xref: /linux/arch/loongarch/kernel/smp.c (revision 1c75adb22d49ca9389333ca5e6939052a7203111)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/paravirt.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/time.h>
36 
37 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
38 EXPORT_SYMBOL(__cpu_number_map);
39 
40 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
41 EXPORT_SYMBOL(__cpu_logical_map);
42 
43 /* Representing the threads (siblings) of each logical CPU */
44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
45 EXPORT_SYMBOL(cpu_sibling_map);
46 
47 /* Representing the core map of multi-core chips of each logical CPU */
48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
49 EXPORT_SYMBOL(cpu_core_map);
50 
51 static DECLARE_COMPLETION(cpu_starting);
52 static DECLARE_COMPLETION(cpu_running);
53 
54 /*
55  * A logcal cpu mask containing only one VPE per core to
56  * reduce the number of IPIs on large MT systems.
57  */
58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_foreign_map);
60 
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63 
64 /* representing cpus for which core maps can be computed */
65 static cpumask_t cpu_core_setup_map;
66 
67 struct secondary_data cpuboot_data;
68 static DEFINE_PER_CPU(int, cpu_state);
69 
70 static const char *ipi_types[NR_IPI] __tracepoint_string = {
71 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
72 	[IPI_CALL_FUNCTION] = "Function call interrupts",
73 };
74 
75 void show_ipi_list(struct seq_file *p, int prec)
76 {
77 	unsigned int cpu, i;
78 
79 	for (i = 0; i < NR_IPI; i++) {
80 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
81 		for_each_online_cpu(cpu)
82 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
83 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
84 	}
85 }
86 
87 static inline void set_cpu_core_map(int cpu)
88 {
89 	int i;
90 
91 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
92 
93 	for_each_cpu(i, &cpu_core_setup_map) {
94 		if (cpu_data[cpu].package == cpu_data[i].package) {
95 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
96 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
97 		}
98 	}
99 }
100 
101 static inline void set_cpu_sibling_map(int cpu)
102 {
103 	int i;
104 
105 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
106 
107 	for_each_cpu(i, &cpu_sibling_setup_map) {
108 		if (cpus_are_siblings(cpu, i)) {
109 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
110 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
111 		}
112 	}
113 }
114 
115 static inline void clear_cpu_sibling_map(int cpu)
116 {
117 	int i;
118 
119 	for_each_cpu(i, &cpu_sibling_setup_map) {
120 		if (cpus_are_siblings(cpu, i)) {
121 			cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
122 			cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
123 		}
124 	}
125 
126 	cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
127 }
128 
129 /*
130  * Calculate a new cpu_foreign_map mask whenever a
131  * new cpu appears or disappears.
132  */
133 void calculate_cpu_foreign_map(void)
134 {
135 	int i, k, core_present;
136 	cpumask_t temp_foreign_map;
137 
138 	/* Re-calculate the mask */
139 	cpumask_clear(&temp_foreign_map);
140 	for_each_online_cpu(i) {
141 		core_present = 0;
142 		for_each_cpu(k, &temp_foreign_map)
143 			if (cpus_are_siblings(i, k))
144 				core_present = 1;
145 		if (!core_present)
146 			cpumask_set_cpu(i, &temp_foreign_map);
147 	}
148 
149 	for_each_online_cpu(i)
150 		cpumask_andnot(&cpu_foreign_map[i],
151 			       &temp_foreign_map, &cpu_sibling_map[i]);
152 }
153 
154 /* Send mailbox buffer via Mail_Send */
155 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
156 {
157 	uint64_t val;
158 
159 	/* Send high 32 bits */
160 	val = IOCSR_MBUF_SEND_BLOCKING;
161 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
162 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
163 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
164 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
165 
166 	/* Send low 32 bits */
167 	val = IOCSR_MBUF_SEND_BLOCKING;
168 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
169 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
170 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
171 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
172 };
173 
174 static u32 ipi_read_clear(int cpu)
175 {
176 	u32 action;
177 
178 	/* Load the ipi register to figure out what we're supposed to do */
179 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
180 	/* Clear the ipi register to clear the interrupt */
181 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
182 	wbflush();
183 
184 	return action;
185 }
186 
187 static void ipi_write_action(int cpu, u32 action)
188 {
189 	uint32_t val;
190 
191 	val = IOCSR_IPI_SEND_BLOCKING | action;
192 	val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
193 	iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
194 }
195 
196 static void loongson_send_ipi_single(int cpu, unsigned int action)
197 {
198 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
199 }
200 
201 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
202 {
203 	unsigned int i;
204 
205 	for_each_cpu(i, mask)
206 		ipi_write_action(cpu_logical_map(i), (u32)action);
207 }
208 
209 /*
210  * This function sends a 'reschedule' IPI to another CPU.
