1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 2000, 2001 Kanoj Sarcar
7 * Copyright (C) 2000, 2001 Ralf Baechle
8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10 */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq_work.h>
17 #include <linux/profile.h>
18 #include <linux/seq_file.h>
19 #include <linux/smp.h>
20 #include <linux/threads.h>
21 #include <linux/export.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/time.h>
24 #include <linux/tracepoint.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27
28 #include <asm/cpu.h>
29 #include <asm/idle.h>
30 #include <asm/loongson.h>
31 #include <asm/mmu_context.h>
32 #include <asm/numa.h>
33 #include <asm/paravirt.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/time.h>
37
38 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
39 EXPORT_SYMBOL(__cpu_number_map);
40
41 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
42 EXPORT_SYMBOL(__cpu_logical_map);
43
44 /* Representing the threads (siblings) of each logical CPU */
45 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
46 EXPORT_SYMBOL(cpu_sibling_map);
47
48 /* Representing the core map of multi-core chips of each logical CPU */
49 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
50 EXPORT_SYMBOL(cpu_core_map);
51
52 static DECLARE_COMPLETION(cpu_starting);
53 static DECLARE_COMPLETION(cpu_running);
54
55 /*
56 * A logcal cpu mask containing only one VPE per core to
57 * reduce the number of IPIs on large MT systems.
58 */
59 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_foreign_map);
61
62 /* representing cpus for which sibling maps can be computed */
63 static cpumask_t cpu_sibling_setup_map;
64
65 /* representing cpus for which core maps can be computed */
66 static cpumask_t cpu_core_setup_map;
67
68 struct secondary_data cpuboot_data;
69 static DEFINE_PER_CPU(int, cpu_state);
70
71 static const char *ipi_types[NR_IPI] __tracepoint_string = {
72 [IPI_RESCHEDULE] = "Rescheduling interrupts",
73 [IPI_CALL_FUNCTION] = "Function call interrupts",
74 [IPI_IRQ_WORK] = "IRQ work interrupts",
75 [IPI_CLEAR_VECTOR] = "Clear vector interrupts",
76 };
77
show_ipi_list(struct seq_file * p,int prec)78 void show_ipi_list(struct seq_file *p, int prec)
79 {
80 unsigned int cpu, i;
81
82 for (i = 0; i < NR_IPI; i++) {
83 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
84 for_each_online_cpu(cpu)
85 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
86 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]);
87 }
88 }
89
set_cpu_core_map(int cpu)90 static inline void set_cpu_core_map(int cpu)
91 {
92 int i;
93
94 cpumask_set_cpu(cpu, &cpu_core_setup_map);
95
96 for_each_cpu(i, &cpu_core_setup_map) {
97 if (cpu_data[cpu].package == cpu_data[i].package) {
98 cpumask_set_cpu(i, &cpu_core_map[cpu]);
99 cpumask_set_cpu(cpu, &cpu_core_map[i]);
100 }
101 }
102 }
103
set_cpu_sibling_map(int cpu)104 static inline void set_cpu_sibling_map(int cpu)
105 {
106 int i;
107
108 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
109
110 for_each_cpu(i, &cpu_sibling_setup_map) {
111 if (cpus_are_siblings(cpu, i)) {
112 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
113 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
114 }
115 }
116 }
117
clear_cpu_sibling_map(int cpu)118 static inline void clear_cpu_sibling_map(int cpu)
119 {
120 int i;
121
122 for_each_cpu(i, &cpu_sibling_setup_map) {
123 if (cpus_are_siblings(cpu, i)) {
124 cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
125 cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
126 }
127 }
128
129 cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
130 }
131
132 /*
133 * Calculate a new cpu_foreign_map mask whenever a
134 * new cpu appears or disappears.
