xref: /linux/arch/loongarch/kernel/smp.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/paravirt.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/time.h>
36 
37 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
38 EXPORT_SYMBOL(__cpu_number_map);
39 
40 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
41 EXPORT_SYMBOL(__cpu_logical_map);
42 
43 /* Representing the threads (siblings) of each logical CPU */
44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
45 EXPORT_SYMBOL(cpu_sibling_map);
46 
47 /* Representing the core map of multi-core chips of each logical CPU */
48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
49 EXPORT_SYMBOL(cpu_core_map);
50 
51 static DECLARE_COMPLETION(cpu_starting);
52 static DECLARE_COMPLETION(cpu_running);
53 
54 /*
55  * A logcal cpu mask containing only one VPE per core to
56  * reduce the number of IPIs on large MT systems.
57  */
58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_foreign_map);
60 
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63 
64 /* representing cpus for which core maps can be computed */
65 static cpumask_t cpu_core_setup_map;
66 
67 struct secondary_data cpuboot_data;
68 static DEFINE_PER_CPU(int, cpu_state);
69 
70 static const char *ipi_types[NR_IPI] __tracepoint_string = {
71 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
72 	[IPI_CALL_FUNCTION] = "Function call interrupts",
73 };
74 
75 void show_ipi_list(struct seq_file *p, int prec)
76 {
77 	unsigned int cpu, i;
78 
79 	for (i = 0; i < NR_IPI; i++) {
80 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
81 		for_each_online_cpu(cpu)
82 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
83 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
84 	}
85 }
86 
87 static inline void set_cpu_core_map(int cpu)
88 {
89 	int i;
90 
91 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
92 
93 	for_each_cpu(i, &cpu_core_setup_map) {
94 		if (cpu_data[cpu].package == cpu_data[i].package) {
95 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
96 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
97 		}
98 	}
99 }
100 
101 static inline void set_cpu_sibling_map(int cpu)
102 {
103 	int i;
104 
105 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
106 
107 	for_each_cpu(i, &cpu_sibling_setup_map) {
108 		if (cpus_are_siblings(cpu, i)) {
109 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
110 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
111 		}
112 	}
113 }
114 
115 static inline void clear_cpu_sibling_map(int cpu)
116 {
117 	int i;
118 
119 	for_each_cpu(i, &cpu_sibling_setup_map) {
120 		if (cpus_are_siblings(cpu, i)) {
121 			cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
122 			cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
123 		}
124 	}
125 
126 	cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
127 }
128 
129 /*
130  * Calculate a new cpu_foreign_map mask whenever a
131  * new cpu appears or disappears.
132  */
133 void calculate_cpu_foreign_map(void)
134 {
135 	int i, k, core_present;
136 	cpumask_t temp_foreign_map;
137 
138 	/* Re-calculate the mask */
139 	cpumask_clear(&temp_foreign_map);
140 	for_each_online_cpu(i) {
141 		core_present = 0;
142 		for_each_cpu(k, &temp_foreign_map)
143 			if (cpus_are_siblings(i, k))
144 				core_present = 1;
145 		if (!core_present)
146 			cpumask_set_cpu(i, &temp_foreign_map);
147 	}
148 
149 	for_each_online_cpu(i)
150 		cpumask_andnot(&cpu_foreign_map[i],
151 			       &temp_foreign_map, &cpu_sibling_map[i]);
152 }
153 
154 /* Send mailbox buffer via Mail_Send */
155 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
156 {
157 	uint64_t val;
158 
159 	/* Send high 32 bits */
160 	val = IOCSR_MBUF_SEND_BLOCKING;
161 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
162 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
163 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
164 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
165 
166 	/* Send low 32 bits */
167 	val = IOCSR_MBUF_SEND_BLOCKING;
168 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
169 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
170 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
171 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
172 };
173 
174 static u32 ipi_read_clear(int cpu)
175 {
176 	u32 action;
177 
178 	/* Load the ipi register to figure out what we're supposed to do */
179 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
180 	/* Clear the ipi register to clear the interrupt */
181 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
182 	wbflush();
183 
184 	return action;
185 }
186 
187 static void ipi_write_action(int cpu, u32 action)
188 {
189 	uint32_t val;
190 
191 	val = IOCSR_IPI_SEND_BLOCKING | action;
192 	val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
193 	iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
194 }
195 
196 static void loongson_send_ipi_single(int cpu, unsigned int action)
197 {
198 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
199 }
200 
201 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
202 {
203 	unsigned int i;
204 
205 	for_each_cpu(i, mask)
206 		ipi_write_action(cpu_logical_map(i), (u32)action);
207 }
208 
209 /*
210  * This function sends a 'reschedule' IPI to another CPU.
211  * it goes straight through and wastes no time serializing
212  * anything. Worst case is that we lose a reschedule ...
