xref: /linux/arch/arm64/include/asm/pgtable.h (revision 906b77ca91c7e9833b4e47bedb6bec76be71d497)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45 
46 /* Set stride and tlb_level in flush_*_tlb_range */
47 #define flush_pmd_tlb_range(vma, addr, end)	\
48 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49 #define flush_pud_tlb_range(vma, addr, end)	\
50 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52 
53 /*
54  * Outside of a few very special situations (e.g. hibernation), we always
55  * use broadcast TLB invalidation instructions, therefore a spurious page
56  * fault on one CPU which has been handled concurrently by another CPU
57  * does not need to perform additional invalidation.
58  */
59 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60 
61 /*
62  * ZERO_PAGE is a global shared page that is always zero: used
63  * for zero-mapped memory areas etc..
64  */
65 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
67 
68 #define pte_ERROR(e)	\
69 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70 
71 /*
72  * Macros to convert between a physical address and its placement in a
73  * page table entry, taking care of 52-bit addresses.
74  */
75 #ifdef CONFIG_ARM64_PA_BITS_52
76 static inline phys_addr_t __pte_to_phys(pte_t pte)
77 {
78 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
79 	return (pte_val(pte) & PTE_ADDR_LOW) |
80 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 }
82 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 {
84 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85 }
86 #else
87 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
88 #define __phys_to_pte_val(phys)	(phys)
89 #endif
90 
91 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92 #define pfn_pte(pfn,prot)	\
93 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94 
95 #define pte_none(pte)		(!pte_val(pte))
96 #define __pte_clear(mm, addr, ptep) \
97 				__set_pte(ptep, __pte(0))
98 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
99 
100 /*
101  * The following only work if pte_present(). Undefined behaviour otherwise.
102  */
103 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
104 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
105 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
106 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
107 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
108 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
109 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
110 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
111 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
112 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114 
115 #define pte_cont_addr_end(addr, end)						\
116 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
117 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
118 })
119 
120 #define pmd_cont_addr_end(addr, end)						\
121 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
122 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123 })
124 
125 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
126 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
127 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
128 
129 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
130 #define pte_present_invalid(pte) \
131 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132 /*
133  * Execute-only user mappings do not have the PTE_USER bit set. All valid
134  * kernel mappings have the PTE_UXN bit set.
135  */
136 #define pte_valid_not_user(pte) \
137 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138 /*
139  * Returns true if the pte is valid and has the contiguous bit set.
140  */
141 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
142 /*
143  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144  * so that we don't erroneously return false for pages that have been
145  * remapped as PROT_NONE but are yet to be flushed from the TLB.
146  * Note that we can't make any assumptions based on the state of the access
147  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148  * TLB.
149  */
150 #define pte_accessible(mm, pte)	\
151 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152 
153 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154 {
155 	u64 por;
156 
157 	if (!system_supports_poe())
158 		return true;
159 
160 	por = read_sysreg_s(SYS_POR_EL0);
161 
162 	if (write)
163 		return por_elx_allows_write(por, pkey);
164 
165 	if (execute)
166 		return por_elx_allows_exec(por, pkey);
167 
168 	return por_elx_allows_read(por, pkey);
169 }
170 
171 /*
172  * p??_access_permitted() is true for valid user mappings (PTE_USER
173  * bit set, subject to the write permission check). For execute-only
174  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175  * not set) must return false. PROT_NONE mappings do not have the
176  * PTE_VALID bit set.
177  */
178 #define pte_access_permitted_no_overlay(pte, write) \
179 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180 #define pte_access_permitted(pte, write) \
181 	(pte_access_permitted_no_overlay(pte, write) && \
182 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183 #define pmd_access_permitted(pmd, write) \
184 	(pte_access_permitted(pmd_pte(pmd), (write)))
185 #define pud_access_permitted(pud, write) \
186 	(pte_access_permitted(pud_pte(pud), (write)))
187 
188 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189 {
190 	pte_val(pte) &= ~pgprot_val(prot);
191 	return pte;
192 }
193 
194 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195 {
196 	pte_val(pte) |= pgprot_val(prot);
197 	return pte;
198 }
199 
200 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201 {
202 	pmd_val(pmd) &= ~pgprot_val(prot);
203 	return pmd;
204 }
205 
206 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207 {
208 	pmd_val(pmd) |= pgprot_val(prot);
209 	return pmd;
210 }
211 
212 static inline pte_t pte_mkwrite_novma(pte_t pte)
213 {
214 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216 	return pte;
217 }
218 
219 static inline pte_t pte_mkclean(pte_t pte)
220 {
221 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223 
224 	return pte;
225 }
226 
227 static inline pte_t pte_mkdirty(pte_t pte)
228 {
229 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230 
231 	if (pte_write(pte))
232 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233 
234 	return pte;
235 }
236 
237 static inline pte_t pte_wrprotect(pte_t pte)
238 {
239 	/*
240 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241 	 * clear), set the PTE_DIRTY bit.
