xref: /linux/arch/arm64/include/asm/pgtable.h (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22  *	and fixed mappings
23  */
24 #define VMALLOC_START		(MODULES_END)
25 #define VMALLOC_END		(VMEMMAP_START - SZ_256M)
26 
27 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28 
29 #ifndef __ASSEMBLY__
30 
31 #include <asm/cmpxchg.h>
32 #include <asm/fixmap.h>
33 #include <linux/mmdebug.h>
34 #include <linux/mm_types.h>
35 #include <linux/sched.h>
36 #include <linux/page_table_check.h>
37 
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
40 
41 /* Set stride and tlb_level in flush_*_tlb_range */
42 #define flush_pmd_tlb_range(vma, addr, end)	\
43 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
44 #define flush_pud_tlb_range(vma, addr, end)	\
45 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
46 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
47 
48 static inline bool arch_thp_swp_supported(void)
49 {
50 	return !system_supports_mte();
51 }
52 #define arch_thp_swp_supported arch_thp_swp_supported
53 
54 /*
55  * Outside of a few very special situations (e.g. hibernation), we always
56  * use broadcast TLB invalidation instructions, therefore a spurious page
57  * fault on one CPU which has been handled concurrently by another CPU
58  * does not need to perform additional invalidation.
59  */
60 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
61 
62 /*
63  * ZERO_PAGE is a global shared page that is always zero: used
64  * for zero-mapped memory areas etc..
65  */
66 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
67 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
68 
69 #define pte_ERROR(e)	\
70 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
71 
72 /*
73  * Macros to convert between a physical address and its placement in a
74  * page table entry, taking care of 52-bit addresses.
75  */
76 #ifdef CONFIG_ARM64_PA_BITS_52
77 static inline phys_addr_t __pte_to_phys(pte_t pte)
78 {
79 	return (pte_val(pte) & PTE_ADDR_LOW) |
80 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 }
82 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 {
84 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PTE_ADDR_MASK;
85 }
86 #else
87 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
88 #define __phys_to_pte_val(phys)	(phys)
89 #endif
90 
91 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92 #define pfn_pte(pfn,prot)	\
93 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94 
95 #define pte_none(pte)		(!pte_val(pte))
96 #define pte_clear(mm,addr,ptep)	set_pte(ptep, __pte(0))
97 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
98 
99 /*
100  * The following only work if pte_present(). Undefined behaviour otherwise.
101  */
102 #define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
103 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
104 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
105 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
106 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
107 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
108 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
109 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
110 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
111 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
112 
113 #define pte_cont_addr_end(addr, end)						\
114 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
115 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
116 })
117 
118 #define pmd_cont_addr_end(addr, end)						\
119 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
120 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
121 })
122 
123 #define pte_hw_dirty(pte)	(pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
124 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
125 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
126 
127 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
128 /*
129  * Execute-only user mappings do not have the PTE_USER bit set. All valid
130  * kernel mappings have the PTE_UXN bit set.
131  */
132 #define pte_valid_not_user(pte) \
133 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
134 /*
135  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
136  * so that we don't erroneously return false for pages that have been
137  * remapped as PROT_NONE but are yet to be flushed from the TLB.
138  * Note that we can't make any assumptions based on the state of the access
139  * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
140  * TLB.
141  */
142 #define pte_accessible(mm, pte)	\
143 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
144 
145 /*
146  * p??_access_permitted() is true for valid user mappings (PTE_USER
147  * bit set, subject to the write permission check). For execute-only
148  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
149  * not set) must return false. PROT_NONE mappings do not have the
150  * PTE_VALID bit set.
151  */
152 #define pte_access_permitted(pte, write) \
153 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
154 #define pmd_access_permitted(pmd, write) \
155 	(pte_access_permitted(pmd_pte(pmd), (write)))
156 #define pud_access_permitted(pud, write) \
157 	(pte_access_permitted(pud_pte(pud), (write)))
158 
159 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
160 {
161 	pte_val(pte) &= ~pgprot_val(prot);
162 	return pte;
163 }
164 
165 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
166 {
167 	pte_val(pte) |= pgprot_val(prot);
168 	return pte;
169 }
170 
171 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
172 {
173 	pmd_val(pmd) &= ~pgprot_val(prot);
174 	return pmd;
175 }
176 
177 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
178 {
179 	pmd_val(pmd) |= pgprot_val(prot);
180 	return pmd;
181 }
182 
183 static inline pte_t pte_mkwrite(pte_t pte)
184 {
185 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
186 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
187 	return pte;
188 }
189 
190 static inline pte_t pte_mkclean(pte_t pte)
191 {
192 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
193 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
194 
195 	return pte;
196 }
197 
198 static inline pte_t pte_mkdirty(pte_t pte)
199 {
200 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
201 
202 	if (pte_write(pte))
203 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
204 
205 	return pte;
206 }
207 
208 static inline pte_t pte_wrprotect(pte_t pte)
209 {
210 	/*
211 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
212 	 * clear), set the PTE_DIRTY bit.
