1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/acpi.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/profile.h> 17 #include <linux/seq_file.h> 18 #include <linux/smp.h> 19 #include <linux/threads.h> 20 #include <linux/export.h> 21 #include <linux/syscore_ops.h> 22 #include <linux/time.h> 23 #include <linux/tracepoint.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task_stack.h> 26 27 #include <asm/cpu.h> 28 #include <asm/idle.h> 29 #include <asm/loongson.h> 30 #include <asm/mmu_context.h> 31 #include <asm/numa.h> 32 #include <asm/processor.h> 33 #include <asm/setup.h> 34 #include <asm/time.h> 35 36 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 37 EXPORT_SYMBOL(__cpu_number_map); 38 39 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 40 EXPORT_SYMBOL(__cpu_logical_map); 41 42 /* Representing the threads (siblings) of each logical CPU */ 43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 44 EXPORT_SYMBOL(cpu_sibling_map); 45 46 /* Representing the core map of multi-core chips of each logical CPU */ 47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 48 EXPORT_SYMBOL(cpu_core_map); 49 50 static DECLARE_COMPLETION(cpu_starting); 51 static DECLARE_COMPLETION(cpu_running); 52 53 /* 54 * A logcal cpu mask containing only one VPE per core to 55 * reduce the number of IPIs on large MT systems. 56 */ 57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 58 EXPORT_SYMBOL(cpu_foreign_map); 59 60 /* representing cpus for which sibling maps can be computed */ 61 static cpumask_t cpu_sibling_setup_map; 62 63 /* representing cpus for which core maps can be computed */ 64 static cpumask_t cpu_core_setup_map; 65 66 struct secondary_data cpuboot_data; 67 static DEFINE_PER_CPU(int, cpu_state); 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNCTION, 72 }; 73 74 static const char *ipi_types[NR_IPI] __tracepoint_string = { 75 [IPI_RESCHEDULE] = "Rescheduling interrupts", 76 [IPI_CALL_FUNCTION] = "Function call interrupts", 77 }; 78 79 void show_ipi_list(struct seq_file *p, int prec) 80 { 81 unsigned int cpu, i; 82 83 for (i = 0; i < NR_IPI; i++) { 84 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 85 for_each_online_cpu(cpu) 86 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 87 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 88 } 89 } 90 91 static inline void set_cpu_core_map(int cpu) 92 { 93 int i; 94 95 cpumask_set_cpu(cpu, &cpu_core_setup_map); 96 97 for_each_cpu(i, &cpu_core_setup_map) { 98 if (cpu_data[cpu].package == cpu_data[i].package) { 99 cpumask_set_cpu(i, &cpu_core_map[cpu]); 100 cpumask_set_cpu(cpu, &cpu_core_map[i]); 101 } 102 } 103 } 104 105 static inline void set_cpu_sibling_map(int cpu) 106 { 107 int i; 108 109 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 110 111 for_each_cpu(i, &cpu_sibling_setup_map) { 112 if (cpus_are_siblings(cpu, i)) { 113 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 114 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 115 } 116 } 117 } 118 119 static inline void clear_cpu_sibling_map(int cpu) 120 { 121 int i; 122 123 for_each_cpu(i, &cpu_sibling_setup_map) { 124 if (cpus_are_siblings(cpu, i)) { 125 cpumask_clear_cpu(i, &cpu_sibling_map[cpu]); 126 cpumask_clear_cpu(cpu, &cpu_sibling_map[i]); 127 } 128 } 129 130 cpumask_clear_cpu(cpu, &cpu_sibling_setup_map); 131 } 132 133 /* 134 * Calculate a new cpu_foreign_map mask whenever a 135 * new cpu appears or disappears. 136 */ 137 void calculate_cpu_foreign_map(void) 138 { 139 int i, k, core_present; 140 cpumask_t temp_foreign_map; 141 142 /* Re-calculate the mask */ 143 cpumask_clear(&temp_foreign_map); 144 for_each_online_cpu(i) { 145 core_present = 0; 146 for_each_cpu(k, &temp_foreign_map) 147 if (cpus_are_siblings(i, k)) 148 core_present = 1; 149 if (!core_present) 150 cpumask_set_cpu(i, &temp_foreign_map); 151 } 152 153 for_each_online_cpu(i) 154 cpumask_andnot(&cpu_foreign_map[i], 155 &temp_foreign_map, &cpu_sibling_map[i]); 156 } 157 158 /* Send mailbox buffer via Mail_Send */ 159 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 160 { 161 uint64_t val; 162 163 /* Send high 32 bits */ 164 val = IOCSR_MBUF_SEND_BLOCKING; 165 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 166 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 167 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 168 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 169 170 /* Send low 32 bits */ 171 val = IOCSR_MBUF_SEND_BLOCKING; 172 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 