot->base_gfn << PAGE_SIZE:
417 		 *      +---+--------------------+--------------------+-----+
418 		 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
419 		 *      +---+--------------------+--------------------+-----+
420 		 *
421 		 * If we create those stage-2 blocks, we'll end up with this
422 		 * incorrect mapping:
423 		 *   d -> f
424 		 *   e -> g
425 		 *   f -> h
426 		 */
427 		gpa_offset = gpa_start & (PMD_SIZE - 1);
428 		hva_offset = hva_start & (PMD_SIZE - 1);
429 		if (gpa_offset != hva_offset) {
430 			new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
431 		} else {
432 			if (gpa_offset == 0)
433 				gpa_offset = PMD_SIZE;
434 			if ((size + gpa_offset) < (PMD_SIZE * 2))
435 				new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
436 		}
437 	}
438 
439 	return 0;
440 }
441 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)442 void kvm_arch_commit_memory_region(struct kvm *kvm,
443 				   struct kvm_memory_slot *old,
444 				   const struct kvm_memory_slot *new,
445 				   enum kvm_mr_change change)
446 {
447 	int needs_flush;
448 	u32 old_flags = old ? old->flags : 0;
449 	u32 new_flags = new ? new->flags : 0;
450 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
451 
452 	/* Only track memslot flags changed */
453 	if (change != KVM_MR_FLAGS_ONLY)
454 		return;
455 
456 	/* Discard dirty page tracking on readonly memslot */
457 	if ((old_flags & new_flags) & KVM_MEM_READONLY)
458 		return;
459 
460 	/*
461 	 * If dirty page logging is enabled, write protect all pages in the slot
462 	 * ready for dirty logging.
463 	 *
464 	 * There is no need to do this in any of the following cases:
465 	 * CREATE:	No dirty mappings will already exist.
466 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
467 	 *		kvm_arch_flush_shadow_memslot()
468 	 */
469 	if (!(old_flags & KVM_MEM_LOG_DIRTY_PAGES) && log_dirty_pages) {
470 		/*
471 		 * Initially-all-set does not require write protecting any page
472 		 * because they're all assumed to be dirty.
473 		 */
474 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
475 			return;
476 
477 		spin_lock(&kvm->mmu_lock);
478 		/* Write protect GPA page table entries */
479 		needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn,
480 					new->base_gfn + new->npages);
481 		spin_unlock(&kvm->mmu_lock);
482 		if (needs_flush)
483 			kvm_flush_remote_tlbs(kvm);
484 	}
485 }
486 
kvm_arch_flush_shadow_all(struct kvm * kvm)487 void kvm_arch_flush_shadow_all(struct kvm *kvm)
488 {
489 	kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0);
490 }
491 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)492 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
493 {
494 	/*
495 	 * The slot has been made invalid (ready for moving or deletion), so we
496 	 * need to ensure that it can no longer be accessed by any guest vCPUs.
497 	 */
498 	kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1);
499 }
500 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)501 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
502 {
503 	kvm_ptw_ctx ctx;
504 
505 	ctx.flag = 0;
506 	ctx.ops = kvm_flush_pte;
507 	kvm_ptw_prepare(kvm, &ctx);
508 	INIT_LIST_HEAD(&ctx.list);
509 
510 	return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
511 			range->end << PAGE_SHIFT, &ctx);
512 }
513 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)514 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
515 {
516 	kvm_ptw_ctx ctx;
517 
518 	ctx.flag = 0;
519 	ctx.ops = kvm_mkold_pte;
520 	kvm_ptw_prepare(kvm, &ctx);
521 
522 	return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
523 				range->end << PAGE_SHIFT, &ctx);
524 }
525 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)526 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
527 {
528 	gpa_t gpa = range->start << PAGE_SHIFT;
529 	kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
530 
531 	if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep))
532 		return true;
533 
534 	return false;
535 }
536 
537 /*
538  * kvm_map_page_fast() - Fast path GPA fault handler.
539  * @vcpu:		vCPU pointer.
540  * @gpa:		Guest physical address of fault.
541  * @write:	Whether the fault was due to a write.
542  *
543  * Perform fast path GPA fault handling, doing all that can be done without
544  * calling into KVM. This handles marking old pages young (for idle page
545  * tracking), and dirtying of clean pages (for dirty page logging).
546  *
547  * Returns:	0 on success, in which case we can update derived mappings and
548  *		resume guest execution.
549  *		-EFAULT on failure due to absent GPA mapping or write to
550  *		read-only page, in which case KVM must be consulted.