213 	 */
214 	if (pte_hw_dirty(pte))
215 		pte = pte_mkdirty(pte);
216 
217 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
218 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
219 	return pte;
220 }
221 
222 static inline pte_t pte_mkold(pte_t pte)
223 {
224 	return clear_pte_bit(pte, __pgprot(PTE_AF));
225 }
226 
227 static inline pte_t pte_mkyoung(pte_t pte)
228 {
229 	return set_pte_bit(pte, __pgprot(PTE_AF));
230 }
231 
232 static inline pte_t pte_mkspecial(pte_t pte)
233 {
234 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
235 }
236 
237 static inline pte_t pte_mkcont(pte_t pte)
238 {
239 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
240 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
241 }
242 
243 static inline pte_t pte_mknoncont(pte_t pte)
244 {
245 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
246 }
247 
248 static inline pte_t pte_mkpresent(pte_t pte)
249 {
250 	return set_pte_bit(pte, __pgprot(PTE_VALID));
251 }
252 
253 static inline pmd_t pmd_mkcont(pmd_t pmd)
254 {
255 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
256 }
257 
258 static inline pte_t pte_mkdevmap(pte_t pte)
259 {
260 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
261 }
262 
263 static inline void set_pte(pte_t *ptep, pte_t pte)
264 {
265 	WRITE_ONCE(*ptep, pte);
266 
267 	/*
268 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
269 	 * or update_mmu_cache() have the necessary barriers.
270 	 */
271 	if (pte_valid_not_user(pte)) {
272 		dsb(ishst);
273 		isb();
274 	}
275 }
276 
277 extern void __sync_icache_dcache(pte_t pteval);
278 bool pgattr_change_is_safe(u64 old, u64 new);
279 
280 /*
281  * PTE bits configuration in the presence of hardware Dirty Bit Management
282  * (PTE_WRITE == PTE_DBM):
283  *
284  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
285  *   0      0      |   1           0          0
286  *   0      1      |   1           1          0
287  *   1      0      |   1           0          1
288  *   1      1      |   0           1          x
289  *
290  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
291  * the page fault mechanism. Checking the dirty status of a pte becomes:
292  *
293  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
294  */
295 
296 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
297 					   pte_t pte)
298 {
299 	pte_t old_pte;
300 
301 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
302 		return;
303 
304 	old_pte = READ_ONCE(*ptep);
305 
306 	if (!pte_valid(old_pte) || !pte_valid(pte))
307 		return;
308 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
309 		return;
310 
311 	/*
312 	 * Check for potential race with hardware updates of the pte
313 	 * (ptep_set_access_flags safely changes valid ptes without going
314 	 * through an invalid entry).
315 	 */
316 	VM_WARN_ONCE(!pte_young(pte),
317 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
318 		     __func__, pte_val(old_pte), pte_val(pte));
319 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
320 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
321 		     __func__, pte_val(old_pte), pte_val(pte));
322 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
323 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
324 		     __func__, pte_val(old_pte), pte_val(pte));
325 }
326 
327 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
328 				pte_t *ptep, pte_t pte)
329 {
330 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
331 		__sync_icache_dcache(pte);
332 
333 	/*
334 	 * If the PTE would provide user space access to the tags associated
335 	 * with it then ensure that the MTE tags are synchronised.  Although
336 	 * pte_access_permitted() returns false for exec only mappings, they
337 	 * don't expose tags (instruction fetches don't check tags).
338 	 */
339 	if (system_supports_mte() && pte_access_permitted(pte, false) &&
340 	    !pte_special(pte) && pte_tagged(pte))
341 		mte_sync_tags(pte);
342 
343 	__check_safe_pte_update(mm, ptep, pte);
344 
345 	set_pte(ptep, pte);
346 }
347 
348 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
349 			      pte_t *ptep, pte_t pte)
350 {
351 	page_table_check_pte_set(mm, ptep, pte);
352 	return __set_pte_at(mm, addr, ptep, pte);
353 }
354 
355 /*
356  * Huge pte definitions.
