xref: /linux/arch/loongarch/kernel/smp.c (revision 005c54278b3dd38f6045a2450a8c988cc7d3def2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/cpu.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/smp.h>
17 #include <linux/threads.h>
18 #include <linux/export.h>
19 #include <linux/time.h>
20 #include <linux/tracepoint.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/sched/task_stack.h>
23 
24 #include <asm/cpu.h>
25 #include <asm/idle.h>
26 #include <asm/loongson.h>
27 #include <asm/mmu_context.h>
28 #include <asm/numa.h>
29 #include <asm/processor.h>
30 #include <asm/setup.h>
31 #include <asm/time.h>
32 
33 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
34 EXPORT_SYMBOL(__cpu_number_map);
35 
36 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
37 EXPORT_SYMBOL(__cpu_logical_map);
38 
39 /* Number of threads (siblings) per CPU core */
40 int smp_num_siblings = 1;
41 EXPORT_SYMBOL(smp_num_siblings);
42 
43 /* Representing the threads (siblings) of each logical CPU */
44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
45 EXPORT_SYMBOL(cpu_sibling_map);
46 
47 /* Representing the core map of multi-core chips of each logical CPU */
48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
49 EXPORT_SYMBOL(cpu_core_map);
50 
51 static DECLARE_COMPLETION(cpu_starting);
52 static DECLARE_COMPLETION(cpu_running);
53 
54 /*
55  * A logcal cpu mask containing only one VPE per core to
56  * reduce the number of IPIs on large MT systems.
57  */
58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_foreign_map);
60 
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63 
64 /* representing cpus for which core maps can be computed */
65 static cpumask_t cpu_core_setup_map;
66 
67 struct secondary_data cpuboot_data;
68 static DEFINE_PER_CPU(int, cpu_state);
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNCTION,
73 };
74 
75 static const char *ipi_types[NR_IPI] __tracepoint_string = {
76 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
77 	[IPI_CALL_FUNCTION] = "Function call interrupts",
78 };
79 
80 void show_ipi_list(struct seq_file *p, int prec)
81 {
82 	unsigned int cpu, i;
83 
84 	for (i = 0; i < NR_IPI; i++) {
85 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
86 		for_each_online_cpu(cpu)
87 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
88 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
89 	}
90 }
91 
92 /* Send mailbox buffer via Mail_Send */
93 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
94 {
95 	uint64_t val;
96 
97 	/* Send high 32 bits */
98 	val = IOCSR_MBUF_SEND_BLOCKING;
99 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
100 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
101 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
102 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
103 
104 	/* Send low 32 bits */
105 	val = IOCSR_MBUF_SEND_BLOCKING;
106 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
107 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
108 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
109 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
110 };
111 
112 static u32 ipi_read_clear(int cpu)
113 {
114 	u32 action;
115 
116 	/* Load the ipi register to figure out what we're supposed to do */
117 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
118 	/* Clear the ipi register to clear the interrupt */
119 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
120 	smp_mb();
121 
122 	return action;
123 }
124 
125 static void ipi_write_action(int cpu, u32 action)
126 {
127 	unsigned int irq = 0;
128 
129 	while ((irq = ffs(action))) {
130 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
131 
132 		val |= (irq - 1);
133 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
134 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
135 		action &= ~BIT(irq - 1);
136 	}
137 }
138 
139 void loongson_send_ipi_single(int cpu, unsigned int action)
140 {
141 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
142 }
143 
144 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
145 {
146 	unsigned int i;
147 
148 	for_each_cpu(i, mask)
149 		ipi_write_action(cpu_logical_map(i), (u32)action);
150 }
151 
152 /*
153  * This function sends a 'reschedule' IPI to another CPU.
154  * it goes straight through and wastes no time serializing
155  * anything. Worst case is that we lose a reschedule ...