242 	 */
243 	if (pte_hw_dirty(pte))
244 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245 
246 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248 	return pte;
249 }
250 
251 static inline pte_t pte_mkold(pte_t pte)
252 {
253 	return clear_pte_bit(pte, __pgprot(PTE_AF));
254 }
255 
256 static inline pte_t pte_mkyoung(pte_t pte)
257 {
258 	return set_pte_bit(pte, __pgprot(PTE_AF));
259 }
260 
261 static inline pte_t pte_mkspecial(pte_t pte)
262 {
263 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264 }
265 
266 static inline pte_t pte_mkcont(pte_t pte)
267 {
268 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
269 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
270 }
271 
272 static inline pte_t pte_mknoncont(pte_t pte)
273 {
274 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
275 }
276 
277 static inline pte_t pte_mkpresent(pte_t pte)
278 {
279 	return set_pte_bit(pte, __pgprot(PTE_VALID));
280 }
281 
282 static inline pte_t pte_mkinvalid(pte_t pte)
283 {
284 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
285 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
286 	return pte;
287 }
288 
289 static inline pmd_t pmd_mkcont(pmd_t pmd)
290 {
291 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
292 }
293 
294 static inline pte_t pte_mkdevmap(pte_t pte)
295 {
296 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
297 }
298 
299 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
300 static inline int pte_uffd_wp(pte_t pte)
301 {
302 	return !!(pte_val(pte) & PTE_UFFD_WP);
303 }
304 
305 static inline pte_t pte_mkuffd_wp(pte_t pte)
306 {
307 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
308 }
309 
310 static inline pte_t pte_clear_uffd_wp(pte_t pte)
311 {
312 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
313 }
314 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
315 
316 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
317 {
318 	WRITE_ONCE(*ptep, pte);
319 }
320 
321 static inline void __set_pte(pte_t *ptep, pte_t pte)
322 {
323 	__set_pte_nosync(ptep, pte);
324 
325 	/*
326 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
327 	 * or update_mmu_cache() have the necessary barriers.
328 	 */
329 	if (pte_valid_not_user(pte)) {
330 		dsb(ishst);
331 		isb();
332 	}
333 }
334 
335 static inline pte_t __ptep_get(pte_t *ptep)
336 {
337 	return READ_ONCE(*ptep);
338 }
339 
340 extern void __sync_icache_dcache(pte_t pteval);
341 bool pgattr_change_is_safe(u64 old, u64 new);
342 
343 /*
344  * PTE bits configuration in the presence of hardware Dirty Bit Management
345  * (PTE_WRITE == PTE_DBM):
346  *
347  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
348  *   0      0      |   1           0          0
349  *   0      1      |   1           1          0
350  *   1      0      |   1           0          1
351  *   1      1      |   0           1          x
352  *
353  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
354  * the page fault mechanism. Checking the dirty status of a pte becomes:
355  *
356  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
357  */
358 
359 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
360 					   pte_t pte)
361 {
362 	pte_t old_pte;
363 
364 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
365 		return;
366 
367 	old_pte = __ptep_get(ptep);
368 
369 	if (!pte_valid(old_pte) || !pte_valid(pte))
370 		return;
371 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
372 		return;
373 
374 	/*
375 	 * Check for potential race with hardware updates of the pte
376 	 * (__ptep_set_access_flags safely changes valid ptes without going
377 	 * through an invalid entry).
378 	 */
379 	VM_WARN_ONCE(!pte_young(pte),
380 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
381 		     __func__, pte_val(old_pte), pte_val(pte));
382 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
383 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
384 		     __func__, pte_val(old_pte), pte_val(pte));
385 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
386 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
387 		     __func__, pte_val(old_pte), pte_val(pte));
388 }
389 
390 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
391 {
392 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
393 		__sync_icache_dcache(pte);
394 
395 	/*
396 	 * If the PTE would provide user space access to the tags associated
397 	 * with it then ensure that the MTE tags are synchronised.  Although
398 	 * pte_access_permitted_no_overlay() returns false for exec only
399 	 * mappings, they don't expose tags (instruction fetches don't check
400 	 * tags).
401 	 */
402 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
403 	    !pte_special(pte) && pte_tagged(pte))
404 		mte_sync_tags(pte, nr_pages);
405 }
406 
407 /*
408  * Select all bits except the pfn
409  */
410 #define pte_pgprot pte_pgprot
411 static inline pgprot_t pte_pgprot(pte_t pte)
412 {
413 	unsigned long pfn = pte_pfn(pte);
414 
415 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
416 }
417 
418 #define pte_advance_pfn pte_advance_pfn
419 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
420 {
421 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
422 }
423 
424 static inline void __set_ptes(struct mm_struct *mm,
425 			      unsigned long __always_unused addr,
426 			      pte_t *ptep, pte_t pte, unsigned int nr)
427 {
428 	page_table_check_ptes_set(mm, ptep, pte, nr);
429 	__sync_cache_and_tags(pte, nr);
430 
431 	for (;;) {
432 		__check_safe_pte_update(mm, ptep, pte);
433 		__set_pte(ptep, pte);
434 		if (--nr == 0)
435 			break;
436 		ptep++;
437 		pte = pte_advance_pfn(pte, 1);
438 	}
439 }
440 
441 /*
442  * Huge pte definitions.
443  */
444 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
445 
446 /*
447  * Hugetlb definitions.
448  */
449 #define HUGE_MAX_HSTATE		4
450 #define HPAGE_SHIFT		PMD_SHIFT
451 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
452 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
453 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
454 
455 static inline pte_t pgd_pte(pgd_t pgd)
456 {
457 	return __pte(pgd_val(pgd));
458 }
459 
460 static inline pte_t p4d_pte(p4d_t p4d)
461 {
462 	return __pte(p4d_val(p4d));
463 }
464 
465 static inline pte_t pud_pte(pud_t pud)
466 {
467 	return __pte(pud_val(pud));
468 }
469 
470 static inline pud_t pte_pud(pte_t pte)
471 {
472 	return __pud(pte_val(pte));
473 }
474 
475 static inline pmd_t pud_pmd(pud_t pud)
476 {
477 	return __pmd(pud_val(pud));
478 }
479 
480 static inline pte_t pmd_pte(pmd_t pmd)
481 {
482 	return __pte(pmd_val(pmd));
483 }
484 
485 static inline pmd_t pte_pmd(pte_t pte)
486 {
487 	return __pmd(pte_val(pte));
488 }
489 
490 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
491 {
492 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
493 }
494 
495 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
496 {
497 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
498 }
499 
500 static inline pte_t pte_swp_mkexclusive(pte_t pte)
501 {
502 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
503 }
504 
505 static inline int pte_swp_exclusive(pte_t pte)
506 {
507 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
508 }
509 
510 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
511 {
512 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
513 }
514 
515 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
516 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
517 {
518 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
519 }
520 
521 static inline int pte_swp_uffd_wp(pte_t pte)
522 {
523 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
524 }
525 
526 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
527 {
528 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
529 }
530 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
531 
532 #ifdef CONFIG_NUMA_BALANCING
533 /*
534  * See the comment in include/linux/pgtable.h
535  */
536 static inline int pte_protnone(pte_t pte)
537 {
538 	/*
539 	 * pte_present_invalid() tells us that the pte is invalid from HW
540 	 * perspective but present from SW perspective, so the fields are to be
541 	 * interpretted as per the HW layout. The second 2 checks are the unique
542 	 * encoding that we use for PROT_NONE. It is insufficient to only use
543 	 * the first check because we share the same encoding scheme with pmds
544 	 * which support pmd_mkinvalid(), so can be present-invalid without
545 	 * being PROT_NONE.