173 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 174 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 175 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 176 }; 177 178 static u32 ipi_read_clear(int cpu) 179 { 180 u32 action; 181 182 /* Load the ipi register to figure out what we're supposed to do */ 183 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 184 /* Clear the ipi register to clear the interrupt */ 185 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 186 wbflush(); 187 188 return action; 189 } 190 191 static void ipi_write_action(int cpu, u32 action) 192 { 193 unsigned int irq = 0; 194 195 while ((irq = ffs(action))) { 196 uint32_t val = IOCSR_IPI_SEND_BLOCKING; 197 198 val |= (irq - 1); 199 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 200 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 201 action &= ~BIT(irq - 1); 202 } 203 } 204 205 void loongson_send_ipi_single(int cpu, unsigned int action) 206 { 207 ipi_write_action(cpu_logical_map(cpu), (u32)action); 208 } 209 210 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 211 { 212 unsigned int i; 213 214 for_each_cpu(i, mask) 215 ipi_write_action(cpu_logical_map(i), (u32)action); 216 } 217 218 /* 219 * This function sends a 'reschedule' IPI to another CPU. 220 * it goes straight through and wastes no time serializing 221 * anything. Worst case is that we lose a reschedule ... 222 */ 223 void arch_smp_send_reschedule(int cpu) 224 { 225 loongson_send_ipi_single(cpu, SMP_RESCHEDULE); 226 } 227 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 228 229 irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 230 { 231 unsigned int action; 232 unsigned int cpu = smp_processor_id(); 233 234 action = ipi_read_clear(cpu_logical_map(cpu)); 235 236 if (action & SMP_RESCHEDULE) { 237 scheduler_ipi(); 238 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 239 } 240 241 if (action & SMP_CALL_FUNCTION) { 242 generic_smp_call_function_interrupt(); 243 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 244 } 245 246 return IRQ_HANDLED; 247 } 248 249 static void __init fdt_smp_setup(void) 250 { 251 #ifdef CONFIG_OF 252 unsigned int cpu, cpuid; 253 struct device_node *node = NULL; 254 255 for_each_of_cpu_node(node) { 256 if (!of_device_is_available(node)) 257 continue; 258 259 cpuid = of_get_cpu_hwid(node, 0); 260 if (cpuid >= nr_cpu_ids) 261 continue; 262 263 if (cpuid == loongson_sysconf.boot_cpu_id) { 264 cpu = 0; 265 numa_add_cpu(cpu); 266 } else { 267 cpu = cpumask_next_zero(-1, cpu_present_mask); 268 } 269 270 num_processors++; 271 set_cpu_possible(cpu, true); 272 set_cpu_present(cpu, true); 273 __cpu_number_map[cpuid] = cpu; 274 __cpu_logical_map[cpu] = cpuid; 275 } 276 277 loongson_sysconf.nr_cpus = num_processors; 278 set_bit(0, loongson_sysconf.cores_io_master); 279 #endif 280 } 281 282 void __init loongson_smp_setup(void) 283 { 284 fdt_smp_setup(); 285 286 if (loongson_sysconf.cores_per_package == 0) 287 loongson_sysconf.cores_per_package = num_processors; 288 289 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 290 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 291 292 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 293 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 294 } 295 296 void __init loongson_prepare_cpus(unsigned int max_cpus) 297 { 298 int i = 0; 299 300 parse_acpi_topology(); 301 302 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 303 set_cpu_present(i, true); 304 csr_mail_send(0, __cpu_logical_map[i], 0); 305 cpu_data[i].global_id = __cpu_logical_map[i]; 306 } 307 308 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 309 } 310 311 /* 312 * Setup the PC, SP, and TP of a secondary processor and start it running! 313 */ 314 void loongson_boot_secondary(int cpu, struct task_struct *idle) 315 { 316 unsigned long entry; 317 318 pr_info("Booting CPU#%d...