1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/acpi.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/profile.h> 17 #include <linux/seq_file.h> 18 #include <linux/smp.h> 19 #include <linux/threads.h> 20 #include <linux/export.h> 21 #include <linux/syscore_ops.h> 22 #include <linux/time.h> 23 #include <linux/tracepoint.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task_stack.h> 26 27 #include <asm/cpu.h> 28 #include <asm/idle.h> 29 #include <asm/loongson.h> 30 #include <asm/mmu_context.h> 31 #include <asm/numa.h> 32 #include <asm/paravirt.h> 33 #include <asm/processor.h> 34 #include <asm/setup.h> 35 #include <asm/time.h> 36 37 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 38 EXPORT_SYMBOL(__cpu_number_map); 39 40 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 41 EXPORT_SYMBOL(__cpu_logical_map); 42 43 /* Representing the threads (siblings) of each logical CPU */ 44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 45 EXPORT_SYMBOL(cpu_sibling_map); 46 47 /* Representing the core map of multi-core chips of each logical CPU */ 48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 49 EXPORT_SYMBOL(cpu_core_map); 50 51 static DECLARE_COMPLETION(cpu_starting); 52 static DECLARE_COMPLETION(cpu_running); 53 54 /* 55 * A logcal cpu mask containing only one VPE per core to 56 * reduce the number of IPIs on large MT systems. 57 */ 58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 59 EXPORT_SYMBOL(cpu_foreign_map); 60 61 /* representing cpus for which sibling maps can be computed */ 62 static cpumask_t cpu_sibling_setup_map; 63 64 /* representing cpus for which core maps can be computed */ 65 static cpumask_t cpu_core_setup_map; 66 67 struct secondary_data cpuboot_data; 68 static DEFINE_PER_CPU(int, cpu_state); 69 70 static const char *ipi_types[NR_IPI] __tracepoint_string = { 71 [IPI_RESCHEDULE] = "Rescheduling interrupts", 72 [IPI_CALL_FUNCTION] = "Function call interrupts", 73 }; 74 75 void show_ipi_list(struct seq_file *p, int prec) 76 { 77 unsigned int cpu, i; 78 79 for (i = 0; i < NR_IPI; i++) { 80 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 81 for_each_online_cpu(cpu) 82 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 83 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 84 } 85 } 86 87 static inline void set_cpu_core_map(int cpu) 88 { 89 int i; 90 91 cpumask_set_cpu(cpu, &cpu_core_setup_map); 92 93 for_each_cpu(i, &cpu_core_setup_map) { 94 if (cpu_data[cpu].package == cpu_data[i].package) { 95 cpumask_set_cpu(i, &cpu_core_map[cpu]); 96 cpumask_set_cpu(cpu, &cpu_core_map[i]); 97 } 98 } 99 } 100 101 static inline void set_cpu_sibling_map(int cpu) 102 { 103 int i; 104 105 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 106 107 for_each_cpu(i, &cpu_sibling_setup_map) { 108 if (cpus_are_siblings(cpu, i)) { 109 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 110 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 111 } 112 } 113 } 114 115 static inline void clear_cpu_sibling_map(int cpu) 116 { 117 int i; 118 119 for_each_cpu(i, &cpu_sibling_setup_map) { 120 if (cpus_are_siblings(cpu, i)) { 121 cpumask_clear_cpu(i, &cpu_sibling_map[cpu]); 122 cpumask_clear_cpu(cpu, &cpu_sibling_map[i]); 123 } 124 } 125 126 cpumask_clear_cpu(cpu, &cpu_sibling_setup_map); 127 } 128 129 /* 130 * Calculate a new cpu_foreign_map mask whenever a 131 * new cpu appears or disappears. 