546 	 */
547 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
548 }
549 
550 static inline int pmd_protnone(pmd_t pmd)
551 {
552 	return pte_protnone(pmd_pte(pmd));
553 }
554 #endif
555 
556 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
557 
558 /*
559  * THP definitions.
560  */
561 
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 static inline int pmd_trans_huge(pmd_t pmd)
564 {
565 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
566 }
567 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
568 
569 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
570 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
571 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
572 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
573 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
574 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
575 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
576 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
577 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
578 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
579 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
580 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
581 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
582 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
583 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
584 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
585 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
586 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
587 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
588 #define pmd_swp_clear_uffd_wp(pmd) \
589 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
590 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
591 
592 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
593 
594 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
595 
596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
597 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
598 #endif
599 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
600 {
601 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
602 }
603 
604 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
605 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
606 static inline pmd_t pmd_mkspecial(pmd_t pmd)
607 {
608 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
609 }
610 #endif
611 
612 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
613 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
614 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
615 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
616 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
617 
618 #define pud_young(pud)		pte_young(pud_pte(pud))
619 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
620 #define pud_write(pud)		pte_write(pud_pte(pud))
621 
622 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
623 
624 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
625 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
626 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
627 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
628 
629 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
630 #define pud_special(pte)	pte_special(pud_pte(pud))
631 #define pud_mkspecial(pte)	pte_pud(pte_mkspecial(pud_pte(pud)))
632 #endif
633 
634 #define pmd_pgprot pmd_pgprot
635 static inline pgprot_t pmd_pgprot(pmd_t pmd)
636 {
637 	unsigned long pfn = pmd_pfn(pmd);
638 
639 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
640 }
641 
642 #define pud_pgprot pud_pgprot
643 static inline pgprot_t pud_pgprot(pud_t pud)
644 {
645 	unsigned long pfn = pud_pfn(pud);
646 
647 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
648 }
649 
650 static inline void __set_pte_at(struct mm_struct *mm,
651 				unsigned long __always_unused addr,
652 				pte_t *ptep, pte_t pte, unsigned int nr)
653 {
654 	__sync_cache_and_tags(pte, nr);
655 	__check_safe_pte_update(mm, ptep, pte);
656 	__set_pte(ptep, pte);
657 }
658 
659 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
660 			      pmd_t *pmdp, pmd_t pmd)
661 {
662 	page_table_check_pmd_set(mm, pmdp, pmd);
663 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
664 						PMD_SIZE >> PAGE_SHIFT);
665 }
666 
667 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
668 			      pud_t *pudp, pud_t pud)
669 {
670 	page_table_check_pud_set(mm, pudp, pud);
671 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
672 						PUD_SIZE >> PAGE_SHIFT);
673 }
674 
675 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
676 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
677 
678 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
679 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
680 
681 #define __pgprot_modify(prot,mask,bits) \
682 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
683 
684 #define pgprot_nx(prot) \
685 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
686 
687 /*
688  * Mark the prot value as uncacheable and unbufferable.
689  */
690 #define pgprot_noncached(prot) \
691 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
692 #define pgprot_writecombine(prot) \
693 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
694 #define pgprot_device(prot) \
695 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
696 #define pgprot_tagged(prot) \
697 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
698 #define pgprot_mhp	pgprot_tagged
699 /*
700  * DMA allocations for non-coherent devices use what the Arm architecture calls
701  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
702  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
703  * is intended for MMIO and thus forbids speculation, preserves access size,
704  * requires strict alignment and can also force write responses to come from the
705  * endpoint.