\n", cpu); 319 320 entry = __pa_symbol((unsigned long)&smpboot_entry); 321 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 322 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 323 324 csr_mail_send(entry, cpu_logical_map(cpu), 0); 325 326 loongson_send_ipi_single(cpu, SMP_BOOT_CPU); 327 } 328 329 /* 330 * SMP init and finish on secondary CPUs 331 */ 332 void loongson_init_secondary(void) 333 { 334 unsigned int cpu = smp_processor_id(); 335 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 336 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER; 337 338 change_csr_ecfg(ECFG0_IM, imask); 339 340 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 341 342 #ifdef CONFIG_NUMA 343 numa_add_cpu(cpu); 344 #endif 345 per_cpu(cpu_state, cpu) = CPU_ONLINE; 346 cpu_data[cpu].package = 347 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 348 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core : 349 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 350 } 351 352 void loongson_smp_finish(void) 353 { 354 local_irq_enable(); 355 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 356 pr_info("CPU#%d finished\n", smp_processor_id()); 357 } 358 359 #ifdef CONFIG_HOTPLUG_CPU 360 361 int loongson_cpu_disable(void) 362 { 363 unsigned long flags; 364 unsigned int cpu = smp_processor_id(); 365 366 if (io_master(cpu)) 367 return -EBUSY; 368 369 #ifdef CONFIG_NUMA 370 numa_remove_cpu(cpu); 371 #endif 372 set_cpu_online(cpu, false); 373 clear_cpu_sibling_map(cpu); 374 calculate_cpu_foreign_map(); 375 local_irq_save(flags); 376 irq_migrate_all_off_this_cpu(); 377 clear_csr_ecfg(ECFG0_IM); 378 local_irq_restore(flags); 379 local_flush_tlb_all(); 380 381 return 0; 382 } 383 384 void loongson_cpu_die(unsigned int cpu) 385 { 386 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 387 cpu_relax(); 388 389 mb(); 390 } 391 392 void __noreturn arch_cpu_idle_dead(void) 393 { 394 register uint64_t addr; 395 register void (*init_fn)(void); 396 397 idle_task_exit(); 398 local_irq_enable(); 399 set_csr_ecfg(ECFGF_IPI); 400 __this_cpu_write(cpu_state, CPU_DEAD); 401 402 __smp_mb(); 403 do { 404 __asm__ __volatile__("idle 0\n\t"); 405 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 406 } while (addr == 0); 407 408 local_irq_disable(); 409 init_fn = (void *)TO_CACHE(addr); 410 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 411 412 init_fn(); 413 BUG(); 414 } 415 416 #endif 417 418 /* 419 * Power management 420 */ 421 #ifdef CONFIG_PM 422 423 static int loongson_ipi_suspend(void) 424 { 425 return 0; 426 } 427 428 static void loongson_ipi_resume(void) 429 { 430 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 431 } 432 433 static struct syscore_ops loongson_ipi_syscore_ops = { 434 .resume = loongson_ipi_resume, 435 .suspend = loongson_ipi_suspend, 436 }; 437 438 /* 439 * Enable boot cpu ipi before enabling nonboot cpus 440 * during syscore_resume. 441 */ 442 static int __init ipi_pm_init(void) 443 { 444 register_syscore_ops(&loongson_ipi_syscore_ops); 445 return 0; 446 } 447 448 core_initcall(ipi_pm_init); 449 #endif 450 451 /* Preload SMP state for boot cpu */ 452 void smp_prepare_boot_cpu(void) 453 { 454 unsigned int cpu, node, rr_node; 455 456 set_cpu_possible(0, true); 457 set_cpu_online(0, true); 458 set_my_cpu_offset(per_cpu_offset(0)); 459 460 rr_node = first_node(node_online_map); 461 for_each_possible_cpu(cpu) { 462 node = early_cpu_to_node(cpu); 463 464 /* 465 * The mapping between present cpus and nodes has been 466 * built during MADT and SRAT parsing. 467 * 468 * If possible cpus = present cpus here, early_cpu_to_node 469 * will return valid node. 470 * 471 * If possible cpus > present cpus here (e.g. some possible 472 * cpus will be added by cpu-hotplug later), for possible but 473 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 474 * and we just map them to online nodes in round-robin way. 475 * Once hotplugged, new correct mapping will be built for them. 476 */ 477 if (node != NUMA_NO_NODE) 478 set_cpu_numa_node(cpu, node); 479 else { 480 set_cpu_numa_node(cpu, rr_node); 481 rr_node = next_node_in(rr_node, node_online_map); 482 } 483 } 484 } 485 486 /* called from main before smp_init() */ 487 void __init smp_prepare_cpus(unsigned int max_cpus) 488 { 489 init_new_context(current, &init_mm); 490 current_thread_info()->cpu = 0; 491 loongson_prepare_cpus(max_cpus); 492 set_cpu_sibling_map(0); 493 set_cpu_core_map(0); 494 calculate_cpu_foreign_map(); 495 #ifndef CONFIG_HOTPLUG_CPU 496 init_cpu_present(cpu_possible_mask); 497 #endif 498 } 499 500 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 501 { 502 loongson_boot_secondary(cpu, tidle); 503 504 /* Wait for CPU to start and be ready to sync counters */ 505 if (!wait_for_completion_timeout(&cpu_starting, 506 msecs_to_jiffies(5000))) { 507 pr_crit("CPU%u: failed to start\n", cpu); 508 return -EIO; 509 } 510 511 /* Wait for CPU to finish startup & mark itself online before return */ 512 wait_for_completion(&cpu_running); 513 514 return 0; 515 } 516 517 /* 518 * First C code run on the secondary CPUs after being started up by 519 * the master. 