1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/cpu.h> 12 #include <linux/cpumask.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/smp.h> 17 #include <linux/threads.h> 18 #include <linux/export.h> 19 #include <linux/time.h> 20 #include <linux/tracepoint.h> 21 #include <linux/sched/hotplug.h> 22 #include <linux/sched/task_stack.h> 23 24 #include <asm/cpu.h> 25 #include <asm/idle.h> 26 #include <asm/loongson.h> 27 #include <asm/mmu_context.h> 28 #include <asm/numa.h> 29 #include <asm/processor.h> 30 #include <asm/setup.h> 31 #include <asm/time.h> 32 33 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 34 EXPORT_SYMBOL(__cpu_number_map); 35 36 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 37 EXPORT_SYMBOL(__cpu_logical_map); 38 39 /* Number of threads (siblings) per CPU core */ 40 int smp_num_siblings = 1; 41 EXPORT_SYMBOL(smp_num_siblings); 42 43 /* Representing the threads (siblings) of each logical CPU */ 44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 45 EXPORT_SYMBOL(cpu_sibling_map); 46 47 /* Representing the core map of multi-core chips of each logical CPU */ 48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 49 EXPORT_SYMBOL(cpu_core_map); 50 51 static DECLARE_COMPLETION(cpu_starting); 52 static DECLARE_COMPLETION(cpu_running); 53 54 /* 55 * A logcal cpu mask containing only one VPE per core to 56 * reduce the number of IPIs on large MT systems. 57 */ 58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 59 EXPORT_SYMBOL(cpu_foreign_map); 60 61 /* representing cpus for which sibling maps can be computed */ 62 static cpumask_t cpu_sibling_setup_map; 63 64 /* representing cpus for which core maps can be computed */ 65 static cpumask_t cpu_core_setup_map; 66 67 struct secondary_data cpuboot_data; 68 static DEFINE_PER_CPU(int, cpu_state); 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNCTION, 73 }; 74 75 static const char *ipi_types[NR_IPI] __tracepoint_string = { 76 [IPI_RESCHEDULE] = "Rescheduling interrupts", 77 [IPI_CALL_FUNCTION] = "Function call interrupts", 78 }; 79 80 void show_ipi_list(struct seq_file *p, int prec) 81 { 82 unsigned int cpu, i; 83 84 for (i = 0; i < NR_IPI; i++) { 85 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 86 for_each_online_cpu(cpu) 87 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 88 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 89 } 90 } 91 92 /* Send mailbox buffer via Mail_Send */ 93 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 94 { 95 uint64_t val; 96 97 /* Send high 32 bits */ 98 val = IOCSR_MBUF_SEND_BLOCKING; 99 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 100 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 101 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 102 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 103 104 /* Send low 32 bits */ 105 val = IOCSR_MBUF_SEND_BLOCKING; 106 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 107 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 108 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 109 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 110 }; 111 112 static u32 ipi_read_clear(int cpu) 113 { 114 u32 action; 115 116 /* Load the ipi register to figure out what we're supposed to do */ 117 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 118 /* Clear the ipi register to clear the interrupt */ 119 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 120 smp_mb(); 121 122 return action; 123 } 124 125 static void ipi_write_action(int cpu, u32 action) 126 { 127 unsigned int irq = 0; 128 129 while ((irq = ffs(action))) { 130 uint32_t val = IOCSR_IPI_SEND_BLOCKING; 131 132 val |= (irq - 1); 133 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 134 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 135 action &= ~BIT(irq - 1); 136 } 137 } 138 139 void loongson_send_ipi_single(int cpu, unsigned int action) 140 { 141 ipi_write_action(cpu_logical_map(cpu), (u32)action); 142 } 143 144 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 145 { 146 unsigned int i; 147 148 for_each_cpu(i, mask) 149 ipi_write_action(cpu_logical_map(i), (u32)action); 150 } 151 152 /* 153 * This function sends a 'reschedule' IPI to another CPU. 154 * it goes straight through and wastes no time serializing 155 * anything. Worst case is that we lose a reschedule ... 