132 */ 133 void calculate_cpu_foreign_map(void) 134 { 135 int i, k, core_present; 136 cpumask_t temp_foreign_map; 137 138 /* Re-calculate the mask */ 139 cpumask_clear(&temp_foreign_map); 140 for_each_online_cpu(i) { 141 core_present = 0; 142 for_each_cpu(k, &temp_foreign_map) 143 if (cpus_are_siblings(i, k)) 144 core_present = 1; 145 if (!core_present) 146 cpumask_set_cpu(i, &temp_foreign_map); 147 } 148 149 for_each_online_cpu(i) 150 cpumask_andnot(&cpu_foreign_map[i], 151 &temp_foreign_map, &cpu_sibling_map[i]); 152 } 153 154 /* Send mailbox buffer via Mail_Send */ 155 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 156 { 157 uint64_t val; 158 159 /* Send high 32 bits */ 160 val = IOCSR_MBUF_SEND_BLOCKING; 161 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 162 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 163 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 164 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 165 166 /* Send low 32 bits */ 167 val = IOCSR_MBUF_SEND_BLOCKING; 168 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 169 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 170 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 171 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 172 }; 173 174 static u32 ipi_read_clear(int cpu) 175 { 176 u32 action; 177 178 /* Load the ipi register to figure out what we're supposed to do */ 179 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 180 /* Clear the ipi register to clear the interrupt */ 181 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 182 wbflush(); 183 184 return action; 185 } 186 187 static void ipi_write_action(int cpu, u32 action) 188 { 189 uint32_t val; 190 191 val = IOCSR_IPI_SEND_BLOCKING | action; 192 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 193 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 194 } 195 196 static void loongson_send_ipi_single(int cpu, unsigned int action) 197 { 198 ipi_write_action(cpu_logical_map(cpu), (u32)action); 199 } 200 201 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 202 { 203 unsigned int i; 204 205 for_each_cpu(i, mask) 206 ipi_write_action(cpu_logical_map(i), (u32)action); 207 } 208 209 /* 210 * This function sends a 'reschedule' IPI to another CPU. 211 * it goes straight through and wastes no time serializing 212 * anything. Worst case is that we lose a reschedule ... 213 */ 214 void arch_smp_send_reschedule(int cpu) 215 { 216 mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE); 217 } 218 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 219 220 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 221 { 222 unsigned int action; 223 unsigned int cpu = smp_processor_id(); 224 225 action = ipi_read_clear(cpu_logical_map(cpu)); 226 227 if (action & SMP_RESCHEDULE) { 228 scheduler_ipi(); 229 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 230 } 231 232 if (action & SMP_CALL_FUNCTION) { 233 generic_smp_call_function_interrupt(); 234 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 235 } 236 237 return IRQ_HANDLED; 238 } 239 240 static void loongson_init_ipi(void) 241 { 242 int r, ipi_irq; 243 244 ipi_irq = get_percpu_irq(INT_IPI); 245 if (ipi_irq < 0) 246 panic("IPI IRQ mapping failed\n"); 247 248 irq_set_percpu_devid(ipi_irq); 249 r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat); 250 if (r < 0) 251 panic("IPI IRQ request failed\n"); 252 } 253 254 struct smp_ops mp_ops = { 255 .init_ipi = loongson_init_ipi, 256 .send_ipi_single = loongson_send_ipi_single, 257 .send_ipi_mask = loongson_send_ipi_mask, 258 }; 259 260 static void __init fdt_smp_setup(void) 261 { 262 #ifdef CONFIG_OF 263 unsigned int cpu, cpuid; 264 struct device_node *node = NULL; 265 266 for_each_of_cpu_node(node) { 267 if (!of_device_is_available(node)) 268 continue; 269 270 cpuid = of_get_cpu_hwid(node, 0); 271 if (cpuid >= nr_cpu_ids) 272 continue; 273 274 if (cpuid == loongson_sysconf.boot_cpu_id) { 275 cpu = 0; 276 } else { 277 cpu = cpumask_next_zero(-1, cpu_present_mask); 