156  */
157 void smp_send_reschedule(int cpu)
158 {
159 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
160 }
161 EXPORT_SYMBOL_GPL(smp_send_reschedule);
162 
163 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
164 {
165 	unsigned int action;
166 	unsigned int cpu = smp_processor_id();
167 
168 	action = ipi_read_clear(cpu_logical_map(cpu));
169 
170 	if (action & SMP_RESCHEDULE) {
171 		scheduler_ipi();
172 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
173 	}
174 
175 	if (action & SMP_CALL_FUNCTION) {
176 		generic_smp_call_function_interrupt();
177 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
178 	}
179 
180 	return IRQ_HANDLED;
181 }
182 
183 void __init loongson_smp_setup(void)
184 {
185 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
186 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
187 
188 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
189 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
190 }
191 
192 void __init loongson_prepare_cpus(unsigned int max_cpus)
193 {
194 	int i = 0;
195 
196 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
197 		set_cpu_present(i, true);
198 		csr_mail_send(0, __cpu_logical_map[i], 0);
199 	}
200 
201 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
202 }
203 
204 /*
205  * Setup the PC, SP, and TP of a secondary processor and start it running!
206  */
207 void loongson_boot_secondary(int cpu, struct task_struct *idle)
208 {
209 	unsigned long entry;
210 
211 	pr_info("Booting CPU#%d...\n", cpu);
212 
213 	entry = __pa_symbol((unsigned long)&smpboot_entry);
214 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
215 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
216 
217 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
218 
219 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
220 }
221 
222 /*
223  * SMP init and finish on secondary CPUs
224  */
225 void loongson_init_secondary(void)
226 {
227 	unsigned int cpu = smp_processor_id();
228 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
229 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
230 
231 	change_csr_ecfg(ECFG0_IM, imask);
232 
233 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
234 
235 #ifdef CONFIG_NUMA
236 	numa_add_cpu(cpu);
237 #endif
238 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
239 	cpu_data[cpu].core =
240 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
241 	cpu_data[cpu].package =
242 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
243 }
244 
245 void loongson_smp_finish(void)
246 {
247 	local_irq_enable();
248 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
249 	pr_info("CPU#%d finished\n", smp_processor_id());
250 }
251 
252 #ifdef CONFIG_HOTPLUG_CPU
253 
254 int loongson_cpu_disable(void)
255 {
256 	unsigned long flags;
257 	unsigned int cpu = smp_processor_id();
258 
259 	if (io_master(cpu))
260 		return -EBUSY;
261 
262 #ifdef CONFIG_NUMA
263 	numa_remove_cpu(cpu);
264 #endif
265 	set_cpu_online(cpu, false);
266 	calculate_cpu_foreign_map();
267 	local_irq_save(flags);
268 	irq_migrate_all_off_this_cpu();
269 	clear_csr_ecfg(ECFG0_IM);
270 	local_irq_restore(flags);
271 	local_flush_tlb_all();
272 
273 	return 0;
274 }
275 
276 void loongson_cpu_die(unsigned int cpu)
277 {
278 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
279 		cpu_relax();
280 
281 	mb();
282 }
283 
284 void play_dead(void)
285 {
286 	register uint64_t addr;
287 	register void (*init_fn)(void);
288 
289 	idle_task_exit();
290 	local_irq_enable();
291 	set_csr_ecfg(ECFGF_IPI);
292 	__this_cpu_write(cpu_state, CPU_DEAD);
293 
294 	__smp_mb();
295 	do {
296 		__asm__ __volatile__("idle 0\n\t");
297 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
298 	} while (addr == 0);
299 
300 	init_fn = (void *)TO_CACHE(addr);
301 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
302 
303 	init_fn();
304 	unreachable();
305 }
306 
307 #endif
308 
309 /*
310  * Power management
311  */
312 #ifdef CONFIG_PM
313 
314 static int loongson_ipi_suspend(void)
315 {
316 	return 0;
317 }
318 
319 static void loongson_ipi_resume(void)
320 {
321 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
322 }
323 
324 static struct syscore_ops loongson_ipi_syscore_ops = {
325 	.resume         = loongson_ipi_resume,
326 	.suspend        = loongson_ipi_suspend,
327 };
328 
329 /*
330  * Enable boot cpu ipi before enabling nonboot cpus
331  * during syscore_resume.
332  */
333 static int __init ipi_pm_init(void)
334 {
335 	register_syscore_ops(&loongson_ipi_syscore_ops);
336 	return 0;
337 }
338 
339 core_initcall(ipi_pm_init);
340 #endif
341 
342 static inline void set_cpu_sibling_map(int cpu)
343 {
344 	int i;
345 
346 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
347 
348 	if (smp_num_siblings <= 1)
349 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
350 	else {
351 		for_each_cpu(i, &cpu_sibling_setup_map) {
352 			if (cpus_are_siblings(cpu, i)) {
353 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
354 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
355 			}
356 		}
357 	}
358 }
359 
360 static inline void set_cpu_core_map(int cpu)
361 {
362 	int i;
363 
364 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
365 
366 	for_each_cpu(i, &cpu_core_setup_map) {
367 		if (cpu_data[cpu].package == cpu_data[i].package) {
368 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
369 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
370 		}
371 	}
372 }
373 
374 /*
375  * Calculate a new cpu_foreign_map mask whenever a
376  * new cpu appears or disappears.