135 */
calculate_cpu_foreign_map(void)136 void calculate_cpu_foreign_map(void)
137 {
138 int i, k, core_present;
139 cpumask_t temp_foreign_map;
140
141 /* Re-calculate the mask */
142 cpumask_clear(&temp_foreign_map);
143 for_each_online_cpu(i) {
144 core_present = 0;
145 for_each_cpu(k, &temp_foreign_map)
146 if (cpus_are_siblings(i, k))
147 core_present = 1;
148 if (!core_present)
149 cpumask_set_cpu(i, &temp_foreign_map);
150 }
151
152 for_each_online_cpu(i)
153 cpumask_andnot(&cpu_foreign_map[i],
154 &temp_foreign_map, &cpu_sibling_map[i]);
155 }
156
157 /* Send mailbox buffer via Mail_Send */
csr_mail_send(uint64_t data,int cpu,int mailbox)158 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
159 {
160 uint64_t val;
161
162 /* Send high 32 bits */
163 val = IOCSR_MBUF_SEND_BLOCKING;
164 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
165 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
166 val |= (data & IOCSR_MBUF_SEND_H32_MASK);
167 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
168
169 /* Send low 32 bits */
170 val = IOCSR_MBUF_SEND_BLOCKING;
171 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
172 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
173 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
174 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
175 };
176
ipi_read_clear(int cpu)177 static u32 ipi_read_clear(int cpu)
178 {
179 u32 action;
180
181 /* Load the ipi register to figure out what we're supposed to do */
182 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
183 /* Clear the ipi register to clear the interrupt */
184 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
185 wbflush();
186
187 return action;
188 }
189
ipi_write_action(int cpu,u32 action)190 static void ipi_write_action(int cpu, u32 action)
191 {
192 uint32_t val;
193
194 val = IOCSR_IPI_SEND_BLOCKING | action;
195 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
196 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
197 }
198
loongson_send_ipi_single(int cpu,unsigned int action)199 static void loongson_send_ipi_single(int cpu, unsigned int action)
200 {
201 ipi_write_action(cpu_logical_map(cpu), (u32)action);
202 }
203
loongson_send_ipi_mask(const struct cpumask * mask,unsigned int action)204 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
205 {
206 unsigned int i;
207
208 for_each_cpu(i, mask)
209 ipi_write_action(cpu_logical_map(i), (u32)action);
210 }
211
212 /*
213 * This function sends a 'reschedule' IPI to another CPU.
214 * it goes straight through and wastes no time serializing
215 * anything. Worst case is that we lose a reschedule ...
216 */
arch_smp_send_reschedule(int cpu)217 void arch_smp_send_reschedule(int cpu)
218 {
219 mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE);
220 }
221 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
222
223 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)224 void arch_irq_work_raise(void)
225 {
226 mp_ops.send_ipi_single(smp_processor_id(), ACTION_IRQ_WORK);
227 }
228 #endif
229
loongson_ipi_interrupt(int irq,void * dev)230 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
231 {
232 unsigned int action;
233 unsigned int cpu = smp_processor_id();
234
235 action = ipi_read_clear(cpu_logical_map(cpu));
236
237 if (action & SMP_RESCHEDULE) {
238 scheduler_ipi();
239 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
240 }
241
242 if (action & SMP_CALL_FUNCTION) {
243 generic_smp_call_function_interrupt();
244 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
245 }
246
247 if (action & SMP_IRQ_WORK) {
248 irq_work_run();
249 per_cpu(irq_stat, cpu).ipi_irqs[IPI_IRQ_WORK]++;
250 }
251
252 if (action & SMP_CLEAR_VECTOR) {
253 complete_irq_moving();
254 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CLEAR_VECTOR]++;
255 }
256
257 return IRQ_HANDLED;
258 }
259
loongson_init_ipi(void)260 static void loongson_init_ipi(void)
261 {
262 int r, ipi_irq;
263
264 ipi_irq = get_percpu_irq(INT_IPI);
265 if (ipi_irq < 0)
266 panic("IPI IRQ mapping failed\n");
267
268 irq_set_percpu_devid(ipi_irq);
269 r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat);
270 if (r < 0)
271 panic("IPI IRQ request failed\n");
272 }
273
274 struct smp_ops mp_ops = {
275 .init_ipi = loongson_init_ipi,
276 .send_ipi_single = loongson_send_ipi_single,
277 .send_ipi_mask = loongson_send_ipi_mask,
278 };
279
fdt_smp_setup(void)280 static void __init fdt_smp_setup(void)
281 {
282 #ifdef CONFIG_OF
283 unsigned int cpu, cpuid;
284 struct device_node *node = NULL;
285
286 for_each_of_cpu_node(node) {
287 if (!of_device_is_available(node))
288 continue;
289
290 cpuid = of_get_cpu_hwid(node, 0);
291 if (cpuid >= nr_cpu_ids)
292 continue;
293
294 if (cpuid == loongson_sysconf.boot_cpu_id)