706  */
707 #define pgprot_dmacoherent(prot) \
708 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
709 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
710 
711 #define __HAVE_PHYS_MEM_ACCESS_PROT
712 struct file;
713 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
714 				     unsigned long size, pgprot_t vma_prot);
715 
716 #define pmd_none(pmd)		(!pmd_val(pmd))
717 
718 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
719 				 PMD_TYPE_TABLE)
720 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
721 				 PMD_TYPE_SECT)
722 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
723 #define pmd_bad(pmd)		(!pmd_table(pmd))
724 
725 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
726 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
727 
728 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
729 static inline bool pud_sect(pud_t pud) { return false; }
730 static inline bool pud_table(pud_t pud) { return true; }
731 #else
732 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
733 				 PUD_TYPE_SECT)
734 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
735 				 PUD_TYPE_TABLE)
736 #endif
737 
738 extern pgd_t init_pg_dir[];
739 extern pgd_t init_pg_end[];
740 extern pgd_t swapper_pg_dir[];
741 extern pgd_t idmap_pg_dir[];
742 extern pgd_t tramp_pg_dir[];
743 extern pgd_t reserved_pg_dir[];
744 
745 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
746 
747 static inline bool in_swapper_pgdir(void *addr)
748 {
749 	return ((unsigned long)addr & PAGE_MASK) ==
750 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
751 }
752 
753 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
754 {
755 #ifdef __PAGETABLE_PMD_FOLDED
756 	if (in_swapper_pgdir(pmdp)) {
757 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
758 		return;
759 	}
760 #endif /* __PAGETABLE_PMD_FOLDED */
761 
762 	WRITE_ONCE(*pmdp, pmd);
763 
764 	if (pmd_valid(pmd)) {
765 		dsb(ishst);
766 		isb();
767 	}
768 }
769 
770 static inline void pmd_clear(pmd_t *pmdp)
771 {
772 	set_pmd(pmdp, __pmd(0));
773 }
774 
775 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
776 {
777 	return __pmd_to_phys(pmd);
778 }
779 
780 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
781 {
782 	return (unsigned long)__va(pmd_page_paddr(pmd));
783 }
784 
785 /* Find an entry in the third-level page table. */
786 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
787 
788 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
789 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
790 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
791 
792 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
793 
794 /* use ONLY for statically allocated translation tables */
795 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
796 
797 /*
798  * Conversion functions: convert a page and protection to a page entry,
799  * and a page entry and page directory to the page they refer to.
800  */
801 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
802 
803 #if CONFIG_PGTABLE_LEVELS > 2
804 
805 #define pmd_ERROR(e)	\
806 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
807 
808 #define pud_none(pud)		(!pud_val(pud))
809 #define pud_bad(pud)		(!pud_table(pud))
810 #define pud_present(pud)	pte_present(pud_pte(pud))
811 #ifndef __PAGETABLE_PMD_FOLDED
812 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
813 #else
814 #define pud_leaf(pud)		false
815 #endif
816 #define pud_valid(pud)		pte_valid(pud_pte(pud))
817 #define pud_user(pud)		pte_user(pud_pte(pud))
818 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
819 
820 static inline bool pgtable_l4_enabled(void);
821 
822 static inline void set_pud(pud_t *pudp, pud_t pud)
823 {
824 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
825 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
826 		return;
827 	}
828 
829 	WRITE_ONCE(*pudp, pud);
830 
831 	if (pud_valid(pud)) {
832 		dsb(ishst);
833 		isb();
834 	}
835 }
836 
837 static inline void pud_clear(pud_t *pudp)
838 {
839 	set_pud(pudp, __pud(0));
840 }
841 
842 static inline phys_addr_t pud_page_paddr(pud_t pud)
843 {
844 	return __pud_to_phys(pud);
845 }
846 
847 static inline pmd_t *pud_pgtable(pud_t pud)
848 {
849 	return (pmd_t *)__va(pud_page_paddr(pud));
850 }
851 
852 /* Find an entry in the second-level page table. */
853 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
854 
855 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
856 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
857 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
858 
859 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
860 
861 /* use ONLY for statically allocated translation tables */
862 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
863 
864 #else
865 
866 #define pud_valid(pud)		false
867 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
868 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
869 
870 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
871 #define pmd_set_fixmap(addr)		NULL
872 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
873 #define pmd_clear_fixmap()
874 
875 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
876 
877 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
878 
879 #if CONFIG_PGTABLE_LEVELS > 3
880 
881 static __always_inline bool pgtable_l4_enabled(void)
882 {
883 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
884 		return true;
885 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
886 		return vabits_actual == VA_BITS;
887 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
888 }
889 
890 static inline bool mm_pud_folded(const struct mm_struct *mm)
891 {
892 	return !pgtable_l4_enabled();
893 }
894 #define mm_pud_folded  mm_pud_folded
895 
896 #define pud_ERROR(e)	\
897 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
898 
899 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
900 #define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
901 #define p4d_present(p4d)	(!p4d_none(p4d))
902 
903 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
904 {
905 	if (in_swapper_pgdir(p4dp)) {
906 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
907 		return;
908 	}
909 
910 	WRITE_ONCE(*p4dp, p4d);
911 	dsb(ishst);
912 	isb();
913 }
914 
915 static inline void p4d_clear(p4d_t *p4dp)
916 {
917 	if (pgtable_l4_enabled())
918 		set_p4d(p4dp, __p4d(0));
919 }
920 
921 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
922 {
923 	return __p4d_to_phys(p4d);
924 }
925 
926 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
927 
928 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
929 {
930 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
931 }
932 
933 static inline pud_t *p4d_pgtable(p4d_t p4d)
934 {
935 	return (pud_t *)__va(p4d_page_paddr(p4d));
936 }
937 
938 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
939 {
940 	BUG_ON(!pgtable_l4_enabled());
941 
942 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
943 }
944 
945 static inline
946 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
947 {
948 	if (!pgtable_l4_enabled())
949 		return p4d_to_folded_pud(p4dp, addr);
950 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
951 }
952 #define pud_offset_lockless pud_offset_lockless
953 
954 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
955 {
956 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
957 }
958 #define pud_offset	pud_offset
959 
960 static inline pud_t *pud_set_fixmap(unsigned long addr)
961 {
962 	if (!pgtable_l4_enabled())
963 		return NULL;
964 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
965 }
966 
967 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
968 {
969 	if (!pgtable_l4_enabled())