551  */
kvm_map_page_fast(struct kvm_vcpu * vcpu,unsigned long gpa,bool write)552 static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
553 {
554 	int ret = 0;
555 	kvm_pfn_t pfn = 0;
556 	kvm_pte_t *ptep, changed, new;
557 	gfn_t gfn = gpa >> PAGE_SHIFT;
558 	struct kvm *kvm = vcpu->kvm;
559 	struct kvm_memory_slot *slot;
560 	struct page *page;
561 
562 	spin_lock(&kvm->mmu_lock);
563 
564 	/* Fast path - just check GPA page table for an existing entry */
565 	ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
566 	if (!ptep || !kvm_pte_present(NULL, ptep)) {
567 		ret = -EFAULT;
568 		goto out;
569 	}
570 
571 	/* Track access to pages marked old */
572 	new = kvm_pte_mkyoung(*ptep);
573 	/* call kvm_set_pfn_accessed() after unlock */
574 
575 	if (write && !kvm_pte_dirty(new)) {
576 		if (!kvm_pte_write(new)) {
577 			ret = -EFAULT;
578 			goto out;
579 		}
580 
581 		if (kvm_pte_huge(new)) {
582 			/*
583 			 * Do not set write permission when dirty logging is
584 			 * enabled for HugePages
585 			 */
586 			slot = gfn_to_memslot(kvm, gfn);
587 			if (kvm_slot_dirty_track_enabled(slot)) {
588 				ret = -EFAULT;
589 				goto out;
590 			}
591 		}
592 
593 		/* Track dirtying of writeable pages */
594 		new = kvm_pte_mkdirty(new);
595 	}
596 
597 	changed = new ^ (*ptep);
598 	if (changed) {
599 		kvm_set_pte(ptep, new);
600 		pfn = kvm_pte_pfn(new);
601 		page = kvm_pfn_to_refcounted_page(pfn);
602 		if (page)
603 			get_page(page);
604 	}
605 	spin_unlock(&kvm->mmu_lock);
606 
607 	if (changed) {
608 		if (kvm_pte_young(changed))
609 			kvm_set_pfn_accessed(pfn);
610 
611 		if (kvm_pte_dirty(changed)) {
612 			mark_page_dirty(kvm, gfn);
613 			kvm_set_pfn_dirty(pfn);
614 		}
615 		if (page)
616 			put_page(page);
617 	}
618 	return ret;
619 out:
620 	spin_unlock(&kvm->mmu_lock);
621 	return ret;
622 }
623 
fault_supports_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,bool write)624 static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot,
625 				unsigned long hva, bool write)
626 {
627 	hva_t start, end;
628 
629 	/* Disable dirty logging on HugePages */
630 	if (kvm_slot_dirty_track_enabled(memslot) && write)
631 		return false;
632 
633 	if (kvm_hugepage_capable(memslot))
634 		return true;
635 
636 	if (kvm_hugepage_incapable(memslot))
637 		return false;
638 
639 	start = memslot->userspace_addr;
640 	end = start + memslot->npages * PAGE_SIZE;
641 
642 	/*
643 	 * Next, let's make sure we're not trying to map anything not covered
644 	 * by the memslot. This means we have to prohibit block size mappings
645 	 * for the beginning and end of a non-block aligned and non-block sized
646 	 * memory slot (illustrated by the head and tail parts of the
647 	 * userspace view above containing pages 'abcde' and 'xyz',
648 	 * respectively).
649 	 *
650 	 * Note that it doesn't matter if we do the check using the
651 	 * userspace_addr or the base_gfn, as both are equally aligned (per
652 	 * the check above) and equally sized.
653 	 */
654 	return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE));
655 }
656 
657 /*
658  * Lookup the mapping level for @gfn in the current mm.
659  *
660  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
661  * consumer to be tied into KVM's handlers for MMU notifier events!
662  *
663  * There are several ways to safely use this helper:
664  *
665  * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
666  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
667  *   lookup, but it does need to be held while checking the MMU notifier.
668  *
669  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
670  *   event for the hva.  This can be done by explicit checking the MMU notifier
671  *   or by ensuring that KVM already has a valid mapping that covers the hva.
672  *
673  * - Do not use the result to install new mappings, e.g. use the host mapping
674  *   level only to decide whether or not to zap an entry.  In this case, it's
675  *   not required to hold mmu_lock (though it's highly likely the caller will
676  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
677  *
678  * Note!  The lookup can still race with modifications to host page tables, but
679  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
680  * race with the primary MMU occurs.
