1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/acpi.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/profile.h> 17 #include <linux/seq_file.h> 18 #include <linux/smp.h> 19 #include <linux/threads.h> 20 #include <linux/export.h> 21 #include <linux/syscore_ops.h> 22 #include <linux/time.h> 23 #include <linux/tracepoint.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task_stack.h> 26 27 #include <asm/cpu.h> 28 #include <asm/idle.h> 29 #include <asm/loongson.h> 30 #include <asm/mmu_context.h> 31 #include <asm/numa.h> 32 #include <asm/processor.h> 33 #include <asm/setup.h> 34 #include <asm/time.h> 35 36 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 37 EXPORT_SYMBOL(__cpu_number_map); 38 39 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 40 EXPORT_SYMBOL(__cpu_logical_map); 41 42 /* Representing the threads (siblings) of each logical CPU */ 43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 44 EXPORT_SYMBOL(cpu_sibling_map); 45 46 /* Representing the core map of multi-core chips of each logical CPU */ 47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 48 EXPORT_SYMBOL(cpu_core_map); 49 50 static DECLARE_COMPLETION(cpu_starting); 51 static DECLARE_COMPLETION(cpu_running); 52 53 /* 54 * A logcal cpu mask containing only one VPE per core to 55 * reduce the number of IPIs on large MT systems. 56 */ 57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 58 EXPORT_SYMBOL(cpu_foreign_map); 59 60 /* representing cpus for which sibling maps can be computed */ 61 static cpumask_t cpu_sibling_setup_map; 62 63 /* representing cpus for which core maps can be computed */ 64 static cpumask_t cpu_core_setup_map; 65 66 struct secondary_data cpuboot_data; 67 static DEFINE_PER_CPU(int, cpu_state); 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNCTION, 72 }; 73 74 static const char *ipi_types[NR_IPI] __tracepoint_string = { 75 [IPI_RESCHEDULE] = "Rescheduling interrupts", 76 [IPI_CALL_FUNCTION] = "Function call interrupts", 77 }; 78 79 void show_ipi_list(struct seq_file *p, int prec) 80 { 81 unsigned int cpu, i; 82 83 for (i = 0; i < NR_IPI; i++) { 84 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 85 for_each_online_cpu(cpu) 86 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 87 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 88 } 89 } 90 91 /* Send mailbox buffer via Mail_Send */ 92 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 93 { 94 uint64_t val; 95 96 /* Send high 32 bits */ 97 val = IOCSR_MBUF_SEND_BLOCKING; 98 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 99 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 100 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 101 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 102 103 /* Send low 32 bits */ 104 val = IOCSR_MBUF_SEND_BLOCKING; 105 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 106 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 107 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 108 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 109 }; 110 111 static u32 ipi_read_clear(int cpu) 112 { 113 u32 action; 114 115 /* Load the ipi register to figure out what we're supposed to do */ 116 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 117 /* Clear the ipi register to clear the interrupt */ 118 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 119 wbflush(); 120 121 return action; 122 } 123 124 static void ipi_write_action(int cpu, u32 action) 125 { 126 unsigned int irq = 0; 127 128 while ((irq = ffs(action))) { 129 uint32_t val = IOCSR_IPI_SEND_BLOCKING; 130 131 val |= (irq - 1); 132 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 133 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 134 action &= ~BIT(irq - 1); 135 } 136 } 137 138 void loongson_send_ipi_single(int cpu, unsigned int action) 139 { 140 ipi_write_action(cpu_logical_map(cpu), (u32)action); 141 } 142 143 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 144 { 145 unsigned int i; 146 147 for_each_cpu(i, mask) 148 ipi_write_action(cpu_logical_map(i), (u32)action); 149 } 150 151 /* 152 * This function sends a 'reschedule' IPI to another CPU. 153 * it goes straight through and wastes no time serializing 154 * anything. Worst case is that we lose a reschedule ... 