295 cpu = 0;
296 else
297 cpu = find_first_zero_bit(cpumask_bits(cpu_present_mask), NR_CPUS);
298
299 num_processors++;
300 set_cpu_possible(cpu, true);
301 set_cpu_present(cpu, true);
302 __cpu_number_map[cpuid] = cpu;
303 __cpu_logical_map[cpu] = cpuid;
304
305 early_numa_add_cpu(cpu, 0);
306 set_cpuid_to_node(cpuid, 0);
307 }
308
309 loongson_sysconf.nr_cpus = num_processors;
310 set_bit(0, loongson_sysconf.cores_io_master);
311 #endif
312 }
313
loongson_smp_setup(void)314 void __init loongson_smp_setup(void)
315 {
316 fdt_smp_setup();
317
318 if (loongson_sysconf.cores_per_package == 0)
319 loongson_sysconf.cores_per_package = num_processors;
320
321 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
322 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
323
324 pv_ipi_init();
325 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
326 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
327 }
328
loongson_prepare_cpus(unsigned int max_cpus)329 void __init loongson_prepare_cpus(unsigned int max_cpus)
330 {
331 int i = 0;
332
333 parse_acpi_topology();
334
335 for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
336 set_cpu_present(i, true);
337 csr_mail_send(0, __cpu_logical_map[i], 0);
338 cpu_data[i].global_id = __cpu_logical_map[i];
339 }
340
341 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
342 }
343
344 /*
345 * Setup the PC, SP, and TP of a secondary processor and start it running!
346 */
loongson_boot_secondary(int cpu,struct task_struct * idle)347 void loongson_boot_secondary(int cpu, struct task_struct *idle)
348 {
349 unsigned long entry;
350
351 pr_info("Booting CPU#%d...\n", cpu);
352
353 entry = __pa_symbol((unsigned long)&smpboot_entry);
354 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
355 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
356
357 csr_mail_send(entry, cpu_logical_map(cpu), 0);
358
359 loongson_send_ipi_single(cpu, ACTION_BOOT_CPU);
360 }
361
362 /*
363 * SMP init and finish on secondary CPUs
364 */
loongson_init_secondary(void)365 void loongson_init_secondary(void)
366 {
367 unsigned int cpu = smp_processor_id();
368 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
369 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0;
370
371 change_csr_ecfg(ECFG0_IM, imask);
372
373 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
374
375 #ifdef CONFIG_NUMA
376 numa_add_cpu(cpu);
377 #endif
378 per_cpu(cpu_state, cpu) = CPU_ONLINE;
379 cpu_data[cpu].package =
380 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
381 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
382 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
383 }
384
loongson_smp_finish(void)385 void loongson_smp_finish(void)
386 {
387 local_irq_enable();
388 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
389 pr_info("CPU#%d finished\n", smp_processor_id());
390 }
391
392 #ifdef CONFIG_HOTPLUG_CPU
393
loongson_cpu_disable(void)394 int loongson_cpu_disable(void)
395 {
396 unsigned long flags;
397 unsigned int cpu = smp_processor_id();
398
399 if (io_master(cpu))
400 return -EBUSY;
401
402 #ifdef CONFIG_NUMA
403 numa_remove_cpu(cpu);
404 #endif
405 set_cpu_online(cpu, false);
406 clear_cpu_sibling_map(cpu);
407 calculate_cpu_foreign_map();
408 local_irq_save(flags);
409 irq_migrate_all_off_this_cpu();
410 clear_csr_ecfg(ECFG0_IM);
411 local_irq_restore(flags);
412 local_flush_tlb_all();
413
414 return 0;
415 }
416
loongson_cpu_die(unsigned int cpu)417 void loongson_cpu_die(unsigned int cpu)
418 {
419 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
420 cpu_relax();
421
422 mb();
423 }
424
arch_cpu_idle_dead(void)425 void __noreturn arch_cpu_idle_dead(void)
426 {
427 register uint64_t addr;
428 register void (*init_fn)(void);
429
430 idle_task_exit();
431 local_irq_enable();
432 set_csr_ecfg(ECFGF_IPI);
433 __this_cpu_write(cpu_state, CPU_DEAD);
434
435 __smp_mb();
436 do {
437 __asm__ __volatile__("idle 0\n\t");
438 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
439 } while (addr == 0);
440
441 local_irq_disable();
442 init_fn = (void *)TO_CACHE(addr);
443 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
444
445 init_fn();
446 BUG();
447 }
448
449 #endif
450
451 /*
452 * Power management
453 */
454 #ifdef CONFIG_PM
455
loongson_ipi_suspend(void)456 static int loongson_ipi_suspend(void)
457 {
458 return 0;
459 }
460
loongson_ipi_resume(void)461 static void loongson_ipi_resume(void)
462 {
463 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
464 }
465
466 static struct syscore_ops loongson_ipi_syscore_ops = {
467 .resume = loongson_ipi_resume,
468 .suspend = loongson_ipi_suspend,
469 };
470
471 /*
472 * Enable boot cpu ipi before enabling nonboot cpus
473 * during syscore_resume.