278 } 279 280 num_processors++; 281 set_cpu_possible(cpu, true); 282 set_cpu_present(cpu, true); 283 __cpu_number_map[cpuid] = cpu; 284 __cpu_logical_map[cpu] = cpuid; 285 286 early_numa_add_cpu(cpu, 0); 287 set_cpuid_to_node(cpuid, 0); 288 } 289 290 loongson_sysconf.nr_cpus = num_processors; 291 set_bit(0, loongson_sysconf.cores_io_master); 292 #endif 293 } 294 295 void __init loongson_smp_setup(void) 296 { 297 fdt_smp_setup(); 298 299 if (loongson_sysconf.cores_per_package == 0) 300 loongson_sysconf.cores_per_package = num_processors; 301 302 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 303 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 304 305 pv_ipi_init(); 306 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 307 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 308 } 309 310 void __init loongson_prepare_cpus(unsigned int max_cpus) 311 { 312 int i = 0; 313 314 parse_acpi_topology(); 315 316 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 317 set_cpu_present(i, true); 318 csr_mail_send(0, __cpu_logical_map[i], 0); 319 cpu_data[i].global_id = __cpu_logical_map[i]; 320 } 321 322 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 323 } 324 325 /* 326 * Setup the PC, SP, and TP of a secondary processor and start it running! 327 */ 328 void loongson_boot_secondary(int cpu, struct task_struct *idle) 329 { 330 unsigned long entry; 331 332 pr_info("Booting CPU#%d...\n", cpu); 333 334 entry = __pa_symbol((unsigned long)&smpboot_entry); 335 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 336 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 337 338 csr_mail_send(entry, cpu_logical_map(cpu), 0); 339 340 loongson_send_ipi_single(cpu, ACTION_BOOT_CPU); 341 } 342 343 /* 344 * SMP init and finish on secondary CPUs 345 */ 346 void loongson_init_secondary(void) 347 { 348 unsigned int cpu = smp_processor_id(); 349 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 350 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0; 351 352 change_csr_ecfg(ECFG0_IM, imask); 353 354 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 355 356 #ifdef CONFIG_NUMA 357 numa_add_cpu(cpu); 358 #endif 359 per_cpu(cpu_state, cpu) = CPU_ONLINE; 360 cpu_data[cpu].package = 361 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 362 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core : 363 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 364 } 365 366 void loongson_smp_finish(void) 367 { 368 local_irq_enable(); 369 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 370 pr_info("CPU#%d finished\n", smp_processor_id()); 371 } 372 373 #ifdef CONFIG_HOTPLUG_CPU 374 375 int loongson_cpu_disable(void) 376 { 377 unsigned long flags; 378 unsigned int cpu = smp_processor_id(); 379 380 if (io_master(cpu)) 381 return -EBUSY; 382 383 #ifdef CONFIG_NUMA 384 numa_remove_cpu(cpu); 385 #endif 386 set_cpu_online(cpu, false); 387 clear_cpu_sibling_map(cpu); 388 calculate_cpu_foreign_map(); 389 local_irq_save(flags); 390 irq_migrate_all_off_this_cpu(); 391 clear_csr_ecfg(ECFG0_IM); 392 local_irq_restore(flags); 393 local_flush_tlb_all(); 394 395 return 0; 396 } 397 398 void loongson_cpu_die(unsigned int cpu) 399 { 400 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 401 cpu_relax(); 402 403 mb(); 404 } 405 406 void __noreturn arch_cpu_idle_dead(void) 407 { 408 register uint64_t addr; 409 register void (*init_fn)(void); 410 411 idle_task_exit(); 412 local_irq_enable(); 413 set_csr_ecfg(ECFGF_IPI); 414 __this_cpu_write(cpu_state, CPU_DEAD); 415 416 __smp_mb(); 417 do { 418 __asm__ __volatile__("idle 0\n\t"); 419 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 420 } while (addr == 0); 421 422 