155 */ 156 void arch_smp_send_reschedule(int cpu) 157 { 158 loongson_send_ipi_single(cpu, SMP_RESCHEDULE); 159 } 160 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 161 162 irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 163 { 164 unsigned int action; 165 unsigned int cpu = smp_processor_id(); 166 167 action = ipi_read_clear(cpu_logical_map(cpu)); 168 169 if (action & SMP_RESCHEDULE) { 170 scheduler_ipi(); 171 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 172 } 173 174 if (action & SMP_CALL_FUNCTION) { 175 generic_smp_call_function_interrupt(); 176 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 177 } 178 179 return IRQ_HANDLED; 180 } 181 182 static void __init fdt_smp_setup(void) 183 { 184 #ifdef CONFIG_OF 185 unsigned int cpu, cpuid; 186 struct device_node *node = NULL; 187 188 for_each_of_cpu_node(node) { 189 if (!of_device_is_available(node)) 190 continue; 191 192 cpuid = of_get_cpu_hwid(node, 0); 193 if (cpuid >= nr_cpu_ids) 194 continue; 195 196 if (cpuid == loongson_sysconf.boot_cpu_id) { 197 cpu = 0; 198 numa_add_cpu(cpu); 199 } else { 200 cpu = cpumask_next_zero(-1, cpu_present_mask); 201 } 202 203 num_processors++; 204 set_cpu_possible(cpu, true); 205 set_cpu_present(cpu, true); 206 __cpu_number_map[cpuid] = cpu; 207 __cpu_logical_map[cpu] = cpuid; 208 } 209 210 loongson_sysconf.nr_cpus = num_processors; 211 set_bit(0, loongson_sysconf.cores_io_master); 212 #endif 213 } 214 215 void __init loongson_smp_setup(void) 216 { 217 fdt_smp_setup(); 218 219 if (loongson_sysconf.cores_per_package == 0) 220 loongson_sysconf.cores_per_package = num_processors; 221 222 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 223 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 224 225 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 226 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 227 } 228 229 void __init loongson_prepare_cpus(unsigned int max_cpus) 230 { 231 int i = 0; 232 233 parse_acpi_topology(); 234 235 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 236 set_cpu_present(i, true); 237 csr_mail_send(0, __cpu_logical_map[i], 0); 238 cpu_data[i].global_id = __cpu_logical_map[i]; 239 } 240 241 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 242 } 243 244 /* 245 * Setup the PC, SP, and TP of a secondary processor and start it running! 246 */ 247 void loongson_boot_secondary(int cpu, struct task_struct *idle) 248 { 249 unsigned long entry; 250 251 pr_info("Booting CPU#%d...\n", cpu); 252 253 entry = __pa_symbol((unsigned long)&smpboot_entry); 254 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 255 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 256 257 csr_mail_send(entry, cpu_logical_map(cpu), 0); 258 259 loongson_send_ipi_single(cpu, SMP_BOOT_CPU); 260 } 261 262 /* 263 * SMP init and finish on secondary CPUs 264 */ 265 void loongson_init_secondary(void) 266 { 267 unsigned int cpu = smp_processor_id(); 268 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 269 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER; 270 271 change_csr_ecfg(ECFG0_IM, imask); 272 273 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 274 275 #ifdef CONFIG_NUMA 276 numa_add_cpu(cpu); 277 #endif 278 per_cpu(cpu_state, cpu) = CPU_ONLINE; 279 cpu_data[cpu].package = 280 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 281 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core : 282 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 283 } 284 285 void loongson_smp_finish(void) 286 { 287 local_irq_enable(); 288 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 289 pr_info("CPU#%d finished\n", smp_processor_id()); 290 } 291 292 #ifdef CONFIG_HOTPLUG_CPU 293 294 int loongson_cpu_disable(void) 295 { 296 unsigned long flags; 297 unsigned int cpu = smp_processor_id(); 298 299 if (io_master(cpu)) 300 return -EBUSY; 301 302 #ifdef CONFIG_NUMA 303 numa_remove_cpu(cpu); 304 #endif 305 set_cpu_online(cpu, false); 306 calculate_cpu_foreign_map(); 307 local_irq_save(flags); 308 irq_migrate_all_off_this_cpu(); 309 clear_csr_ecfg(ECFG0_IM); 310 local_irq_restore(flags); 311 local_flush_tlb_all(); 312 313 return 0; 314 } 315 316 void loongson_cpu_die(unsigned int cpu) 317 { 318 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 319 cpu_relax(); 320 321 mb(); 322 } 323 324 void __noreturn arch_cpu_idle_dead(void) 325 { 326 register uint64_t addr; 327 register void (*init_fn)(void); 328 329 idle_task_exit(); 330 local_irq_enable(); 331 set_csr_ecfg(ECFGF_IPI); 332 __this_cpu_write(cpu_state, CPU_DEAD); 333 334 __smp_mb(); 335 do { 