211  * it goes straight through and wastes no time serializing
212  * anything. Worst case is that we lose a reschedule ...
213  */
214 void arch_smp_send_reschedule(int cpu)
215 {
216 	mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE);
217 }
218 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
219 
220 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
221 {
222 	unsigned int action;
223 	unsigned int cpu = smp_processor_id();
224 
225 	action = ipi_read_clear(cpu_logical_map(cpu));
226 
227 	if (action & SMP_RESCHEDULE) {
228 		scheduler_ipi();
229 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
230 	}
231 
232 	if (action & SMP_CALL_FUNCTION) {
233 		generic_smp_call_function_interrupt();
234 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
235 	}
236 
237 	return IRQ_HANDLED;
238 }
239 
240 static void loongson_init_ipi(void)
241 {
242 	int r, ipi_irq;
243 
244 	ipi_irq = get_percpu_irq(INT_IPI);
245 	if (ipi_irq < 0)
246 		panic("IPI IRQ mapping failed\n");
247 
248 	irq_set_percpu_devid(ipi_irq);
249 	r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat);
250 	if (r < 0)
251 		panic("IPI IRQ request failed\n");
252 }
253 
254 struct smp_ops mp_ops = {
255 	.init_ipi		= loongson_init_ipi,
256 	.send_ipi_single	= loongson_send_ipi_single,
257 	.send_ipi_mask		= loongson_send_ipi_mask,
258 };
259 
260 static void __init fdt_smp_setup(void)
261 {
262 #ifdef CONFIG_OF
263 	unsigned int cpu, cpuid;
264 	struct device_node *node = NULL;
265 
266 	for_each_of_cpu_node(node) {
267 		if (!of_device_is_available(node))
268 			continue;
269 
270 		cpuid = of_get_cpu_hwid(node, 0);
271 		if (cpuid >= nr_cpu_ids)
272 			continue;
273 
274 		if (cpuid == loongson_sysconf.boot_cpu_id) {
275 			cpu = 0;
276 		} else {
277 			cpu = cpumask_next_zero(-1, cpu_present_mask);
278 		}
279 
280 		num_processors++;
281 		set_cpu_possible(cpu, true);
282 		set_cpu_present(cpu, true);
283 		__cpu_number_map[cpuid] = cpu;
284 		__cpu_logical_map[cpu] = cpuid;
285 
286 		early_numa_add_cpu(cpu, 0);
287 		set_cpuid_to_node(cpuid, 0);
288 	}
289 
290 	loongson_sysconf.nr_cpus = num_processors;
291 	set_bit(0, loongson_sysconf.cores_io_master);
292 #endif
293 }
294 
295 void __init loongson_smp_setup(void)
296 {
297 	fdt_smp_setup();
298 
299 	if (loongson_sysconf.cores_per_package == 0)
300 		loongson_sysconf.cores_per_package = num_processors;
301 
302 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
303 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
304 
305 	pv_ipi_init();
306 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
307 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
308 }
309 
310 void __init loongson_prepare_cpus(unsigned int max_cpus)
311 {
312 	int i = 0;
313 
314 	parse_acpi_topology();
315 
316 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
317 		set_cpu_present(i, true);
318 		csr_mail_send(0, __cpu_logical_map[i], 0);
319 		cpu_data[i].global_id = __cpu_logical_map[i];
320 	}
321 
322 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
323 }
324 
325 /*
326  * Setup the PC, SP, and TP of a secondary processor and start it running!