970 		return p4d_to_folded_pud(p4dp, addr);
971 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
972 }
973 
974 static inline void pud_clear_fixmap(void)
975 {
976 	if (pgtable_l4_enabled())
977 		clear_fixmap(FIX_PUD);
978 }
979 
980 /* use ONLY for statically allocated translation tables */
981 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
982 {
983 	if (!pgtable_l4_enabled())
984 		return p4d_to_folded_pud(p4dp, addr);
985 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
986 }
987 
988 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
989 
990 #else
991 
992 static inline bool pgtable_l4_enabled(void) { return false; }
993 
994 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
995 
996 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
997 #define pud_set_fixmap(addr)		NULL
998 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
999 #define pud_clear_fixmap()
1000 
1001 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1002 
1003 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1004 
1005 #if CONFIG_PGTABLE_LEVELS > 4
1006 
1007 static __always_inline bool pgtable_l5_enabled(void)
1008 {
1009 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1010 		return vabits_actual == VA_BITS;
1011 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1012 }
1013 
1014 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1015 {
1016 	return !pgtable_l5_enabled();
1017 }
1018 #define mm_p4d_folded  mm_p4d_folded
1019 
1020 #define p4d_ERROR(e)	\
1021 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1022 
1023 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1024 #define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
1025 #define pgd_present(pgd)	(!pgd_none(pgd))
1026 
1027 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1028 {
1029 	if (in_swapper_pgdir(pgdp)) {
1030 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1031 		return;
1032 	}
1033 
1034 	WRITE_ONCE(*pgdp, pgd);
1035 	dsb(ishst);
1036 	isb();
1037 }
1038 
1039 static inline void pgd_clear(pgd_t *pgdp)
1040 {
1041 	if (pgtable_l5_enabled())
1042 		set_pgd(pgdp, __pgd(0));
1043 }
1044 
1045 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1046 {
1047 	return __pgd_to_phys(pgd);
1048 }
1049 
1050 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1051 
1052 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1053 {
1054 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1055 }
1056 
1057 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1058 {
1059 	BUG_ON(!pgtable_l5_enabled());
1060 
1061 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1062 }
1063 
1064 static inline
1065 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1066 {
1067 	if (!pgtable_l5_enabled())
1068 		return pgd_to_folded_p4d(pgdp, addr);
1069 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1070 }
1071 #define p4d_offset_lockless p4d_offset_lockless
1072 
1073 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1074 {
1075 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1076 }
1077 
1078 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1079 {
1080 	if (!pgtable_l5_enabled())
1081 		return NULL;
1082 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1083 }
1084 
1085 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1086 {
1087 	if (!pgtable_l5_enabled())
1088 		return pgd_to_folded_p4d(pgdp, addr);
1089 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1090 }
1091 
1092 static inline void p4d_clear_fixmap(void)
1093 {
1094 	if (pgtable_l5_enabled())
1095 		clear_fixmap(FIX_P4D);
1096 }
1097 
1098 /* use ONLY for statically allocated translation tables */
1099 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1100 {
1101 	if (!pgtable_l5_enabled())
1102 		return pgd_to_folded_p4d(pgdp, addr);
1103 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1104 }
1105 
1106 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1107 
1108 #else
1109 
1110 static inline bool pgtable_l5_enabled(void) { return false; }
1111 
1112 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1113 
1114 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1115 #define p4d_set_fixmap(addr)		NULL
1116 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1117 #define p4d_clear_fixmap()
1118 
1119 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1120 
1121 static inline
1122 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1123 {
1124 	/*
1125 	 * With runtime folding of the pud, pud_offset_lockless() passes
1126 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1127 	 * will offset the pointer assuming that it points into
1128 	 * a page-table page. However, the fast GUP path passes us a
1129 	 * pgd_t allocated on the stack and so we must use the original
1130 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1131 	 * using the generic p4d_offset_lockless() implementation.
1132 	 *
1133 	 * Note: reusing the original pointer means that we may
1134 	 * dereference the same (live) page-table entry multiple times.
1135 	 * This is safe because it is still only loaded once in the
1136 	 * context of each level and the CPU guarantees same-address
1137 	 * read-after-read ordering.
1138 	 */
1139 	return p4d_offset(pgdp, addr);
1140 }
1141 #define p4d_offset_lockless p4d_offset_lockless_folded
1142 
1143 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1144 
1145 #define pgd_ERROR(e)	\
1146 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1147 
1148 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1149 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1150 
1151 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1152 {
1153 	/*
1154 	 * Normal and Normal-Tagged are two different memory types and indices
1155 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1156 	 */
1157 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1158 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1159 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1160 
1161 	/* preserve the hardware dirty information */
1162 	if (pte_hw_dirty(pte))
1163 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1164 
1165 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1166 	/*
1167 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1168 	 * dirtiness again.
1169 	 */
1170 	if (pte_sw_dirty(pte))
1171 		pte = pte_mkdirty(pte);
1172 	return pte;
1173 }
1174 
1175 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1176 {
1177 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1178 }
1179 
1180 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1181 				 unsigned long address, pte_t *ptep,
1182 				 pte_t entry, int dirty);
1183 
1184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1185 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1186 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1187 					unsigned long address, pmd_t *pmdp,
1188 					pmd_t entry, int dirty)
1189 {
1190 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1191 							pmd_pte(entry), dirty);
1192 }
1193 
1194 static inline int pud_devmap(pud_t pud)
1195 {
1196 	return 0;
1197 }
1198 
1199 static inline int pgd_devmap(pgd_t pgd)
1200 {
1201 	return 0;
1202 }
1203 #endif
1204 
1205 #ifdef CONFIG_PAGE_TABLE_CHECK
1206 static inline bool pte_user_accessible_page(pte_t pte)
1207 {
1208 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1209 }
1210 
1211 static inline bool pmd_user_accessible_page(pmd_t pmd)
1212 {
1213 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1214 }
1215 
1216 static inline bool pud_user_accessible_page(pud_t pud)
1217 {
1218 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1219 }
1220 #endif
1221 
1222 /*
1223  * Atomic pte/pmd modifications.