474 */
ipi_pm_init(void)475 static int __init ipi_pm_init(void)
476 {
477 register_syscore_ops(&loongson_ipi_syscore_ops);
478 return 0;
479 }
480
481 core_initcall(ipi_pm_init);
482 #endif
483
484 /* Preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)485 void __init smp_prepare_boot_cpu(void)
486 {
487 unsigned int cpu, node, rr_node;
488
489 set_cpu_possible(0, true);
490 set_cpu_online(0, true);
491 set_my_cpu_offset(per_cpu_offset(0));
492 numa_add_cpu(0);
493
494 rr_node = first_node(node_online_map);
495 for_each_possible_cpu(cpu) {
496 node = early_cpu_to_node(cpu);
497
498 /*
499 * The mapping between present cpus and nodes has been
500 * built during MADT and SRAT parsing.
501 *
502 * If possible cpus = present cpus here, early_cpu_to_node
503 * will return valid node.
504 *
505 * If possible cpus > present cpus here (e.g. some possible
506 * cpus will be added by cpu-hotplug later), for possible but
507 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
508 * and we just map them to online nodes in round-robin way.
509 * Once hotplugged, new correct mapping will be built for them.
510 */
511 if (node != NUMA_NO_NODE)
512 set_cpu_numa_node(cpu, node);
513 else {
514 set_cpu_numa_node(cpu, rr_node);
515 rr_node = next_node_in(rr_node, node_online_map);
516 }
517 }
518
519 pv_spinlock_init();
520 }
521
522 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)523 void __init smp_prepare_cpus(unsigned int max_cpus)
524 {
525 init_new_context(current, &init_mm);
526 current_thread_info()->cpu = 0;
527 loongson_prepare_cpus(max_cpus);
528 set_cpu_sibling_map(0);
529 set_cpu_core_map(0);
530 calculate_cpu_foreign_map();
531 #ifndef CONFIG_HOTPLUG_CPU
532 init_cpu_present(cpu_possible_mask);
533 #endif
534 }
535
__cpu_up(unsigned int cpu,struct task_struct * tidle)536 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
537 {
538 loongson_boot_secondary(cpu, tidle);
539
540 /* Wait for CPU to start and be ready to sync counters */
541 if (!wait_for_completion_timeout(&cpu_starting,
542 msecs_to_jiffies(5000))) {
543 pr_crit("CPU%u: failed to start\n", cpu);
544 return -EIO;
545 }
546
547 /* Wait for CPU to finish startup & mark itself online before return */
548 wait_for_completion(&cpu_running);
549
550 return 0;
551 }
552
553 /*
554 * First C code run on the secondary CPUs after being started up by
555 * the master.
556 */
start_secondary(void)557 asmlinkage void start_secondary(void)
558 {
559 unsigned int cpu;
560
561 sync_counter();
562 cpu = raw_smp_processor_id();
563 set_my_cpu_offset(per_cpu_offset(cpu));
564
565 cpu_probe();
566 constant_clockevent_init();
567 loongson_init_secondary();
568
569 set_cpu_sibling_map(cpu);
570 set_cpu_core_map(cpu);
571
572 notify_cpu_starting(cpu);
573
574 /* Notify boot CPU that we're starting */
575 complete(&cpu_starting);
576
577 /* The CPU is running, now mark it online */
578 set_cpu_online(cpu, true);
579
580 calculate_cpu_foreign_map();
581
582 /*
583 * Notify boot CPU that we're up & online and it can safely return
584 * from __cpu_up()
585 */
586 complete(&cpu_running);
587
588 /*
589 * irq will be enabled in loongson_smp_finish(), enabling it too
590 * early is dangerous.