156 */ 157 void smp_send_reschedule(int cpu) 158 { 159 loongson_send_ipi_single(cpu, SMP_RESCHEDULE); 160 } 161 EXPORT_SYMBOL_GPL(smp_send_reschedule); 162 163 irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 164 { 165 unsigned int action; 166 unsigned int cpu = smp_processor_id(); 167 168 action = ipi_read_clear(cpu_logical_map(cpu)); 169 170 if (action & SMP_RESCHEDULE) { 171 scheduler_ipi(); 172 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 173 } 174 175 if (action & SMP_CALL_FUNCTION) { 176 generic_smp_call_function_interrupt(); 177 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 178 } 179 180 return IRQ_HANDLED; 181 } 182 183 void __init loongson_smp_setup(void) 184 { 185 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 186 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 187 188 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 189 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 190 } 191 192 void __init loongson_prepare_cpus(unsigned int max_cpus) 193 { 194 int i = 0; 195 196 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 197 set_cpu_present(i, true); 198 csr_mail_send(0, __cpu_logical_map[i], 0); 199 } 200 201 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 202 } 203 204 /* 205 * Setup the PC, SP, and TP of a secondary processor and start it running! 206 */ 207 void loongson_boot_secondary(int cpu, struct task_struct *idle) 208 { 209 unsigned long entry; 210 211 pr_info("Booting CPU#%d...\n", cpu); 212 213 entry = __pa_symbol((unsigned long)&smpboot_entry); 214 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 215 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 216 217 csr_mail_send(entry, cpu_logical_map(cpu), 0); 218 219 loongson_send_ipi_single(cpu, SMP_BOOT_CPU); 220 } 221 222 /* 223 * SMP init and finish on secondary CPUs 224 */ 225 void loongson_init_secondary(void) 226 { 227 unsigned int cpu = smp_processor_id(); 228 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 229 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER; 230 231 change_csr_ecfg(ECFG0_IM, imask); 232 233 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 234 235 #ifdef CONFIG_NUMA 236 numa_add_cpu(cpu); 237 #endif 238 per_cpu(cpu_state, cpu) = CPU_ONLINE; 239 cpu_data[cpu].core = 240 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 241 cpu_data[cpu].package = 242 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 243 } 244 245 void loongson_smp_finish(void) 246 { 247 local_irq_enable(); 248 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 249 pr_info("CPU#%d finished\n", smp_processor_id()); 250 } 251 252 #ifdef CONFIG_HOTPLUG_CPU 253 254 int loongson_cpu_disable(void) 255 { 256 unsigned long flags; 257 unsigned int cpu = smp_processor_id(); 258 259 if (io_master(cpu)) 260 return -EBUSY; 261 262 #ifdef CONFIG_NUMA 263 numa_remove_cpu(cpu); 264 #endif 265 set_cpu_online(cpu, false); 266 calculate_cpu_foreign_map(); 267 local_irq_save(flags); 268 irq_migrate_all_off_this_cpu(); 269 clear_csr_ecfg(ECFG0_IM); 270 local_irq_restore(flags); 271 local_flush_tlb_all(); 272 273 return 0; 274 } 275 276 void loongson_cpu_die(unsigned int cpu) 277 { 278 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 279 cpu_relax(); 280 281 mb(); 282 } 283 284 void play_dead(void) 285 { 286 register uint64_t addr; 287 register void (*init_fn)(void); 288 289 idle_task_exit(); 290 local_irq_enable(); 291 set_csr_ecfg(ECFGF_IPI); 292 __this_cpu_write(cpu_state, CPU_DEAD); 293 294 __smp_mb(); 295 do { 296 __asm__ __volatile__("idle 0\n\t"); 297 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 298 } while (addr == 0); 299 300 init_fn = (void *)TO_CACHE(addr); 301 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 302 303 init_fn(); 304 unreachable(); 305 } 306 307 #endif 308 309 /* 310 * Power management 311 */ 312 #ifdef CONFIG_PM 313 314 static int loongson_ipi_suspend(void) 315 { 316 return 0; 317 } 318 319 static void loongson_ipi_resume(void) 320 { 321 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 322 } 323 324 static struct syscore_ops loongson_ipi_syscore_ops = { 325 .resume = loongson_ipi_resume, 326 .suspend = loongson_ipi_suspend, 327 }; 328 329 /* 330 * Enable boot cpu ipi before enabling nonboot cpus 331 * during syscore_resume. 