327  */
328 void loongson_boot_secondary(int cpu, struct task_struct *idle)
329 {
330 	unsigned long entry;
331 
332 	pr_info("Booting CPU#%d...\n", cpu);
333 
334 	entry = __pa_symbol((unsigned long)&smpboot_entry);
335 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
336 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
337 
338 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
339 
340 	loongson_send_ipi_single(cpu, ACTION_BOOT_CPU);
341 }
342 
343 /*
344  * SMP init and finish on secondary CPUs
345  */
346 void loongson_init_secondary(void)
347 {
348 	unsigned int cpu = smp_processor_id();
349 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
350 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0;
351 
352 	change_csr_ecfg(ECFG0_IM, imask);
353 
354 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
355 
356 #ifdef CONFIG_NUMA
357 	numa_add_cpu(cpu);
358 #endif
359 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
360 	cpu_data[cpu].package =
361 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
362 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
363 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
364 }
365 
366 void loongson_smp_finish(void)
367 {
368 	local_irq_enable();
369 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
370 	pr_info("CPU#%d finished\n", smp_processor_id());
371 }
372 
373 #ifdef CONFIG_HOTPLUG_CPU
374 
375 int loongson_cpu_disable(void)
376 {
377 	unsigned long flags;
378 	unsigned int cpu = smp_processor_id();
379 
380 	if (io_master(cpu))
381 		return -EBUSY;
382 
383 #ifdef CONFIG_NUMA
384 	numa_remove_cpu(cpu);
385 #endif
386 	set_cpu_online(cpu, false);
387 	clear_cpu_sibling_map(cpu);
388 	calculate_cpu_foreign_map();
389 	local_irq_save(flags);
390 	irq_migrate_all_off_this_cpu();
391 	clear_csr_ecfg(ECFG0_IM);
392 	local_irq_restore(flags);
393 	local_flush_tlb_all();
394 
395 	return 0;
396 }
397 
398 void loongson_cpu_die(unsigned int cpu)
399 {
400 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
401 		cpu_relax();
402 
403 	mb();
404 }
405 
406 void __noreturn arch_cpu_idle_dead(void)
407 {
408 	register uint64_t addr;
409 	register void (*init_fn)(void);
410 
411 	idle_task_exit();
412 	local_irq_enable();
413 	set_csr_ecfg(ECFGF_IPI);
414 	__this_cpu_write(cpu_state, CPU_DEAD);
415 
416 	__smp_mb();
417 	do {
418 		__asm__ __volatile__("idle 0\n\t");
419 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
420 	} while (addr == 0);
421 
422 	local_irq_disable();
423 	init_fn = (void *)TO_CACHE(addr);
424 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
425 
426 	init_fn();
427 	BUG();
428 }
429 
430 #endif
431 
432 /*
433  * Power management
434  */
435 #ifdef CONFIG_PM
436 
437 static int loongson_ipi_suspend(void)
438 {
439 	return 0;
440 }
441 
442 static void loongson_ipi_resume(void)
443 {
444 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
445 }
446 
447 static struct syscore_ops loongson_ipi_syscore_ops = {
448 	.resume         = loongson_ipi_resume,
449 	.suspend        = loongson_ipi_suspend,
450 };
451 
452 /*
453  * Enable boot cpu ipi before enabling nonboot cpus
454  * during syscore_resume.