357  */
358 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
359 
360 /*
361  * Hugetlb definitions.
362  */
363 #define HUGE_MAX_HSTATE		4
364 #define HPAGE_SHIFT		PMD_SHIFT
365 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
366 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
367 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
368 
369 static inline pte_t pgd_pte(pgd_t pgd)
370 {
371 	return __pte(pgd_val(pgd));
372 }
373 
374 static inline pte_t p4d_pte(p4d_t p4d)
375 {
376 	return __pte(p4d_val(p4d));
377 }
378 
379 static inline pte_t pud_pte(pud_t pud)
380 {
381 	return __pte(pud_val(pud));
382 }
383 
384 static inline pud_t pte_pud(pte_t pte)
385 {
386 	return __pud(pte_val(pte));
387 }
388 
389 static inline pmd_t pud_pmd(pud_t pud)
390 {
391 	return __pmd(pud_val(pud));
392 }
393 
394 static inline pte_t pmd_pte(pmd_t pmd)
395 {
396 	return __pte(pmd_val(pmd));
397 }
398 
399 static inline pmd_t pte_pmd(pte_t pte)
400 {
401 	return __pmd(pte_val(pte));
402 }
403 
404 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
405 {
406 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
407 }
408 
409 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
410 {
411 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
412 }
413 
414 static inline pte_t pte_swp_mkexclusive(pte_t pte)
415 {
416 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
417 }
418 
419 static inline int pte_swp_exclusive(pte_t pte)
420 {
421 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
422 }
423 
424 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
425 {
426 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
427 }
428 
429 /*
430  * Select all bits except the pfn
431  */
432 static inline pgprot_t pte_pgprot(pte_t pte)
433 {
434 	unsigned long pfn = pte_pfn(pte);
435 
436 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
437 }
438 
439 #ifdef CONFIG_NUMA_BALANCING
440 /*
441  * See the comment in include/linux/pgtable.h
442  */
443 static inline int pte_protnone(pte_t pte)
444 {
445 	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
446 }
447 
448 static inline int pmd_protnone(pmd_t pmd)
449 {
450 	return pte_protnone(pmd_pte(pmd));
451 }
452 #endif
453 
454 #define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
455 
456 static inline int pmd_present(pmd_t pmd)
457 {
458 	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
459 }
460 
461 /*
462  * THP definitions.
463  */
464 
465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
466 static inline int pmd_trans_huge(pmd_t pmd)
467 {
468 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
469 }
470 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
471 
472 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
473 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
474 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
475 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
476 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
477 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
478 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
479 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
480 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
481 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
482 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
483 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
484 
485 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
486 {
487 	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
488 	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
489 
490 	return pmd;
491 }
492 
493 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
494 
495 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
496 
497 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
498 
499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
500 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
501 #endif
502 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
503 {
504 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
505 }
506 
507 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
508 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
509 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
510 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
511 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
512 
513 #define pud_young(pud)		pte_young(pud_pte(pud))
514 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
515 #define pud_write(pud)		pte_write(pud_pte(pud))
516 
517 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
518 
519 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
520 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
521 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
522 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
523 
524 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
525 			      pmd_t *pmdp, pmd_t pmd)
526 {
527 	page_table_check_pmd_set(mm, pmdp, pmd);
528 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
529 }
530 
531 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
532 			      pud_t *pudp, pud_t pud)
533 {
534 	page_table_check_pud_set(mm, pudp, pud);
535 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
536 }
537 
538 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
539 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
540 
541 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
542 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
543 
544 #define __pgprot_modify(prot,mask,bits) \
545 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
546 
547 #define pgprot_nx(prot) \
548 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
549 
550 /*
551  * Mark the prot value as uncacheable and unbufferable.
552  */
553 #define pgprot_noncached(prot) \
554 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
555 #define pgprot_writecombine(prot) \
556 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
557 #define pgprot_device(prot) \
558 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
559 #define pgprot_tagged(prot) \
560 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
561 #define pgprot_mhp	pgprot_tagged
562 /*
563  * DMA allocations for non-coherent devices use what the Arm architecture calls
564  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
565  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
566  * is intended for MMIO and thus forbids speculation, preserves access size,
567  * requires strict alignment and can also force write responses to come from the
568  * endpoint.