213  */
214 void arch_smp_send_reschedule(int cpu)
215 {
216 	mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE);
217 }
218 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
219 
220 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
221 {
222 	unsigned int action;
223 	unsigned int cpu = smp_processor_id();
224 
225 	action = ipi_read_clear(cpu_logical_map(cpu));
226 
227 	if (action & SMP_RESCHEDULE) {
228 		scheduler_ipi();
229 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
230 	}
231 
232 	if (action & SMP_CALL_FUNCTION) {
233 		generic_smp_call_function_interrupt();
234 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
235 	}
236 
237 	return IRQ_HANDLED;
238 }
239 
240 static void loongson_init_ipi(void)
241 {
242 	int r, ipi_irq;
243 
244 	ipi_irq = get_percpu_irq(INT_IPI);
245 	if (ipi_irq < 0)
246 		panic("IPI IRQ mapping failed\n");
247 
248 	irq_set_percpu_devid(ipi_irq);
249 	r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat);
250 	if (r < 0)
251 		panic("IPI IRQ request failed\n");
252 }
253 
254 struct smp_ops mp_ops = {
255 	.init_ipi		= loongson_init_ipi,
256 	.send_ipi_single	= loongson_send_ipi_single,
257 	.send_ipi_mask		= loongson_send_ipi_mask,
258 };
259 
260 static void __init fdt_smp_setup(void)
261 {
262 #ifdef CONFIG_OF
263 	unsigned int cpu, cpuid;
264 	struct device_node *node = NULL;
265 
266 	for_each_of_cpu_node(node) {
267 		if (!of_device_is_available(node))
268 			continue;
269 
270 		cpuid = of_get_cpu_hwid(node, 0);
271 		if (cpuid >= nr_cpu_ids)
272 			continue;
273 
274 		if (cpuid == loongson_sysconf.boot_cpu_id) {
275 			cpu = 0;
276 			numa_add_cpu(cpu);
277 		} else {
278 			cpu = cpumask_next_zero(-1, cpu_present_mask);
279 		}
280 
281 		num_processors++;
282 		set_cpu_possible(cpu, true);
283 		set_cpu_present(cpu, true);
284 		__cpu_number_map[cpuid] = cpu;
285 		__cpu_logical_map[cpu] = cpuid;
286 	}
287 
288 	loongson_sysconf.nr_cpus = num_processors;
289 	set_bit(0, loongson_sysconf.cores_io_master);
290 #endif
291 }
292 
293 void __init loongson_smp_setup(void)
294 {
295 	fdt_smp_setup();
296 
297 	if (loongson_sysconf.cores_per_package == 0)
298 		loongson_sysconf.cores_per_package = num_processors;
299 
300 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
301 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
302 
303 	pv_ipi_init();
304 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
305 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
306 }
307 
308 void __init loongson_prepare_cpus(unsigned int max_cpus)
309 {
310 	int i = 0;
311 
312 	parse_acpi_topology();
313 
314 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
315 		set_cpu_present(i, true);
316 		csr_mail_send(0, __cpu_logical_map[i], 0);
317 		cpu_data[i].global_id = __cpu_logical_map[i];
318 	}
319 
320 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
321 }
322 
323 /*
324  * Setup the PC, SP, and TP of a secondary processor and start it running!
325  */
326 void loongson_boot_secondary(int cpu, struct task_struct *idle)
327 {
328 	unsigned long entry;
329 
330 	pr_info("Booting CPU#%d...\n", cpu);
331 
332 	entry = __pa_symbol((unsigned long)&smpboot_entry);
333 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
334 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
335 
336 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
337 
338 	loongson_send_ipi_single(cpu, ACTION_BOOT_CPU);
339 }
340 
341 /*
342  * SMP init and finish on secondary CPUs
343  */
344 void loongson_init_secondary(void)
345 {
346 	unsigned int cpu = smp_processor_id();
347 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
348 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0;
349 
350 	change_csr_ecfg(ECFG0_IM, imask);
351 
352 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
353 
354 #ifdef CONFIG_NUMA
355 	numa_add_cpu(cpu);
356 #endif
357 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
358 	cpu_data[cpu].package =
359 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
360 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
361 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
362 }
363 
364 void loongson_smp_finish(void)
365 {
366 	local_irq_enable();