332 */ 333 static int __init ipi_pm_init(void) 334 { 335 register_syscore_ops(&loongson_ipi_syscore_ops); 336 return 0; 337 } 338 339 core_initcall(ipi_pm_init); 340 #endif 341 342 static inline void set_cpu_sibling_map(int cpu) 343 { 344 int i; 345 346 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 347 348 if (smp_num_siblings <= 1) 349 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 350 else { 351 for_each_cpu(i, &cpu_sibling_setup_map) { 352 if (cpus_are_siblings(cpu, i)) { 353 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 354 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 355 } 356 } 357 } 358 } 359 360 static inline void set_cpu_core_map(int cpu) 361 { 362 int i; 363 364 cpumask_set_cpu(cpu, &cpu_core_setup_map); 365 366 for_each_cpu(i, &cpu_core_setup_map) { 367 if (cpu_data[cpu].package == cpu_data[i].package) { 368 cpumask_set_cpu(i, &cpu_core_map[cpu]); 369 cpumask_set_cpu(cpu, &cpu_core_map[i]); 370 } 371 } 372 } 373 374 /* 375 * Calculate a new cpu_foreign_map mask whenever a 376 * new cpu appears or disappears. 377 */ 378 void calculate_cpu_foreign_map(void) 379 { 380 int i, k, core_present; 381 cpumask_t temp_foreign_map; 382 383 /* Re-calculate the mask */ 384 cpumask_clear(&temp_foreign_map); 385 for_each_online_cpu(i) { 386 core_present = 0; 387 for_each_cpu(k, &temp_foreign_map) 388 if (cpus_are_siblings(i, k)) 389 core_present = 1; 390 if (!core_present) 391 cpumask_set_cpu(i, &temp_foreign_map); 392 } 393 394 for_each_online_cpu(i) 395 cpumask_andnot(&cpu_foreign_map[i], 396 &temp_foreign_map, &cpu_sibling_map[i]); 397 } 398 399 /* Preload SMP state for boot cpu */ 400 void smp_prepare_boot_cpu(void) 401 { 402 unsigned int cpu, node, rr_node; 403 404 set_cpu_possible(0, true); 405 set_cpu_online(0, true); 406 set_my_cpu_offset(per_cpu_offset(0)); 407 408 rr_node = first_node(node_online_map); 409 for_each_possible_cpu(cpu) { 410 node = early_cpu_to_node(cpu); 411 412 /* 413 * The mapping between present cpus and nodes has been 414 * built during MADT and SRAT parsing. 415 * 416 * If possible cpus = present cpus here, early_cpu_to_node 417 * will return valid node. 418 * 419 * If possible cpus > present cpus here (e.g. some possible 420 * cpus will be added by cpu-hotplug later), for possible but 421 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 422 * and we just map them to online nodes in round-robin way. 423 * Once hotplugged, new correct mapping will be built for them. 424 */ 425 if (node != NUMA_NO_NODE) 426 set_cpu_numa_node(cpu, node); 427 else { 428 set_cpu_numa_node(cpu, rr_node); 429 rr_node = next_node_in(rr_node, node_online_map); 430 } 431 } 432 } 433 434 /* called from main before smp_init() */ 435 void __init smp_prepare_cpus(unsigned int max_cpus) 436 { 437 init_new_context(current, &init_mm); 438 current_thread_info()->cpu = 0; 439 loongson_prepare_cpus(max_cpus); 440 set_cpu_sibling_map(0); 441 set_cpu_core_map(0); 442 calculate_cpu_foreign_map(); 443 #ifndef CONFIG_HOTPLUG_CPU 444 init_cpu_present(cpu_possible_mask); 445 #endif 446 } 447 448 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 449 { 450 loongson_boot_secondary(cpu, tidle); 451 452 /* Wait for CPU to start and be ready to sync counters */ 453 if (!wait_for_completion_timeout(&cpu_starting, 454 msecs_to_jiffies(5000))) { 455 pr_crit("CPU%u: failed to start\n", cpu); 456 return -EIO; 457 } 458 459 /* Wait for CPU to finish startup & mark itself online before return */ 460 wait_for_completion(&cpu_running); 461 462 return 0; 463 } 464 465 /* 466 * First C code run on the secondary CPUs after being started up by 467 * the master. 