569  */
570 #define pgprot_dmacoherent(prot) \
571 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
572 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
573 
574 #define __HAVE_PHYS_MEM_ACCESS_PROT
575 struct file;
576 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
577 				     unsigned long size, pgprot_t vma_prot);
578 
579 #define pmd_none(pmd)		(!pmd_val(pmd))
580 
581 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
582 				 PMD_TYPE_TABLE)
583 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
584 				 PMD_TYPE_SECT)
585 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
586 #define pmd_bad(pmd)		(!pmd_table(pmd))
587 
588 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
589 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
590 
591 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
592 static inline bool pud_sect(pud_t pud) { return false; }
593 static inline bool pud_table(pud_t pud) { return true; }
594 #else
595 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
596 				 PUD_TYPE_SECT)
597 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
598 				 PUD_TYPE_TABLE)
599 #endif
600 
601 extern pgd_t init_pg_dir[PTRS_PER_PGD];
602 extern pgd_t init_pg_end[];
603 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
604 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
605 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
606 extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
607 
608 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
609 
610 static inline bool in_swapper_pgdir(void *addr)
611 {
612 	return ((unsigned long)addr & PAGE_MASK) ==
613 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
614 }
615 
616 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
617 {
618 #ifdef __PAGETABLE_PMD_FOLDED
619 	if (in_swapper_pgdir(pmdp)) {
620 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
621 		return;
622 	}
623 #endif /* __PAGETABLE_PMD_FOLDED */
624 
625 	WRITE_ONCE(*pmdp, pmd);
626 
627 	if (pmd_valid(pmd)) {
628 		dsb(ishst);
629 		isb();
630 	}
631 }
632 
633 static inline void pmd_clear(pmd_t *pmdp)
634 {
635 	set_pmd(pmdp, __pmd(0));
636 }
637 
638 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
639 {
640 	return __pmd_to_phys(pmd);
641 }
642 
643 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
644 {
645 	return (unsigned long)__va(pmd_page_paddr(pmd));
646 }
647 
648 /* Find an entry in the third-level page table. */
649 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
650 
651 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
652 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
653 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
654 
655 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
656 
657 /* use ONLY for statically allocated translation tables */
658 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
659 
660 /*
661  * Conversion functions: convert a page and protection to a page entry,
662  * and a page entry and page directory to the page they refer to.
663  */
664 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
665 
666 #if CONFIG_PGTABLE_LEVELS > 2
667 
668 #define pmd_ERROR(e)	\
669 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
670 
671 #define pud_none(pud)		(!pud_val(pud))
672 #define pud_bad(pud)		(!pud_table(pud))
673 #define pud_present(pud)	pte_present(pud_pte(pud))
674 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
675 #define pud_valid(pud)		pte_valid(pud_pte(pud))
676 #define pud_user(pud)		pte_user(pud_pte(pud))
677 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
678 
679 static inline void set_pud(pud_t *pudp, pud_t pud)
680 {
681 #ifdef __PAGETABLE_PUD_FOLDED
682 	if (in_swapper_pgdir(pudp)) {
683 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
684 		return;
685 	}
686 #endif /* __PAGETABLE_PUD_FOLDED */
687 
688 	WRITE_ONCE(*pudp, pud);
689 
690 	if (pud_valid(pud)) {
691 		dsb(ishst);
692 		isb();
693 	}
694 }
695 
696 static inline void pud_clear(pud_t *pudp)
697 {
698 	set_pud(pudp, __pud(0));
699 }
700 
701 static inline phys_addr_t pud_page_paddr(pud_t pud)
702 {
703 	return __pud_to_phys(pud);
704 }
705 
706 static inline pmd_t *pud_pgtable(pud_t pud)
707 {
708 	return (pmd_t *)__va(pud_page_paddr(pud));
709 }
710 
711 /* Find an entry in the second-level page table. */
712 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
713 
714 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
715 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
716 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
717 
718 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
719 
720 /* use ONLY for statically allocated translation tables */
721 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
722 
723 #else
724 
725 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
726 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
727 
728 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
729 #define pmd_set_fixmap(addr)		NULL
730 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
731 #define pmd_clear_fixmap()
732 
733 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
734 
735 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
736 