1224  */
1225 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1226 					      unsigned long address,
1227 					      pte_t *ptep)
1228 {
1229 	pte_t old_pte, pte;
1230 
1231 	pte = __ptep_get(ptep);
1232 	do {
1233 		old_pte = pte;
1234 		pte = pte_mkold(pte);
1235 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1236 					       pte_val(old_pte), pte_val(pte));
1237 	} while (pte_val(pte) != pte_val(old_pte));
1238 
1239 	return pte_young(pte);
1240 }
1241 
1242 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1243 					 unsigned long address, pte_t *ptep)
1244 {
1245 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1246 
1247 	if (young) {
1248 		/*
1249 		 * We can elide the trailing DSB here since the worst that can
1250 		 * happen is that a CPU continues to use the young entry in its
1251 		 * TLB and we mistakenly reclaim the associated page. The
1252 		 * window for such an event is bounded by the next
1253 		 * context-switch, which provides a DSB to complete the TLB
1254 		 * invalidation.
1255 		 */
1256 		flush_tlb_page_nosync(vma, address);
1257 	}
1258 
1259 	return young;
1260 }
1261 
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1264 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1265 					    unsigned long address,
1266 					    pmd_t *pmdp)
1267 {
1268 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1269 }
1270 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1271 
1272 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1273 				       unsigned long address, pte_t *ptep)
1274 {
1275 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1276 
1277 	page_table_check_pte_clear(mm, pte);
1278 
1279 	return pte;
1280 }
1281 
1282 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1283 				pte_t *ptep, unsigned int nr, int full)
1284 {
1285 	for (;;) {
1286 		__ptep_get_and_clear(mm, addr, ptep);
1287 		if (--nr == 0)
1288 			break;
1289 		ptep++;
1290 		addr += PAGE_SIZE;
1291 	}
1292 }
1293 
1294 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1295 				unsigned long addr, pte_t *ptep,
1296 				unsigned int nr, int full)
1297 {
1298 	pte_t pte, tmp_pte;
1299 
1300 	pte = __ptep_get_and_clear(mm, addr, ptep);
1301 	while (--nr) {
1302 		ptep++;
1303 		addr += PAGE_SIZE;
1304 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1305 		if (pte_dirty(tmp_pte))
1306 			pte = pte_mkdirty(pte);
1307 		if (pte_young(tmp_pte))
1308 			pte = pte_mkyoung(pte);
1309 	}
1310 	return pte;
1311 }
1312 
1313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1315 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1316 					    unsigned long address, pmd_t *pmdp)
1317 {
1318 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1319 
1320 	page_table_check_pmd_clear(mm, pmd);
1321 
1322 	return pmd;
1323 }
1324 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1325 
1326 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1327 					unsigned long address, pte_t *ptep,
1328 					pte_t pte)
1329 {
1330 	pte_t old_pte;
1331 
1332 	do {
1333 		old_pte = pte;
1334 		pte = pte_wrprotect(pte);
1335 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1336 					       pte_val(old_pte), pte_val(pte));
1337 	} while (pte_val(pte) != pte_val(old_pte));
1338 }
1339 
1340 /*
1341  * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1342  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1343  */
1344 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1345 					unsigned long address, pte_t *ptep)
1346 {
1347 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1348 }
1349 
1350 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1351 				pte_t *ptep, unsigned int nr)
1352 {
1353 	unsigned int i;
1354 
1355 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1356 		__ptep_set_wrprotect(mm, address, ptep);
1357 }
1358 
1359 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1360 					   unsigned long addr, pte_t *ptep,
1361 					   pte_t pte, cydp_t flags)
1362 {
1363 	pte_t old_pte;
1364 
1365 	do {
1366 		old_pte = pte;
1367 
1368 		if (flags & CYDP_CLEAR_YOUNG)
1369 			pte = pte_mkold(pte);
1370 		if (flags & CYDP_CLEAR_DIRTY)
1371 			pte = pte_mkclean(pte);
1372 
1373 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1374 					       pte_val(old_pte), pte_val(pte));
1375 	} while (pte_val(pte) != pte_val(old_pte));
1376 }
1377 
1378 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1379 					    unsigned long addr, pte_t *ptep,
1380 					    unsigned int nr, cydp_t flags)
1381 {
1382 	pte_t pte;
1383 
1384 	for (;;) {
1385 		pte = __ptep_get(ptep);
1386 
1387 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1388 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1389 		else
1390 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1391 
1392 		if (--nr == 0)
1393 			break;
1394 		ptep++;
1395 		addr += PAGE_SIZE;
1396 	}
1397 }
1398 
1399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1400 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1401 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1402 				      unsigned long address, pmd_t *pmdp)
1403 {
1404 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1405 }
1406 
1407 #define pmdp_establish pmdp_establish
1408 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1409 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1410 {
1411 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1412 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1413 }
1414 #endif
1415 
1416 /*
1417  * Encode and decode a swap entry:
1418  *	bits 0-1:	present (must be zero)
1419  *	bits 2:		remember PG_anon_exclusive
1420  *	bit  3:		remember uffd-wp state
1421  *	bits 6-10:	swap type
1422  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1423  *	bits 12-61:	swap offset
1424  */
1425 #define __SWP_TYPE_SHIFT	6
1426 #define __SWP_TYPE_BITS		5
1427 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1428 #define __SWP_OFFSET_SHIFT	12
1429 #define __SWP_OFFSET_BITS	50
1430 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1431 
1432 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1433 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1434 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1435 
1436 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1437 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1438 
1439 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1440 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1441 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1442 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1443 
1444 /*
1445  * Ensure that there are not more swap files than can be encoded in the kernel
1446  * PTEs.