681  */
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,const struct kvm_memory_slot * slot)682 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
683 				const struct kvm_memory_slot *slot)
684 {
685 	int level = 0;
686 	unsigned long hva;
687 	unsigned long flags;
688 	pgd_t pgd;
689 	p4d_t p4d;
690 	pud_t pud;
691 	pmd_t pmd;
692 
693 	/*
694 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
695 	 * is not solely for performance, it's also necessary to avoid the
696 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
697 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
698 	 * page fault steps have already verified the guest isn't writing a
699 	 * read-only memslot.
700 	 */
701 	hva = __gfn_to_hva_memslot(slot, gfn);
702 
703 	/*
704 	 * Disable IRQs to prevent concurrent tear down of host page tables,
705 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
706 	 * the original page table.
707 	 */
708 	local_irq_save(flags);
709 
710 	/*
711 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
712 	 * a huge page _during_ this walk.  Re-reading the entry could send the
713 	 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
714 	 * value) and then p*d_offset() walks into the target huge page instead
715 	 * of the old page table (sees the new value).
716 	 */
717 	pgd = pgdp_get(pgd_offset(kvm->mm, hva));
718 	if (pgd_none(pgd))
719 		goto out;
720 
721 	p4d = p4dp_get(p4d_offset(&pgd, hva));
722 	if (p4d_none(p4d) || !p4d_present(p4d))
723 		goto out;
724 
725 	pud = pudp_get(pud_offset(&p4d, hva));
726 	if (pud_none(pud) || !pud_present(pud))
727 		goto out;
728 
729 	pmd = pmdp_get(pmd_offset(&pud, hva));
730 	if (pmd_none(pmd) || !pmd_present(pmd))
731 		goto out;
732 
733 	if (kvm_pte_huge(pmd_val(pmd)))
734 		level = 1;
735 
736 out:
737 	local_irq_restore(flags);
738 	return level;
739 }
740 
741 /*
742  * Split huge page
743  */
kvm_split_huge(struct kvm_vcpu * vcpu,kvm_pte_t * ptep,gfn_t gfn)744 static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn)
745 {
746 	int i;
747 	kvm_pte_t val, *child;
748 	struct kvm *kvm = vcpu->kvm;
749 	struct kvm_mmu_memory_cache *memcache;
750 
751 	memcache = &vcpu->arch.mmu_page_cache;
752 	child = kvm_mmu_memory_cache_alloc(memcache);
753 	val = kvm_pte_mksmall(*ptep);
754 	for (i = 0; i < PTRS_PER_PTE; i++) {
755 		kvm_set_pte(child + i, val);
756 		val += PAGE_SIZE;
757 	}
758 
759 	smp_wmb(); /* Make pte visible before pmd */
760 	/* The later kvm_flush_tlb_gpa() will flush hugepage tlb */
761 	kvm_set_pte(ptep, __pa(child));
762 
763 	kvm->stat.hugepages--;
764 	kvm->stat.pages += PTRS_PER_PTE;
765 
766 	return child + (gfn & (PTRS_PER_PTE - 1));
767 }
768 
769 /*
770  * kvm_map_page() - Map a guest physical page.
771  * @vcpu:		vCPU pointer.
772  * @gpa:		Guest physical address of fault.
773  * @write:	Whether the fault was due to a write.
774  *
775  * Handle GPA faults by creating a new GPA mapping (or updating an existing
776  * one).
777  *
778  * This takes care of marking pages young or dirty (idle/dirty page tracking),
779  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
780  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
781  * caller.
782  *
783  * Returns:	0 on success
784  *		-EFAULT if there is no memory region at @gpa or a write was
785  *		attempted to a read-only memory region. This is usually handled
786  *		as an MMIO access.
787  */
kvm_map_page(struct kvm_vcpu * vcpu,unsigned long gpa,bool write)788 static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
789 {
790 	bool writeable;
791 	int srcu_idx, err, retry_no = 0, level;
792 	unsigned long hva, mmu_seq, prot_bits;
793 	kvm_pfn_t pfn;
794 	kvm_pte_t *ptep, new_pte;
795 	gfn_t gfn = gpa >> PAGE_SHIFT;
796 	struct kvm *kvm = vcpu->kvm;
797 	struct kvm_memory_slot *memslot;
798 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
799 
800 	/* Try the fast path to handle old / clean pages */
801 	srcu_idx = srcu_read_lock(&kvm->srcu);
802 	err = kvm_map_page_fast(vcpu, gpa, write);
803 	if (!err)
804 		goto out;
805 
806 	memslot = gfn_to_memslot(kvm, gfn);
807 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable);
808 	if (kvm_is_error_hva(hva) || (write && !writeable)) {
809 		err = -EFAULT;
810 		goto out;
811 	}
812 
813 	/* We need a minimum of cached pages ready for page table creation */
814 	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
815 	if (err)
816 		goto out;
817 
818 retry:
819 	/*
820 	 * Used to check for invalidations in progress, of the pfn that is
821 	 * returned by pfn_to_pfn_prot below.