377  */
378 void calculate_cpu_foreign_map(void)
379 {
380 	int i, k, core_present;
381 	cpumask_t temp_foreign_map;
382 
383 	/* Re-calculate the mask */
384 	cpumask_clear(&temp_foreign_map);
385 	for_each_online_cpu(i) {
386 		core_present = 0;
387 		for_each_cpu(k, &temp_foreign_map)
388 			if (cpus_are_siblings(i, k))
389 				core_present = 1;
390 		if (!core_present)
391 			cpumask_set_cpu(i, &temp_foreign_map);
392 	}
393 
394 	for_each_online_cpu(i)
395 		cpumask_andnot(&cpu_foreign_map[i],
396 			       &temp_foreign_map, &cpu_sibling_map[i]);
397 }
398 
399 /* Preload SMP state for boot cpu */
400 void smp_prepare_boot_cpu(void)
401 {
402 	unsigned int cpu, node, rr_node;
403 
404 	set_cpu_possible(0, true);
405 	set_cpu_online(0, true);
406 	set_my_cpu_offset(per_cpu_offset(0));
407 
408 	rr_node = first_node(node_online_map);
409 	for_each_possible_cpu(cpu) {
410 		node = early_cpu_to_node(cpu);
411 
412 		/*
413 		 * The mapping between present cpus and nodes has been
414 		 * built during MADT and SRAT parsing.
415 		 *
416 		 * If possible cpus = present cpus here, early_cpu_to_node
417 		 * will return valid node.
418 		 *
419 		 * If possible cpus > present cpus here (e.g. some possible
420 		 * cpus will be added by cpu-hotplug later), for possible but
421 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
422 		 * and we just map them to online nodes in round-robin way.
423 		 * Once hotplugged, new correct mapping will be built for them.
424 		 */
425 		if (node != NUMA_NO_NODE)
426 			set_cpu_numa_node(cpu, node);
427 		else {
428 			set_cpu_numa_node(cpu, rr_node);
429 			rr_node = next_node_in(rr_node, node_online_map);
430 		}
431 	}
432 }
433 
434 /* called from main before smp_init() */
435 void __init smp_prepare_cpus(unsigned int max_cpus)
436 {
437 	init_new_context(current, &init_mm);
438 	current_thread_info()->cpu = 0;
439 	loongson_prepare_cpus(max_cpus);
440 	set_cpu_sibling_map(0);
441 	set_cpu_core_map(0);
442 	calculate_cpu_foreign_map();
443 #ifndef CONFIG_HOTPLUG_CPU
444 	init_cpu_present(cpu_possible_mask);
445 #endif
446 }
447 
448 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
449 {
450 	loongson_boot_secondary(cpu, tidle);
451 
452 	/* Wait for CPU to start and be ready to sync counters */
453 	if (!wait_for_completion_timeout(&cpu_starting,
454 					 msecs_to_jiffies(5000))) {
455 		pr_crit("CPU%u: failed to start\n", cpu);
456 		return -EIO;
457 	}
458 
459 	/* Wait for CPU to finish startup & mark itself online before return */
460 	wait_for_completion(&cpu_running);
461 
462 	return 0;
463 }
464 
465 /*
466  * First C code run on the secondary CPUs after being started up by
467  * the master.
468  */
469 asmlinkage void start_secondary(void)
470 {
471 	unsigned int cpu;
472 
473 	sync_counter();
474 	cpu = smp_processor_id();
475 	set_my_cpu_offset(per_cpu_offset(cpu));
476 
477 	cpu_probe();
478 	constant_clockevent_init();
479 	loongson_init_secondary();
480 
481 	set_cpu_sibling_map(cpu);
482 	set_cpu_core_map(cpu);
483 
484 	notify_cpu_starting(cpu);
485 
486 	/* Notify boot CPU that we're starting */
487 	complete(&cpu_starting);
488 
489 	/* The CPU is running, now mark it online */
490 	set_cpu_online(cpu, true);
491 
492 	calculate_cpu_foreign_map();
493 
494 	/*
495 	 * Notify boot CPU that we're up & online and it can safely return
496 	 * from __cpu_up()
497 	 */
498 	complete(&cpu_running);
499 
500 	/*
501 	 * irq will be enabled in loongson_smp_finish(), enabling it too
502 	 * early is dangerous.