1447  */
1448 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1449 
1450 #ifdef CONFIG_ARM64_MTE
1451 
1452 #define __HAVE_ARCH_PREPARE_TO_SWAP
1453 extern int arch_prepare_to_swap(struct folio *folio);
1454 
1455 #define __HAVE_ARCH_SWAP_INVALIDATE
1456 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1457 {
1458 	if (system_supports_mte())
1459 		mte_invalidate_tags(type, offset);
1460 }
1461 
1462 static inline void arch_swap_invalidate_area(int type)
1463 {
1464 	if (system_supports_mte())
1465 		mte_invalidate_tags_area(type);
1466 }
1467 
1468 #define __HAVE_ARCH_SWAP_RESTORE
1469 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1470 
1471 #endif /* CONFIG_ARM64_MTE */
1472 
1473 /*
1474  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1475  */
1476 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1477 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1478 		unsigned int nr)
1479 {
1480 	/*
1481 	 * We don't do anything here, so there's a very small chance of
1482 	 * us retaking a user fault which we just fixed up. The alternative
1483 	 * is doing a dsb(ishst), but that penalises the fastpath.
1484 	 */
1485 }
1486 
1487 #define update_mmu_cache(vma, addr, ptep) \
1488 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1489 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1490 
1491 #ifdef CONFIG_ARM64_PA_BITS_52
1492 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1493 #else
1494 #define phys_to_ttbr(addr)	(addr)
1495 #endif
1496 
1497 /*
1498  * On arm64 without hardware Access Flag, copying from user will fail because
1499  * the pte is old and cannot be marked young. So we always end up with zeroed
1500  * page after fork() + CoW for pfn mappings. We don't always have a
1501  * hardware-managed access flag on arm64.
1502  */
1503 #define arch_has_hw_pte_young		cpu_has_hw_af
1504 
1505 /*
1506  * Experimentally, it's cheap to set the access flag in hardware and we
1507  * benefit from prefaulting mappings as 'old' to start with.
1508  */
1509 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1510 
1511 static inline bool pud_sect_supported(void)
1512 {
1513 	return PAGE_SIZE == SZ_4K;
1514 }
1515 
1516 
1517 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1518 #define ptep_modify_prot_start ptep_modify_prot_start
1519 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1520 				    unsigned long addr, pte_t *ptep);
1521 
1522 #define ptep_modify_prot_commit ptep_modify_prot_commit
1523 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1524 				    unsigned long addr, pte_t *ptep,
1525 				    pte_t old_pte, pte_t new_pte);
1526 
1527 #ifdef CONFIG_ARM64_CONTPTE
1528 
1529 /*
1530  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1531  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1532  * a private implementation detail of the public ptep API (see below).
1533  */
1534 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1535 				pte_t *ptep, pte_t pte);
1536 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1537 				pte_t *ptep, pte_t pte);
1538 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1539 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1540 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1541 				pte_t *ptep, pte_t pte, unsigned int nr);
1542 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1543 				pte_t *ptep, unsigned int nr, int full);
1544 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1545 				unsigned long addr, pte_t *ptep,
1546 				unsigned int nr, int full);
1547 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1548 				unsigned long addr, pte_t *ptep);
1549 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1550 				unsigned long addr, pte_t *ptep);
1551 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1552 				pte_t *ptep, unsigned int nr);
1553 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1554 				unsigned long addr, pte_t *ptep,
1555 				pte_t entry, int dirty);
1556 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1557 				unsigned long addr, pte_t *ptep,
1558 				unsigned int nr, cydp_t flags);
1559 
1560 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1561 				unsigned long addr, pte_t *ptep, pte_t pte)
1562 {
1563 	/*
1564 	 * Only bother trying if both the virtual and physical addresses are
1565 	 * aligned and correspond to the last entry in a contig range. The core
1566 	 * code mostly modifies ranges from low to high, so this is the likely
1567 	 * the last modification in the contig range, so a good time to fold.
1568 	 * We can't fold special mappings, because there is no associated folio.
1569 	 */
1570 
1571 	const unsigned long contmask = CONT_PTES - 1;
1572 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1573 
1574 	if (unlikely(valign)) {
1575 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1576 
1577 		if (unlikely(palign &&
1578 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1579 			__contpte_try_fold(mm, addr, ptep, pte);
1580 	}
1581 }
1582 
1583 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1584 				unsigned long addr, pte_t *ptep, pte_t pte)
1585 {
1586 	if (unlikely(pte_valid_cont(pte)))
1587 		__contpte_try_unfold(mm, addr, ptep, pte);
1588 }
1589 
1590 #define pte_batch_hint pte_batch_hint
1591 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1592 {
1593 	if (!pte_valid_cont(pte))
1594 		return 1;
1595 
1596 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1597 }
1598 
1599 /*
1600  * The below functions constitute the public API that arm64 presents to the
1601  * core-mm to manipulate PTE entries within their page tables (or at least this
1602  * is the subset of the API that arm64 needs to implement). These public
1603  * versions will automatically and transparently apply the contiguous bit where
1604  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1605  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1606  * private versions, which are prefixed with double underscore. All of these
1607  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1608  * held. Although the contiguous bit is considered private to the
1609  * implementation, it is deliberately allowed to leak through the getters (e.g.
1610  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1611  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1612  * its possible a pte will be passed to a setter with the contiguous bit set, so
1613  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1614  * setting it in the pgtable.