local_irq_disable(); 423 init_fn = (void *)TO_CACHE(addr); 424 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 425 426 init_fn(); 427 BUG(); 428 } 429 430 #endif 431 432 /* 433 * Power management 434 */ 435 #ifdef CONFIG_PM 436 437 static int loongson_ipi_suspend(void) 438 { 439 return 0; 440 } 441 442 static void loongson_ipi_resume(void) 443 { 444 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 445 } 446 447 static struct syscore_ops loongson_ipi_syscore_ops = { 448 .resume = loongson_ipi_resume, 449 .suspend = loongson_ipi_suspend, 450 }; 451 452 /* 453 * Enable boot cpu ipi before enabling nonboot cpus 454 * during syscore_resume. 455 */ 456 static int __init ipi_pm_init(void) 457 { 458 register_syscore_ops(&loongson_ipi_syscore_ops); 459 return 0; 460 } 461 462 core_initcall(ipi_pm_init); 463 #endif 464 465 /* Preload SMP state for boot cpu */ 466 void smp_prepare_boot_cpu(void) 467 { 468 unsigned int cpu, node, rr_node; 469 470 set_cpu_possible(0, true); 471 set_cpu_online(0, true); 472 set_my_cpu_offset(per_cpu_offset(0)); 473 numa_add_cpu(0); 474 475 rr_node = first_node(node_online_map); 476 for_each_possible_cpu(cpu) { 477 node = early_cpu_to_node(cpu); 478 479 /* 480 * The mapping between present cpus and nodes has been 481 * built during MADT and SRAT parsing. 482 * 483 * If possible cpus = present cpus here, early_cpu_to_node 484 * will return valid node. 485 * 486 * If possible cpus > present cpus here (e.g. some possible 487 * cpus will be added by cpu-hotplug later), for possible but 488 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 489 * and we just map them to online nodes in round-robin way. 490 * Once hotplugged, new correct mapping will be built for them. 491 */ 492 if (node != NUMA_NO_NODE) 493 set_cpu_numa_node(cpu, node); 494 else { 495 set_cpu_numa_node(cpu, rr_node); 496 rr_node = next_node_in(rr_node, node_online_map); 497 } 498 } 499 } 500 501 /* called from main before smp_init() */ 502 void __init smp_prepare_cpus(unsigned int max_cpus) 503 { 504 init_new_context(current, &init_mm); 505 current_thread_info()->cpu = 0; 506 loongson_prepare_cpus(max_cpus); 507 set_cpu_sibling_map(0); 508 set_cpu_core_map(0); 509 calculate_cpu_foreign_map(); 510 #ifndef CONFIG_HOTPLUG_CPU 511 init_cpu_present(cpu_possible_mask); 512 #endif 513 } 514 515 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 516 { 517 loongson_boot_secondary(cpu, tidle); 518 519 /* Wait for CPU to start and be ready to sync counters */ 520 if (!wait_for_completion_timeout(&cpu_starting, 521 msecs_to_jiffies(5000))) { 522 pr_crit("CPU%u: failed to start\n", cpu); 523 return -EIO; 524 } 525 526 /* Wait for CPU to finish startup & mark itself online before return */ 527 wait_for_completion(&cpu_running); 528 529 return 0; 530 } 531 532 /* 533 * First C code run on the secondary CPUs after being started up by 534 * the master. 535 */ 536 asmlinkage void start_secondary(void) 537 { 538 unsigned int cpu; 539 540 sync_counter(); 541 cpu = raw_smp_processor_id(); 542 set_my_cpu_offset(per_cpu_offset(cpu)); 543 544 cpu_probe(); 545 constant_clockevent_init(); 546 loongson_init_secondary(); 547 548 set_cpu_sibling_map(cpu); 549 set_cpu_core_map(cpu); 550 551 notify_cpu_starting(cpu); 552 553 /* Notify boot CPU that we're starting */ 554 complete(&cpu_starting); 555 556 /* The CPU is running, now mark it online */ 557 set_cpu_online(cpu, true); 558 559 calculate_cpu_foreign_map(); 560 561 /* 562 * Notify boot CPU that we're up & online and it can safely return 563 * from __cpu_up() 564 */ 565 complete(&cpu_running); 566 567 /* 568 * irq will be enabled in loongson_smp_finish(), enabling it too 569 * early is dangerous. 