336 __asm__ __volatile__("idle 0\n\t"); 337 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 338 } while (addr == 0); 339 340 init_fn = (void *)TO_CACHE(addr); 341 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 342 343 init_fn(); 344 BUG(); 345 } 346 347 #endif 348 349 /* 350 * Power management 351 */ 352 #ifdef CONFIG_PM 353 354 static int loongson_ipi_suspend(void) 355 { 356 return 0; 357 } 358 359 static void loongson_ipi_resume(void) 360 { 361 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 362 } 363 364 static struct syscore_ops loongson_ipi_syscore_ops = { 365 .resume = loongson_ipi_resume, 366 .suspend = loongson_ipi_suspend, 367 }; 368 369 /* 370 * Enable boot cpu ipi before enabling nonboot cpus 371 * during syscore_resume. 372 */ 373 static int __init ipi_pm_init(void) 374 { 375 register_syscore_ops(&loongson_ipi_syscore_ops); 376 return 0; 377 } 378 379 core_initcall(ipi_pm_init); 380 #endif 381 382 static inline void set_cpu_sibling_map(int cpu) 383 { 384 int i; 385 386 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 387 388 for_each_cpu(i, &cpu_sibling_setup_map) { 389 if (cpus_are_siblings(cpu, i)) { 390 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 391 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 392 } 393 } 394 } 395 396 static inline void set_cpu_core_map(int cpu) 397 { 398 int i; 399 400 cpumask_set_cpu(cpu, &cpu_core_setup_map); 401 402 for_each_cpu(i, &cpu_core_setup_map) { 403 if (cpu_data[cpu].package == cpu_data[i].package) { 404 cpumask_set_cpu(i, &cpu_core_map[cpu]); 405 cpumask_set_cpu(cpu, &cpu_core_map[i]); 406 } 407 } 408 } 409 410 /* 411 * Calculate a new cpu_foreign_map mask whenever a 412 * new cpu appears or disappears. 413 */ 414 void calculate_cpu_foreign_map(void) 415 { 416 int i, k, core_present; 417 cpumask_t temp_foreign_map; 418 419 /* Re-calculate the mask */ 420 cpumask_clear(&temp_foreign_map); 421 for_each_online_cpu(i) { 422 core_present = 0; 423 for_each_cpu(k, &temp_foreign_map) 424 if (cpus_are_siblings(i, k)) 425 core_present = 1; 426 if (!core_present) 427 cpumask_set_cpu(i, &temp_foreign_map); 428 } 429 430 for_each_online_cpu(i) 431 cpumask_andnot(&cpu_foreign_map[i], 432 &temp_foreign_map, &cpu_sibling_map[i]); 433 } 434 435 /* Preload SMP state for boot cpu */ 436 void smp_prepare_boot_cpu(void) 437 { 438 unsigned int cpu, node, rr_node; 439 440 set_cpu_possible(0, true); 441 set_cpu_online(0, true); 442 set_my_cpu_offset(per_cpu_offset(0)); 443 444 rr_node = first_node(node_online_map); 445 for_each_possible_cpu(cpu) { 446 node = early_cpu_to_node(cpu); 447 448 /* 449 * The mapping between present cpus and nodes has been 450 * built during MADT and SRAT parsing. 451 * 452 * If possible cpus = present cpus here, early_cpu_to_node 453 * will return valid node. 454 * 455 * If possible cpus > present cpus here (e.g. some possible 456 * cpus will be added by cpu-hotplug later), for possible but 457 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 458 * and we just map them to online nodes in round-robin way. 459 * Once hotplugged, new correct mapping will be built for them. 460 */ 461 if (node != NUMA_NO_NODE) 462 set_cpu_numa_node(cpu, node); 463 else { 464 set_cpu_numa_node(cpu, rr_node); 465 rr_node = next_node_in(rr_node, node_online_map); 466 } 467 } 468 } 469 470 /* called from main before smp_init() */ 471 void __init smp_prepare_cpus(unsigned int max_cpus) 472 { 473 init_new_context(current, &init_mm); 474 current_thread_info()->cpu = 0; 475 loongson_prepare_cpus(max_cpus); 476 set_cpu_sibling_map(0); 477 set_cpu_core_map(0); 478 calculate_cpu_foreign_map(); 479 #ifndef CONFIG_HOTPLUG_CPU 480 init_cpu_present(cpu_possible_mask); 481 #endif 482 } 483 484 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 485 { 486 loongson_boot_secondary(cpu, tidle); 487 488 /* Wait for CPU to start and be ready to sync counters */ 489 if (!wait_for_completion_timeout(&cpu_starting, 490 msecs_to_jiffies(5000))) { 491 pr_crit("CPU%u: failed to start\n", cpu); 492 return -EIO; 493 } 494 495 /* Wait for CPU to finish startup & mark itself online before return */ 496 wait_for_completion(&cpu_running); 497 498 return 0; 499 } 500 501 /* 502 * First C code run on the secondary CPUs after being started up by 503 * the master. 