737 #if CONFIG_PGTABLE_LEVELS > 3
738 
739 #define pud_ERROR(e)	\
740 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
741 
742 #define p4d_none(p4d)		(!p4d_val(p4d))
743 #define p4d_bad(p4d)		(!(p4d_val(p4d) & 2))
744 #define p4d_present(p4d)	(p4d_val(p4d))
745 
746 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
747 {
748 	if (in_swapper_pgdir(p4dp)) {
749 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
750 		return;
751 	}
752 
753 	WRITE_ONCE(*p4dp, p4d);
754 	dsb(ishst);
755 	isb();
756 }
757 
758 static inline void p4d_clear(p4d_t *p4dp)
759 {
760 	set_p4d(p4dp, __p4d(0));
761 }
762 
763 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
764 {
765 	return __p4d_to_phys(p4d);
766 }
767 
768 static inline pud_t *p4d_pgtable(p4d_t p4d)
769 {
770 	return (pud_t *)__va(p4d_page_paddr(p4d));
771 }
772 
773 /* Find an entry in the first-level page table. */
774 #define pud_offset_phys(dir, addr)	(p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
775 
776 #define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
777 #define pud_set_fixmap_offset(p4d, addr)	pud_set_fixmap(pud_offset_phys(p4d, addr))
778 #define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
779 
780 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
781 
782 /* use ONLY for statically allocated translation tables */
783 #define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
784 
785 #else
786 
787 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
788 #define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
789 
790 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
791 #define pud_set_fixmap(addr)		NULL
792 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
793 #define pud_clear_fixmap()
794 
795 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
796 
797 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
798 
799 #define pgd_ERROR(e)	\
800 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
801 
802 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
803 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
804 
805 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
806 {
807 	/*
808 	 * Normal and Normal-Tagged are two different memory types and indices
809 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
810 	 */
811 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
812 			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
813 			      PTE_ATTRINDX_MASK;
814 	/* preserve the hardware dirty information */
815 	if (pte_hw_dirty(pte))
816 		pte = pte_mkdirty(pte);
817 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
818 	return pte;
819 }
820 
821 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
822 {
823 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
824 }
825 
826 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
827 extern int ptep_set_access_flags(struct vm_area_struct *vma,
828 				 unsigned long address, pte_t *ptep,
829 				 pte_t entry, int dirty);
830 
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
832 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
833 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
834 					unsigned long address, pmd_t *pmdp,
835 					pmd_t entry, int dirty)
836 {
837 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
838 }
839 
840 static inline int pud_devmap(pud_t pud)
841 {
842 	return 0;
843 }
844 
845 static inline int pgd_devmap(pgd_t pgd)
846 {
847 	return 0;
848 }
849 #endif
850 
851 #ifdef CONFIG_PAGE_TABLE_CHECK
852 static inline bool pte_user_accessible_page(pte_t pte)
853 {
854 	return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
855 }
856 
857 static inline bool pmd_user_accessible_page(pmd_t pmd)
858 {
859 	return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
860 }
861 
862 static inline bool pud_user_accessible_page(pud_t pud)
863 {
864 	return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
865 }
866 #endif
867 
868 /*
869  * Atomic pte/pmd modifications.
870  */
871 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
872 static inline int __ptep_test_and_clear_young(pte_t *ptep)
873 {
874 	pte_t old_pte, pte;
875 
876 	pte = READ_ONCE(*ptep);
877 	do {
878 		old_pte = pte;
879 		pte = pte_mkold(pte);
880 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
881 					       pte_val(old_pte), pte_val(pte));
882 	} while (pte_val(pte) != pte_val(old_pte));
883 
884 	return pte_young(pte);
885 }
886 
887 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
888 					    unsigned long address,
889 					    pte_t *ptep)
890 {
891 	return __ptep_test_and_clear_young(ptep);
892 }
893 
894 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
895 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
896 					 unsigned long address, pte_t *ptep)
897 {
898 	int young = ptep_test_and_clear_young(vma, address, ptep);
899 
900 	if (young) {
901 		/*
902 		 * We can elide the trailing DSB here since the worst that can
903 		 * happen is that a CPU continues to use the young entry in its
904 		 * TLB and we mistakenly reclaim the associated page. The
905 		 * window for such an event is bounded by the next
906 		 * context-switch, which provides a DSB to complete the TLB
907 		 * invalidation.
