1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/cpu.h> 12 #include <linux/cpumask.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/smp.h> 17 #include <linux/threads.h> 18 #include <linux/export.h> 19 #include <linux/time.h> 20 #include <linux/tracepoint.h> 21 #include <linux/sched/hotplug.h> 22 #include <linux/sched/task_stack.h> 23 24 #include <asm/cpu.h> 25 #include <asm/idle.h> 26 #include <asm/loongson.h> 27 #include <asm/mmu_context.h> 28 #include <asm/numa.h> 29 #include <asm/processor.h> 30 #include <asm/setup.h> 31 #include <asm/time.h> 32 33 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 34 EXPORT_SYMBOL(__cpu_number_map); 35 36 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 37 EXPORT_SYMBOL(__cpu_logical_map); 38 39 /* Number of threads (siblings) per CPU core */ 40 int smp_num_siblings = 1; 41 EXPORT_SYMBOL(smp_num_siblings); 42 43 /* Representing the threads (siblings) of each logical CPU */ 44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 45 EXPORT_SYMBOL(cpu_sibling_map); 46 47 /* Representing the core map of multi-core chips of each logical CPU */ 48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 49 EXPORT_SYMBOL(cpu_core_map); 50 51 static DECLARE_COMPLETION(cpu_starting); 52 static DECLARE_COMPLETION(cpu_running); 53 54 /* 55 * A logcal cpu mask containing only one VPE per core to 56 * reduce the number of IPIs on large MT systems. 57 */ 58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 59 EXPORT_SYMBOL(cpu_foreign_map); 60 61 /* representing cpus for which sibling maps can be computed */ 62 static cpumask_t cpu_sibling_setup_map; 63 64 /* representing cpus for which core maps can be computed */ 65 static cpumask_t cpu_core_setup_map; 66 67 struct secondary_data cpuboot_data; 68 static DEFINE_PER_CPU(int, cpu_state); 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNCTION, 73 }; 74 75 static const char *ipi_types[NR_IPI] __tracepoint_string = { 76 [IPI_RESCHEDULE] = "Rescheduling interrupts", 77 [IPI_CALL_FUNCTION] = "Function call interrupts", 78 }; 79 80 void show_ipi_list(struct seq_file *p, int prec) 81 { 82 unsigned int cpu, i; 83 84 for (i = 0; i < NR_IPI; i++) { 85 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 86 for_each_online_cpu(cpu) 87 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 88 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 89 } 90 } 91 92 /* Send mailbox buffer via Mail_Send */ 93 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 94 { 95 uint64_t val; 96 97 /* Send high 32 bits */ 98 val = IOCSR_MBUF_SEND_BLOCKING; 99 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 100 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 101 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 102 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 103 104 /* Send low 32 bits */ 105 val = IOCSR_MBUF_SEND_BLOCKING; 106 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 107 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 108 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 109 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 110 }; 111 112 static u32 ipi_read_clear(int cpu) 113 { 114 u32 action; 115 116 /* Load the ipi register to figure out what we're supposed to do */ 117 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 118 /* Clear the ipi register to clear the interrupt */ 119 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 120 smp_mb(); 121 122 return action; 123 } 124 125 static void ipi_write_action(int cpu, u32 action) 126 { 127 unsigned int irq = 0; 128 129 while ((irq = ffs(action))) { 130 uint32_t val = IOCSR_IPI_SEND_BLOCKING; 131 132 val |= (irq - 1); 133 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 134 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 135 action &= ~BIT(irq - 1); 136 } 137 } 138 139 void loongson_send_ipi_single(int cpu, unsigned int action) 140 { 141 ipi_write_action(cpu_logical_map(cpu), (u32)action); 142 } 143 144 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 145 { 146 unsigned int i; 147 148 for_each_cpu(i, mask) 149 