503 	 */
504 	WARN_ON_ONCE(!irqs_disabled());
505 	loongson_smp_finish();
506 
507 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
508 }
509 
510 void __init smp_cpus_done(unsigned int max_cpus)
511 {
512 }
513 
514 static void stop_this_cpu(void *dummy)
515 {
516 	set_cpu_online(smp_processor_id(), false);
517 	calculate_cpu_foreign_map();
518 	local_irq_disable();
519 	while (true);
520 }
521 
522 void smp_send_stop(void)
523 {
524 	smp_call_function(stop_this_cpu, NULL, 0);
525 }
526 
527 int setup_profiling_timer(unsigned int multiplier)
528 {
529 	return 0;
530 }
531 
532 static void flush_tlb_all_ipi(void *info)
533 {
534 	local_flush_tlb_all();
535 }
536 
537 void flush_tlb_all(void)
538 {
539 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
540 }
541 
542 static void flush_tlb_mm_ipi(void *mm)
543 {
544 	local_flush_tlb_mm((struct mm_struct *)mm);
545 }
546 
547 void flush_tlb_mm(struct mm_struct *mm)
548 {
549 	if (atomic_read(&mm->mm_users) == 0)
550 		return;		/* happens as a result of exit_mmap() */
551 
552 	preempt_disable();
553 
554 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
555 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
556 	} else {
557 		unsigned int cpu;
558 
559 		for_each_online_cpu(cpu) {
560 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
561 				cpu_context(cpu, mm) = 0;
562 		}
563 		local_flush_tlb_mm(mm);
564 	}
565 
566 	preempt_enable();
567 }
568 
569 struct flush_tlb_data {
570 	struct vm_area_struct *vma;
571 	unsigned long addr1;
572 	unsigned long addr2;
573 };
574 
575 static void flush_tlb_range_ipi(void *info)
576 {
577 	struct flush_tlb_data *fd = info;
578 
579 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
580 }
581 
582 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
583 {
584 	struct mm_struct *mm = vma->vm_mm;
585 
586 	preempt_disable();
587 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
588 		struct flush_tlb_data fd = {
589 			.vma = vma,
590 			.addr1 = start,
591 			.addr2 = end,
592 		};
593 
594 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
595 	} else {
596 		unsigned int cpu;
597 
598 		for_each_online_cpu(cpu) {
599 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
600 				cpu_context(cpu, mm) = 0;
601 		}
602 		local_flush_tlb_range(vma, start, end);
603 	}
604 	preempt_enable();
605 }
606 
607 static void flush_tlb_kernel_range_ipi(void *info)
608 {
609 	struct flush_tlb_data *fd = info;
610 
611 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
612 }
613 
614 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
615 {
616 	struct flush_tlb_data fd = {
617 		.addr1 = start,
618 		.addr2 = end,
619 	};
620 
621 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
622 }
623 
624 static void flush_tlb_page_ipi(void *info)
625 {
626 	struct flush_tlb_data *fd = info;
627 
628 	local_flush_tlb_page(fd->vma, fd->addr1);
629 }
630 
631 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
632 {
633 	preempt_disable();
634 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
635 		struct flush_tlb_data fd = {
636 			.vma = vma,
637 			.addr1 = page,
638 		};
639 
640 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
641 	} else {
642 		unsigned int cpu;
643 
644 		for_each_online_cpu(cpu) {
645 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
646 				cpu_context(cpu, vma->vm_mm) = 0;
647 		}
648 		local_flush_tlb_page(vma, page);
649 	}
650 	preempt_enable();
651 }
652 EXPORT_SYMBOL(flush_tlb_page);
653 
654 static void flush_tlb_one_ipi(void *info)
655 {
656 	unsigned long vaddr = (unsigned long) info;
657 
658 	local_flush_tlb_one(vaddr);
659 }
660 
661 void flush_tlb_one(unsigned long vaddr)
662 {
663 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
664 }
665 EXPORT_SYMBOL(flush_tlb_one);
666