1615  */
1616 
1617 #define ptep_get ptep_get
1618 static inline pte_t ptep_get(pte_t *ptep)
1619 {
1620 	pte_t pte = __ptep_get(ptep);
1621 
1622 	if (likely(!pte_valid_cont(pte)))
1623 		return pte;
1624 
1625 	return contpte_ptep_get(ptep, pte);
1626 }
1627 
1628 #define ptep_get_lockless ptep_get_lockless
1629 static inline pte_t ptep_get_lockless(pte_t *ptep)
1630 {
1631 	pte_t pte = __ptep_get(ptep);
1632 
1633 	if (likely(!pte_valid_cont(pte)))
1634 		return pte;
1635 
1636 	return contpte_ptep_get_lockless(ptep);
1637 }
1638 
1639 static inline void set_pte(pte_t *ptep, pte_t pte)
1640 {
1641 	/*
1642 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1643 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1644 	 * this should never even be called. Regardless do our best to service
1645 	 * any call and emit a warning if there is any attempt to set a pte on
1646 	 * top of an existing contig range.
1647 	 */
1648 	pte_t orig_pte = __ptep_get(ptep);
1649 
1650 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1651 	__set_pte(ptep, pte_mknoncont(pte));
1652 }
1653 
1654 #define set_ptes set_ptes
1655 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1656 				pte_t *ptep, pte_t pte, unsigned int nr)
1657 {
1658 	pte = pte_mknoncont(pte);
1659 
1660 	if (likely(nr == 1)) {
1661 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1662 		__set_ptes(mm, addr, ptep, pte, 1);
1663 		contpte_try_fold(mm, addr, ptep, pte);
1664 	} else {
1665 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1666 	}
1667 }
1668 
1669 static inline void pte_clear(struct mm_struct *mm,
1670 				unsigned long addr, pte_t *ptep)
1671 {
1672 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1673 	__pte_clear(mm, addr, ptep);
1674 }
1675 
1676 #define clear_full_ptes clear_full_ptes
1677 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1678 				pte_t *ptep, unsigned int nr, int full)
1679 {
1680 	if (likely(nr == 1)) {
1681 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1682 		__clear_full_ptes(mm, addr, ptep, nr, full);
1683 	} else {
1684 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1685 	}
1686 }
1687 
1688 #define get_and_clear_full_ptes get_and_clear_full_ptes
1689 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1690 				unsigned long addr, pte_t *ptep,
1691 				unsigned int nr, int full)
1692 {
1693 	pte_t pte;
1694 
1695 	if (likely(nr == 1)) {
1696 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1697 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1698 	} else {
1699 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1700 	}
1701 
1702 	return pte;
1703 }
1704 
1705 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1706 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1707 				unsigned long addr, pte_t *ptep)
1708 {
1709 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1710 	return __ptep_get_and_clear(mm, addr, ptep);
1711 }
1712 
1713 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1714 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1715 				unsigned long addr, pte_t *ptep)
1716 {
1717 	pte_t orig_pte = __ptep_get(ptep);
1718 
1719 	if (likely(!pte_valid_cont(orig_pte)))
1720 		return __ptep_test_and_clear_young(vma, addr, ptep);
1721 
1722 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1723 }
1724 
1725 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1726 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1727 				unsigned long addr, pte_t *ptep)
1728 {
1729 	pte_t orig_pte = __ptep_get(ptep);
1730 
1731 	if (likely(!pte_valid_cont(orig_pte)))
1732 		return __ptep_clear_flush_young(vma, addr, ptep);
1733 
1734 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1735 }
1736 
1737 #define wrprotect_ptes wrprotect_ptes
1738 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1739 				unsigned long addr, pte_t *ptep, unsigned int nr)
1740 {
1741 	if (likely(nr == 1)) {
1742 		/*
1743 		 * Optimization: wrprotect_ptes() can only be called for present
1744 		 * ptes so we only need to check contig bit as condition for
1745 		 * unfold, and we can remove the contig bit from the pte we read
1746 		 * to avoid re-reading. This speeds up fork() which is sensitive
1747 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1748 		 */
1749 		pte_t orig_pte = __ptep_get(ptep);
1750 
1751 		if (unlikely(pte_cont(orig_pte))) {
1752 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1753 			orig_pte = pte_mknoncont(orig_pte);
1754 		}
1755 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1756 	} else {
1757 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1758 	}
1759 }
1760 
1761 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1762 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1763 				unsigned long addr, pte_t *ptep)
1764 {
1765 	wrprotect_ptes(mm, addr, ptep, 1);
1766 }
1767 
1768 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1769 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1770 				unsigned long addr, pte_t *ptep,
1771 				pte_t entry, int dirty)
1772 {
1773 	pte_t orig_pte = __ptep_get(ptep);
1774 
1775 	entry = pte_mknoncont(entry);
1776 
1777 	if (likely(!pte_valid_cont(orig_pte)))
1778 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1779 
1780 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1781 }
1782 
1783 #define clear_young_dirty_ptes clear_young_dirty_ptes
1784 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1785 					  unsigned long addr, pte_t *ptep,
1786 					  unsigned int nr, cydp_t flags)
1787 {
1788 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1789 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1790 	else
1791 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1792 }
1793 
1794 #else /* CONFIG_ARM64_CONTPTE */
1795 
1796 #define ptep_get				__ptep_get
1797 #define set_pte					__set_pte
1798 #define set_ptes				__set_ptes
1799 #define pte_clear				__pte_clear
1800 #define clear_full_ptes				__clear_full_ptes
1801 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1802 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1803 #define ptep_get_and_clear			__ptep_get_and_clear
1804 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1805 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1806 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1807 #define ptep_clear_flush_young			__ptep_clear_flush_young
1808 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1809 #define ptep_set_wrprotect			__ptep_set_wrprotect
1810 #define wrprotect_ptes				__wrprotect_ptes
1811 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1812 #define ptep_set_access_flags			__ptep_set_access_flags
1813 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1814 
1815 #endif /* CONFIG_ARM64_CONTPTE */
1816 
1817 #endif /* !__ASSEMBLY__ */
1818 
1819 #endif /* __ASM_PGTABLE_H */
1820