455  */
456 static int __init ipi_pm_init(void)
457 {
458 	register_syscore_ops(&loongson_ipi_syscore_ops);
459 	return 0;
460 }
461 
462 core_initcall(ipi_pm_init);
463 #endif
464 
465 /* Preload SMP state for boot cpu */
466 void smp_prepare_boot_cpu(void)
467 {
468 	unsigned int cpu, node, rr_node;
469 
470 	set_cpu_possible(0, true);
471 	set_cpu_online(0, true);
472 	set_my_cpu_offset(per_cpu_offset(0));
473 	numa_add_cpu(0);
474 
475 	rr_node = first_node(node_online_map);
476 	for_each_possible_cpu(cpu) {
477 		node = early_cpu_to_node(cpu);
478 
479 		/*
480 		 * The mapping between present cpus and nodes has been
481 		 * built during MADT and SRAT parsing.
482 		 *
483 		 * If possible cpus = present cpus here, early_cpu_to_node
484 		 * will return valid node.
485 		 *
486 		 * If possible cpus > present cpus here (e.g. some possible
487 		 * cpus will be added by cpu-hotplug later), for possible but
488 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
489 		 * and we just map them to online nodes in round-robin way.
490 		 * Once hotplugged, new correct mapping will be built for them.
491 		 */
492 		if (node != NUMA_NO_NODE)
493 			set_cpu_numa_node(cpu, node);
494 		else {
495 			set_cpu_numa_node(cpu, rr_node);
496 			rr_node = next_node_in(rr_node, node_online_map);
497 		}
498 	}
499 }
500 
501 /* called from main before smp_init() */
502 void __init smp_prepare_cpus(unsigned int max_cpus)
503 {
504 	init_new_context(current, &init_mm);
505 	current_thread_info()->cpu = 0;
506 	loongson_prepare_cpus(max_cpus);
507 	set_cpu_sibling_map(0);
508 	set_cpu_core_map(0);
509 	calculate_cpu_foreign_map();
510 #ifndef CONFIG_HOTPLUG_CPU
511 	init_cpu_present(cpu_possible_mask);
512 #endif
513 }
514 
515 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
516 {
517 	loongson_boot_secondary(cpu, tidle);
518 
519 	/* Wait for CPU to start and be ready to sync counters */
520 	if (!wait_for_completion_timeout(&cpu_starting,
521 					 msecs_to_jiffies(5000))) {
522 		pr_crit("CPU%u: failed to start\n", cpu);
523 		return -EIO;
524 	}
525 
526 	/* Wait for CPU to finish startup & mark itself online before return */
527 	wait_for_completion(&cpu_running);
528 
529 	return 0;
530 }
531 
532 /*
533  * First C code run on the secondary CPUs after being started up by
534  * the master.
535  */
536 asmlinkage void start_secondary(void)
537 {
538 	unsigned int cpu;
539 
540 	sync_counter();
541 	cpu = raw_smp_processor_id();
542 	set_my_cpu_offset(per_cpu_offset(cpu));
543 
544 	cpu_probe();
545 	constant_clockevent_init();
546 	loongson_init_secondary();
547 
548 	set_cpu_sibling_map(cpu);
549 	set_cpu_core_map(cpu);
550 
551 	notify_cpu_starting(cpu);
552 
553 	/* Notify boot CPU that we're starting */
554 	complete(&cpu_starting);
555 
556 	/* The CPU is running, now mark it online */
557 	set_cpu_online(cpu, true);
558 
559 	calculate_cpu_foreign_map();
560 
561 	/*
562 	 * Notify boot CPU that we're up & online and it can safely return
563 	 * from __cpu_up()
564 	 */
565 	complete(&cpu_running);
566 
567 	/*
568 	 * irq will be enabled in loongson_smp_finish(), enabling it too
569 	 * early is dangerous.