ipi_write_action(cpu_logical_map(i), (u32)action); 150 } 151 152 irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 153 { 154 unsigned int action; 155 unsigned int cpu = smp_processor_id(); 156 157 action = ipi_read_clear(cpu_logical_map(cpu)); 158 159 if (action & SMP_RESCHEDULE) { 160 scheduler_ipi(); 161 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 162 } 163 164 if (action & SMP_CALL_FUNCTION) { 165 generic_smp_call_function_interrupt(); 166 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 167 } 168 169 return IRQ_HANDLED; 170 } 171 172 void __init loongson_smp_setup(void) 173 { 174 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 175 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 176 177 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 178 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 179 } 180 181 void __init loongson_prepare_cpus(unsigned int max_cpus) 182 { 183 int i = 0; 184 185 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 186 set_cpu_present(i, true); 187 csr_mail_send(0, __cpu_logical_map[i], 0); 188 } 189 190 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 191 } 192 193 /* 194 * Setup the PC, SP, and TP of a secondary processor and start it running! 195 */ 196 void loongson_boot_secondary(int cpu, struct task_struct *idle) 197 { 198 unsigned long entry; 199 200 pr_info("Booting CPU#%d...\n", cpu); 201 202 entry = __pa_symbol((unsigned long)&smpboot_entry); 203 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 204 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 205 206 csr_mail_send(entry, cpu_logical_map(cpu), 0); 207 208 loongson_send_ipi_single(cpu, SMP_BOOT_CPU); 209 } 210 211 /* 212 * SMP init and finish on secondary CPUs 213 */ 214 void loongson_init_secondary(void) 215 { 216 unsigned int cpu = smp_processor_id(); 217 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 218 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER; 219 220 change_csr_ecfg(ECFG0_IM, imask); 221 222 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 223 224 #ifdef CONFIG_NUMA 225 numa_add_cpu(cpu); 226 #endif 227 per_cpu(cpu_state, cpu) = CPU_ONLINE; 228 cpu_data[cpu].core = 229 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 230 cpu_data[cpu].package = 231 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 232 } 233 234 void loongson_smp_finish(void) 235 { 236 local_irq_enable(); 237 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 238 pr_info("CPU#%d finished\n", smp_processor_id()); 239 } 240 241 #ifdef CONFIG_HOTPLUG_CPU 242 243 int loongson_cpu_disable(void) 244 { 245 unsigned long flags; 246 unsigned int cpu = smp_processor_id(); 247 248 if (io_master(cpu)) 249 return -EBUSY; 250 251 #ifdef CONFIG_NUMA 252 numa_remove_cpu(cpu); 253 #endif 254 set_cpu_online(cpu, false); 255 calculate_cpu_foreign_map(); 256 local_irq_save(flags); 257 irq_migrate_all_off_this_cpu(); 258 clear_csr_ecfg(ECFG0_IM); 259 local_irq_restore(flags); 260 local_flush_tlb_all(); 261 262 return 0; 263 } 264 265 void loongson_cpu_die(unsigned int cpu) 266 { 267 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 268 cpu_relax(); 269 270 mb(); 271 } 272 273 void play_dead(void) 274 { 275 register uint64_t addr; 276 register void (*init_fn)(void); 277 278 idle_task_exit(); 279 local_irq_enable(); 280 set_csr_ecfg(ECFGF_IPI); 281 __this_cpu_write(cpu_state, CPU_DEAD); 282 283 __smp_mb(); 284 do { 285 __asm__ __volatile__("idle 0\n\t"); 286 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 287 } while (addr == 0); 288 289 init_fn = (void *)TO_CACHE(addr); 290 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 291 292 init_fn(); 293 unreachable(); 294 } 295 296 #endif 297 298 /* 299 * Power management 300 */ 301 #ifdef CONFIG_PM 302 303 static int loongson_ipi_suspend(void) 304 { 305 return 0; 306 } 307 308 static void loongson_ipi_resume(void) 309 { 310 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 311 } 312 313 static struct syscore_ops loongson_ipi_syscore_ops = { 314 .resume = loongson_ipi_resume, 315 .suspend = loongson_ipi_suspend, 316 }; 317 318 /* 319 * Enable boot cpu ipi before enabling nonboot cpus 320 * during syscore_resume. 