591 */
592 WARN_ON_ONCE(!irqs_disabled());
593 loongson_smp_finish();
594
595 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
596 }
597
smp_cpus_done(unsigned int max_cpus)598 void __init smp_cpus_done(unsigned int max_cpus)
599 {
600 }
601
stop_this_cpu(void * dummy)602 static void stop_this_cpu(void *dummy)
603 {
604 set_cpu_online(smp_processor_id(), false);
605 calculate_cpu_foreign_map();
606 local_irq_disable();
607 while (true);
608 }
609
smp_send_stop(void)610 void smp_send_stop(void)
611 {
612 smp_call_function(stop_this_cpu, NULL, 0);
613 }
614
615 #ifdef CONFIG_PROFILING
setup_profiling_timer(unsigned int multiplier)616 int setup_profiling_timer(unsigned int multiplier)
617 {
618 return 0;
619 }
620 #endif
621
flush_tlb_all_ipi(void * info)622 static void flush_tlb_all_ipi(void *info)
623 {
624 local_flush_tlb_all();
625 }
626
flush_tlb_all(void)627 void flush_tlb_all(void)
628 {
629 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
630 }
631
flush_tlb_mm_ipi(void * mm)632 static void flush_tlb_mm_ipi(void *mm)
633 {
634 local_flush_tlb_mm((struct mm_struct *)mm);
635 }
636
flush_tlb_mm(struct mm_struct * mm)637 void flush_tlb_mm(struct mm_struct *mm)
638 {
639 if (atomic_read(&mm->mm_users) == 0)
640 return; /* happens as a result of exit_mmap() */
641
642 preempt_disable();
643
644 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
645 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
646 } else {
647 unsigned int cpu;
648
649 for_each_online_cpu(cpu) {
650 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
651 cpu_context(cpu, mm) = 0;
652 }
653 local_flush_tlb_mm(mm);
654 }
655
656 preempt_enable();
657 }
658
659 struct flush_tlb_data {
660 struct vm_area_struct *vma;
661 unsigned long addr1;
662 unsigned long addr2;
663 };
664
flush_tlb_range_ipi(void * info)665 static void flush_tlb_range_ipi(void *info)
666 {
667 struct flush_tlb_data *fd = info;
668
669 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
670 }
671
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)672 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
673 {
674 struct mm_struct *mm = vma->vm_mm;
675
676 preempt_disable();
677 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
678 struct flush_tlb_data fd = {
679 .vma = vma,
680 .addr1 = start,
681 .addr2 = end,
682 };
683
684 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
685 } else {
686 unsigned int cpu;
687
688 for_each_online_cpu(cpu) {
689 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
690 cpu_context(cpu, mm) = 0;
691 }
692 local_flush_tlb_range(vma, start, end);
693 }
694 preempt_enable();
695 }
696
flush_tlb_kernel_range_ipi(void * info)697 static void flush_tlb_kernel_range_ipi(void *info)
698 {
699 struct flush_tlb_data *fd = info;
700
701 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
702 }
703
flush_tlb_kernel_range(unsigned long start,unsigned long end)704 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
705 {
706 struct flush_tlb_data fd = {
707 .addr1 = start,
708 .addr2 = end,
709 };
710
711 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
712 }
713
flush_tlb_page_ipi(void * info)714 static void flush_tlb_page_ipi(void *info)
715 {
716 struct flush_tlb_data *fd = info;
717
718 local_flush_tlb_page(fd->vma, fd->addr1);
719 }
720
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)721 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
722 {
723 preempt_disable();
724 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
725 struct flush_tlb_data fd = {
726 .vma = vma,
727 .addr1 = page,
728 };
729
730 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
731 } else {
732 unsigned int cpu;
733
734 for_each_online_cpu(cpu) {
735 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
736 cpu_context(cpu, vma->vm_mm) = 0;
737 }
738 local_flush_tlb_page(vma, page);
739 }
740 preempt_enable();
741 }
742 EXPORT_SYMBOL(flush_tlb_page);
743
flush_tlb_one_ipi(void * info)744 static void flush_tlb_one_ipi(void *info)
745 {
746 unsigned long vaddr = (unsigned long) info;
747
748 local_flush_tlb_one(vaddr);
749 }
750
flush_tlb_one(unsigned long vaddr)751 void flush_tlb_one(unsigned long vaddr)
752 {
753 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
754 }
755 EXPORT_SYMBOL(flush_tlb_one);
756