908 		 */
909 		flush_tlb_page_nosync(vma, address);
910 	}
911 
912 	return young;
913 }
914 
915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
916 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
917 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
918 					    unsigned long address,
919 					    pmd_t *pmdp)
920 {
921 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
922 }
923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
924 
925 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
926 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
927 				       unsigned long address, pte_t *ptep)
928 {
929 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
930 
931 	page_table_check_pte_clear(mm, pte);
932 
933 	return pte;
934 }
935 
936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
937 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
938 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
939 					    unsigned long address, pmd_t *pmdp)
940 {
941 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
942 
943 	page_table_check_pmd_clear(mm, pmd);
944 
945 	return pmd;
946 }
947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
948 
949 /*
950  * ptep_set_wrprotect - mark read-only while trasferring potential hardware
951  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
952  */
953 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
954 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
955 {
956 	pte_t old_pte, pte;
957 
958 	pte = READ_ONCE(*ptep);
959 	do {
960 		old_pte = pte;
961 		pte = pte_wrprotect(pte);
962 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
963 					       pte_val(old_pte), pte_val(pte));
964 	} while (pte_val(pte) != pte_val(old_pte));
965 }
966 
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
969 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
970 				      unsigned long address, pmd_t *pmdp)
971 {
972 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
973 }
974 
975 #define pmdp_establish pmdp_establish
976 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
977 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
978 {
979 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
980 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
981 }
982 #endif
983 
984 /*
985  * Encode and decode a swap entry:
986  *	bits 0-1:	present (must be zero)
987  *	bits 2:		remember PG_anon_exclusive
988  *	bits 3-7:	swap type
989  *	bits 8-57:	swap offset
990  *	bit  58:	PTE_PROT_NONE (must be zero)
991  */
992 #define __SWP_TYPE_SHIFT	3
993 #define __SWP_TYPE_BITS		5
994 #define __SWP_OFFSET_BITS	50
995 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
996 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
997 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
998 
999 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1000 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1001 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1002 
1003 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1004 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1005 
1006 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1007 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1008 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1009 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1010 
1011 /*
1012  * Ensure that there are not more swap files than can be encoded in the kernel
1013  * PTEs.
1014  */
1015 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1016 
1017 #ifdef CONFIG_ARM64_MTE
1018 
1019 #define __HAVE_ARCH_PREPARE_TO_SWAP
1020 static inline int arch_prepare_to_swap(struct page *page)
1021 {
1022 	if (system_supports_mte())
1023 		return mte_save_tags(page);
1024 	return 0;
1025 }
1026 
1027 #define __HAVE_ARCH_SWAP_INVALIDATE
1028 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1029 {
1030 	if (system_supports_mte())
1031 		mte_invalidate_tags(type, offset);
1032 }
1033 
1034 static inline void arch_swap_invalidate_area(int type)
1035 {
1036 	if (system_supports_mte())
1037 		mte_invalidate_tags_area(type);
1038 }
1039 
1040 #define __HAVE_ARCH_SWAP_RESTORE
1041 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1042 {
1043 	if (system_supports_mte())
1044 		mte_restore_tags(entry, &folio->page);
1045 }
1046 
1047 #endif /* CONFIG_ARM64_MTE */
1048 
1049 /*
1050  * On AArch64, the cache coherency is handled via the set_pte_at() function.
1051  */
1052 static inline void update_mmu_cache(struct vm_area_struct *vma,
1053 				    unsigned long addr, pte_t *ptep)
1054 {
1055 	/*
1056 	 * We don't do anything here, so there's a very small chance of
1057 	 * us retaking a user fault which we just fixed up. The alternative
1058 	 * is doing a dsb(ishst), but that penalises the fastpath.
1059 	 */
1060 }
1061 
1062 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1063 
1064 #ifdef CONFIG_ARM64_PA_BITS_52
1065 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1066 #else
1067 #define phys_to_ttbr(addr)	(addr)
1068 #endif
1069 
1070 /*
1071  * On arm64 without hardware Access Flag, copying from user will fail because
1072  * the pte is old and cannot be marked young. So we always end up with zeroed
1073  * page after fork() + CoW for pfn mappings. We don't always have a
1074  * hardware-managed access flag on arm64.
1075  */
1076 #define arch_has_hw_pte_young		cpu_has_hw_af
1077 
1078 /*
1079  * Experimentally, it's cheap to set the access flag in hardware and we
1080  * benefit from prefaulting mappings as 'old' to start with.
1081  */
1082 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1083 
1084 static inline bool pud_sect_supported(void)
1085 {
1086 	return PAGE_SIZE == SZ_4K;
1087 }
1088 
1089 
1090 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1091 #define ptep_modify_prot_start ptep_modify_prot_start
1092 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1093 				    unsigned long addr, pte_t *ptep);
1094 
1095 #define ptep_modify_prot_commit ptep_modify_prot_commit
1096 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1097 				    unsigned long addr, pte_t *ptep,
1098 				    pte_t old_pte, pte_t new_pte);
1099 #endif /* !__ASSEMBLY__ */
1100 
1101 #endif /* __ASM_PGTABLE_H */
1102