468 */ 469 asmlinkage void start_secondary(void) 470 { 471 unsigned int cpu; 472 473 sync_counter(); 474 cpu = smp_processor_id(); 475 set_my_cpu_offset(per_cpu_offset(cpu)); 476 477 cpu_probe(); 478 constant_clockevent_init(); 479 loongson_init_secondary(); 480 481 set_cpu_sibling_map(cpu); 482 set_cpu_core_map(cpu); 483 484 notify_cpu_starting(cpu); 485 486 /* Notify boot CPU that we're starting */ 487 complete(&cpu_starting); 488 489 /* The CPU is running, now mark it online */ 490 set_cpu_online(cpu, true); 491 492 calculate_cpu_foreign_map(); 493 494 /* 495 * Notify boot CPU that we're up & online and it can safely return 496 * from __cpu_up() 497 */ 498 complete(&cpu_running); 499 500 /* 501 * irq will be enabled in loongson_smp_finish(), enabling it too 502 * early is dangerous. 503 */ 504 WARN_ON_ONCE(!irqs_disabled()); 505 loongson_smp_finish(); 506 507 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 508 } 509 510 void __init smp_cpus_done(unsigned int max_cpus) 511 { 512 } 513 514 static void stop_this_cpu(void *dummy) 515 { 516 set_cpu_online(smp_processor_id(), false); 517 calculate_cpu_foreign_map(); 518 local_irq_disable(); 519 while (true); 520 } 521 522 void smp_send_stop(void) 523 { 524 smp_call_function(stop_this_cpu, NULL, 0); 525 } 526 527 int setup_profiling_timer(unsigned int multiplier) 528 { 529 return 0; 530 } 531 532 static void flush_tlb_all_ipi(void *info) 533 { 534 local_flush_tlb_all(); 535 } 536 537 void flush_tlb_all(void) 538 { 539 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 540 } 541 542 static void flush_tlb_mm_ipi(void *mm) 543 { 544 local_flush_tlb_mm((struct mm_struct *)mm); 545 } 546 547 void flush_tlb_mm(struct mm_struct *mm) 548 { 549 if (atomic_read(&mm->mm_users) == 0) 550 return; /* happens as a result of exit_mmap() */ 551 552 preempt_disable(); 553 554 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 555 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 556 } else { 557 unsigned int cpu; 558 559 for_each_online_cpu(cpu) { 560 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 561 cpu_context(cpu, mm) = 0; 562 } 563 local_flush_tlb_mm(mm); 564 } 565 566 preempt_enable(); 567 } 568 569 struct flush_tlb_data { 570 struct vm_area_struct *vma; 571 unsigned long addr1; 572 unsigned long addr2; 573 }; 574 575 static void flush_tlb_range_ipi(void *info) 576 { 577 struct flush_tlb_data *fd = info; 578 579 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 580 } 581 582 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 583 { 584 struct mm_struct *mm = vma->vm_mm; 585 586 preempt_disable(); 587 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 588 struct flush_tlb_data fd = { 589 .vma = vma, 590 .addr1 = start, 591 .addr2 = end, 592 }; 593 594 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 595 } else { 596 unsigned int cpu; 597 598 for_each_online_cpu(cpu) { 599 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 600 cpu_context(cpu, mm) = 0; 601 } 602 local_flush_tlb_range(vma, start, end); 603 } 604 preempt_enable(); 605 } 606 607 static void flush_tlb_kernel_range_ipi(void *info) 608 { 609 struct flush_tlb_data *fd = info; 610 611 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 612 } 613 614 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 615 { 616 struct flush_tlb_data fd = { 617 .addr1 = start, 618 .addr2 = end, 619 }; 620 621 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 622 } 623 624 static void flush_tlb_page_ipi(void *info) 625 { 626 struct flush_tlb_data *fd = info; 627 628 local_flush_tlb_page(fd->vma, fd->addr1); 629 } 630 631 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 632 { 633 preempt_disable(); 634 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 635 struct flush_tlb_data fd = { 636 .vma = vma, 637 .addr1 = page, 638 }; 639 640 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 641 } else { 642 unsigned int cpu; 643 644 for_each_online_cpu(cpu) { 645 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 646 cpu_context(cpu, vma->vm_mm) = 0; 647 } 648 local_flush_tlb_page(vma, page); 649 } 650 preempt_enable(); 651 } 652 EXPORT_SYMBOL(flush_tlb_page); 653 654 static void flush_tlb_one_ipi(void *info) 655 { 656 unsigned long vaddr = (unsigned long) info; 657 658 local_flush_tlb_one(vaddr); 659 } 660 661 void flush_tlb_one(unsigned long vaddr) 662 { 663 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 664 } 665 EXPORT_SYMBOL(flush_tlb_one); 666