321 */ 322 static int __init ipi_pm_init(void) 323 { 324 register_syscore_ops(&loongson_ipi_syscore_ops); 325 return 0; 326 } 327 328 core_initcall(ipi_pm_init); 329 #endif 330 331 static inline void set_cpu_sibling_map(int cpu) 332 { 333 int i; 334 335 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 336 337 if (smp_num_siblings <= 1) 338 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 339 else { 340 for_each_cpu(i, &cpu_sibling_setup_map) { 341 if (cpus_are_siblings(cpu, i)) { 342 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 343 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 344 } 345 } 346 } 347 } 348 349 static inline void set_cpu_core_map(int cpu) 350 { 351 int i; 352 353 cpumask_set_cpu(cpu, &cpu_core_setup_map); 354 355 for_each_cpu(i, &cpu_core_setup_map) { 356 if (cpu_data[cpu].package == cpu_data[i].package) { 357 cpumask_set_cpu(i, &cpu_core_map[cpu]); 358 cpumask_set_cpu(cpu, &cpu_core_map[i]); 359 } 360 } 361 } 362 363 /* 364 * Calculate a new cpu_foreign_map mask whenever a 365 * new cpu appears or disappears. 366 */ 367 void calculate_cpu_foreign_map(void) 368 { 369 int i, k, core_present; 370 cpumask_t temp_foreign_map; 371 372 /* Re-calculate the mask */ 373 cpumask_clear(&temp_foreign_map); 374 for_each_online_cpu(i) { 375 core_present = 0; 376 for_each_cpu(k, &temp_foreign_map) 377 if (cpus_are_siblings(i, k)) 378 core_present = 1; 379 if (!core_present) 380 cpumask_set_cpu(i, &temp_foreign_map); 381 } 382 383 for_each_online_cpu(i) 384 cpumask_andnot(&cpu_foreign_map[i], 385 &temp_foreign_map, &cpu_sibling_map[i]); 386 } 387 388 /* Preload SMP state for boot cpu */ 389 void smp_prepare_boot_cpu(void) 390 { 391 unsigned int cpu, node, rr_node; 392 393 set_cpu_possible(0, true); 394 set_cpu_online(0, true); 395 set_my_cpu_offset(per_cpu_offset(0)); 396 397 rr_node = first_node(node_online_map); 398 for_each_possible_cpu(cpu) { 399 node = early_cpu_to_node(cpu); 400 401 /* 402 * The mapping between present cpus and nodes has been 403 * built during MADT and SRAT parsing. 404 * 405 * If possible cpus = present cpus here, early_cpu_to_node 406 * will return valid node. 407 * 408 * If possible cpus > present cpus here (e.g. some possible 409 * cpus will be added by cpu-hotplug later), for possible but 410 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 411 * and we just map them to online nodes in round-robin way. 412 * Once hotplugged, new correct mapping will be built for them. 413 */ 414 if (node != NUMA_NO_NODE) 415 set_cpu_numa_node(cpu, node); 416 else { 417 set_cpu_numa_node(cpu, rr_node); 418 rr_node = next_node_in(rr_node, node_online_map); 419 } 420 } 421 } 422 423 /* called from main before smp_init() */ 424 void __init smp_prepare_cpus(unsigned int max_cpus) 425 { 426 init_new_context(current, &init_mm); 427 current_thread_info()->cpu = 0; 428 loongson_prepare_cpus(max_cpus); 429 set_cpu_sibling_map(0); 430 set_cpu_core_map(0); 431 calculate_cpu_foreign_map(); 432 #ifndef CONFIG_HOTPLUG_CPU 433 init_cpu_present(cpu_possible_mask); 434 #endif 435 } 436 437 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 438 { 439 loongson_boot_secondary(cpu, tidle); 440 441 /* Wait for CPU to start and be ready to sync counters */ 442 if (!wait_for_completion_timeout(&cpu_starting, 443 msecs_to_jiffies(5000))) { 444 pr_crit("CPU%u: failed to start\n", cpu); 445 return -EIO; 446 } 447 448 /* Wait for CPU to finish startup & mark itself online before return */ 449 wait_for_completion(&cpu_running); 450 451 return 0; 452 } 453 454 /* 455 * First C code run on the secondary CPUs after being started up by 456 * the master. 