822 	 */
823 	mmu_seq = kvm->mmu_invalidate_seq;
824 	/*
825 	 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in
826 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
827 	 * risk the page we get a reference to getting unmapped before we have a
828 	 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
829 	 *
830 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
831 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
832 	 * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before
833 	 * mmu_invalidate_seq is incremented.
834 	 */
835 	smp_rmb();
836 
837 	/* Slow path - ask KVM core whether we can access this GPA */
838 	pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable);
839 	if (is_error_noslot_pfn(pfn)) {
840 		err = -EFAULT;
841 		goto out;
842 	}
843 
844 	/* Check if an invalidation has taken place since we got pfn */
845 	spin_lock(&kvm->mmu_lock);
846 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
847 		/*
848 		 * This can happen when mappings are changed asynchronously, but
849 		 * also synchronously if a COW is triggered by
850 		 * gfn_to_pfn_prot().
851 		 */
852 		spin_unlock(&kvm->mmu_lock);
853 		kvm_release_pfn_clean(pfn);
854 		if (retry_no > 100) {
855 			retry_no = 0;
856 			schedule();
857 		}
858 		retry_no++;
859 		goto retry;
860 	}
861 
862 	/*
863 	 * For emulated devices such virtio device, actual cache attribute is
864 	 * determined by physical machine.
865 	 * For pass through physical device, it should be uncachable
866 	 */
867 	prot_bits = _PAGE_PRESENT | __READABLE;
868 	if (pfn_valid(pfn))
869 		prot_bits |= _CACHE_CC;
870 	else
871 		prot_bits |= _CACHE_SUC;
872 
873 	if (writeable) {
874 		prot_bits |= _PAGE_WRITE;
875 		if (write)
876 			prot_bits |= __WRITEABLE;
877 	}
878 
879 	/* Disable dirty logging on HugePages */
880 	level = 0;
881 	if (fault_supports_huge_mapping(memslot, hva, write)) {
882 		/* Check page level about host mmu*/
883 		level = host_pfn_mapping_level(kvm, gfn, memslot);
884 		if (level == 1) {
885 			/*
886 			 * Check page level about secondary mmu
887 			 * Disable hugepage if it is normal page on
888 			 * secondary mmu already
889 			 */
890 			ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
891 			if (ptep && !kvm_pte_huge(*ptep))
892 				level = 0;
893 		}
894 
895 		if (level == 1) {
896 			gfn = gfn & ~(PTRS_PER_PTE - 1);
897 			pfn = pfn & ~(PTRS_PER_PTE - 1);
898 		}
899 	}
900 
901 	/* Ensure page tables are allocated */
902 	ptep = kvm_populate_gpa(kvm, memcache, gpa, level);
903 	new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits));
904 	if (level == 1) {
905 		new_pte = kvm_pte_mkhuge(new_pte);
906 		/*
907 		 * previous pmd entry is invalid_pte_table
908 		 * there is invalid tlb with small page
909 		 * need flush these invalid tlbs for current vcpu
910 		 */
911 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
912 		++kvm->stat.hugepages;
913 	}  else if (kvm_pte_huge(*ptep) && write)
914 		ptep = kvm_split_huge(vcpu, ptep, gfn);
915 	else
916 		++kvm->stat.pages;
917 	kvm_set_pte(ptep, new_pte);
918 	spin_unlock(&kvm->mmu_lock);
919 
920 	if (prot_bits & _PAGE_DIRTY) {
921 		mark_page_dirty_in_slot(kvm, memslot, gfn);
922 		kvm_set_pfn_dirty(pfn);
923 	}
924 
925 	kvm_release_pfn_clean(pfn);
926 out:
927 	srcu_read_unlock(&kvm->srcu, srcu_idx);
928 	return err;
929 }
930 
kvm_handle_mm_fault(struct kvm_vcpu * vcpu,unsigned long gpa,bool write)931 int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
932 {
933 	int ret;
934 
935 	ret = kvm_map_page(vcpu, gpa, write);
936 	if (ret)
937 		return ret;
938 
939 	/* Invalidate this entry in the TLB */
940 	vcpu->arch.flush_gpa = gpa;
941 	kvm_make_request(KVM_REQ_TLB_FLUSH_GPA, vcpu);
942 
943 	return 0;
944 }
945 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)946 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
947 {
948 }
949 
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)950 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
951 					const struct kvm_memory_slot *memslot)
952 {
953 	kvm_flush_remote_tlbs(kvm);
954 }
955