367 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
368 	pr_info("CPU#%d finished\n", smp_processor_id());
369 }
370 
371 #ifdef CONFIG_HOTPLUG_CPU
372 
373 int loongson_cpu_disable(void)
374 {
375 	unsigned long flags;
376 	unsigned int cpu = smp_processor_id();
377 
378 	if (io_master(cpu))
379 		return -EBUSY;
380 
381 #ifdef CONFIG_NUMA
382 	numa_remove_cpu(cpu);
383 #endif
384 	set_cpu_online(cpu, false);
385 	clear_cpu_sibling_map(cpu);
386 	calculate_cpu_foreign_map();
387 	local_irq_save(flags);
388 	irq_migrate_all_off_this_cpu();
389 	clear_csr_ecfg(ECFG0_IM);
390 	local_irq_restore(flags);
391 	local_flush_tlb_all();
392 
393 	return 0;
394 }
395 
396 void loongson_cpu_die(unsigned int cpu)
397 {
398 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
399 		cpu_relax();
400 
401 	mb();
402 }
403 
404 void __noreturn arch_cpu_idle_dead(void)
405 {
406 	register uint64_t addr;
407 	register void (*init_fn)(void);
408 
409 	idle_task_exit();
410 	local_irq_enable();
411 	set_csr_ecfg(ECFGF_IPI);
412 	__this_cpu_write(cpu_state, CPU_DEAD);
413 
414 	__smp_mb();
415 	do {
416 		__asm__ __volatile__("idle 0\n\t");
417 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
418 	} while (addr == 0);
419 
420 	local_irq_disable();
421 	init_fn = (void *)TO_CACHE(addr);
422 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
423 
424 	init_fn();
425 	BUG();
426 }
427 
428 #endif
429 
430 /*
431  * Power management
432  */
433 #ifdef CONFIG_PM
434 
435 static int loongson_ipi_suspend(void)
436 {
437 	return 0;
438 }
439 
440 static void loongson_ipi_resume(void)
441 {
442 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
443 }
444 
445 static struct syscore_ops loongson_ipi_syscore_ops = {
446 	.resume         = loongson_ipi_resume,
447 	.suspend        = loongson_ipi_suspend,
448 };
449 
450 /*
451  * Enable boot cpu ipi before enabling nonboot cpus
452  * during syscore_resume.
453  */
454 static int __init ipi_pm_init(void)
455 {
456 	register_syscore_ops(&loongson_ipi_syscore_ops);
457 	return 0;
458 }
459 
460 core_initcall(ipi_pm_init);
461 #endif
462 
463 /* Preload SMP state for boot cpu */
464 void smp_prepare_boot_cpu(void)
465 {
466 	unsigned int cpu, node, rr_node;
467 
468 	set_cpu_possible(0, true);
469 	set_cpu_online(0, true);
470 	set_my_cpu_offset(per_cpu_offset(0));
471 
472 	rr_node = first_node(node_online_map);
473 	for_each_possible_cpu(cpu) {
474 		node = early_cpu_to_node(cpu);
475 
476 		/*
477 		 * The mapping between present cpus and nodes has been
478 		 * built during MADT and SRAT parsing.
479 		 *
480 		 * If possible cpus = present cpus here, early_cpu_to_node
481 		 * will return valid node.
482 		 *
483 		 * If possible cpus > present cpus here (e.g. some possible
484 		 * cpus will be added by cpu-hotplug later), for possible but
485 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
486 		 * and we just map them to online nodes in round-robin way.
487 		 * Once hotplugged, new correct mapping will be built for them.
488 		 */
489 		if (node != NUMA_NO_NODE)
490 			set_cpu_numa_node(cpu, node);
491 		else {
492 			set_cpu_numa_node(cpu, rr_node);
493 			rr_node = next_node_in(rr_node, node_online_map);
494 		}
495 	}
496 }
497 
498 /* called from main before smp_init() */
499 void __init smp_prepare_cpus(unsigned int max_cpus)
500 {
501 	init_new_context(current, &init_mm);
502 	current_thread_info()->cpu = 0;
503 	loongson_prepare_cpus(max_cpus);
504 	set_cpu_sibling_map(0);
505 	set_cpu_core_map(0);
506 	calculate_cpu_foreign_map();
507 #ifndef CONFIG_HOTPLUG_CPU
508 	init_cpu_present(cpu_possible_mask);
509 #endif
510 }
511 
512 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
513 {
514 	loongson_boot_secondary(cpu, tidle);
515 
516 	/* Wait for CPU to start and be ready to sync counters */
517 	if (!wait_for_completion_timeout(&cpu_starting,
518 					 msecs_to_jiffies(5000))) {
519 		pr_crit("CPU%u: failed to start\n", cpu);
520 		return -EIO;
521 	}
522 
523 	/* Wait for CPU to finish startup & mark itself online before return */
524 	wait_for_completion(&cpu_running);
525 
526 	return 0;
527 }
528 
529 /*
530  * First C code run on the secondary CPUs after being started up by
531  * the master.