457 */ 458 asmlinkage void start_secondary(void) 459 { 460 unsigned int cpu; 461 462 sync_counter(); 463 cpu = smp_processor_id(); 464 set_my_cpu_offset(per_cpu_offset(cpu)); 465 466 cpu_probe(); 467 constant_clockevent_init(); 468 loongson_init_secondary(); 469 470 set_cpu_sibling_map(cpu); 471 set_cpu_core_map(cpu); 472 473 notify_cpu_starting(cpu); 474 475 /* Notify boot CPU that we're starting */ 476 complete(&cpu_starting); 477 478 /* The CPU is running, now mark it online */ 479 set_cpu_online(cpu, true); 480 481 calculate_cpu_foreign_map(); 482 483 /* 484 * Notify boot CPU that we're up & online and it can safely return 485 * from __cpu_up() 486 */ 487 complete(&cpu_running); 488 489 /* 490 * irq will be enabled in loongson_smp_finish(), enabling it too 491 * early is dangerous. 492 */ 493 WARN_ON_ONCE(!irqs_disabled()); 494 loongson_smp_finish(); 495 496 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 497 } 498 499 void __init smp_cpus_done(unsigned int max_cpus) 500 { 501 } 502 503 static void stop_this_cpu(void *dummy) 504 { 505 set_cpu_online(smp_processor_id(), false); 506 calculate_cpu_foreign_map(); 507 local_irq_disable(); 508 while (true); 509 } 510 511 void smp_send_stop(void) 512 { 513 smp_call_function(stop_this_cpu, NULL, 0); 514 } 515 516 int setup_profiling_timer(unsigned int multiplier) 517 { 518 return 0; 519 } 520 521 static void flush_tlb_all_ipi(void *info) 522 { 523 local_flush_tlb_all(); 524 } 525 526 void flush_tlb_all(void) 527 { 528 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 529 } 530 531 static void flush_tlb_mm_ipi(void *mm) 532 { 533 local_flush_tlb_mm((struct mm_struct *)mm); 534 } 535 536 void flush_tlb_mm(struct mm_struct *mm) 537 { 538 if (atomic_read(&mm->mm_users) == 0) 539 return; /* happens as a result of exit_mmap() */ 540 541 preempt_disable(); 542 543 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 544 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 545 } else { 546 unsigned int cpu; 547 548 for_each_online_cpu(cpu) { 549 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 550 cpu_context(cpu, mm) = 0; 551 } 552 local_flush_tlb_mm(mm); 553 } 554 555 preempt_enable(); 556 } 557 558 struct flush_tlb_data { 559 struct vm_area_struct *vma; 560 unsigned long addr1; 561 unsigned long addr2; 562 }; 563 564 static void flush_tlb_range_ipi(void *info) 565 { 566 struct flush_tlb_data *fd = info; 567 568 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 569 } 570 571 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 572 { 573 struct mm_struct *mm = vma->vm_mm; 574 575 preempt_disable(); 576 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 577 struct flush_tlb_data fd = { 578 .vma = vma, 579 .addr1 = start, 580 .addr2 = end, 581 }; 582 583 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 584 } else { 585 unsigned int cpu; 586 587 for_each_online_cpu(cpu) { 588 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 589 cpu_context(cpu, mm) = 0; 590 } 591 local_flush_tlb_range(vma, start, end); 592 } 593 preempt_enable(); 594 } 595 596 static void flush_tlb_kernel_range_ipi(void *info) 597 { 598 struct flush_tlb_data *fd = info; 599 600 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 601 } 602 603 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 604 { 605 struct flush_tlb_data fd = { 606 .addr1 = start, 607 .addr2 = end, 608 }; 609 610 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 611 } 612 613 static void flush_tlb_page_ipi(void *info) 614 { 615 struct flush_tlb_data *fd = info; 616 617 local_flush_tlb_page(fd->vma, fd->addr1); 618 } 619 620 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 621 { 622 preempt_disable(); 623 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 624 struct flush_tlb_data fd = { 625 .vma = vma, 626 .addr1 = page, 627 }; 628 629 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 630 } else { 631 unsigned int cpu; 632 633 for_each_online_cpu(cpu) { 634 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 635 cpu_context(cpu, vma->vm_mm) = 0; 636 } 637 local_flush_tlb_page(vma, page); 638 } 639 preempt_enable(); 640 } 641 EXPORT_SYMBOL(flush_tlb_page); 642 643 static void flush_tlb_one_ipi(void *info) 644 { 645 unsigned long vaddr = (unsigned long) info; 646 647 local_flush_tlb_one(vaddr); 648 } 649 650 void flush_tlb_one(unsigned long vaddr) 651 { 652 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 653 } 654 EXPORT_SYMBOL(flush_tlb_one); 655