504 */ 505 asmlinkage void start_secondary(void) 506 { 507 unsigned int cpu; 508 509 sync_counter(); 510 cpu = raw_smp_processor_id(); 511 set_my_cpu_offset(per_cpu_offset(cpu)); 512 rcutree_report_cpu_starting(cpu); 513 514 cpu_probe(); 515 constant_clockevent_init(); 516 loongson_init_secondary(); 517 518 set_cpu_sibling_map(cpu); 519 set_cpu_core_map(cpu); 520 521 notify_cpu_starting(cpu); 522 523 /* Notify boot CPU that we're starting */ 524 complete(&cpu_starting); 525 526 /* The CPU is running, now mark it online */ 527 set_cpu_online(cpu, true); 528 529 calculate_cpu_foreign_map(); 530 531 /* 532 * Notify boot CPU that we're up & online and it can safely return 533 * from __cpu_up() 534 */ 535 complete(&cpu_running); 536 537 /* 538 * irq will be enabled in loongson_smp_finish(), enabling it too 539 * early is dangerous. 540 */ 541 WARN_ON_ONCE(!irqs_disabled()); 542 loongson_smp_finish(); 543 544 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 545 } 546 547 void __init smp_cpus_done(unsigned int max_cpus) 548 { 549 } 550 551 static void stop_this_cpu(void *dummy) 552 { 553 set_cpu_online(smp_processor_id(), false); 554 calculate_cpu_foreign_map(); 555 local_irq_disable(); 556 while (true); 557 } 558 559 void smp_send_stop(void) 560 { 561 smp_call_function(stop_this_cpu, NULL, 0); 562 } 563 564 #ifdef CONFIG_PROFILING 565 int setup_profiling_timer(unsigned int multiplier) 566 { 567 return 0; 568 } 569 #endif 570 571 static void flush_tlb_all_ipi(void *info) 572 { 573 local_flush_tlb_all(); 574 } 575 576 void flush_tlb_all(void) 577 { 578 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 579 } 580 581 static void flush_tlb_mm_ipi(void *mm) 582 { 583 local_flush_tlb_mm((struct mm_struct *)mm); 584 } 585 586 void flush_tlb_mm(struct mm_struct *mm) 587 { 588 if (atomic_read(&mm->mm_users) == 0) 589 return; /* happens as a result of exit_mmap() */ 590 591 preempt_disable(); 592 593 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 594 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 595 } else { 596 unsigned int cpu; 597 598 for_each_online_cpu(cpu) { 599 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 600 cpu_context(cpu, mm) = 0; 601 } 602 local_flush_tlb_mm(mm); 603 } 604 605 preempt_enable(); 606 } 607 608 struct flush_tlb_data { 609 struct vm_area_struct *vma; 610 unsigned long addr1; 611 unsigned long addr2; 612 }; 613 614 static void flush_tlb_range_ipi(void *info) 615 { 616 struct flush_tlb_data *fd = info; 617 618 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 619 } 620 621 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 622 { 623 struct mm_struct *mm = vma->vm_mm; 624 625 preempt_disable(); 626 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 627 struct flush_tlb_data fd = { 628 .vma = vma, 629 .addr1 = start, 630 .addr2 = end, 631 }; 632 633 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 634 } else { 635 unsigned int cpu; 636 637 for_each_online_cpu(cpu) { 638 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 639 cpu_context(cpu, mm) = 0; 640 } 641 local_flush_tlb_range(vma, start, end); 642 } 643 preempt_enable(); 644 } 645 646 static void flush_tlb_kernel_range_ipi(void *info) 647 { 648 struct flush_tlb_data *fd = info; 649 650 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 651 } 652 653 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 654 { 655 struct flush_tlb_data fd = { 656 .addr1 = start, 657 .addr2 = end, 658 }; 659 660 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 661 } 662 663 static void flush_tlb_page_ipi(void *info) 664 { 665 struct flush_tlb_data *fd = info; 666 667 local_flush_tlb_page(fd->vma, fd->addr1); 668 } 669 670 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 671 { 672 preempt_disable(); 673 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 674 struct flush_tlb_data fd = { 675 .vma = vma, 676 .addr1 = page, 677 }; 678 679 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 680 } else { 681 unsigned int cpu; 682 683 for_each_online_cpu(cpu) { 684 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 685 cpu_context(cpu, vma->vm_mm) = 0; 686 } 687 local_flush_tlb_page(vma, page); 688 } 689 preempt_enable(); 690 } 691 EXPORT_SYMBOL(flush_tlb_page); 692 693 static void flush_tlb_one_ipi(void *info) 694 { 695 unsigned long vaddr = (unsigned long) info; 696 697 local_flush_tlb_one(vaddr); 698 } 699 700 void flush_tlb_one(unsigned long vaddr) 701 { 702 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 703 } 704 EXPORT_SYMBOL(flush_tlb_one); 705