570 	 */
571 	WARN_ON_ONCE(!irqs_disabled());
572 	loongson_smp_finish();
573 
574 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
575 }
576 
577 void __init smp_cpus_done(unsigned int max_cpus)
578 {
579 }
580 
581 static void stop_this_cpu(void *dummy)
582 {
583 	set_cpu_online(smp_processor_id(), false);
584 	calculate_cpu_foreign_map();
585 	local_irq_disable();
586 	while (true);
587 }
588 
589 void smp_send_stop(void)
590 {
591 	smp_call_function(stop_this_cpu, NULL, 0);
592 }
593 
594 #ifdef CONFIG_PROFILING
595 int setup_profiling_timer(unsigned int multiplier)
596 {
597 	return 0;
598 }
599 #endif
600 
601 static void flush_tlb_all_ipi(void *info)
602 {
603 	local_flush_tlb_all();
604 }
605 
606 void flush_tlb_all(void)
607 {
608 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
609 }
610 
611 static void flush_tlb_mm_ipi(void *mm)
612 {
613 	local_flush_tlb_mm((struct mm_struct *)mm);
614 }
615 
616 void flush_tlb_mm(struct mm_struct *mm)
617 {
618 	if (atomic_read(&mm->mm_users) == 0)
619 		return;		/* happens as a result of exit_mmap() */
620 
621 	preempt_disable();
622 
623 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
624 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
625 	} else {
626 		unsigned int cpu;
627 
628 		for_each_online_cpu(cpu) {
629 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
630 				cpu_context(cpu, mm) = 0;
631 		}
632 		local_flush_tlb_mm(mm);
633 	}
634 
635 	preempt_enable();
636 }
637 
638 struct flush_tlb_data {
639 	struct vm_area_struct *vma;
640 	unsigned long addr1;
641 	unsigned long addr2;
642 };
643 
644 static void flush_tlb_range_ipi(void *info)
645 {
646 	struct flush_tlb_data *fd = info;
647 
648 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
649 }
650 
651 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
652 {
653 	struct mm_struct *mm = vma->vm_mm;
654 
655 	preempt_disable();
656 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
657 		struct flush_tlb_data fd = {
658 			.vma = vma,
659 			.addr1 = start,
660 			.addr2 = end,
661 		};
662 
663 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
664 	} else {
665 		unsigned int cpu;
666 
667 		for_each_online_cpu(cpu) {
668 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
669 				cpu_context(cpu, mm) = 0;
670 		}
671 		local_flush_tlb_range(vma, start, end);
672 	}
673 	preempt_enable();
674 }
675 
676 static void flush_tlb_kernel_range_ipi(void *info)
677 {
678 	struct flush_tlb_data *fd = info;
679 
680 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
681 }
682 
683 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
684 {
685 	struct flush_tlb_data fd = {
686 		.addr1 = start,
687 		.addr2 = end,
688 	};
689 
690 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
691 }
692 
693 static void flush_tlb_page_ipi(void *info)
694 {
695 	struct flush_tlb_data *fd = info;
696 
697 	local_flush_tlb_page(fd->vma, fd->addr1);
698 }
699 
700 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
701 {
702 	preempt_disable();
703 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
704 		struct flush_tlb_data fd = {
705 			.vma = vma,
706 			.addr1 = page,
707 		};
708 
709 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
710 	} else {
711 		unsigned int cpu;
712 
713 		for_each_online_cpu(cpu) {
714 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
715 				cpu_context(cpu, vma->vm_mm) = 0;
716 		}
717 		local_flush_tlb_page(vma, page);
718 	}
719 	preempt_enable();
720 }
721 EXPORT_SYMBOL(flush_tlb_page);
722 
723 static void flush_tlb_one_ipi(void *info)
724 {
725 	unsigned long vaddr = (unsigned long) info;
726 
727 	local_flush_tlb_one(vaddr);
728 }
729 
730 void flush_tlb_one(unsigned long vaddr)
731 {
732 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
733 }
734 EXPORT_SYMBOL(flush_tlb_one);
735