532  */
533 asmlinkage void start_secondary(void)
534 {
535 	unsigned int cpu;
536 
537 	sync_counter();
538 	cpu = raw_smp_processor_id();
539 	set_my_cpu_offset(per_cpu_offset(cpu));
540 
541 	cpu_probe();
542 	constant_clockevent_init();
543 	loongson_init_secondary();
544 
545 	set_cpu_sibling_map(cpu);
546 	set_cpu_core_map(cpu);
547 
548 	notify_cpu_starting(cpu);
549 
550 	/* Notify boot CPU that we're starting */
551 	complete(&cpu_starting);
552 
553 	/* The CPU is running, now mark it online */
554 	set_cpu_online(cpu, true);
555 
556 	calculate_cpu_foreign_map();
557 
558 	/*
559 	 * Notify boot CPU that we're up & online and it can safely return
560 	 * from __cpu_up()
561 	 */
562 	complete(&cpu_running);
563 
564 	/*
565 	 * irq will be enabled in loongson_smp_finish(), enabling it too
566 	 * early is dangerous.
567 	 */
568 	WARN_ON_ONCE(!irqs_disabled());
569 	loongson_smp_finish();
570 
571 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
572 }
573 
574 void __init smp_cpus_done(unsigned int max_cpus)
575 {
576 }
577 
578 static void stop_this_cpu(void *dummy)
579 {
580 	set_cpu_online(smp_processor_id(), false);
581 	calculate_cpu_foreign_map();
582 	local_irq_disable();
583 	while (true);
584 }
585 
586 void smp_send_stop(void)
587 {
588 	smp_call_function(stop_this_cpu, NULL, 0);
589 }
590 
591 #ifdef CONFIG_PROFILING
592 int setup_profiling_timer(unsigned int multiplier)
593 {
594 	return 0;
595 }
596 #endif
597 
598 static void flush_tlb_all_ipi(void *info)
599 {
600 	local_flush_tlb_all();
601 }
602 
603 void flush_tlb_all(void)
604 {
605 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
606 }
607 
608 static void flush_tlb_mm_ipi(void *mm)
609 {
610 	local_flush_tlb_mm((struct mm_struct *)mm);
611 }
612 
613 void flush_tlb_mm(struct mm_struct *mm)
614 {
615 	if (atomic_read(&mm->mm_users) == 0)
616 		return;		/* happens as a result of exit_mmap() */
617 
618 	preempt_disable();
619 
620 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
621 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
622 	} else {
623 		unsigned int cpu;
624 
625 		for_each_online_cpu(cpu) {
626 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
627 				cpu_context(cpu, mm) = 0;
628 		}
629 		local_flush_tlb_mm(mm);
630 	}
631 
632 	preempt_enable();
633 }
634 
635 struct flush_tlb_data {
636 	struct vm_area_struct *vma;
637 	unsigned long addr1;
638 	unsigned long addr2;
639 };
640 
641 static void flush_tlb_range_ipi(void *info)
642 {
643 	struct flush_tlb_data *fd = info;
644 
645 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
646 }
647 
648 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
649 {
650 	struct mm_struct *mm = vma->vm_mm;
651 
652 	preempt_disable();
653 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
654 		struct flush_tlb_data fd = {
655 			.vma = vma,
656 			.addr1 = start,
657 			.addr2 = end,
658 		};
659 
660 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
661 	} else {
662 		unsigned int cpu;
663 
664 		for_each_online_cpu(cpu) {
665 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
666 				cpu_context(cpu, mm) = 0;
667 		}
668 		local_flush_tlb_range(vma, start, end);
669 	}
670 	preempt_enable();
671 }
672 
673 static void flush_tlb_kernel_range_ipi(void *info)
674 {
675 	struct flush_tlb_data *fd = info;
676 
677 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
678 }
679 
680 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
681 {
682 	struct flush_tlb_data fd = {
683 		.addr1 = start,
684 		.addr2 = end,
685 	};
686 
687 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
688 }
689 
690 static void flush_tlb_page_ipi(void *info)
691 {
692 	struct flush_tlb_data *fd = info;
693 
694 	local_flush_tlb_page(fd->vma, fd->addr1);
695 }
696 
697 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
698 {
699 	preempt_disable();
700 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
701 		struct flush_tlb_data fd = {
702 			.vma = vma,
703 			.addr1 = page,
704 		};
705 
706 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
707 	} else {
708 		unsigned int cpu;
709 
710 		for_each_online_cpu(cpu) {
711 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
712 				cpu_context(cpu, vma->vm_mm) = 0;
713 		}
714 		local_flush_tlb_page(vma, page);
715 	}
716 	preempt_enable();
717 }
718 EXPORT_SYMBOL(flush_tlb_page);
719 
720 static void flush_tlb_one_ipi(void *info)
721 {
722 	unsigned long vaddr = (unsigned long) info;
723 
724 	local_flush_tlb_one(vaddr);
725 }
726 
727 void flush_tlb_one(unsigned long vaddr)
728 {
729 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
730 }
731 EXPORT_SYMBOL(flush_tlb_one);
732