570 */ 571 WARN_ON_ONCE(!irqs_disabled()); 572 loongson_smp_finish(); 573 574 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 575 } 576 577 void __init smp_cpus_done(unsigned int max_cpus) 578 { 579 } 580 581 static void stop_this_cpu(void *dummy) 582 { 583 set_cpu_online(smp_processor_id(), false); 584 calculate_cpu_foreign_map(); 585 local_irq_disable(); 586 while (true); 587 } 588 589 void smp_send_stop(void) 590 { 591 smp_call_function(stop_this_cpu, NULL, 0); 592 } 593 594 #ifdef CONFIG_PROFILING 595 int setup_profiling_timer(unsigned int multiplier) 596 { 597 return 0; 598 } 599 #endif 600 601 static void flush_tlb_all_ipi(void *info) 602 { 603 local_flush_tlb_all(); 604 } 605 606 void flush_tlb_all(void) 607 { 608 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 609 } 610 611 static void flush_tlb_mm_ipi(void *mm) 612 { 613 local_flush_tlb_mm((struct mm_struct *)mm); 614 } 615 616 void flush_tlb_mm(struct mm_struct *mm) 617 { 618 if (atomic_read(&mm->mm_users) == 0) 619 return; /* happens as a result of exit_mmap() */ 620 621 preempt_disable(); 622 623 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 624 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 625 } else { 626 unsigned int cpu; 627 628 for_each_online_cpu(cpu) { 629 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 630 cpu_context(cpu, mm) = 0; 631 } 632 local_flush_tlb_mm(mm); 633 } 634 635 preempt_enable(); 636 } 637 638 struct flush_tlb_data { 639 struct vm_area_struct *vma; 640 unsigned long addr1; 641 unsigned long addr2; 642 }; 643 644 static void flush_tlb_range_ipi(void *info) 645 { 646 struct flush_tlb_data *fd = info; 647 648 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 649 } 650 651 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 652 { 653 struct mm_struct *mm = vma->vm_mm; 654 655 preempt_disable(); 656 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 657 struct flush_tlb_data fd = { 658 .vma = vma, 659 .addr1 = start, 660 .addr2 = end, 661 }; 662 663 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 664 } else { 665 unsigned int cpu; 666 667 for_each_online_cpu(cpu) { 668 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 669 cpu_context(cpu, mm) = 0; 670 } 671 local_flush_tlb_range(vma, start, end); 672 } 673 preempt_enable(); 674 } 675 676 static void flush_tlb_kernel_range_ipi(void *info) 677 { 678 struct flush_tlb_data *fd = info; 679 680 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 681 } 682 683 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 684 { 685 struct flush_tlb_data fd = { 686 .addr1 = start, 687 .addr2 = end, 688 }; 689 690 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 691 } 692 693 static void flush_tlb_page_ipi(void *info) 694 { 695 struct flush_tlb_data *fd = info; 696 697 local_flush_tlb_page(fd->vma, fd->addr1); 698 } 699 700 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 701 { 702 preempt_disable(); 703 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 704 struct flush_tlb_data fd = { 705 .vma = vma, 706 .addr1 = page, 707 }; 708 709 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 710 } else { 711 unsigned int cpu; 712 713 for_each_online_cpu(cpu) { 714 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 715 cpu_context(cpu, vma->vm_mm) = 0; 716 } 717 local_flush_tlb_page(vma, page); 718 } 719 preempt_enable(); 720 } 721 EXPORT_SYMBOL(flush_tlb_page); 722 723 static void flush_tlb_one_ipi(void *info) 724 { 725 unsigned long vaddr = (unsigned long) info; 726 727 local_flush_tlb_one(vaddr); 728 } 729 730 void flush_tlb_one(unsigned long vaddr) 731 { 732 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 733 } 734 EXPORT_SYMBOL(flush_tlb_one); 735