520 */ 521 asmlinkage void start_secondary(void) 522 { 523 unsigned int cpu; 524 525 sync_counter(); 526 cpu = raw_smp_processor_id(); 527 set_my_cpu_offset(per_cpu_offset(cpu)); 528 529 cpu_probe(); 530 constant_clockevent_init(); 531 loongson_init_secondary(); 532 533 set_cpu_sibling_map(cpu); 534 set_cpu_core_map(cpu); 535 536 notify_cpu_starting(cpu); 537 538 /* Notify boot CPU that we're starting */ 539 complete(&cpu_starting); 540 541 /* The CPU is running, now mark it online */ 542 set_cpu_online(cpu, true); 543 544 calculate_cpu_foreign_map(); 545 546 /* 547 * Notify boot CPU that we're up & online and it can safely return 548 * from __cpu_up() 549 */ 550 complete(&cpu_running); 551 552 /* 553 * irq will be enabled in loongson_smp_finish(), enabling it too 554 * early is dangerous. 555 */ 556 WARN_ON_ONCE(!irqs_disabled()); 557 loongson_smp_finish(); 558 559 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 560 } 561 562 void __init smp_cpus_done(unsigned int max_cpus) 563 { 564 } 565 566 static void stop_this_cpu(void *dummy) 567 { 568 set_cpu_online(smp_processor_id(), false); 569 calculate_cpu_foreign_map(); 570 local_irq_disable(); 571 while (true); 572 } 573 574 void smp_send_stop(void) 575 { 576 smp_call_function(stop_this_cpu, NULL, 0); 577 } 578 579 #ifdef CONFIG_PROFILING 580 int setup_profiling_timer(unsigned int multiplier) 581 { 582 return 0; 583 } 584 #endif 585 586 static void flush_tlb_all_ipi(void *info) 587 { 588 local_flush_tlb_all(); 589 } 590 591 void flush_tlb_all(void) 592 { 593 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 594 } 595 596 static void flush_tlb_mm_ipi(void *mm) 597 { 598 local_flush_tlb_mm((struct mm_struct *)mm); 599 } 600 601 void flush_tlb_mm(struct mm_struct *mm) 602 { 603 if (atomic_read(&mm->mm_users) == 0) 604 return; /* happens as a result of exit_mmap() */ 605 606 preempt_disable(); 607 608 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 609 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 610 } else { 611 unsigned int cpu; 612 613 for_each_online_cpu(cpu) { 614 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 615 cpu_context(cpu, mm) = 0; 616 } 617 local_flush_tlb_mm(mm); 618 } 619 620 preempt_enable(); 621 } 622 623 struct flush_tlb_data { 624 struct vm_area_struct *vma; 625 unsigned long addr1; 626 unsigned long addr2; 627 }; 628 629 static void flush_tlb_range_ipi(void *info) 630 { 631 struct flush_tlb_data *fd = info; 632 633 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 634 } 635 636 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 637 { 638 struct mm_struct *mm = vma->vm_mm; 639 640 preempt_disable(); 641 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 642 struct flush_tlb_data fd = { 643 .vma = vma, 644 .addr1 = start, 645 .addr2 = end, 646 }; 647 648 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 649 } else { 650 unsigned int cpu; 651 652 for_each_online_cpu(cpu) { 653 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 654 cpu_context(cpu, mm) = 0; 655 } 656 local_flush_tlb_range(vma, start, end); 657 } 658 preempt_enable(); 659 } 660 661 static void flush_tlb_kernel_range_ipi(void *info) 662 { 663 struct flush_tlb_data *fd = info; 664 665 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 666 } 667 668 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 669 { 670 struct flush_tlb_data fd = { 671 .addr1 = start, 672 .addr2 = end, 673 }; 674 675 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 676 } 677 678 static void flush_tlb_page_ipi(void *info) 679 { 680 struct flush_tlb_data *fd = info; 681 682 local_flush_tlb_page(fd->vma, fd->addr1); 683 } 684 685 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 686 { 687 preempt_disable(); 688 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 689 struct flush_tlb_data fd = { 690 .vma = vma, 691 .addr1 = page, 692 }; 693 694 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 695 } else { 696 unsigned int cpu; 697 698 for_each_online_cpu(cpu) { 699 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 700 cpu_context(cpu, vma->vm_mm) = 0; 701 } 702 local_flush_tlb_page(vma, page); 703 } 704 preempt_enable(); 705 } 706 EXPORT_SYMBOL(flush_tlb_page); 707 708 static void flush_tlb_one_ipi(void *info) 709 { 710 unsigned long vaddr = (unsigned long) info; 711 712 local_flush_tlb_one(vaddr); 713 } 714 715 void flush_tlb_one(unsigned long vaddr) 716 { 717 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 718 } 719 EXPORT_SYMBOL(flush_tlb_one); 720